vulkano/examples/triangle-util/main.rs

492 lines
22 KiB
Rust

// Welcome to the triangle-util example!
//
// This is almost exactly the same as the triangle example, except that it uses utility functions
// to make life easier.
//
// This example assumes that you are already more or less familiar with graphics programming and
// that you want to learn Vulkan. This means that for example it won't go into details about what a
// vertex or a shader is.
use std::{error::Error, sync::Arc, time::Duration};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
RenderPassBeginInfo, SubpassBeginInfo, SubpassContents,
},
image::view::ImageView,
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sync::GpuFuture,
};
use vulkano_util::{
context::{VulkanoConfig, VulkanoContext},
window::VulkanoWindows,
};
use winit::{
application::ApplicationHandler,
event::WindowEvent,
event_loop::{ActiveEventLoop, EventLoop},
window::WindowId,
};
fn main() -> Result<(), impl Error> {
let event_loop = EventLoop::new().unwrap();
let mut app = App::new(&event_loop);
event_loop.run_app(&mut app)
}
struct App {
context: VulkanoContext,
windows: VulkanoWindows,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
vertex_buffer: Subbuffer<[MyVertex]>,
rcx: Option<RenderContext>,
}
struct RenderContext {
render_pass: Arc<RenderPass>,
framebuffers: Vec<Arc<Framebuffer>>,
pipeline: Arc<GraphicsPipeline>,
viewport: Viewport,
}
impl App {
fn new(_event_loop: &EventLoop<()>) -> Self {
let context = VulkanoContext::new(VulkanoConfig::default());
// Manages any windows and their rendering.
let windows = VulkanoWindows::default();
// Some little debug infos.
println!(
"Using device: {} (type: {:?})",
context.device().physical_device().properties().device_name,
context.device().physical_device().properties().device_type,
);
// Before we can start creating and recording command buffers, we need a way of allocating
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command
// pools underneath and provides a safe interface for them.
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
context.device().clone(),
Default::default(),
));
// We now create a buffer that will store the shape of our triangle.
let vertices = [
MyVertex {
position: [-0.5, -0.25],
},
MyVertex {
position: [0.0, 0.5],
},
MyVertex {
position: [0.25, -0.1],
},
];
let vertex_buffer = Buffer::from_iter(
context.memory_allocator().clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
App {
context,
windows,
command_buffer_allocator,
vertex_buffer,
rcx: None,
}
}
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
if let Some(primary_window_id) = self.windows.primary_window_id() {
self.windows.remove_renderer(primary_window_id);
}
self.windows
.create_window(event_loop, &self.context, &Default::default(), |_| {});
let window_renderer = self.windows.get_primary_renderer_mut().unwrap();
let window_size = window_renderer.window().inner_size();
// The next step is to create the shaders.
//
// The raw shader creation API provided by the vulkano library is unsafe for various
// reasons, so The `shader!` macro provides a way to generate a Rust module from GLSL
// source - in the example below, the source is provided as a string input directly to the
// shader, but a path to a source file can be provided as well. Note that the user must
// specify the type of shader (e.g. "vertex", "fragment", etc.) using the `ty` option of
// the macro.
//
// The items generated by the `shader!` macro include a `load` function which loads the
// shader using an input logical device. The module also includes type definitions for
// layout structures defined in the shader source, for example uniforms and push constants.
//
// A more detailed overview of what the `shader!` macro generates can be found in the
// vulkano-shaders crate docs. You can view them at https://docs.rs/vulkano-shaders/
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images where the
// colors, depth and/or stencil information will be written.
let render_pass = vulkano::single_pass_renderpass!(
self.context.device().clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `format: <ty>` indicates the type of the format of the image. This has to be
// one of the types of the `vulkano::format` module (or alternatively one of
// your structs that implements the `FormatDesc` trait). Here we use the same
// format as the swapchain.
format: window_renderer.swapchain_format(),
// `samples: 1` means that we ask the GPU to use one sample to determine the
// value of each pixel in the color attachment. We could use a larger value
// (multisampling) for antialiasing. An example of this can be found in
// msaa-renderpass.rs.
samples: 1,
// `load_op: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load_op: Clear,
// `store_op: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store_op: Store,
},
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {},
},
)
.unwrap();
// The render pass we created above only describes the layout of our framebuffers. Before
// we can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer
// for each image.
let framebuffers =
window_size_dependent_setup(window_renderer.swapchain_image_views(), &render_pass);
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes
// how a GPU operation is to be performed. It is similar to an OpenGL program, but it also
// contains many settings for customization, all baked into a single object. For drawing,
// we create a **graphics** pipeline, but there are also other types of pipeline.
let pipeline = {
// First, we load the shaders that the pipeline will use: the vertex shader and the
// fragment shader.
//
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one.
let vs = vs::load(self.context.device().clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(self.context.device().clone())
.unwrap()
.entry_point("main")
.unwrap();
// Automatically generate a vertex input state from the vertex shader's input
// interface, that takes a single vertex buffer containing `Vertex` structs.
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
// Make a list of the shader stages that the pipeline will have.
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
// We must now create a **pipeline layout** object, which describes the locations and
// types of descriptor sets and push constants used by the shaders in the pipeline.
//
// Multiple pipelines can share a common layout object, which is more efficient. The
// shaders in a pipeline must use a subset of the resources described in its pipeline
// layout, but the pipeline layout is allowed to contain resources that are not present
// in the shaders; they can be used by shaders in other pipelines that share the same
// layout. Thus, it is a good idea to design shaders so that many pipelines have common
// resource locations, which allows them to share pipeline layouts.
let layout = PipelineLayout::new(
self.context.device().clone(),
// Since we only have one pipeline in this example, and thus one pipeline layout,
// we automatically generate the creation info for it from the resources used in
// the shaders. In a real application, you would specify this information manually
// so that you can re-use one layout in multiple pipelines.
