mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-25 00:04:15 +00:00
642 lines
24 KiB
Rust
642 lines
24 KiB
Rust
// Indirect draw example
|
|
//
|
|
// Indirect draw calls allow us to issue a draw without needing to know the number of vertices
|
|
// until later when the draw is executed by the GPU.
|
|
//
|
|
// This is used in situations where vertices are being generated on the GPU, such as a GPU particle
|
|
// simulation, and the exact number of output vertices cannot be known until the compute shader has
|
|
// run.
|
|
//
|
|
// In this example the compute shader is trivial and the number of vertices does not change.
|
|
// However is does demonstrate that each compute instance atomically updates the vertex counter
|
|
// before filling the vertex buffer.
|
|
//
|
|
// For an explanation of how the rendering of the triangles takes place see the `triangle.rs`
|
|
// example.
|
|
|
|
use std::{error::Error, sync::Arc};
|
|
use vulkano::{
|
|
buffer::{
|
|
allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo},
|
|
BufferContents, BufferUsage,
|
|
},
|
|
command_buffer::{
|
|
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
|
|
DrawIndirectCommand, RenderPassBeginInfo,
|
|
},
|
|
descriptor_set::{
|
|
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
|
|
},
|
|
device::{
|
|
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue,
|
|
QueueCreateInfo, QueueFlags,
|
|
},
|
|
image::{view::ImageView, Image, ImageUsage},
|
|
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
|
memory::allocator::{MemoryTypeFilter, StandardMemoryAllocator},
|
|
pipeline::{
|
|
compute::ComputePipelineCreateInfo,
|
|
graphics::{
|
|
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
|
input_assembly::InputAssemblyState,
|
|
multisample::MultisampleState,
|
|
rasterization::RasterizationState,
|
|
vertex_input::{Vertex, VertexDefinition},
|
|
viewport::{Viewport, ViewportState},
|
|
GraphicsPipelineCreateInfo,
|
|
},
|
|
layout::PipelineDescriptorSetLayoutCreateInfo,
|
|
ComputePipeline, DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint,
|
|
PipelineLayout, PipelineShaderStageCreateInfo,
|
|
},
|
|
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
|
|
single_pass_renderpass,
|
|
swapchain::{
|
|
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
|
|
},
|
|
sync::{self, GpuFuture},
|
|
Validated, VulkanError, VulkanLibrary,
|
|
};
|
|
use winit::{
|
|
application::ApplicationHandler,
|
|
event::WindowEvent,
|
|
event_loop::{ActiveEventLoop, EventLoop},
|
|
window::{Window, WindowId},
|
|
};
|
|
|
|
fn main() -> Result<(), impl Error> {
|
|
let event_loop = EventLoop::new().unwrap();
|
|
let mut app = App::new(&event_loop);
|
|
|
|
event_loop.run_app(&mut app)
|
|
}
|
|
|
|
struct App {
|
|
instance: Arc<Instance>,
|
|
device: Arc<Device>,
|
|
queue: Arc<Queue>,
|
|
descriptor_set_allocator: Arc<StandardDescriptorSetAllocator>,
|
|
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
|
|
indirect_buffer_allocator: SubbufferAllocator,
|
|
vertex_buffer_allocator: SubbufferAllocator,
|
|
compute_pipeline: Arc<ComputePipeline>,
|
|
rcx: Option<RenderContext>,
|
|
}
|
|
|
|
struct RenderContext {
|
|
window: Arc<Window>,
|
|
swapchain: Arc<Swapchain>,
|
|
render_pass: Arc<RenderPass>,
|
|
framebuffers: Vec<Arc<Framebuffer>>,
|
|
pipeline: Arc<GraphicsPipeline>,
|
|
viewport: Viewport,
|
|
recreate_swapchain: bool,
|
|
previous_frame_end: Option<Box<dyn GpuFuture>>,
|
|
}
|
|
|
|
impl App {
|
|
fn new(event_loop: &EventLoop<()>) -> Self {
|
|
let library = VulkanLibrary::new().unwrap();
|
|
let required_extensions = Surface::required_extensions(event_loop).unwrap();
|
|
