vulkano/examples/dynamic-local-size/main.rs
Viktor Szépe 07736487d6
Fix typos and introduce a workflow (#2537)
* Fix typos and introduce a workflow

* Revert vk.xml

* Update .typos.toml

* fix typos config
2024-06-30 13:19:35 +02:00

311 lines
11 KiB
Rust

// This example demonstrates how to define the compute shader local size layout at runtime through
// specialization constants while considering the physical device properties.
//
// Workgroup parallelism capabilities vary between GPUs and setting them properly is important to
// achieve the maximal performance that particular device can provide.
use std::{fs::File, io::BufWriter, path::Path, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, CopyImageToBufferInfo, RecordingCommandBuffer,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
format::Format,
image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo, InstanceExtensions},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
compute::ComputePipelineCreateInfo, layout::PipelineDescriptorSetLayoutCreateInfo,
ComputePipeline, Pipeline, PipelineBindPoint, PipelineLayout,
PipelineShaderStageCreateInfo,
},
sync::{self, GpuFuture},
VulkanLibrary,
};
fn main() {
let library = VulkanLibrary::new().unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: InstanceExtensions {
// This extension is required to obtain physical device metadata about the device
// workgroup size limits.
khr_get_physical_device_properties2: true,
..InstanceExtensions::empty()
},
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.intersects(QueueFlags::COMPUTE))
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
mod cs {
vulkano_shaders::shader! {
ty: "compute",
src: r"
#version 450
// We set `local_size_x` and `local_size_y` to be variables configurable values
// through specialization constants. Values `1` and `2` both define a constant ID
// as well as a default value of 1 and 2 of the constants respectively. The
// `local_size_z = 1` here is an ordinary constant of the local size on the Z axis.
//
// Unfortunately current GLSL language capabilities doesn't let us define exact
// names of the constants so we will have to use anonymous constants instead. See
// below for how to provide their values at runtime.
//
// NOTE: The constant ID in `local_size` layout must be positive values. Zeros lead
// to runtime failure on NVIDIA devices due to a known bug in the driver.
layout(local_size_x_id = 1, local_size_y_id = 2, local_size_z = 1) in;
// We can still define more constants in the Shader
layout(constant_id = 0) const float red = 0.0;
layout(constant_id = 3) const float green = 0.0;
layout(constant_id = 4) const float blue = 0.0;
layout(set = 0, binding = 0, rgba8) uniform writeonly image2D img;
void main() {
// Colorful Mandelbrot fractal.
vec2 norm_coordinates = (gl_GlobalInvocationID.xy + vec2(0.5)) / vec2(imageSize(img));
vec2 c = (norm_coordinates - vec2(0.5)) * 2.0 - vec2(1.0, 0.0);
vec2 z = vec2(0.0, 0.0);
float i;
for (i = 0.0; i < 1.0; i += 0.005) {
z = vec2(
z.x * z.x - z.y * z.y + c.x,
z.y * z.x + z.x * z.y + c.y
);
if (length(z) > 4.0) {
break;
}
}
vec4 to_write = vec4(vec3(red, green, blue) * i, 1.0);
imageStore(img, ivec2(gl_GlobalInvocationID.xy), to_write);
}
",
}
}
// Fetching subgroup size from the physical device properties to determine an appropriate
// compute shader local size.
//
// Most of the drivers provide this property, but some of the drivers don't. In that case we
// can find an appropriate value using this tool: https://vulkan.gpuinfo.org, or just use a
// fallback constant for simplicity, but failure to set a proper local size can lead to a
// significant performance penalty.
let (local_size_x, local_size_y) = match device.physical_device().properties().subgroup_size {
Some(subgroup_size) => {
println!("Subgroup size is {subgroup_size}");
// Most of the subgroup values are divisors of 8.
(8, subgroup_size / 8)
}
None => {
println!("This Vulkan driver doesn't provide physical device Subgroup information");
// Using a fallback constant.
(8, 8)
}
};
println!("Local size will be set to: ({local_size_x}, {local_size_y}, 1)");
let pipeline = {
let cs = cs::load(device.clone())
.unwrap()
.specialize(
[
(0, 0.2f32.into()),
(1, local_size_x.into()),
(2, local_size_y.into()),
(3, 0.5f32.into()),
(4, 1.0f32.into()),
]
.into_iter()
.collect(),
)
.unwrap()
.entry_point("main")
.unwrap();
let stage = PipelineShaderStageCreateInfo::new(cs);
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage])
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
ComputePipeline::new(
device.clone(),
None,
ComputePipelineCreateInfo::stage_layout(stage, layout),
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new(
device.clone(),
Default::default(),
));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
let image = Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::R8G8B8A8_UNORM,
extent: [1024, 1024, 1],
usage: ImageUsage::TRANSFER_SRC | ImageUsage::STORAGE,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap();
let view = ImageView::new_default(image.clone()).unwrap();
let layout = &pipeline.layout().set_layouts()[0];
let set = DescriptorSet::new(
descriptor_set_allocator,
layout.clone(),
[WriteDescriptorSet::image_view(0, view)],
[],
)
.unwrap();
let buf = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::TRANSFER_DST,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_HOST
| MemoryTypeFilter::HOST_RANDOM_ACCESS,
..Default::default()
},
(0..1024 * 1024 * 4).map(|_| 0u8),
)
.unwrap();
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator,
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
.bind_pipeline_compute(pipeline.clone())
.unwrap()
.bind_descriptor_sets(
PipelineBindPoint::Compute,
pipeline.layout().clone(),
0,
set,
)
.unwrap();
unsafe {
// Note that dispatch dimensions must be proportional to the local size.
builder
.dispatch([1024 / local_size_x, 1024 / local_size_y, 1])
.unwrap();
}
builder
.copy_image_to_buffer(CopyImageToBufferInfo::image_buffer(image, buf.clone()))
.unwrap();
let command_buffer = builder.end().unwrap();
let future = sync::now(device)
.then_execute(queue, command_buffer)
.unwrap()
.then_signal_fence_and_flush()
.unwrap();
future.wait(None).unwrap();
println!("Success");
let buffer_content = buf.read().unwrap();
let path = Path::new(env!("CARGO_MANIFEST_DIR")).join("mandelbrot.png");
let file = File::create(&path).unwrap();
let w = &mut BufWriter::new(file);
let mut encoder = png::Encoder::new(w, 1024, 1024);
encoder.set_color(png::ColorType::Rgba);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&buffer_content).unwrap();
if let Ok(path) = path.canonicalize() {
println!("Saved to {}", path.display());
}
}