vulkano/examples/async-update/main.rs
marc0246 f6bc05df94
Update dependencies (#2571)
* Update dependencies

* fmt
2024-10-10 12:16:14 +02:00

1121 lines
42 KiB
Rust

// This example showcases how you can most effectively update a resource asynchronously, such that
// your rendering or any other tasks can use the resource without any latency at the same time as
// it's being updated.
//
// There are two kinds of resources that are updated asynchronously here:
//
// - A uniform buffer, which needs to be updated every frame.
// - A large texture, which needs to be updated partially at the request of the user.
//
// For the first, since the data needs to be updated every frame, we have to use one buffer per
// frame in flight. The swapchain most commonly has multiple images that are all processed at the
// same time, therefore writing the same buffer during each frame in flight would result in one of
// two things: either you would have to synchronize the writes from the host and reads from the
// device such that only one of the images in the swapchain is actually processed at any point in
// time (bad), or a race condition (bad). Therefore we are left with no choice but to use a
// different buffer for each frame in flight. This is best suited to very small pieces of data that
// change rapidly, and where the data of one frame doesn't depend on data from a previous one.
//
// For the second, since this texture is rather large, we can't afford to overwrite the entire
// texture every time a part of it needs to be updated. Also, we don't need as many textures as
// there are frames in flight since the texture doesn't need to be updated every frame, but we
// still need at least two textures. That way we can write one of the textures at the same time as
// reading the other, swapping them after the write is done such that the newly updated one is read
// and the now out-of-date one can be written to next time, known as *eventual consistency*.
//
// In an eventually consistent system, a number of *replicas* are used, all of which represent the
// same data but their consistency is not strict. A replica might be out-of-date for some time
// before *reaching convergence*, hence becoming consistent, eventually.
use glam::f32::Mat4;
use rand::Rng;
use std::{
alloc::Layout,
error::Error,
slice,
sync::{
atomic::{AtomicBool, Ordering},
mpsc, Arc,
},
thread,
time::{SystemTime, UNIX_EPOCH},
};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::RenderPassBeginInfo,
descriptor_set::{
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue,
QueueCreateInfo, QueueFlags,
},
format::Format,
image::{
sampler::{Sampler, SamplerCreateInfo},
view::ImageView,
Image, ImageAspects, ImageCreateInfo, ImageSubresourceLayers, ImageType, ImageUsage,
},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, DeviceLayout, MemoryTypeFilter},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::{InputAssemblyState, PrimitiveTopology},
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{Surface, Swapchain, SwapchainCreateInfo},
sync::Sharing,
DeviceSize, Validated, VulkanError, VulkanLibrary,
};
use vulkano_taskgraph::{
command_buffer::{
BufferImageCopy, ClearColorImageInfo, CopyBufferToImageInfo, RecordingCommandBuffer,
},
graph::{CompileInfo, ExecutableTaskGraph, ExecuteError, TaskGraph},
resource::{AccessType, Flight, HostAccessType, ImageLayoutType, Resources},
resource_map, Id, QueueFamilyType, Task, TaskContext, TaskResult,
};
use winit::{
application::ApplicationHandler,
event::{ElementState, KeyEvent, WindowEvent},
event_loop::{ActiveEventLoop, EventLoop},
keyboard::{Key, NamedKey},
window::{Window, WindowId},
};
const TRANSFER_GRANULARITY: u32 = 4096;
const MAX_FRAMES_IN_FLIGHT: u32 = 2;
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let mut app = App::new(&event_loop);
println!("\nPress space to update part of the texture");
event_loop.run_app(&mut app)
}
struct App {
instance: Arc<Instance>,
device: Arc<Device>,
graphics_family_index: u32,
transfer_family_index: u32,
graphics_queue: Arc<Queue>,
resources: Arc<Resources>,
graphics_flight_id: Id<Flight>,
vertex_buffer_id: Id<Buffer>,
uniform_buffer_ids: [Id<Buffer>; MAX_FRAMES_IN_FLIGHT as usize],
texture_ids: [Id<Image>; 2],
current_texture_index: Arc<AtomicBool>,
channel: mpsc::Sender<()>,
rcx: Option<RenderContext>,
}
struct RenderContext {
window: Arc<Window>,
swapchain_id: Id<Swapchain>,
render_pass: Arc<RenderPass>,
framebuffers: Vec<Arc<Framebuffer>>,
viewport: Viewport,
recreate_swapchain: bool,
task_graph: ExecutableTaskGraph<Self>,
virtual_swapchain_id: Id<Swapchain>,
virtual_texture_id: Id<Image>,
virtual_uniform_buffer_id: Id<Buffer>,
}
impl App {
fn new(event_loop: &EventLoop<()>) -> Self {
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, graphics_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.presentation_support(i as u32, event_loop).unwrap()
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
// Since we are going to be updating the texture on a separate thread asynchronously from
// the execution of graphics commands, it would make sense to also do the transfer on a
// dedicated transfer queue, if such a queue family exists. That way, the graphics queue is
// not blocked during the transfers either and the two tasks are truly asynchronous.