let instance = Instance::new(
|
|
library,
|
|
InstanceCreateInfo {
|
|
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
|
enabled_extensions: required_extensions,
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let device_extensions = DeviceExtensions {
|
|
khr_swapchain: true,
|
|
khr_storage_buffer_storage_class: true,
|
|
..DeviceExtensions::empty()
|
|
};
|
|
let (physical_device, queue_family_index) = instance
|
|
.enumerate_physical_devices()
|
|
.unwrap()
|
|
.filter(|p| p.supported_extensions().contains(&device_extensions))
|
|
.filter_map(|p| {
|
|
p.queue_family_properties()
|
|
.iter()
|
|
.enumerate()
|
|
.position(|(i, q)| {
|
|
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
|
&& p.presentation_support(i as u32, event_loop).unwrap()
|
|
})
|
|
.map(|i| (p, i as u32))
|
|
})
|
|
.min_by_key(|(p, _)| match p.properties().device_type {
|
|
PhysicalDeviceType::DiscreteGpu => 0,
|
|
PhysicalDeviceType::IntegratedGpu => 1,
|
|
PhysicalDeviceType::VirtualGpu => 2,
|
|
PhysicalDeviceType::Cpu => 3,
|
|
PhysicalDeviceType::Other => 4,
|
|
_ => 5,
|
|
})
|
|
.unwrap();
|
|
|
|
println!(
|
|
"Using device: {} (type: {:?})",
|
|
physical_device.properties().device_name,
|
|
physical_device.properties().device_type,
|
|
);
|
|
|
|
let (device, mut queues) = Device::new(
|
|
physical_device,
|
|
DeviceCreateInfo {
|
|
enabled_extensions: device_extensions,
|
|
queue_create_infos: vec![QueueCreateInfo {
|
|
queue_family_index,
|
|
..Default::default()
|
|
}],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let queue = queues.next().unwrap();
|
|
|
|
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
|
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
|
|
device.clone(),
|
|
Default::default(),
|
|
));
|
|
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
|
device.clone(),
|
|
Default::default(),
|
|
));
|
|
|
|
// Each frame we generate a new set of vertices and each frame we need a new
|
|
// `DrawIndirectCommand` struct to set the number of vertices to draw.
|
|
let indirect_buffer_allocator = SubbufferAllocator::new(
|
|
memory_allocator.clone(),
|
|
SubbufferAllocatorCreateInfo {
|
|
buffer_usage: BufferUsage::INDIRECT_BUFFER | BufferUsage::STORAGE_BUFFER,
|
|
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
|
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
|
..Default::default()
|
|
},
|
|
);
|
|
let vertex_buffer_allocator = SubbufferAllocator::new(
|
|
memory_allocator,
|
|
SubbufferAllocatorCreateInfo {
|
|
buffer_usage: BufferUsage::STORAGE_BUFFER | BufferUsage::VERTEX_BUFFER,
|
|
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
|
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
|
..Default::default()
|
|
},
|
|
);
|
|
|
|
// A simple compute shader that generates vertices. It has two buffers bound: the first is
|
|
// where we output the vertices, the second is the `IndirectDrawArgs` struct we passed the
|
|
// `draw_indirect` so we can set the number to vertices to draw.
|
|
mod cs {
|
|
vulkano_shaders::shader! {
|
|
ty: "compute",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
layout(set = 0, binding = 0) buffer Output {
|
|
vec2 pos[];
|
|
} triangles;
|
|
|
|
layout(set = 0, binding = 1) buffer IndirectDrawArgs {
|
|
uint vertices;
|
|
uint unused0;
|
|
uint unused1;
|
|
uint unused2;
|
|
};
|
|
|
|
void main() {
|
|
uint idx = gl_GlobalInvocationID.x;
|
|
|
|
// Each invocation of the compute shader is going to increment the counter,
|
|
// so we need to use atomic operations for safety. The previous value of
|
|
// the counter is returned so that gives us the offset into the vertex
|
|
// buffer this thread can write it's vertices into.
