mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-22 06:45:23 +00:00
4c515a81cb
* Make each example its own workspace member * Fix runtime-shader example * Fix shader-include example * Fix teapot example * Fix `run_all.sh` * Fix output files getting saved in cwd * Fix spelling for examples readme filename * Remove wrong leftover dependencies for gl-interop * Fix pipeline-cache example * Clearer .gitignore * Help cargo be less useless
293 lines
10 KiB
Rust
293 lines
10 KiB
Rust
// Copyright (c) 2017 The vulkano developers
|
|
// Licensed under the Apache License, Version 2.0
|
|
// <LICENSE-APACHE or
|
|
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
|
|
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
|
|
// at your option. All files in the project carrying such
|
|
// notice may not be copied, modified, or distributed except
|
|
// according to those terms.
|
|
|
|
// Welcome to the deferred lighting example!
|
|
//
|
|
// The idea behind deferred lighting is to render the scene in two steps.
|
|
//
|
|
// First you draw all the objects of the scene. But instead of calculating the color they will have
|
|
// on the screen, you output their characteristics such as their diffuse color and their normals,
|
|
// and write this to images.
|
|
//
|
|
// After all the objects are drawn, you should obtain several images that contain the
|
|
// characteristics of each pixel.
|
|
//
|
|
// Then you apply lighting to the scene. In other words you draw to the final image by taking these
|
|
// intermediate images and the various lights of the scene as input.
|
|
//
|
|
// This technique allows you to apply tons of light sources to a scene, which would be too
|
|
// expensive otherwise. It has some drawbacks, which are the fact that transparent objects must be
|
|
// drawn after the lighting, and that the whole process consumes more memory.
|
|
|
|
use crate::{
|
|
frame::{FrameSystem, Pass},
|
|
triangle_draw_system::TriangleDrawSystem,
|
|
};
|
|
use cgmath::{Matrix4, SquareMatrix, Vector3};
|
|
use std::sync::Arc;
|
|
use vulkano::{
|
|
command_buffer::allocator::{
|
|
StandardCommandBufferAllocator, StandardCommandBufferAllocatorCreateInfo,
|
|
},
|
|
device::{
|
|
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
|
|
QueueFlags,
|
|
},
|
|
image::{view::ImageView, ImageUsage},
|
|
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
|
memory::allocator::StandardMemoryAllocator,
|
|
swapchain::{
|
|
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
|
|
},
|
|
sync::{self, GpuFuture},
|
|
Validated, VulkanError, VulkanLibrary,
|
|
};
|
|
use winit::{
|
|
event::{Event, WindowEvent},
|
|
event_loop::{ControlFlow, EventLoop},
|
|
window::WindowBuilder,
|
|
};
|
|
|
|
mod frame;
|
|
mod triangle_draw_system;
|
|
|
|
fn main() {
|
|
// Basic initialization. See the triangle example if you want more details about this.
|
|
|
|
let event_loop = EventLoop::new();
|
|
|
|
let library = VulkanLibrary::new().unwrap();
|
|
let required_extensions = Surface::required_extensions(&event_loop);
|
|
let instance = Instance::new(
|
|
library,
|
|
InstanceCreateInfo {
|
|
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
|
enabled_extensions: required_extensions,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
|
|
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
|
|
|
|
let device_extensions = DeviceExtensions {
|
|
khr_swapchain: true,
|
|
..DeviceExtensions::empty()
|
|
};
|
|
let (physical_device, queue_family_index) = instance
|
|
.enumerate_physical_devices()
|
|
.unwrap()
|
|
.filter(|p| p.supported_extensions().contains(&device_extensions))
|
|
.filter_map(|p| {
|
|
p.queue_family_properties()
|
|
.iter()
|
|
.enumerate()
|
|
.position(|(i, q)| {
|
|
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
|
&& p.surface_support(i as u32, &surface).unwrap_or(false)
|
|
})
|
|
.map(|i| (p, i as u32))
|
|
})
|
|
.min_by_key(|(p, _)| match p.properties().device_type {
|
|
PhysicalDeviceType::DiscreteGpu => 0,
|
|
PhysicalDeviceType::IntegratedGpu => 1,
|
|
PhysicalDeviceType::VirtualGpu => 2,
|
|
PhysicalDeviceType::Cpu => 3,
|
|
PhysicalDeviceType::Other => 4,
|
|
_ => 5,
|
|
})
|
|
.unwrap();
|
|
|
|
println!(
|
|
"Using device: {} (type: {:?})",
|
|
physical_device.properties().device_name,
|
|
physical_device.properties().device_type,
|
|
);
|
|
|
|
let (device, mut queues) = Device::new(
|
|
physical_device,
|
|
DeviceCreateInfo {
|
|
enabled_extensions: device_extensions,
|
|
queue_create_infos: vec![QueueCreateInfo {
|
|
queue_family_index,
|
|
..Default::default()
|
|
}],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
let queue = queues.next().unwrap();
|
|
|
|
let (mut swapchain, mut images) = {
|
|
let surface_capabilities = device
|
|
.physical_device()
|
|
.surface_capabilities(&surface, Default::default())
|
|
.unwrap();
|
|
let image_format = device
|
|
.physical_device()
|
|
.surface_formats(&surface, Default::default())
|
|
.unwrap()[0]
|
|
.0;
|
|
|
|
let (swapchain, images) = Swapchain::new(
|
|
device.clone(),
|
|
surface,
|
|
SwapchainCreateInfo {
|
|
min_image_count: surface_capabilities.min_image_count.max(2),
|
|
image_format,
|
|
image_extent: window.inner_size().into(),
|
|
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
|
composite_alpha: surface_capabilities
|
|
.supported_composite_alpha
|
|
.into_iter()
|
|
.next()
|
|
.unwrap(),
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
let images = images
|
|
.into_iter()
|
|
.map(|image| ImageView::new_default(image).unwrap())
|
|
.collect::<Vec<_>>();
|
|
(swapchain, images)
|
|
};
|
|
|
|
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
|
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
|
device.clone(),
|
|
StandardCommandBufferAllocatorCreateInfo {
|
|
secondary_buffer_count: 32,
|
|
..Default::default()
|
|
},
|
|
));
|
|
|
|
// Here is the basic initialization for the deferred system.