//
// For this, we need to find the queue family with the fewest queue flags set, since if the
// queue family has more flags than `TRANSFER | SPARSE_BINDING`, that means it is not
// dedicated to transfer operations.
let transfer_family_index = physical_device
.queue_family_properties()
.iter()
.enumerate()
.filter(|(_, q)| {
q.queue_flags.intersects(QueueFlags::TRANSFER)
// Queue families dedicated to transfers are not required to support partial
// transfers of images, reported by a minimum granularity of [0, 0, 0]. If you need
// to do partial transfers of images like we do in this example, you therefore have
// to make sure the queue family supports that.
&& q.min_image_transfer_granularity != [0; 3]
// Unlike queue families for graphics and/or compute, queue families dedicated to
// transfers don't have to support image transfers of arbitrary granularity.
// Therefore, if you are going to use one, you have to either make sure the
// granularity is granular enough for your needs, or you have to align your
// transfer offsets and extents to this granularity. Our minimum granularity is
// 4096 which should be more than coarse enough so we just check that it is.
&& q.min_image_transfer_granularity[0..2]
.iter()
.all(|&g| TRANSFER_GRANULARITY % g == 0)
})
.min_by_key(|(_, q)| q.queue_flags.count())
.unwrap()
.0 as u32;
let (device, mut queues) = {
let mut queue_create_infos = vec![QueueCreateInfo {
queue_family_index: graphics_family_index,
..Default::default()
}];
// It's possible that the physical device doesn't have any queue families supporting
// transfers other than the graphics and/or compute queue family. In that case we must
// make sure we don't request the same queue family twice.
if transfer_family_index != graphics_family_index {
queue_create_infos.push(QueueCreateInfo {
queue_family_index: transfer_family_index,
..Default::default()
});
} else {
let queue_family_properties =
&physical_device.queue_family_properties()[graphics_family_index as usize];
// Even if we can't get an async transfer queue family, it's still better to use
// different queues on the same queue family. This way, at least the threads on the
// host don't have to lock the same queue when submitting.
if queue_family_properties.queue_count > 1 {
queue_create_infos[0].queues.push(0.5);
}
}
Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos,
..Default::default()
},
)
.unwrap()
};
let graphics_queue = queues.next().unwrap();
// If we didn't get a dedicated transfer queue, fall back to the graphics queue for
// transfers.
let transfer_queue = queues.next().unwrap_or_else(|| graphics_queue.clone());
println!(
"Using queue family {graphics_family_index} for graphics and queue family \
{transfer_family_index} for transfers",
);
let resources = Resources::new(&device, &Default::default());
let graphics_flight_id = resources.create_flight(MAX_FRAMES_IN_FLIGHT).unwrap();
let transfer_flight_id = resources.create_flight(1).unwrap();
let vertices = [
MyVertex {
position: [-0.5, -0.5],
},
MyVertex {
position: [-0.5, 0.5],
},
MyVertex {
position: [0.5, -0.5],
},
MyVertex {
position: [0.5, 0.5],
},
];
let vertex_buffer_id = resources
.create_buffer(
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
DeviceLayout::from_layout(Layout::for_value(&vertices)).unwrap(),
)
.unwrap();
// Create a pool of uniform buffers, one per frame in flight. This way we always have an
// available buffer to write during each frame while reusing them as much as possible.
