vulkano/examples/simple-particles/main.rs
marc0246 f6bc05df94
Update dependencies (#2571)
* Update dependencies

* fmt
2024-10-10 12:16:14 +02:00

715 lines
26 KiB
Rust

// A minimal particle-sandbox to demonstrate a reasonable use-case for a device-local buffer. We
// gain significant runtime performance by writing the initial vertex values to the GPU using a
// staging buffer and then copying the data to a device-local buffer to be accessed solely by the
// GPU through the compute shader and as a vertex array.
use std::{error::Error, sync::Arc, time::SystemTime};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, CopyBufferInfo, RecordingCommandBuffer, RenderPassBeginInfo,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue,
QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
compute::ComputePipelineCreateInfo,
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::{InputAssemblyState, PrimitiveTopology},
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, Subpass},
swapchain::{
acquire_next_image, PresentMode, Surface, Swapchain, SwapchainCreateInfo,
SwapchainPresentInfo,
},
sync::{self, GpuFuture},
DeviceSize, Validated, VulkanLibrary,
};
use winit::{
application::ApplicationHandler,
dpi::PhysicalSize,
event::WindowEvent,
event_loop::{ActiveEventLoop, EventLoop},
window::{Window, WindowId},
};
const WINDOW_WIDTH: u32 = 800;
const WINDOW_HEIGHT: u32 = 600;
const PARTICLE_COUNT: usize = 100_000;
fn main() -> Result<(), impl Error> {
// The usual Vulkan initialization. Largely the same as the triangle example until further
// commentation is provided.
let event_loop = EventLoop::new().unwrap();
let mut app = App::new(&event_loop);
event_loop.run_app(&mut app)
}
struct App {
instance: Arc<Instance>,
device: Arc<Device>,
queue: Arc<Queue>,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
vertex_buffer: Subbuffer<[MyVertex]>,
compute_pipeline: Arc<ComputePipeline>,
descriptor_set: Arc<DescriptorSet>,
rcx: Option<RenderContext>,
}
struct RenderContext {
window: Arc<Window>,
swapchain: Arc<Swapchain>,
framebuffers: Vec<Arc<Framebuffer>>,
pipeline: Arc<GraphicsPipeline>,
previous_frame_end: Option<Box<dyn GpuFuture>>,
start_time: SystemTime,
last_frame_time: SystemTime,
}
impl App {
fn new(event_loop: &EventLoop<()>) -> Self {
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
enabled_extensions: required_extensions,
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.presentation_support(i as u32, event_loop).unwrap()
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
// Apply scoped logic to create `DeviceLocalBuffer` initialized with vertex data.
let vertex_buffer = {
// Initialize vertex data as an iterator.
let vertices = (0..PARTICLE_COUNT).map(|i| {
let f = i as f32 / (PARTICLE_COUNT / 10) as f32;
MyVertex {
pos: [2. * f.fract() - 1., 0.2 * f.floor() - 1.],
vel: [0.; 2],
}
});
// Create a CPU-accessible buffer initialized with the vertex data.
let temporary_accessible_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
// Specify this buffer will be used as a transfer source.
usage: BufferUsage::TRANSFER_SRC,
..Default::default()
},
AllocationCreateInfo {
// Specify this buffer will be used for uploading to the GPU.
memory_type_filter: MemoryTypeFilter::PREFER_HOST
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// Create a buffer in device-local memory with enough space for `PARTICLE_COUNT`
// number of `Vertex`.
let device_local_buffer = Buffer::new_slice::<MyVertex>(
memory_allocator,
BufferCreateInfo {
// Specify use as a storage buffer, vertex buffer, and transfer destination.
usage: BufferUsage::STORAGE_BUFFER
| BufferUsage::TRANSFER_DST
| BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
// Specify this buffer will only be used by the device.
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE,
..Default::default()
},
PARTICLE_COUNT as DeviceSize,
)
.unwrap();
// Create one-time command to copy between the buffers.
let mut cbb = RecordingCommandBuffer::new(
command_buffer_allocator.clone(),
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
cbb.copy_buffer(CopyBufferInfo::buffers(
temporary_accessible_buffer,
device_local_buffer.clone(),
))
.unwrap();
let cb = cbb.end().unwrap();
// Execute copy and wait for copy to complete before proceeding.
cb.execute(queue.clone())
.unwrap()
.then_signal_fence_and_flush()
.unwrap()
.wait(None /* timeout */)
.unwrap();
device_local_buffer
};
// Create a compute-pipeline for applying the compute shader to vertices.
let compute_pipeline = {
let cs = cs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
ComputePipeline::new(
device.clone(),
None,
ComputePipelineCreateInfo::stage_layout(stage, layout),
)
.unwrap()
};
// Create a new descriptor set for binding vertices as a storage buffer.
let descriptor_set = DescriptorSet::new(
descriptor_set_allocator.clone(),
// 0 is the index of the descriptor set.
compute_pipeline.layout().set_layouts()[0].clone(),
[
// 0 is the binding of the data in this set. We bind the `Buffer` of vertices here.
