mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-25 16:25:31 +00:00
430 lines
15 KiB
Rust
430 lines
15 KiB
Rust
// This example demonstrates using the `VK_KHR_multiview` extension to render to multiple layers of
|
|
// the framebuffer in one render pass. This can significantly improve performance in cases where
|
|
// multiple perspectives or cameras are very similar like in virtual reality or other types of
|
|
// stereoscopic rendering where the left and right eye only differ in a small position offset.
|
|
|
|
use std::{fs::File, io::BufWriter, path::Path, sync::Arc};
|
|
use vulkano::{
|
|
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
|
|
command_buffer::{
|
|
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, BufferImageCopy,
|
|
CommandBufferUsage, CopyImageToBufferInfo, RenderPassBeginInfo,
|
|
},
|
|
device::{
|
|
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures,
|
|
QueueCreateInfo, QueueFlags,
|
|
},
|
|
format::Format,
|
|
image::{
|
|
view::ImageView, Image, ImageCreateInfo, ImageLayout, ImageSubresourceLayers, ImageType,
|
|
ImageUsage, SampleCount,
|
|
},
|
|
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo, InstanceExtensions},
|
|
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
|
|
pipeline::{
|
|
graphics::{
|
|
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
|
input_assembly::InputAssemblyState,
|
|
multisample::MultisampleState,
|
|
rasterization::RasterizationState,
|
|
vertex_input::{Vertex, VertexDefinition},
|
|
viewport::{Viewport, ViewportState},
|
|
GraphicsPipelineCreateInfo,
|
|
},
|
|
layout::PipelineDescriptorSetLayoutCreateInfo,
|
|
GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
|
|
},
|
|
render_pass::{
|
|
AttachmentDescription, AttachmentLoadOp, AttachmentReference, AttachmentStoreOp,
|
|
Framebuffer, FramebufferCreateInfo, RenderPass, RenderPassCreateInfo, Subpass,
|
|
SubpassDescription,
|
|
},
|
|
sync::{self, GpuFuture},
|
|
VulkanLibrary,
|
|
};
|
|
|
|
fn main() {
|
|
let library = VulkanLibrary::new().unwrap();
|
|
let instance = Instance::new(
|
|
library,
|
|
InstanceCreateInfo {
|
|
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
|
enabled_extensions: InstanceExtensions {
|
|
// Required to get multiview limits.
|
|
khr_get_physical_device_properties2: true,
|
|
..InstanceExtensions::empty()
|
|
},
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let device_extensions = DeviceExtensions {
|
|
..DeviceExtensions::empty()
|
|
};
|
|
let features = DeviceFeatures {
|
|
// enabling the `multiview` feature will use the `VK_KHR_multiview` extension on Vulkan 1.0
|
|
// and the device feature on Vulkan 1.1+.
|
|
multiview: true,
|
|
..DeviceFeatures::empty()
|
|
};
|
|
let (physical_device, queue_family_index) = instance
|
|
.enumerate_physical_devices()
|
|
.unwrap()
|
|
.filter(|p| p.supported_extensions().contains(&device_extensions))
|
|
.filter(|p| p.supported_features().contains(&features))
|
|
.filter(|p| {
|
|
// This example renders to two layers of the framebuffer using the multiview extension
|
|
// so we check that at least two views are supported by the device. Not checking this
|
|
// on a device that doesn't support two views will lead to a runtime error when
|
|
// creating the `RenderPass`. The `max_multiview_view_count` function will return
|
|
// `None` when the `VK_KHR_get_physical_device_properties2` instance extension has not
|
|
// been enabled.