let uniform_buffer_ids = [(); MAX_FRAMES_IN_FLIGHT as usize].map(|_| {
resources
.create_buffer(
BufferCreateInfo {
usage: BufferUsage::UNIFORM_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
DeviceLayout::from_layout(Layout::new::<vs::Data>()).unwrap(),
)
.unwrap()
});
// Create two textures, where at any point in time one is used exclusively for reading and
// one is used exclusively for writing, swapping the two after each update.
let texture_ids = [(); 2].map(|_| {
resources
.create_image(
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::R8G8B8A8_UNORM,
extent: [TRANSFER_GRANULARITY * 2, TRANSFER_GRANULARITY * 2, 1],
usage: ImageUsage::TRANSFER_DST | ImageUsage::SAMPLED,
sharing: if graphics_family_index != transfer_family_index {
Sharing::Concurrent(
[graphics_family_index, transfer_family_index]
.into_iter()
.collect(),
)
} else {
Sharing::Exclusive
},
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap()
});
// The index of the currently most up-to-date texture. The worker thread swaps the index
// after every finished write, which is always done to the, at that point in time, unused
// texture.
let current_texture_index = Arc::new(AtomicBool::new(false));
// Initialize the resources.
unsafe {
vulkano_taskgraph::execute(
&graphics_queue,
&resources,
graphics_flight_id,
|cbf, tcx| {
tcx.write_buffer::<[MyVertex]>(vertex_buffer_id, ..)?
.copy_from_slice(&vertices);
for &texture_id in &texture_ids {
cbf.clear_color_image(&ClearColorImageInfo {
image: texture_id,
..Default::default()
})?;
}
Ok(())
},
[(vertex_buffer_id, HostAccessType::Write)],
[],
[
(
texture_ids[0],
AccessType::ClearTransferWrite,
ImageLayoutType::Optimal,
),
(
texture_ids[1],
AccessType::ClearTransferWrite,
ImageLayoutType::Optimal,
),
],
)
}
.unwrap();
// Start the worker thread.
let (channel, receiver) = mpsc::channel();
run_worker(
receiver,
graphics_family_index,
transfer_family_index,
transfer_queue.clone(),
resources.clone(),
graphics_flight_id,
transfer_flight_id,
texture_ids,
current_texture_index.clone(),
);
App {
instance,
device,
graphics_family_index,
transfer_family_index,
graphics_queue,
resources,
graphics_flight_id,
vertex_buffer_id,
uniform_buffer_ids,
texture_ids,
current_texture_index,
channel,
rcx: None,
}
}
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
let window = Arc::new(
event_loop
.create_window(Window::default_attributes())
.unwrap(),
);
let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap();
let window_size = window.inner_size();
let swapchain_format;
let swapchain_id = {
let surface_capabilities = self
.device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
(swapchain_format, _) = self
.device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0];
self.resources
.create_swapchain(
self.graphics_flight_id,
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(3),
image_format: swapchain_format,
image_extent: window_size.into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let render_pass = vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
color: {
format: swapchain_format,
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let framebuffers = window_size_dependent_setup(&self.resources, swapchain_id, &render_pass);
let pipeline = {
let vs = vs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
self.device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(self.device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
self.device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState {
topology: PrimitiveTopology::TriangleStrip,
..Default::default()
}),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let viewport = Viewport {
offset: [0.0, 0.0],
extent: window_size.into(),
depth_range: 0.0..=1.0,
};
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
self.device.clone(),
Default::default(),
));
// A byproduct of always using the same set of uniform buffers is that we can also create
// one descriptor set for each, reusing them in the same way as the buffers.