|
|
uint offset = atomicAdd(vertices, 6);
|
|
|
|
vec2 center = vec2(-0.8, -0.8) + idx * vec2(0.1, 0.1);
|
|
triangles.pos[offset + 0] = center + vec2(0.0, 0.0375);
|
|
triangles.pos[offset + 1] = center + vec2(0.025, -0.01725);
|
|
triangles.pos[offset + 2] = center + vec2(-0.025, -0.01725);
|
|
triangles.pos[offset + 3] = center + vec2(0.0, -0.0375);
|
|
triangles.pos[offset + 4] = center + vec2(0.025, 0.01725);
|
|
triangles.pos[offset + 5] = center + vec2(-0.025, 0.01725);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
let compute_pipeline = {
|
|
let cs = cs::load(device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let stage = PipelineShaderStageCreateInfo::new(cs);
|
|
let layout = PipelineLayout::new(
|
|
device.clone(),
|
|
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
|
|
.into_pipeline_layout_create_info(device.clone())
|
|
.unwrap(),
|
|
)
|
|
.unwrap();
|
|
ComputePipeline::new(
|
|
device.clone(),
|
|
None,
|
|
ComputePipelineCreateInfo::stage_layout(stage, layout),
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
App {
|
|
instance,
|
|
device,
|
|
queue,
|
|
descriptor_set_allocator,
|
|
command_buffer_allocator,
|
|
indirect_buffer_allocator,
|
|
vertex_buffer_allocator,
|
|
compute_pipeline,
|
|
rcx: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ApplicationHandler for App {
|
|
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
|
|
let window = Arc::new(
|
|
event_loop
|
|
.create_window(Window::default_attributes())
|
|
.unwrap(),
|
|
);
|
|
let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap();
|
|
let window_size = window.inner_size();
|
|
|
|
let (swapchain, images) = {
|
|
let surface_capabilities = self
|
|
.device
|
|
.physical_device()
|
|
.surface_capabilities(&surface, Default::default())
|
|
.unwrap();
|
|
let (image_format, _) = self
|
|
.device
|
|
.physical_device()
|
|
.surface_formats(&surface, Default::default())
|
|
.unwrap()[0];
|
|
|
|
Swapchain::new(
|
|
self.device.clone(),
|
|
surface,
|
|
SwapchainCreateInfo {
|
|
min_image_count: surface_capabilities.min_image_count.max(2),
|
|
image_format,
|
|
image_extent: window_size.into(),
|
|
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
|
composite_alpha: surface_capabilities
|
|
.supported_composite_alpha
|
|
.into_iter()
|
|
.next()
|
|
.unwrap(),
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let render_pass = single_pass_renderpass!(
|
|
self.device.clone(),
|
|
attachments: {
|
|
color: {
|
|
format: swapchain.image_format(),
|
|
samples: 1,
|
|
load_op: Clear,
|
|
store_op: Store,
|
|
},
|
|
},
|
|
pass: {
|
|
color: [color],
|
|
depth_stencil: {},
|
|
},
|
|
)
|
|
.unwrap();
|
|
|
|
let framebuffers = window_size_dependent_setup(&images, &render_pass);
|
|
|
|
mod vs {
|
|
vulkano_shaders::shader! {
|
|
ty: "vertex",
|
|
src: r"
|
|
#version 450
|
|
|
|
// The triangle vertex positions.
|
|
layout(location = 0) in vec2 position;
|
|
|
|
void main() {
|
|
gl_Position = vec4(position, 0.0, 1.0);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
mod fs {
|
|
vulkano_shaders::shader! {
|
|
ty: "fragment",
|
|
src: r"
|
|
#version 450
|
|
|
|
layout(location = 0) out vec4 f_color;
|
|
|
|
void main() {
|
|
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
|
}
|
|
",
|
|
}
|
|
}
|
|
|
|
let pipeline = {
|
|
let vs = vs::load(self.device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let fs = fs::load(self.device.clone())
|
|
.unwrap()
|
|
.entry_point("main")
|
|
.unwrap();
|
|
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
|
|
let stages = [
|
|
PipelineShaderStageCreateInfo::new(vs),
|
|
PipelineShaderStageCreateInfo::new(fs),
|
|
];
|
|
let layout = PipelineLayout::new(
|
|
self.device.clone(),
|
|
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