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(self.context.device().clone())
.unwrap(),
)
.unwrap();
// We have to indicate which subpass of which render pass this pipeline is going to be
// used in. The pipeline will only be usable from this particular subpass.
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
// Finally, create the pipeline.
GraphicsPipeline::new(
self.context.device().clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
// How vertex data is read from the vertex buffers into the vertex shader.
vertex_input_state: Some(vertex_input_state),
// How vertices are arranged into primitive shapes. The default primitive shape
// is a triangle.
input_assembly_state: Some(InputAssemblyState::default()),
// How primitives are transformed and clipped to fit the framebuffer. We use a
// resizable viewport, set to draw over the entire window.
viewport_state: Some(ViewportState::default()),
// How polygons are culled and converted into a raster of pixels. The default
// value does not perform any culling.
rasterization_state: Some(RasterizationState::default()),
// How multiple fragment shader samples are converted to a single pixel value.
// The default value does not perform any multisampling.
multisample_state: Some(MultisampleState::default()),
// How pixel values are combined with the values already present in the
// framebuffer. The default value overwrites the old value with the new one,
// without any blending.
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
// Dynamic states allows us to specify parts of the pipeline settings when
// recording the command buffer, before we perform drawing. Here, we specify
// that the viewport should be dynamic.
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
// Otherwise we would have to recreate the whole pipeline.
let viewport = Viewport {
offset: [0.0, 0.0],
extent: window_size.into(),
depth_range: 0.0..=1.0,
};
// In the `window_event` handler below we are going to submit commands to the GPU.
// Submitting a command produces an object that implements the `GpuFuture` trait, which
// holds the resources for as long as they are in use by the GPU.
self.rcx = Some(RenderContext {
render_pass,
framebuffers,
pipeline,
viewport,
});
}
fn window_event(
&mut self,
event_loop: &ActiveEventLoop,
_window_id: WindowId,
event: WindowEvent,
) {
let window_renderer = self.windows.get_primary_renderer_mut().unwrap();
let rcx = self.rcx.as_mut().unwrap();
match event {
WindowEvent::CloseRequested => {
event_loop.exit();
}
WindowEvent::Resized(_) => {
window_renderer.resize();
}
WindowEvent::RedrawRequested => {
let window_size = window_renderer.window().inner_size();
// Do not draw the frame when the screen size is zero. On Windows, this can
// occur when minimizing the application.
if window_size.width == 0 || window_size.height == 0 {
return;
}
// Begin rendering by acquiring the gpu future from the window renderer.
let previous_frame_end = window_renderer
.acquire(Some(Duration::from_millis(1000)), |swapchain_images| {
// Whenever the window resizes we need to recreate everything dependent
// on the window size. In this example that
// includes the swapchain, the framebuffers
// and the dynamic state viewport.
rcx.framebuffers =
window_size_dependent_setup(swapchain_images, &rcx.render_pass);
rcx.viewport.extent = window_size.into();
})
.unwrap();
// In order to draw, we have to record a *command buffer*. The command buffer
// object holds the list of commands that are going to be executed.
//
// Recording a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to
// be optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The
// command buffer will only be executable on that given queue family.
let mut builder = AutoCommandBufferBuilder::primary(
self.command_buffer_allocator.clone(),
self.context.graphics_queue().queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
// Before we can draw, we have to *enter a render pass*.
.begin_render_pass(
RenderPassBeginInfo {
// A list of values to clear the attachments with. This list contains
// one item for each attachment in the render pass. In this case, there
// is only one attachment, and we clear it with a blue color.
//
// Only attachments that have `AttachmentLoadOp::Clear` are provided
// with clear values, any others should use `None` as the clear value.
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
rcx.framebuffers[window_renderer.image_index() as usize].clone(),
)
},
SubpassBeginInfo {
// The contents of the first (and only) subpass. This can be either
// `Inline` or `SecondaryCommandBuffers`. The latter is a bit more
// advanced and is not covered here.
contents: SubpassContents::Inline,
..Default::default()
},
)
.unwrap()
// We are now inside the first subpass of the render pass.
//
// TODO: Document state setting and how it affects subsequent draw commands.
.set_viewport(0, [rcx.viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(rcx.pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, self.vertex_buffer.clone())
.unwrap();
// We add a draw command.
unsafe { builder.draw(self.vertex_buffer.len() as u32, 1, 0, 0) }.unwrap();
builder
// We leave the render pass. Note that if we had multiple subpasses we could
// have called `next_subpass` to jump to the next subpass.
.end_render_pass(Default::default())
.unwrap();
// Finish recording the command buffer by calling `end`.
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.then_execute(self.context.graphics_queue().clone(), command_buffer)
.unwrap()
.boxed();
// The color output is now expected to contain our triangle. But in order to show
// it on the screen, we have to *present* the image by calling `present` on the
// window renderer.
//
// This function does not actually present the image immediately. Instead it
// submits a present command at the end of the queue. This means that it will only
// be presented once the GPU has finished executing the command buffer that draws
// the triangle.
window_renderer.present(future, false);
}
_ => {}
}
}
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
let window_renderer = self.windows.get_primary_renderer_mut().unwrap();
window_renderer.window().request_redraw();
}
}
// We use `#[repr(C)]` here to force rustc to use a defined layout for our data, as the default
// representation has *no guarantees*.
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct MyVertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
swapchain_images: &[Arc<ImageView>],
render_pass: &Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
swapchain_images
.iter()
.map(|swapchain_image| {
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![swapchain_image.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}