let uniform_buffer_sets = self.uniform_buffer_ids.map(|buffer_id| {
let buffer_state = self.resources.buffer(buffer_id).unwrap();
let buffer = buffer_state.buffer();
DescriptorSet::new(
descriptor_set_allocator.clone(),
pipeline.layout().set_layouts()[0].clone(),
[WriteDescriptorSet::buffer(0, buffer.clone().into())],
[],
)
.unwrap()
});
// Create the descriptor sets for sampling the textures.
let sampler = Sampler::new(
self.device.clone(),
SamplerCreateInfo::simple_repeat_linear(),
)
.unwrap();
let sampler_sets = self.texture_ids.map(|texture_id| {
let texture_state = self.resources.image(texture_id).unwrap();
let texture = texture_state.image();
DescriptorSet::new(
descriptor_set_allocator.clone(),
pipeline.layout().set_layouts()[1].clone(),
[
WriteDescriptorSet::sampler(0, sampler.clone()),
WriteDescriptorSet::image_view(
1,
ImageView::new_default(texture.clone()).unwrap(),
),
],
[],
)
.unwrap()
});
let mut task_graph = TaskGraph::new(&self.resources, 1, 4);
let virtual_swapchain_id = task_graph.add_swapchain(&SwapchainCreateInfo::default());
let virtual_texture_id = task_graph.add_image(&ImageCreateInfo {
sharing: if self.graphics_family_index != self.transfer_family_index {
Sharing::Concurrent(
[self.graphics_family_index, self.transfer_family_index]
.into_iter()
.collect(),
)
} else {
Sharing::Exclusive
},
..Default::default()
});
let virtual_uniform_buffer_id = task_graph.add_buffer(&BufferCreateInfo::default());
task_graph.add_host_buffer_access(virtual_uniform_buffer_id, HostAccessType::Write);
task_graph
.create_task_node(
"Render",
QueueFamilyType::Graphics,
RenderTask {
swapchain_id: virtual_swapchain_id,
vertex_buffer_id: self.vertex_buffer_id,
current_texture_index: self.current_texture_index.clone(),
pipeline,
uniform_buffer_id: virtual_uniform_buffer_id,
uniform_buffer_sets,
sampler_sets,
},
)
.image_access(
virtual_swapchain_id.current_image_id(),
AccessType::ColorAttachmentWrite,
ImageLayoutType::Optimal,
)
.buffer_access(self.vertex_buffer_id, AccessType::VertexAttributeRead)
.image_access(
virtual_texture_id,
AccessType::FragmentShaderSampledRead,
ImageLayoutType::Optimal,
)
.buffer_access(
virtual_uniform_buffer_id,
AccessType::VertexShaderUniformRead,
);
let task_graph = unsafe {
task_graph.compile(&CompileInfo {
queues: &[&self.graphics_queue],
present_queue: Some(&self.graphics_queue),
flight_id: self.graphics_flight_id,
..Default::default()
})
}
.unwrap();
self.rcx = Some(RenderContext {
window,
swapchain_id,
render_pass,
framebuffers,
viewport,
recreate_swapchain: false,
task_graph,
virtual_swapchain_id,
virtual_texture_id,
virtual_uniform_buffer_id,
});
}
fn window_event(
&mut self,
event_loop: &ActiveEventLoop,
_window_id: WindowId,
event: WindowEvent,
) {
let rcx = self.rcx.as_mut().unwrap();
match event {
WindowEvent::CloseRequested => {
event_loop.exit();
}
WindowEvent::Resized(_) => {
rcx.recreate_swapchain = true;
}
WindowEvent::KeyboardInput {
event:
KeyEvent {
logical_key: Key::Named(NamedKey::Space),
state: ElementState::Released,
..
},
..