|
.into_pipeline_layout_create_info(self.device.clone())
|
|
.unwrap(),
|
|
)
|
|
.unwrap();
|
|
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
|
|
|
|
GraphicsPipeline::new(
|
|
self.device.clone(),
|
|
None,
|
|
GraphicsPipelineCreateInfo {
|
|
stages: stages.into_iter().collect(),
|
|
vertex_input_state: Some(vertex_input_state),
|
|
input_assembly_state: Some(InputAssemblyState::default()),
|
|
viewport_state: Some(ViewportState::default()),
|
|
rasterization_state: Some(RasterizationState::default()),
|
|
multisample_state: Some(MultisampleState::default()),
|
|
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
|
subpass.num_color_attachments(),
|
|
ColorBlendAttachmentState::default(),
|
|
)),
|
|
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
|
|
subpass: Some(subpass.into()),
|
|
..GraphicsPipelineCreateInfo::layout(layout)
|
|
},
|
|
)
|
|
.unwrap()
|
|
};
|
|
|
|
let viewport = Viewport {
|
|
offset: [0.0, 0.0],
|
|
extent: window_size.into(),
|
|
depth_range: 0.0..=1.0,
|
|
};
|
|
|
|
let previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
|
|
|
self.rcx = Some(RenderContext {
|
|
window,
|
|
swapchain,
|
|
render_pass,
|
|
framebuffers,
|
|
pipeline,
|
|
viewport,
|
|
recreate_swapchain: false,
|
|
previous_frame_end,
|
|
});
|
|
}
|
|
|
|
fn window_event(
|
|
&mut self,
|
|
event_loop: &ActiveEventLoop,
|
|
_window_id: WindowId,
|
|
event: WindowEvent,
|
|
) {
|
|
let rcx = self.rcx.as_mut().unwrap();
|
|
|
|
match event {
|
|
WindowEvent::CloseRequested => {
|
|
event_loop.exit();
|
|
}
|
|
WindowEvent::Resized(_) => {
|
|
rcx.recreate_swapchain = true;
|
|
}
|
|
WindowEvent::RedrawRequested => {
|
|
let window_size = rcx.window.inner_size();
|
|
|
|
if window_size.width == 0 || window_size.height == 0 {
|
|
return;
|
|
}
|
|
|
|
rcx.previous_frame_end.as_mut().unwrap().cleanup_finished();
|
|
|
|
if rcx.recreate_swapchain {
|
|
let (new_swapchain, new_images) = rcx
|
|
.swapchain
|
|
.recreate(SwapchainCreateInfo {
|
|
image_extent: window_size.into(),
|
|
..rcx.swapchain.create_info()
|
|
})
|
|
.expect("failed to recreate swapchain");
|
|
|
|
rcx.swapchain = new_swapchain;
|
|
rcx.framebuffers = window_size_dependent_setup(&new_images, &rcx.render_pass);
|
|
rcx.viewport.extent = window_size.into();
|
|
rcx.recreate_swapchain = false;
|
|
}
|
|
|
|
let (image_index, suboptimal, acquire_future) = match acquire_next_image(
|
|
rcx.swapchain.clone(),
|
|
None,
|
|
)
|
|
.map_err(Validated::unwrap)
|
|
{
|
|
Ok(r) => r,
|
|
Err(VulkanError::OutOfDate) => {
|
|
rcx.recreate_swapchain = true;
|
|
return;
|
|
}
|
|
Err(e) => panic!("failed to acquire next image: {e}"),
|
|
};
|
|
|
|
if suboptimal {
|
|
rcx.recreate_swapchain = true;
|
|
}
|
|
|
|
// Allocate a buffer to hold the arguments for this frame's draw call. The compute
|
|
// shader will only update `vertex_count`, so set the other parameters correctly
|
|
// here.
|
|
let indirect_commands = [DrawIndirectCommand {
|
|
vertex_count: 0,
|
|
instance_count: 1,
|
|
first_vertex: 0,
|
|
first_instance: 0,
|
|
}];
|
|
let indirect_buffer = self
|
|
.indirect_buffer_allocator
|
|
.allocate_slice(indirect_commands.len() as _)
|
|
.unwrap();
|
|
indirect_buffer
|
|
.write()
|
|
.unwrap()
|
|
.copy_from_slice(&indirect_commands);
|
|
|
|
// Allocate a buffer to hold this frame's vertices. This needs to be large enough
|
|
// to hold the worst case number of vertices generated by the compute shader.
|
|
let iter = (0..(6 * 16)).map(|_| MyVertex { position: [0.0; 2] });
|
|
let vertices = self
|
|
.vertex_buffer_allocator
|
|
.allocate_slice(iter.len() as _)
|
|
.unwrap();
|
|
for (o, i) in vertices.write().unwrap().iter_mut().zip(iter) {
|
|
*o = i;
|
|
}
|
|
|
|
// Pass the two buffers to the compute shader.