|
|
p.properties().max_multiview_view_count.unwrap_or(0) >= 2
|
|
})
|
|
.filter_map(|p| {
|
|
p.queue_family_properties()
|
|
.iter()
|
|
.position(|q| q.queue_flags.intersects(QueueFlags::GRAPHICS))
|
|
.map(|i| (p, i as u32))
|
|
})
|
|
.min_by_key(|(p, _)| match p.properties().device_type {
|
|
PhysicalDeviceType::DiscreteGpu => 0,
|
|
PhysicalDeviceType::IntegratedGpu => 1,
|
|
PhysicalDeviceType::VirtualGpu => 2,
|
|
PhysicalDeviceType::Cpu => 3,
|
|
PhysicalDeviceType::Other => 4,
|
|
_ => 5,
|
|
})
|
|
// A real application should probably fall back to rendering the framebuffer layers in
|
|
// multiple passes when multiview isn't supported.
|
|
.expect(
|
|
"no device supports two multiview views or the \
|
|
`VK_KHR_get_physical_device_properties2` instance extension has not been loaded",
|
|
);
|
|
|
|
println!(
|
|
"Using device: {} (type: {:?})",
|
|
physical_device.properties().device_name,
|
|
physical_device.properties().device_type,
|
|
);
|
|
|
|
let (device, mut queues) = Device::new(
|
|
physical_device,
|
|
DeviceCreateInfo {
|
|
queue_create_infos: vec![QueueCreateInfo {
|
|
queue_family_index,
|
|
..Default::default()
|
|
}],
|
|
enabled_extensions: device_extensions,
|
|
enabled_features: features,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let queue = queues.next().unwrap();
|
|
|
|
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
|
|
|
let image = Image::new(
|
|
memory_allocator.clone(),
|
|
ImageCreateInfo {
|
|
image_type: ImageType::Dim2d,
|
|
format: Format::B8G8R8A8_SRGB,
|
|
extent: [512, 512, 1],
|
|
array_layers: 2,
|
|
usage: ImageUsage::TRANSFER_SRC | ImageUsage::COLOR_ATTACHMENT,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo::default(),
|
|
)
|
|
.unwrap();
|
|
|
|
let image_view = ImageView::new_default(image.clone()).unwrap();
|
|
|
|
#[derive(BufferContents, Vertex)]
|
|
#[repr(C)]
|
|
struct Vertex {
|
|
#[format(R32G32_SFLOAT)]
|
|
position: [f32; 2],
|
|
}
|
|
|
|
let vertices = [
|
|
Vertex {
|
|
position: [-0.5, -0.25],
|
|
},
|
|
Vertex {
|
|
position: [0.0, 0.5],
|
|
},
|
|
Vertex {
|
|
position: [0.25, -0.1],
|
|
},
|
|
];
|
|
let vertex_buffer = Buffer::from_iter(
|
|
memory_allocator.clone(),
|
|
BufferCreateInfo {
|
|
usage: BufferUsage::VERTEX_BUFFER,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo {
|
|
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
|
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
|
..Default::default()
|
|
},
|
|
vertices,
|
|
)
|
|
.unwrap();
|
|
|
|
// Note the `#extension GL_EXT_multiview : enable` that enables the multiview extension for the
|
|
// shader and the use of `gl_ViewIndex` which contains a value based on which view the shader
|
|
// is being invoked for. In this example `gl_ViewIndex` is used to toggle a hardcoded offset
|
|
// for vertex positions but in a VR application you could easily use it as an index to a
|
|
// uniform array that contains the transformation matrices for the left and right eye.
|
|
mod vs {
|
|
vulkano_shaders::shader! {
|
|
ty: "vertex",
|
|
src: r"
|
|
#version 450
|
|
#extension GL_EXT_multiview : enable
|
|
|
|
layout(location = 0) in vec2 position;
|
|
|
|
void main() {
|
|
gl_Position = vec4(position, 0.0, 1.0) + gl_ViewIndex * vec4(0.25, 0.25, 0.0, 0.0);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
mod fs {
|
|
vulkano_shaders::shader! {
|
|
ty: "fragment",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(location = 0) out vec4 f_color;
|
|
|
|
void main() {
|
|
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
let render_pass_description = RenderPassCreateInfo {
|
|
attachments: vec![AttachmentDescription {
|
|
format: image.format(),
|
|
samples: SampleCount::Sample1,
|
|
load_op: AttachmentLoadOp::Clear,
|
|
store_op: AttachmentStoreOp::Store,
|
|
initial_layout: ImageLayout::ColorAttachmentOptimal,
|
|
final_layout: ImageLayout::ColorAttachmentOptimal,
|
|
..Default::default()
|
|
}],
|
|
subpasses: vec![SubpassDescription {
|
|
// The view mask indicates which layers of the framebuffer should be rendered for each
|
|
// subpass.