} => {
self.channel.send(()).unwrap();
}
WindowEvent::RedrawRequested => {
let window_size = rcx.window.inner_size();
if window_size.width == 0 || window_size.height == 0 {
return;
}
let flight = self.resources.flight(self.graphics_flight_id).unwrap();
if rcx.recreate_swapchain {
rcx.swapchain_id = self
.resources
.recreate_swapchain(rcx.swapchain_id, |create_info| SwapchainCreateInfo {
image_extent: window_size.into(),
..create_info
})
.expect("failed to recreate swapchain");
rcx.framebuffers = window_size_dependent_setup(
&self.resources,
rcx.swapchain_id,
&rcx.render_pass,
);
rcx.viewport.extent = window_size.into();
rcx.recreate_swapchain = false;
}
let frame_index = flight.current_frame_index();
let texture_index = self.current_texture_index.load(Ordering::Relaxed);
let resource_map = resource_map!(
&rcx.task_graph,
rcx.virtual_swapchain_id => rcx.swapchain_id,
rcx.virtual_texture_id => self.texture_ids[texture_index as usize],
rcx.virtual_uniform_buffer_id => self.uniform_buffer_ids[frame_index as usize],
)
.unwrap();
flight.wait(None).unwrap();
match unsafe {
rcx.task_graph
.execute(resource_map, rcx, || rcx.window.pre_present_notify())
} {
Ok(()) => {}
Err(ExecuteError::Swapchain {
error: Validated::Error(VulkanError::OutOfDate),
..
}) => {
rcx.recreate_swapchain = true;
}
Err(e) => {
panic!("failed to execute next frame: {e:?}");
}
}
}
_ => {}
}
}
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
let rcx = self.rcx.as_mut().unwrap();
rcx.window.request_redraw();
}
}
#[derive(Clone, Copy, BufferContents, Vertex)]
#[repr(C)]
struct MyVertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
layout(set = 0, binding = 0) uniform Data {
mat4 transform;
};
void main() {
gl_Position = vec4(transform * vec4(position, 0.0, 1.0));
tex_coords = position + vec2(0.5);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 1, binding = 0) uniform sampler s;
layout(set = 1, binding = 1) uniform texture2D tex;
void main() {
f_color = texture(sampler2D(tex, s), tex_coords);
}
",
}
}
struct RenderTask {
swapchain_id: Id<Swapchain>,
vertex_buffer_id: Id<Buffer>,
current_texture_index: Arc<AtomicBool>,
pipeline: Arc<GraphicsPipeline>,
uniform_buffer_id: Id<Buffer>,
uniform_buffer_sets: [Arc<DescriptorSet>; MAX_FRAMES_IN_FLIGHT as usize],
sampler_sets: [Arc<DescriptorSet>; 2],
}
impl Task for RenderTask {
type World = RenderContext;
unsafe fn execute(
&self,
cbf: &mut RecordingCommandBuffer<'_>,
tcx: &mut TaskContext<'_>,
rcx: &Self::World,
) -> TaskResult {
let frame_index = tcx.current_frame_index();
let swapchain_state = tcx.swapchain(self.swapchain_id)?;
let image_index = swapchain_state.current_image_index().unwrap();
// Write to the uniform buffer designated for this frame.
*tcx.write_buffer(self.uniform_buffer_id, ..)? = vs::Data {
transform: {
const DURATION: f64 = 5.0;
let elapsed = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs_f64();
let remainder = elapsed.rem_euclid(DURATION);
let delta = (remainder / DURATION) as f32;
let angle = delta * std::f32::consts::PI * 2.0;
Mat4::from_rotation_z(angle).to_cols_array_2d()
},
};
cbf.as_raw().begin_render_pass(
&RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 0.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(rcx.framebuffers[image_index as usize].clone())
},
&Default::default(),
)?;
cbf.set_viewport(0, slice::from_ref(&rcx.viewport))?;
cbf.bind_pipeline_graphics(&self.pipeline)?;
cbf.as_raw().bind_descriptor_sets(
PipelineBindPoint::Graphics,
self.pipeline.layout(),
0,
&[
// Bind the uniform buffer designated for this frame.
self.uniform_buffer_sets[frame_index as usize]
.clone()
.into(),
// Bind the currently most up-to-date texture.