|
|
let layout = &self.compute_pipeline.layout().set_layouts()[0];
|
|
let cs_descriptor_set = DescriptorSet::new(
|
|
self.descriptor_set_allocator.clone(),
|
|
layout.clone(),
|
|
[
|
|
WriteDescriptorSet::buffer(0, vertices.clone()),
|
|
WriteDescriptorSet::buffer(1, indirect_buffer.clone()),
|
|
],
|
|
[],
|
|
)
|
|
.unwrap();
|
|
|
|
let mut builder = AutoCommandBufferBuilder::primary(
|
|
self.command_buffer_allocator.clone(),
|
|
self.queue.queue_family_index(),
|
|
CommandBufferUsage::OneTimeSubmit,
|
|
)
|
|
.unwrap();
|
|
|
|
// First in the command buffer we dispatch the compute shader to generate the
|
|
// vertices and fill out the draw call arguments.
|
|
builder
|
|
.bind_pipeline_compute(self.compute_pipeline.clone())
|
|
.unwrap()
|
|
.bind_descriptor_sets(
|
|
PipelineBindPoint::Compute,
|
|
self.compute_pipeline.layout().clone(),
|
|
0,
|
|
cs_descriptor_set,
|
|
)
|
|
.unwrap();
|
|
unsafe { builder.dispatch([1, 1, 1]) }.unwrap();
|
|
|
|
builder
|
|
.begin_render_pass(
|
|
RenderPassBeginInfo {
|
|
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
|
|
..RenderPassBeginInfo::framebuffer(
|
|
rcx.framebuffers[image_index as usize].clone(),
|
|
)
|
|
},
|
|
Default::default(),
|
|
)
|
|
.unwrap()
|
|
.set_viewport(0, [rcx.viewport.clone()].into_iter().collect())
|
|
.unwrap()
|
|
.bind_pipeline_graphics(rcx.pipeline.clone())
|
|
.unwrap()
|
|
.bind_vertex_buffers(0, vertices)
|
|
.unwrap();
|
|
|
|
// The indirect draw call is placed in the command buffer with a reference to
|
|
// the buffer that will contain the arguments for the draw.
|
|
unsafe { builder.draw_indirect(indirect_buffer) }.unwrap();
|
|
|
|
builder.end_render_pass(Default::default()).unwrap();
|
|
|
|
let command_buffer = builder.build().unwrap();
|
|
|
|
let future = rcx
|
|
.previous_frame_end
|
|
.take()
|
|
.unwrap()
|
|
.join(acquire_future)
|
|
.then_execute(self.queue.clone(), command_buffer)
|
|
.unwrap()
|
|
.then_swapchain_present(
|
|
self.queue.clone(),
|
|
SwapchainPresentInfo::swapchain_image_index(
|
|
rcx.swapchain.clone(),
|
|
image_index,
|
|
),
|
|
)
|
|
.then_signal_fence_and_flush();
|
|
|
|
match future.map_err(Validated::unwrap) {
|
|
Ok(future) => {
|
|
rcx.previous_frame_end = Some(future.boxed());
|
|
}
|
|
Err(VulkanError::OutOfDate) => {
|
|
rcx.recreate_swapchain = true;
|
|
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
|
}
|
|
Err(e) => {
|
|
println!("failed to flush future: {e}");
|
|
rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
|
|
let rcx = self.rcx.as_mut().unwrap();
|
|
rcx.window.request_redraw();
|
|
}
|
|
}
|
|
|
|
// `MyVertex` is the vertex type that will be output from the compute shader and be input to the
|
|
// vertex shader.
|
|
#[derive(BufferContents, Vertex)]
|
|
#[repr(C)]
|
|
struct MyVertex {
|
|
#[format(R32G32_SFLOAT)]
|
|
position: [f32; 2],
|
|
}
|
|
|
|
/// This function is called once during initialization, then again whenever the window is resized.
|
|
fn window_size_dependent_setup(
|
|
images: &[Arc<Image>],
|
|
render_pass: &Arc<RenderPass>,
|
|
) -> Vec<Arc<Framebuffer>> {
|
|
images
|
|
.iter()
|
|
.map(|image| {
|
|
let view = ImageView::new_default(image.clone()).unwrap();
|
|
|
|
Framebuffer::new(
|
|
render_pass.clone(),
|
|
FramebufferCreateInfo {
|
|
attachments: vec![view],
|
|
..Default::default()
|
|
},
|
|
)
|
|
.unwrap()
|
|
})
|
|
.collect::<Vec<_>>()
|
|
}
|