Vulkan 1.0 - A Specification

Vulkan 1.0 - A Specification

Vulkan 1.0 - A Specification iii

Contents

1 Introduction 1
1.1 What is the Vulkan Graphics System? 1
1.1.1 The Programmer’s View of Vulkan 1

1.1.2 The Implementor’s View of Vulkan 2

1.1.3 OurViewof Vulkan e 2

1.2 Filing Bug Reports e 2
1.3 Terminology e 2
1.4 Normative References e 3
2 Fundamentals S
2.1 Execution Model e 5
2.1.1 Queue Operation e e e e e e 6

2.2 ObjectModel e e e 7
2.2.1 ObjectLifetime e 8

2.3 Command SYNtaxX e e e e e e e e e e e e e e e e e 10
2.4 Threading Behavior L 11
25 EITOrs 17
25.1 ValidUsage oo e 17

252 ReturnCodes e 18

2.6 Numeric Representation and Computation o 19
2.6.1 Floating-Point Computation e 20

2.6.2 16-Bit Floating-Point Numbers 20

2.6.3 Unsigned 11-Bit Floating-Point Numbers 20

2.6.4 Unsigned 10-Bit Floating-Point Numbers 21

2.6.5 General Requirements L e 21

2.7 Fixed-Point Data CONVersions vttt ittt e e 21

2.7.1 Conversion from Normalized Fixed-Point to Floating-Point 21

2.8
29

2.7.2 Conversion from Floating-Point to Normalized Fixed-Point
API Version Numbers and Semantics o oL e
Common Object Types e e
2.9.1 Offsets e
2.9.2 EXIENtS e e e e e e
293 Rectangles L e e e e

3 Initialization

3.1
32

Command Function Pointers e e

InStances L e e e

4 Devices and Queues

4.1
4.2

43

Physical Devices e
Devices
4.2.1 Device Creation oo vt e e e e e e e e
422 DeviceUse o o o i e e e e e
423 Deviceldle
424 LostDevice
425 Device Destruction e
QUEUES o e e
4.3.1 Queue Family Properties e
432 Queue Creation i i e e e e e e e e e e
433 QueueFamily Index
434 QueuePriority
4.3.5 Queue Synchronization e e e e
43.6 Sparse Memory Binding oL
43.7 Queue Destruction

5 Command Buffers

5.1
52
53
54
55
5.6

Command Pools o . e e
Command Buffer Lifetime
Command Buffer Recording
Command Buffer Submission L
Queue Forward Progress L

Secondary Command Buffer Execution e

25
25
27

31
31
36
36
39
39
40
41
42
42
43
44
45
45
46
46

Vulkan 1.0 - A Specification v
6 Synchronization and Cache Control 69
6.1 Fences e 69

6.2 Semaphores e e e e 75

6.3 Events o 79

6.4 Execution And Memory Dependencies L L 90

6.5 Pipeline Barriers L 91
6.5.1 Subpass Self-dependency 94

6.5.2 Pipeline Stage Flags L 94

6.5.3 Memory Barriers 96

6.5.4 Global Memory Barriers e e e e 97

6.5.5 Buffer Memory Barriers e e e 100

6.5.6 Image Memory Barriers 101

6.6 Implicit Ordering Guarantees ot v ittt e e e 104

7 Render Pass 107
7.1 RenderPass Creation e e 108
7.2 Render Pass Compatibility e e 121
7.3 Framebuffers L e 121
7.4 Render Pass Commands L e e e 125