|
|
view_mask: 0b11,
|
|
color_attachments: vec![Some(AttachmentReference {
|
|
attachment: 0,
|
|
layout: ImageLayout::ColorAttachmentOptimal,
|
|
..Default::default()
|
|
})],
|
|
..Default::default()
|
|
}],
|
|
// The correlated view masks indicate sets of views that may be more efficient to render
|
|
// concurrently.
|
|
correlated_view_masks: vec![0b11],
|
|
..Default::default()
|
|
};
|
|
|
|
let render_pass = RenderPass::new(device.clone(), render_pass_description).unwrap();
|
|
|
|
let framebuffer = Framebuffer::new(
|
|
render_pass.clone(),
|
|
FramebufferCreateInfo {
|
|
attachments: vec![image_view],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let pipeline = {
|
|
let vs = vs::load(device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let fs = fs::load(device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let vertex_input_state = Vertex::per_vertex().definition(&vs).unwrap();
|
|
let stages = [
|
|
PipelineShaderStageCreateInfo::new(vs),
|
|
PipelineShaderStageCreateInfo::new(fs),
|
|
];
|
|
let layout = PipelineLayout::new(
|
|
device.clone(),
|
|
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
|
.into_pipeline_layout_create_info(device.clone())
|
|
.unwrap(),
|
|
)
|
|
.unwrap();
|
|
let subpass = Subpass::from(render_pass, 0).unwrap();
|
|
|
|
GraphicsPipeline::new(
|
|
device.clone(),
|
|
None,
|
|
GraphicsPipelineCreateInfo {
|
|
stages: stages.into_iter().collect(),
|
|
vertex_input_state: Some(vertex_input_state),
|
|
input_assembly_state: Some(InputAssemblyState::default()),
|
|
viewport_state: Some(ViewportState {
|
|
viewports: [Viewport {
|
|
offset: [0.0, 0.0],
|
|
extent: [image.extent()[0] as f32, image.extent()[1] as f32],
|
|
depth_range: 0.0..=1.0,
|
|
}]
|
|
.into_iter()
|
|
.collect(),
|
|
..Default::default()
|
|
}),
|
|
rasterization_state: Some(RasterizationState::default()),
|
|
multisample_state: Some(MultisampleState::default()),
|
|
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
|
subpass.num_color_attachments(),
|
|
ColorBlendAttachmentState::default(),
|
|
)),
|
|
subpass: Some(subpass.into()),
|
|
..GraphicsPipelineCreateInfo::layout(layout)
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
|
device.clone(),
|
|
Default::default(),
|
|
));
|
|
|
|
let create_buffer = || {
|
|
Buffer::from_iter(
|
|
memory_allocator.clone(),
|
|
BufferCreateInfo {
|
|
usage: BufferUsage::TRANSFER_DST,
|
|
..Default::default()
|
|
},
|
|
AllocationCreateInfo {
|
|
memory_type_filter: MemoryTypeFilter::PREFER_HOST
|
|
| MemoryTypeFilter::HOST_RANDOM_ACCESS,
|
|
..Default::default()
|
|
},
|
|
(0..image.extent()[0] * image.extent()[1] * 4).map(|_| 0u8),
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let buffer1 = create_buffer();
|
|
let buffer2 = create_buffer();
|
|
|
|
let mut builder = AutoCommandBufferBuilder::primary(
|
|
command_buffer_allocator,
|
|
queue.queue_family_index(),
|
|
CommandBufferUsage::OneTimeSubmit,
|
|
)
|
|
.unwrap();
|
|
|
|
builder
|
|
.begin_render_pass(
|
|
RenderPassBeginInfo {
|
|
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
|
|
..RenderPassBeginInfo::framebuffer(framebuffer)
|
|
},
|
|
Default::default(),
|
|
)
|
|
.unwrap()
|
|
.bind_pipeline_graphics(pipeline)
|
|
.unwrap()
|
|
.bind_vertex_buffers(0, vertex_buffer.clone())
|
|
.unwrap();
|
|
|
|
unsafe {
|
|
// Drawing commands are broadcast to each view in the view mask of the active renderpass
|
|
// which means only a single draw call is needed to draw to multiple layers of the
|
|
// framebuffer.
