vulkano/examples/indirect/main.rs
marc0246 43e2db0dbd
Command buffer allocator API 2.0 (#2403)
* Make `CommandBufferAllocator` object-safe, remove the generics

* Fix tests

* Fix examples

* Remove the panic

* Remove outdated docs

* Document `Send + Sync` impl of `UnsafeCommandBuffer`
2023-11-14 17:57:43 +01:00

571 lines
21 KiB
Rust

// Indirect draw example
//
// Indirect draw calls allow us to issue a draw without needing to know the number of vertices
// until later when the draw is executed by the GPU.
//
// This is used in situations where vertices are being generated on the GPU, such as a GPU particle
// simulation, and the exact number of output vertices cannot be known until the compute shader has
// run.
//
// In this example the compute shader is trivial and the number of vertices does not change.
// However is does demonstrate that each compute instance atomically updates the vertex counter
// before filling the vertex buffer.
//
// For an explanation of how the rendering of the triangles takes place see the `triangle.rs`
// example.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{
allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo},
BufferContents, BufferUsage,
},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
DrawIndirectCommand, RenderPassBeginInfo,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
compute::ComputePipelineCreateInfo,
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint,
PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
single_pass_renderpass,
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
khr_storage_buffer_storage_class: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
// The triangle vertex positions.
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r#"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"#,
}
}
// A simple compute shader that generates vertices. It has two buffers bound: the first is
// where we output the vertices, the second is the `IndirectDrawArgs` struct we passed the
// `draw_indirect` so we can set the number to vertices to draw.
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: r"
#version 450
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
layout(set = 0, binding = 0) buffer Output {
vec2 pos[];
} triangles;
layout(set = 0, binding = 1) buffer IndirectDrawArgs {
uint vertices;
uint unused0;
uint unused1;
uint unused2;
};
void main() {
uint idx = gl_GlobalInvocationID.x;
// Each invocation of the compute shader is going to increment the counter, so
// we need to use atomic operations for safety. The previous value of the
// counter is returned so that gives us the offset into the vertex buffer this
// thread can write it's vertices into.
uint offset = atomicAdd(vertices, 6);
vec2 center = vec2(-0.8, -0.8) + idx * vec2(0.1, 0.1);
triangles.pos[offset + 0] = center + vec2(0.0, 0.0375);
triangles.pos[offset + 1] = center + vec2(0.025, -0.01725);
triangles.pos[offset + 2] = center + vec2(-0.025, -0.01725);
triangles.pos[offset + 3] = center + vec2(0.0, -0.0375);
triangles.pos[offset + 4] = center + vec2(0.025, 0.01725);
triangles.pos[offset + 5] = center + vec2(-0.025, 0.01725);
}
",
}
}
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
// Each frame we generate a new set of vertices and each frame we need a new
// DrawIndirectCommand struct to set the number of vertices to draw.
let indirect_args_pool = SubbufferAllocator::new(
memory_allocator.clone(),
SubbufferAllocatorCreateInfo {
buffer_usage: BufferUsage::INDIRECT_BUFFER | BufferUsage::STORAGE_BUFFER,
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
);
let vertex_pool = SubbufferAllocator::new(
memory_allocator,
SubbufferAllocatorCreateInfo {
buffer_usage: BufferUsage::STORAGE_BUFFER | BufferUsage::VERTEX_BUFFER,
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
);
let compute_pipeline = {
let cs = cs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
ComputePipeline::new(
device.clone(),
None,
ComputePipelineCreateInfo::stage_layout(stage, layout),
)
.unwrap()
};
let render_pass = single_pass_renderpass!(
device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
// `Vertex` is the vertex type that will be output from the compute shader and be input to the
// vertex shader.
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let render_pipeline = {
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState::default()),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(
&new_images,
render_pass.clone(),
&mut viewport,
);
recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
// Allocate a buffer to hold the arguments for this frame's draw call. The compute
// shader will only update `vertex_count`, so set the other parameters correctly
// here.
let indirect_commands = [DrawIndirectCommand {
vertex_count: 0,
instance_count: 1,
first_vertex: 0,
first_instance: 0,
}];
let indirect_buffer = indirect_args_pool
.allocate_slice(indirect_commands.len() as _)
.unwrap();
indirect_buffer
.write()
.unwrap()
.copy_from_slice(&indirect_commands);
// Allocate a buffer to hold this frame's vertices. This needs to be large enough
// to hold the worst case number of vertices generated by the compute shader.
let iter = (0..(6 * 16)).map(|_| Vertex { position: [0.0; 2] });
let vertices = vertex_pool.allocate_slice(iter.len() as _).unwrap();
for (o, i) in vertices.write().unwrap().iter_mut().zip(iter) {
*o = i;
}
// Pass the two buffers to the compute shader.
let layout = compute_pipeline.layout().set_layouts().get(0).unwrap();
let cs_desciptor_set = DescriptorSet::new(
descriptor_set_allocator.clone(),
layout.clone(),
[
WriteDescriptorSet::buffer(0, vertices.clone()),
WriteDescriptorSet::buffer(1, indirect_buffer.clone()),
],
[],
)
.unwrap();
let mut builder = AutoCommandBufferBuilder::primary(
command_buffer_allocator.clone(),
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
// First in the command buffer we dispatch the compute shader to generate the
// vertices and fill out the draw call arguments.
builder
.bind_pipeline_compute(compute_pipeline.clone())
.unwrap()
.bind_descriptor_sets(
PipelineBindPoint::Compute,
compute_pipeline.layout().clone(),
0,
cs_desciptor_set,
)
.unwrap()
.dispatch([1, 1, 1])
.unwrap()
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(render_pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, vertices)
.unwrap()
// The indirect draw call is placed in the command buffer with a reference to
// the buffer that will contain the arguments for the draw.
.draw_indirect(indirect_buffer)
.unwrap()
.end_render_pass(Default::default())
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
Event::AboutToWait => window.request_redraw(),
_ => (),
}
})
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
images: &[Arc<Image>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let extent = images[0].extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}