8 Shaders 133
8.1 Shader Modules e 133

8.2 Shader Execution L e e e e 136

8.3 Shader Memory Access Ordering e 136

8.4 Shader Inputs and Outputs e e e e e e 137

8.5 Vertex Shaders L 137
8.5.1 Vertex Shader Execution 138

8.6 Tessellation Control Shaders e 138
8.6.1 Tessellation Control Shader Execution, 138

8.7 Tessellation Evaluation Shaders 138
8.7.1 Tessellation Evaluation Shader Execution 139

8.8 Geometry Shaders L 139
8.8.1 Geometry Shader Execution e 139

8.9 Fragment Shaders e 139
8.9.1 Fragment Shader Execution 139

8.9.2 Early Fragment Tests o 0 i e e e e e e e 140

8.10 Compute Shaders e e e e e e 140
8.11 Interpolation Decorations o i i e e e e e 140
812 Static USe o o e e e e e 141

9 Pipelines

10

11

12

13

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Compute Pipelines L e e e e e

Graphics Pipelines

Pipeline destruction L e e e

Multiple Pipeline Creation e e e e e e e e e

Pipeline Derivatives e e

Pipeline Cache L

Specialization Constantso e e e e e

Pipeline Binding L e

Memory Allocation

10.1 Host MEMOTY o o et e e e e e e e e e e e e e e e e e

10.2 Device MEMOTY oo e e e e e e

10.2.1
10.2.2

Host Access to Device Memory Objects i

Lazily Allocated Memory e e e e e e

Resource Creation

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

Image Layouts e e e e

Image VIEWs o L e e e e e

Resource Memory ASSOCIAtion oo it e e e e e e e

Resource Sharing Mode L

Memory ALaSiNg o o o e e e e e e e e e e e e e

Samplers

Resource Descriptors

13.1 Descriptor TYpes o o o o e e e e e

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7

Storage Image e e e
Sampler L e
Sampled Image e
Combined Image Sampler L
Uniform Texel Buffer
Storage Texel Buffer
Uniform Buffer

143
145
149
159
159
160
160
166
169

173
173
179
185
190

193
193
197
201
212
214
223
229
230

233

Vulkan 1.0 - A Specification Vi

13.1.8 Storage Buffer 245
13.1.9 Dynamic Uniform Buffer 245
13.1.10 Dynamic Storage Buffer o 246
13.1.11 Input Attachment e 246

13.2 Descriptor SEtS v v o i e e e e e e e e e e e e e e e e 246
13.2.1 Descriptor Set Layout e e e e e 246
13.2.2 Pipeline Layouts e 253
13.2.2.1 Pipeline Layout Compatibility 257

13.2.3 Allocation of Descriptor Sets e e e 259
13.2.4 Descriptor Set Updates e 267
13.2.5 Descriptor SetBinding 273
13.2.6 Push Constant Updates i e 276

14 Shader Interfaces 279
14.1 Shader Input and Output Interfaces e 279
14.1.1 Built-inInterface Block 279
14.1.2 User-defined Variable Interface 280
14.1.3 Interface Matching 280
14.1.4 Location ASSIZNMENt v v i v v et e e e e e e e e e e e e e e 280
14.1.5 Component ASSIgNMENt e e e e 282

14.2 Vertex Input Interface 282
14.3 Fragment Output Interface e 282
14.4 Fragment Input Attachment Interface L 283
14.5 Shader Resource Interface 283
14.5.1 Push Constant Interface L 284
14.5.2 Descriptor Set Interface L 284
14.5.3 DescriptorSet and Binding Assignment oL Lo 286
14.5.4 Offset and Stride Assignment e 287

14.6 Built-In Variables L 288
15 Image Operations 295
15.1 Image Operations OVEIVIEW ot v i it vttt e e e e 295
15.1.1 Texel Coordinate SyStems 0 i i it e e e e e e 296

15.2 Conversion Formulas L e 298
15.2.1 RGB to Shared Exponent Conversion i 298

15.2.2 Shared ExponenttoRGB 299

15.3 Texel Input Operations ot i it e e e e e e 299

15.3.1 Texel Input Validation Operations 300
15.3.1.1 Instruction/Sampler/Image Validation 300

15.3.1.2 Integer Texel Coordinate Validation 301

15.3.1.3 CubeMap EdgeHandling, 302

15.3.1.4 Sparse Validation 302

15.3.2 Format Conversion L 302
15.3.3 Texel Replacement 303
15.3.4 Depth Compare Operation ittt 304
15.3.5 Conversionto RGBA 304
15.3.6 Component Swizzle 305
15.3.7 Sparse Residency e e e e 305