self.sampler_sets[self.current_texture_index.load(Ordering::Relaxed) as usize]
.clone()
.into(),
],
)?;
cbf.bind_vertex_buffers(0, &[self.vertex_buffer_id], &[0], &[], &[])?;
unsafe { cbf.draw(4, 1, 0, 0) }?;
cbf.as_raw().end_render_pass(&Default::default())?;
cbf.destroy_objects(rcx.framebuffers.iter().cloned());
cbf.destroy_objects(self.uniform_buffer_sets.iter().cloned());
cbf.destroy_objects(self.sampler_sets.iter().cloned());
Ok(())
}
}
#[allow(clippy::too_many_arguments)]
fn run_worker(
channel: mpsc::Receiver<()>,
graphics_family_index: u32,
transfer_family_index: u32,
transfer_queue: Arc<Queue>,
resources: Arc<Resources>,
graphics_flight_id: Id<Flight>,
transfer_flight_id: Id<Flight>,
texture_ids: [Id<Image>; 2],
current_texture_index: Arc<AtomicBool>,
) {
// We are going to be updating one of 4 corners of the texture at any point in time. For that,
// we will use a staging buffer and initiate a copy. However, since our texture is eventually
// consistent and there are 2 replicas, that means that every time we update one of the
// replicas the other replica is going to be behind by one update. Therefore we actually need 2
// staging buffers as well: one for the update that happened to the currently up-to-date
// texture (at `current_index`) and one for the update that is about to happen to the currently
// out-of-date texture (at `!current_index`), so that we can apply both the current and the
// upcoming update to the out-of-date texture. Then the out-of-date texture is the current
// up-to-date texture and vice-versa, cycle repeating.
let staging_buffer_ids = [(); 2].map(|_| {
resources
.create_buffer(
BufferCreateInfo {
usage: BufferUsage::TRANSFER_SRC,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_HOST
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
DeviceLayout::from_size_alignment(
TRANSFER_GRANULARITY as DeviceSize * TRANSFER_GRANULARITY as DeviceSize * 4,
1,
)
.unwrap(),
)
.unwrap()
});
let mut task_graph = TaskGraph::new(&resources, 1, 3);
let virtual_front_staging_buffer_id = task_graph.add_buffer(&BufferCreateInfo::default());
let virtual_back_staging_buffer_id = task_graph.add_buffer(&BufferCreateInfo::default());
let virtual_texture_id = task_graph.add_image(&ImageCreateInfo {
sharing: if graphics_family_index != transfer_family_index {
Sharing::Concurrent(
[graphics_family_index, transfer_family_index]
.into_iter()
.collect(),
)
} else {
Sharing::Exclusive
},
..Default::default()
});
task_graph.add_host_buffer_access(virtual_front_staging_buffer_id, HostAccessType::Write);
task_graph
.create_task_node(
"Image Upload",
QueueFamilyType::Transfer,
UploadTask {
front_staging_buffer_id: virtual_front_staging_buffer_id,
back_staging_buffer_id: virtual_back_staging_buffer_id,
texture_id: virtual_texture_id,
},
)
.buffer_access(
virtual_front_staging_buffer_id,
AccessType::CopyTransferRead,
)
.buffer_access(virtual_back_staging_buffer_id, AccessType::CopyTransferRead)
.image_access(
virtual_texture_id,
AccessType::CopyTransferWrite,
ImageLayoutType::Optimal,
);
let task_graph = unsafe {
task_graph.compile(&CompileInfo {
queues: &[&transfer_queue],
flight_id: transfer_flight_id,
..Default::default()
})
}
.unwrap();
thread::spawn(move || {
let mut current_corner = 0;
let mut last_frame = 0;
// The worker thread is awakened by sending a signal through the channel. In a real program
// you would likely send some actual data over the channel, instructing the worker what to
// do, but our work is hard-coded.
while let Ok(()) = channel.recv() {
let graphics_flight = resources.flight(graphics_flight_id).unwrap();
// We swap the texture index to use after a write, but there is no guarantee that other
// tasks have actually moved on to using the new texture. What could happen then, if
// the writes being done are quicker than rendering a frame (or any other task reading
// the same resource), is the following:
//
// 1. Task A starts reading texture 0
// 2. Task B writes texture 1, swapping the index
// 3. Task B writes texture 0, swapping the index
// 4. Task A stops reading texture 0
//
// This is known as the A/B/A problem. In this case it results in a data race, since
// task A (rendering, in our case) is still reading texture 0 while task B (our worker)
// has already started writing the very same texture.