|
|
builder.draw(vertex_buffer.len() as u32, 1, 0, 0).unwrap();
|
|
}
|
|
|
|
builder.end_render_pass(Default::default()).unwrap();
|
|
|
|
// Copy the image layers to different buffers to save them as individual images to disk.
|
|
builder
|
|
.copy_image_to_buffer(CopyImageToBufferInfo {
|
|
regions: [BufferImageCopy {
|
|
image_subresource: ImageSubresourceLayers {
|
|
array_layers: 0..1,
|
|
..image.subresource_layers()
|
|
},
|
|
image_extent: image.extent(),
|
|
..Default::default()
|
|
}]
|
|
.into(),
|
|
..CopyImageToBufferInfo::image_buffer(image.clone(), buffer1.clone())
|
|
})
|
|
.unwrap()
|
|
.copy_image_to_buffer(CopyImageToBufferInfo {
|
|
regions: [BufferImageCopy {
|
|
image_subresource: ImageSubresourceLayers {
|
|
array_layers: 1..2,
|
|
..image.subresource_layers()
|
|
},
|
|
image_extent: image.extent(),
|
|
..Default::default()
|
|
}]
|
|
.into(),
|
|
..CopyImageToBufferInfo::image_buffer(image.clone(), buffer2.clone())
|
|
})
|
|
.unwrap();
|
|
|
|
let command_buffer = builder.build().unwrap();
|
|
|
|
let future = sync::now(device)
|
|
.then_execute(queue, command_buffer)
|
|
.unwrap()
|
|
.then_signal_fence_and_flush()
|
|
.unwrap();
|
|
|
|
future.wait(None).unwrap();
|
|
|
|
// Write each layer to its own file.
|
|
write_image_buffer_to_file(
|
|
buffer1,
|
|
"multiview1.png",
|
|
image.extent()[0],
|
|
image.extent()[1],
|
|
);
|
|
write_image_buffer_to_file(
|
|
buffer2,
|
|
"multiview2.png",
|
|
image.extent()[0],
|
|
image.extent()[1],
|
|
);
|
|
}
|
|
|
|
fn write_image_buffer_to_file(buffer: Subbuffer<[u8]>, path: &str, width: u32, height: u32) {
|
|
let buffer_content = buffer.read().unwrap();
|
|
let path = Path::new(env!("CARGO_MANIFEST_DIR")).join(path);
|
|
let file = File::create(&path).unwrap();
|
|
let w = &mut BufWriter::new(file);
|
|
let mut encoder = png::Encoder::new(w, width, height);
|
|
encoder.set_color(png::ColorType::Rgba);
|
|
encoder.set_depth(png::BitDepth::Eight);
|
|
let mut writer = encoder.write_header().unwrap();
|
|
writer.write_image_data(&buffer_content).unwrap();
|
|
|
|
if let Ok(path) = path.canonicalize() {
|
|
println!("Saved to {}", path.display());
|
|
}
|
|
}
|