|
|
let mut frame_system = FrameSystem::new(
|
|
queue.clone(),
|
|
swapchain.image_format(),
|
|
memory_allocator.clone(),
|
|
command_buffer_allocator.clone(),
|
|
);
|
|
let triangle_draw_system = TriangleDrawSystem::new(
|
|
queue.clone(),
|
|
frame_system.deferred_subpass(),
|
|
memory_allocator.clone(),
|
|
command_buffer_allocator,
|
|
);
|
|
|
|
let mut recreate_swapchain = false;
|
|
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
|
|
|
|
event_loop.run(move |event, _, control_flow| match event {
|
|
Event::WindowEvent {
|
|
event: WindowEvent::CloseRequested,
|
|
..
|
|
} => {
|
|
*control_flow = ControlFlow::Exit;
|
|
}
|
|
Event::WindowEvent {
|
|
event: WindowEvent::Resized(_),
|
|
..
|
|
} => {
|
|
recreate_swapchain = true;
|
|
}
|
|
Event::RedrawEventsCleared => {
|
|
let image_extent: [u32; 2] = window.inner_size().into();
|
|
|
|
if image_extent.contains(&0) {
|
|
return;
|
|
}
|
|
|
|
previous_frame_end.as_mut().unwrap().cleanup_finished();
|
|
|
|
if recreate_swapchain {
|
|
let (new_swapchain, new_images) = swapchain
|
|
.recreate(SwapchainCreateInfo {
|
|
image_extent,
|
|
..swapchain.create_info()
|
|
})
|
|
.expect("failed to recreate swapchain");
|
|
let new_images = new_images
|
|
.into_iter()
|
|
.map(|image| ImageView::new_default(image).unwrap())
|
|
.collect::<Vec<_>>();
|
|
|
|
swapchain = new_swapchain;
|
|
images = new_images;
|
|
recreate_swapchain = false;
|
|
}
|
|
|
|
let (image_index, suboptimal, acquire_future) =
|
|
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
|
|
Ok(r) => r,
|
|
Err(VulkanError::OutOfDate) => {
|
|
recreate_swapchain = true;
|
|
return;
|
|
}
|
|
Err(e) => panic!("failed to acquire next image: {e}"),
|
|
};
|
|
|
|
if suboptimal {
|
|
recreate_swapchain = true;
|
|
}
|
|
|
|
let future = previous_frame_end.take().unwrap().join(acquire_future);
|
|
let mut frame = frame_system.frame(
|
|
future,
|
|
images[image_index as usize].clone(),
|
|
Matrix4::identity(),
|
|
);
|
|
let mut after_future = None;
|
|
while let Some(pass) = frame.next_pass() {
|
|
match pass {
|
|
Pass::Deferred(mut draw_pass) => {
|
|
let cb = triangle_draw_system.draw(draw_pass.viewport_dimensions());
|
|
draw_pass.execute(cb);
|
|
}
|
|
Pass::Lighting(mut lighting) => {
|
|
lighting.ambient_light([0.1, 0.1, 0.1]);
|
|
lighting.directional_light(Vector3::new(0.2, -0.1, -0.7), [0.6, 0.6, 0.6]);
|
|
lighting.point_light(Vector3::new(0.5, -0.5, -0.1), [1.0, 0.0, 0.0]);
|
|
lighting.point_light(Vector3::new(-0.9, 0.2, -0.15), [0.0, 1.0, 0.0]);
|
|
lighting.point_light(Vector3::new(0.0, 0.5, -0.05), [0.0, 0.0, 1.0]);
|
|
}
|
|
Pass::Finished(af) => {
|
|
after_future = Some(af);
|
|
}
|
|
}
|
|
}
|
|
|
|
let future = after_future
|
|
.unwrap()
|
|
.then_swapchain_present(
|
|
queue.clone(),
|
|
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
|
|
)
|
|
.then_signal_fence_and_flush();
|
|
|
|
match future.map_err(Validated::unwrap) {
|
|
Ok(future) => {
|
|
previous_frame_end = Some(future.boxed());
|
|
}
|
|
Err(VulkanError::OutOfDate) => {
|
|
recreate_swapchain = true;
|
|
previous_frame_end = Some(sync::now(device.clone()).boxed());
|
|
}
|
|
Err(e) => {
|
|
println!("failed to flush future: {e}");
|
|
previous_frame_end = Some(sync::now(device.clone()).boxed());
|
|
}
|
|
}
|
|
}
|
|
_ => (),
|
|
});
|
|
}
|