WriteDescriptorSet::buffer(0, vertex_buffer.clone()),
],
[],
)
.unwrap();
App {
instance,
device,
queue,
command_buffer_allocator,
vertex_buffer,
compute_pipeline,
descriptor_set,
rcx: None,
}
}
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
let window = Arc::new(
event_loop
.create_window(
Window::default_attributes()
// For simplicity, we are going to assert that the window size is static.
.with_resizable(false)
.with_title("simple particles")
.with_inner_size(PhysicalSize::new(WINDOW_WIDTH, WINDOW_HEIGHT)),
)
.unwrap(),
);
let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap();
let (swapchain, images) = {
let surface_capabilities = self
.device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let (image_format, _) = self
.device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0];
Swapchain::new(
self.device.clone(),
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: [WINDOW_WIDTH, WINDOW_HEIGHT],
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
present_mode: PresentMode::Fifo,
..Default::default()
},
)
.unwrap()
};
let render_pass = vulkano::single_pass_renderpass!(
self.device.clone(),
attachments: {
color: {
format: swapchain.image_format(),
samples: 1,
load_op: Clear,
store_op: Store,
},
},
pass: {
color: [color],
depth_stencil: {},
},
)
.unwrap();
let framebuffers = images
.into_iter()
.map(|img| {
let view = ImageView::new_default(img).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect();
// The vertex shader determines color and is run once per particle. The vertices will be
// updated by the compute shader each frame.
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 pos;
layout(location = 1) in vec2 vel;
layout(location = 0) out vec4 outColor;
// Keep this value in sync with the `maxSpeed` const in the compute shader.
const float maxSpeed = 10.0;
void main() {
gl_Position = vec4(pos, 0.0, 1.0);
gl_PointSize = 1.0;
// Mix colors based on position and velocity.
outColor = mix(
0.2 * vec4(pos, abs(vel.x) + abs(vel.y), 1.0),
vec4(1.0, 0.5, 0.8, 1.0),
sqrt(length(vel) / maxSpeed)
);
}
",
}
}
// The fragment shader will only need to apply the color forwarded by the vertex shader,
// because the color of a particle should be identical over all pixels.
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) in vec4 outColor;
layout(location = 0) out vec4 fragColor;
void main() {
fragColor = outColor;
}
",
}
}
// Create a basic graphics pipeline for rendering particles.
let pipeline = {
let vs = vs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(self.device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
self.device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(self.device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass, 0).unwrap();
GraphicsPipeline::new(
self.device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
// Vertices will be rendered as a list of points.
input_assembly_state: Some(InputAssemblyState {
topology: PrimitiveTopology::PointList,
..Default::default()
}),
viewport_state: Some(ViewportState {
viewports: [Viewport {
offset: [0.0, 0.0],
extent: [WINDOW_WIDTH as f32, WINDOW_HEIGHT as f32],
depth_range: 0.0..=1.0,
}]
.into_iter()
.collect(),
..Default::default()
}),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState::default()),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let previous_frame_end = Some(sync::now(self.device.clone()).boxed());
let start_time = SystemTime::now();
self.rcx = Some(RenderContext {
window,
swapchain,
framebuffers,
pipeline,
previous_frame_end,
start_time,
last_frame_time: start_time,
});
}
fn window_event(
&mut self,
event_loop: &ActiveEventLoop,
_window_id: WindowId,
event: WindowEvent,
) {
let rcx = self.rcx.as_mut().unwrap();
match event {
WindowEvent::CloseRequested => {
event_loop.exit();
}
WindowEvent::RedrawRequested => {
let window_size = rcx.window.inner_size();
if window_size.width == 0 || window_size.height == 0 {
return;
}
rcx.previous_frame_end.as_mut().unwrap().cleanup_finished();
// Update per-frame variables.
let now = SystemTime::now();
let time = now.duration_since(rcx.start_time).unwrap().as_secs_f32();
let delta_time = now
.duration_since(rcx.last_frame_time)
.unwrap()
.as_secs_f32();
rcx.last_frame_time = now;
// Create push constants to be passed to compute shader.