//
// To solve this issue, we keep track of the frame counter before swapping the texture
// index and ensure that any further write only happens after a frame was reached which
// makes it impossible for any readers to be stuck on the old index, by waiting on the
// frame to finish on the rendering thread.
graphics_flight.wait_for_frame(last_frame, None).unwrap();
let current_index = current_texture_index.load(Ordering::Relaxed);
let resource_map = resource_map!(
&task_graph,
virtual_front_staging_buffer_id => staging_buffer_ids[current_index as usize],
virtual_back_staging_buffer_id => staging_buffer_ids[!current_index as usize],
// Write to the texture that's currently not in use for rendering.
virtual_texture_id => texture_ids[!current_index as usize],
)
.unwrap();
unsafe { task_graph.execute(resource_map, &current_corner, || {}) }.unwrap();
// Block the thread until the transfer finishes.
resources
.flight(transfer_flight_id)
.unwrap()
.wait(None)
.unwrap();
last_frame = graphics_flight.current_frame();
// Swap the texture used for rendering to the newly updated one.
//
// NOTE: We are relying on the fact that this thread is the only one doing stores.
current_texture_index.store(!current_index, Ordering::Relaxed);
current_corner += 1;
}
});
}
struct UploadTask {
front_staging_buffer_id: Id<Buffer>,
back_staging_buffer_id: Id<Buffer>,
texture_id: Id<Image>,
}
impl Task for UploadTask {
type World = usize;
unsafe fn execute(
&self,
cbf: &mut RecordingCommandBuffer<'_>,
tcx: &mut TaskContext<'_>,
&current_corner: &Self::World,
) -> TaskResult {
const CORNER_OFFSETS: [[u32; 3]; 4] = [
[0, 0, 0],
[TRANSFER_GRANULARITY, 0, 0],
[TRANSFER_GRANULARITY, TRANSFER_GRANULARITY, 0],
[0, TRANSFER_GRANULARITY, 0],
];
let mut rng = rand::thread_rng();
// We simulate some work for the worker to indulge in. In a real program this would likely
// be some kind of I/O, for example reading from disk (think loading the next level in a
// level-based game, loading the next chunk of terrain in an open-world game, etc.) or
// downloading images or other data from the internet.
//
// NOTE: The size of these textures is exceedingly large on purpose, so that you can feel
// that the update is in fact asynchronous due to the latency of the updates while the
// rendering continues without any.
let color = [rng.gen(), rng.gen(), rng.gen(), u8::MAX];
tcx.write_buffer::<[_]>(self.front_staging_buffer_id, ..)?
.fill(color);
cbf.copy_buffer_to_image(&CopyBufferToImageInfo {
src_buffer: self.front_staging_buffer_id,
dst_image: self.texture_id,
regions: &[BufferImageCopy {
image_subresource: ImageSubresourceLayers {
aspects: ImageAspects::COLOR,
mip_level: 0,
array_layers: 0..1,
},
image_offset: CORNER_OFFSETS[current_corner % 4],
image_extent: [TRANSFER_GRANULARITY, TRANSFER_GRANULARITY, 1],
..Default::default()
}],
..Default::default()
})?;
if current_corner > 0 {
cbf.copy_buffer_to_image(&CopyBufferToImageInfo {
src_buffer: self.back_staging_buffer_id,
dst_image: self.texture_id,
regions: &[BufferImageCopy {
image_subresource: ImageSubresourceLayers {
aspects: ImageAspects::COLOR,
mip_level: 0,
array_layers: 0..1,
},
image_offset: CORNER_OFFSETS[(current_corner - 1) % 4],
image_extent: [TRANSFER_GRANULARITY, TRANSFER_GRANULARITY, 1],
..Default::default()
}],
..Default::default()
})?;
}
Ok(())
}
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
resources: &Resources,
swapchain_id: Id<Swapchain>,
render_pass: &Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
let swapchain_state = resources.swapchain(swapchain_id).unwrap();
let images = swapchain_state.images();
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}