vulkano/examples/dynamic-buffers/main.rs
Rua 289ec102e0
Document shader safety requirements, make draw/dispatch unsafe (#2429)
* Document shader safety requirements, make draw/dispatch unsafe

* Extra docs

* Doctests

* Max index value

* Small change

* Update vulkano/src/command_buffer/mod.rs

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>

* Update vulkano/src/command_buffer/mod.rs

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>

---------

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>
2023-12-25 04:01:16 +01:00

281 lines
9.0 KiB
Rust

// This example demonstrates how to use dynamic uniform buffers.
//
// Dynamic uniform and storage buffers store buffer data for different calls in one large buffer.
// Each draw or dispatch call can specify an offset into the buffer to read object data from,
// without having to rebind descriptor sets.
use std::{iter::repeat, mem::size_of, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, layout::DescriptorType, DescriptorBufferInfo,
DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
compute::ComputePipelineCreateInfo, layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
sync::{self, GpuFuture},
DeviceSize, VulkanLibrary,
};
fn main() {
let library = VulkanLibrary::new().unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_storage_buffer_storage_class: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.intersects(QueueFlags::COMPUTE))
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: r"
#version 450
layout(local_size_x = 12) in;
// Uniform buffer.
layout(set = 0, binding = 0) uniform InData {
uint index;
} ub;
// Output buffer.
layout(set = 0, binding = 1) buffer OutData {
uint data[];
};
// Toy shader that only runs for the index specified in `ub`.
void main() {
uint index = gl_GlobalInvocationID.x;
if (index == ub.index) {
data[index] = index;
}
}
",
}
}
let pipeline = {
let cs = cs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = {
let mut layout_create_info =
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage]);
layout_create_info.set_layouts[0]
.bindings
.get_mut(&0)
.unwrap()
.descriptor_type = DescriptorType::UniformBufferDynamic;
PipelineLayout::new(
device.clone(),
layout_create_info
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap()
};
ComputePipeline::new(
device.clone(),
None,
ComputePipelineCreateInfo::stage_layout(stage, layout),
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
// Create the input buffer. Data in a dynamic buffer **MUST** be aligned to
// `min_uniform_buffer_offset_align` or `min_storage_buffer_offset_align`, depending on the
// type of buffer.
let data: Vec<u32> = vec![3, 11, 7];
let min_dynamic_align = device
.physical_device()
.properties()
.min_uniform_buffer_offset_alignment
.as_devicesize() as usize;
println!("Minimum uniform buffer offset alignment: {min_dynamic_align}");
println!("Input: {data:?}");
// Round size up to the next multiple of align.
let align = (size_of::<u32>() + min_dynamic_align - 1) & !(min_dynamic_align - 1);
let aligned_data = {
let mut aligned_data = Vec::with_capacity(align * data.len());
for elem in data {
let bytes = elem.to_ne_bytes();
// Fill up the buffer with data.
aligned_data.extend(bytes);
// Zero out any padding needed for alignment.
aligned_data.extend(repeat(0).take(align - bytes.len()));
}
aligned_data
};
let input_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::UNIFORM_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
aligned_data,
)
.unwrap();
let output_buffer = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::STORAGE_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_RANDOM_ACCESS,
..Default::default()
},
(0..12).map(|_| 0u32),
)
.unwrap();
let layout = pipeline.layout().set_layouts().get(0).unwrap();
let set = DescriptorSet::new(
descriptor_set_allocator,
layout.clone(),
[
// When writing to the dynamic buffer binding, the range of the buffer that the shader
// will access must also be provided. We specify the size of the `InData` struct here.
// When dynamic offsets are provided later, they get added to the start and end of
// this range.
WriteDescriptorSet::buffer_with_range(
0,
DescriptorBufferInfo {
buffer: input_buffer,
range: 0..size_of::<cs::InData>() as DeviceSize,
},
),
WriteDescriptorSet::buffer(1, output_buffer.clone()),
],
[],
)
.unwrap();
// Build the command buffer, using different offsets for each call.
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator,
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder.bind_pipeline_compute(pipeline.clone()).unwrap();
for index in 0..3 {
builder
.bind_descriptor_sets(
PipelineBindPoint::Compute,
pipeline.layout().clone(),
0,
set.clone().offsets([index * align as u32]),
)
.unwrap();
unsafe {
builder.dispatch([12, 1, 1]).unwrap();
}
}
let command_buffer = builder.end().unwrap();
let future = sync::now(device)
.then_execute(queue, command_buffer)
.unwrap()
.then_signal_fence_and_flush()
.unwrap();
future.wait(None).unwrap();
let output_content = output_buffer.read().unwrap();
println!("Output: {:?}", &*output_content);
}