vulkano/examples/tessellation/main.rs
marc0246 43e2db0dbd
Command buffer allocator API 2.0 (#2403)
* Make `CommandBufferAllocator` object-safe, remove the generics

* Fix tests

* Fix examples

* Remove the panic

* Remove outdated docs

* Document `Send + Sync` impl of `UnsafeCommandBuffer`
2023-11-14 17:57:43 +01:00

554 lines
19 KiB
Rust

// Some relevant documentation:
//
// - Tessellation overview https://www.khronos.org/opengl/wiki/Tessellation
// - Tessellation Control Shader https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader
// - Tessellation Evaluation Shader https://www.khronos.org/opengl/wiki/Tessellation_Evaluation_Shader
// - Tessellation real-world usage 1 http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html
// - Tessellation real-world usage 2 https://prideout.net/blog/?p=48
// Notable elements of this example:
//
// - Usage of a tessellation control shader and a tessellation evaluation shader.
// - `tessellation_shaders` and `tessellation_state` are called on the pipeline builder.
// - The use of `PrimitiveTopology::PatchList`.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
RenderPassBeginInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features,
QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::{InputAssemblyState, PrimitiveTopology},
multisample::MultisampleState,
rasterization::{PolygonMode, RasterizationState},
tessellation::TessellationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod tcs {
vulkano_shaders::shader! {
ty: "tess_ctrl",
src: r"
#version 450
// A value of 3 means a patch consists of a single triangle.
layout(vertices = 3) out;
void main(void) {
// Save the position of the patch, so the TES can access it. We could define our
// own output variables for this, but `gl_out` is handily provided.
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
// Many triangles are generated in the center.
gl_TessLevelInner[0] = 10;
// No triangles are generated for this edge.
gl_TessLevelOuter[0] = 1;
// Many triangles are generated for this edge.
gl_TessLevelOuter[1] = 10;
// Many triangles are generated for this edge.
gl_TessLevelOuter[2] = 10;
// These are only used when TES uses `layout(quads)`.
// gl_TessLevelInner[1] = ...;
// gl_TessLevelOuter[3] = ...;
}
",
}
}
// There is a stage in between TCS and TES called Primitive Generation (PG). Shaders cannot be
// defined for it. It takes `gl_TessLevelInner` and `gl_TessLevelOuter` and uses them to generate
// positions within the patch and pass them to TES via `gl_TessCoord`.
//
// When TES uses `layout(triangles)` then `gl_TessCoord` is in Barycentric coordinates. If
// `layout(quads)` is used then `gl_TessCoord` is in Cartesian coordinates. Barycentric coordinates
// are of the form (x, y, z) where x + y + z = 1 and the values x, y and z represent the distance
// from a vertex of the triangle.
// https://mathworld.wolfram.com/BarycentricCoordinates.html
mod tes {
vulkano_shaders::shader! {
ty: "tess_eval",
src: r"
#version 450
layout(triangles, equal_spacing, cw) in;
void main(void) {
// Retrieve the vertex positions set by the TCS.
vec4 vert_x = gl_in[0].gl_Position;
vec4 vert_y = gl_in[1].gl_Position;
vec4 vert_z = gl_in[2].gl_Position;
// Convert `gl_TessCoord` from Barycentric coordinates to Cartesian coordinates.
gl_Position = vec4(
gl_TessCoord.x * vert_x.x + gl_TessCoord.y * vert_y.x + gl_TessCoord.z * vert_z.x,
gl_TessCoord.x * vert_x.y + gl_TessCoord.y * vert_y.y + gl_TessCoord.z * vert_z.y,
gl_TessCoord.x * vert_x.z + gl_TessCoord.y * vert_y.z + gl_TessCoord.z * vert_z.z,
1.0
);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 1.0, 1.0, 1.0);
}
",
}
}
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let features = Features {
tessellation_shader: true,
fill_mode_non_solid: true,
..Features::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter(|p| p.supported_features().contains(&features))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
enabled_extensions: device_extensions,
enabled_features: features,
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
Vertex {
position: [0.9, 0.9],
},
Vertex {
position: [0.9, 0.8],
},
Vertex {
position: [0.8, 0.8],
},
Vertex {
position: [-0.9, 0.9],
},
Vertex {
position: [-0.7, 0.6],
},
Vertex {
position: [-0.5, 0.9],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let pipeline = {
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let tcs = tcs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let tes = tes::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(tcs),
PipelineShaderStageCreateInfo::new(tes),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState {
topology: PrimitiveTopology::PatchList,
..Default::default()
}),
tessellation_state: Some(TessellationState {
// Use a patch_control_points of 3, because we want to convert one *triangle*
// into lots of little ones.
// A value of 4 would convert a *rectangle* into lots of little triangles.
patch_control_points: 3,
..Default::default()
}),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState {
polygon_mode: PolygonMode::Line,
..Default::default()
}),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(
&new_images,
render_pass.clone(),
&mut viewport,
);
recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
command_buffer_allocator.clone(),
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 0.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap()
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass(Default::default())
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
Event::AboutToWait => window.request_redraw(),
_ => (),
}
})
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
images: &[Arc<Image>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let extent = images[0].extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}