let push_constants = cs::PushConstants {
attractor: [0.75 * (3. * time).cos(), 0.6 * (0.75 * time).sin()],
attractor_strength: 1.2 * (2. * time).cos(),
delta_time,
};
// Acquire information on the next swapchain target.
let (image_index, suboptimal, acquire_future) = match acquire_next_image(
rcx.swapchain.clone(),
None, // timeout
) {
Ok(tuple) => tuple,
Err(e) => panic!("failed to acquire next image: {e}"),
};
// Since we disallow resizing, assert that the swapchain and surface are
// optimally configured.
assert!(
!suboptimal,
"not handling sub-optimal swapchains in this sample code",
);
let mut builder = RecordingCommandBuffer::new(
self.command_buffer_allocator.clone(),
self.queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
// Push constants for compute shader.
.push_constants(self.compute_pipeline.layout().clone(), 0, push_constants)
.unwrap()
// Perform compute operation to update particle positions.
.bind_pipeline_compute(self.compute_pipeline.clone())
.unwrap()
.bind_descriptor_sets(
PipelineBindPoint::Compute,
self.compute_pipeline.layout().clone(),
0, // Bind this descriptor set to index 0.
self.descriptor_set.clone(),
)
.unwrap();
unsafe {
builder
.dispatch([PARTICLE_COUNT as u32 / 128, 1, 1])
.unwrap();
}
// Use render-pass to draw particles to swapchain.
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0., 0., 0., 1.].into())],
..RenderPassBeginInfo::framebuffer(
rcx.framebuffers[image_index as usize].clone(),
)
},
Default::default(),
)
.unwrap()
.bind_pipeline_graphics(rcx.pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, self.vertex_buffer.clone())
.unwrap();
unsafe {
builder.draw(PARTICLE_COUNT as u32, 1, 0, 0).unwrap();
}
builder.end_render_pass(Default::default()).unwrap();
let command_buffer = builder.end().unwrap();
let future = rcx
.previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
self.queue.clone(),
SwapchainPresentInfo::swapchain_image_index(
rcx.swapchain.clone(),
image_index,
),
)
.then_signal_fence_and_flush();
rcx.previous_frame_end = match future.map_err(Validated::unwrap) {
// Success, store result into vector.
Ok(future) => Some(future.boxed()),
// Unknown failure.
Err(e) => panic!("failed to flush future: {e}"),
};
}
_ => {}
}
}
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
let rcx = self.rcx.as_mut().unwrap();
rcx.window.request_redraw();
}
}
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct MyVertex {
#[format(R32G32_SFLOAT)]
pos: [f32; 2],
#[format(R32G32_SFLOAT)]
vel: [f32; 2],
}
// Compute shader for updating the position and velocity of each particle every frame.
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: r"
#version 450
layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;
struct VertexData {
vec2 pos;
vec2 vel;
};
// Storage buffer binding, which we optimize by using a DeviceLocalBuffer.
layout (binding = 0) buffer VertexBuffer {
VertexData vertices[];
};
// Allow push constants to define a parameters of compute.
layout (push_constant) uniform PushConstants {
vec2 attractor;
float attractor_strength;
float delta_time;
} push;
// Keep this value in sync with the `maxSpeed` const in the vertex shader.
const float maxSpeed = 10.0;
const float minLength = 0.02;
const float friction = -2.0;
void main() {
const uint index = gl_GlobalInvocationID.x;
vec2 vel = vertices[index].vel;
// Update particle position according to velocity.
vec2 pos = vertices[index].pos + push.delta_time * vel;
// Bounce particle off screen-border.
if (abs(pos.x) > 1.0) {
vel.x = sign(pos.x) * (-0.95 * abs(vel.x) - 0.0001);
if (abs(pos.x) >= 1.05) {
pos.x = sign(pos.x);
}
}
if (abs(pos.y) > 1.0) {
vel.y = sign(pos.y) * (-0.95 * abs(vel.y) - 0.0001);
if (abs(pos.y) >= 1.05) {
pos.y = sign(pos.y);
}
}
// Simple inverse-square force.
vec2 t = push.attractor - pos;
float r = max(length(t), minLength);
vec2 force = push.attractor_strength * (t / r) / (r * r);
// Update velocity, enforcing a maximum speed.
vel += push.delta_time * force;
if (length(vel) > maxSpeed) {
vel = maxSpeed*normalize(vel);
}
// Set new values back into buffer.
vertices[index].pos = pos;
vertices[index].vel = vel * exp(friction * push.delta_time);
}
",
}
}