vulkano/examples/teapot/main.rs
marc0246 4c515a81cb
Improve the examples' directory structure (#2375)
* Make each example its own workspace member

* Fix runtime-shader example

* Fix shader-include example

* Fix teapot example

* Fix `run_all.sh`

* Fix output files getting saved in cwd

* Fix spelling for examples readme filename

* Remove wrong leftover dependencies for gl-interop

* Fix pipeline-cache example

* Clearer .gitignore

* Help cargo be less useless
2023-10-29 18:46:14 +01:00

553 lines
20 KiB
Rust

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use self::model::{Normal, Position, INDICES, NORMALS, POSITIONS};
use cgmath::{Matrix3, Matrix4, Point3, Rad, Vector3};
use std::{sync::Arc, time::Instant};
use vulkano::{
buffer::{
allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo},
Buffer, BufferCreateInfo, BufferUsage,
},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
RenderPassBeginInfo,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceOwned,
QueueCreateInfo, QueueFlags,
},
format::Format,
image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
depth_stencil::{DepthState, DepthStencilState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
shader::EntryPoint,
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
mod model;
fn main() {
// The start of this example is exactly the same as `triangle`. You should read the `triangle`
// example if you haven't done so yet.
let event_loop = EventLoop::new();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop);
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let vertex_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
POSITIONS,
)
.unwrap();
let normals_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
NORMALS,
)
.unwrap();
let index_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::INDEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
INDICES,
)
.unwrap();
let uniform_buffer = SubbufferAllocator::new(
memory_allocator.clone(),
SubbufferAllocatorCreateInfo {
buffer_usage: BufferUsage::UNIFORM_BUFFER,
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
);
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
depth_stencil: {
format: Format::D16_UNORM,
samples: 1,
load_op: Clear,
store_op: DontCare,
},
},
pass: {
color: [color],
depth_stencil: {depth_stencil},
},
)
.unwrap();
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let (mut pipeline, mut framebuffers) = window_size_dependent_setup(
memory_allocator.clone(),
vs.clone(),
fs.clone(),
&images,
render_pass.clone(),
);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let rotation_start = Instant::now();
let descriptor_set_allocator =
StandardDescriptorSetAllocator::new(device.clone(), Default::default());
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
event_loop.run(move |event, _, control_flow| {
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
swapchain = new_swapchain;
let (new_pipeline, new_framebuffers) = window_size_dependent_setup(
memory_allocator.clone(),
vs.clone(),
fs.clone(),
&new_images,
render_pass.clone(),
);
pipeline = new_pipeline;
framebuffers = new_framebuffers;
recreate_swapchain = false;
}
let uniform_buffer_subbuffer = {
let elapsed = rotation_start.elapsed();
let rotation =
elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0;
let rotation = Matrix3::from_angle_y(Rad(rotation as f32));
// note: this teapot was meant for OpenGL where the origin is at the lower left
// instead the origin is at the upper left in Vulkan, so we reverse the Y axis
let aspect_ratio =
swapchain.image_extent()[0] as f32 / swapchain.image_extent()[1] as f32;
let proj = cgmath::perspective(
Rad(std::f32::consts::FRAC_PI_2),
aspect_ratio,
0.01,
100.0,
);
let view = Matrix4::look_at_rh(
Point3::new(0.3, 0.3, 1.0),
Point3::new(0.0, 0.0, 0.0),
Vector3::new(0.0, -1.0, 0.0),
);
let scale = Matrix4::from_scale(0.01);
let uniform_data = vs::Data {
world: Matrix4::from(rotation).into(),
view: (view * scale).into(),
proj: proj.into(),
};
let subbuffer = uniform_buffer.allocate_sized().unwrap();
*subbuffer.write().unwrap() = uniform_data;
subbuffer
};
let layout = pipeline.layout().set_layouts().get(0).unwrap();
let set = PersistentDescriptorSet::new(
&descriptor_set_allocator,
layout.clone(),
[WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)],
[],
)
.unwrap();
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![
Some([0.0, 0.0, 1.0, 1.0].into()),
Some(1f32.into()),
],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.bind_descriptor_sets(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
set,
)
.unwrap()
.bind_vertex_buffers(0, (vertex_buffer.clone(), normals_buffer.clone()))
.unwrap()
.bind_index_buffer(index_buffer.clone())
.unwrap()
.draw_indexed(index_buffer.len() as u32, 1, 0, 0, 0)
.unwrap()
.end_render_pass(Default::default())
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
}
});
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
memory_allocator: Arc<StandardMemoryAllocator>,
vs: EntryPoint,
fs: EntryPoint,
images: &[Arc<Image>],
render_pass: Arc<RenderPass>,
) -> (Arc<GraphicsPipeline>, Vec<Arc<Framebuffer>>) {
let device = memory_allocator.device().clone();
let extent = images[0].extent();
let depth_buffer = ImageView::new_default(
Image::new(
memory_allocator,
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::D16_UNORM,
extent: images[0].extent(),
usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
let framebuffers = images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view, depth_buffer.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>();
// In the triangle example we use a dynamic viewport, as its a simple example. However in the
// teapot example, we recreate the pipelines with a hardcoded viewport instead. This allows the
// driver to optimize things, at the cost of slower window resizes.
// https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport
let pipeline = {
let vertex_input_state = [Position::per_vertex(), Normal::per_vertex()]
.definition(&vs.info().input_interface)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass, 0).unwrap();
GraphicsPipeline::new(
device,
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState::default()),
viewport_state: Some(ViewportState {
viewports: [Viewport {
offset: [0.0, 0.0],
extent: [extent[0] as f32, extent[1] as f32],
depth_range: 0.0..=1.0,
}]
.into_iter()
.collect(),
..Default::default()
}),
rasterization_state: Some(RasterizationState::default()),
depth_stencil_state: Some(DepthStencilState {
depth: Some(DepthState::simple()),
..Default::default()
}),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
(pipeline, framebuffers)
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
path: "vert.glsl",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
path: "frag.glsl",
}
}