15.4 Texel Output Operations v vt v v it e e e e e e e e 305
15.4.1 Texel Output Validation Operations o v vt i vttt e e e e 306
15.4.1.1 Texel Format Validation 306

15.4.2 Integer Texel Coordinate Validation 306
15.4.3 Sparse Texel Operation ittt e e 306
15.4.4 Texel Output Format Conversion 306

15.5 Derivative Operations v v v v it e e e e e e e e e e e e e e e e e 306
15.6 Normalized Texel Coordinate Operations o ot vt i i it e e e e e 307
15.6.1 Projection Operation o . i it e e e e e e e 308
15.6.2 Derivative Image Operations oot e e e 308
15.6.3 Cube Map Face Selection and Transformations 308
15.6.4 Cube Map Face Selection 308
15.6.5 Cube Map Coordinate Transformation 309
15.6.6 Cube Map Derivative Transformation e 310
15.6.7 Scale Factor Operation, Level-of-Detail Operation and Image Level(s) Selection 310
15.6.7.1 Scale Factor Operation vttt 310

15.6.7.2 Level-of-Detail Operation 311

15.6.7.3 TImage Level(s) Selection e 312

15.6.8 (s,tr,q,a) to (u,v,w,a) Transformation L 313

15.7 Unnormalized Texel Coordinate Operations 313
15.7.1 (u,v,w,a) to (i,j,k,1,n) Transformation And Array Layer Selection 313

15.8 Image Sample Operations it e e e e e e 314
15.8.1 Wrapping Operation o o i it e e e e e e e e e e 314
15.8.2 Texel Gathering 314
15.8.3 Texel Filtering o o e e e 315
15.8.4 Texel Anisotropic Filtering L 316

15.9 Image Operation Steps it e e e e e e e 316

Vulkan 1.0 - A Specification ix

16 Queries 317
16.1 Query Pools e e 317
16.2 Query Operation it e e e e e e e e e e e e e e e e 320
16.3 Occlusion QUETIES o o o e 330
16.4 Pipeline Statistics QUeries e e 331
16.5 Timestamp QUErIEs e e e 333

17 Clear Commands 335
17.1 Clearing Images Outside A Render Pass Instance 335
17.2 Clearing Images Inside A Render Pass Instance 338
17.3 Clear Values L e e 341
17.4 Filling Buffers 342
17.5 Updating Buffers L 343

18 Copy Commands 347
18.1 Common Operation it e e e e 347
18.2 Copying Data Between Buffers 348
18.3 Copying Data Between Images L 349
18.4 Copying Data Between Buffers and Images L. 354
18.5 Image Copies with Scaling 361
18.6 Resolving Multisample Images e e e e 365

19 Drawing Commands 369
19.1 Primitive Topologies e e 370

19.1.1 PoInts o o e e 371
19.1.2 Separate Lines L e e e e e e 371
19.1.3 Line Strips o o o o e e e e e e e 371
19.1.4 Triangle Strips L e e e e 371
19.15 Triangle Fans o e 371
19.1.6 Separate Triangles 372
19.1.7 Lines With Adjacency e 372
19.1.8 Line Strips With Adjacency 372
19.1.9 Triangle List With Adjacency i it 373
19.1.10 Triangle Strips With Adjacency i 373
19.1.11 Separate Patches e e 374
19.1.12 General Considerations For Polygon Primitives, 374

19.1.13 Programmable Primitive Shading L o 375

20 Fixed-Function Vertex Processing

20.1

20.2
20.3

Vertex Attributes L e e e e
20.1.1 Attribute Location and Component Assignment
Vertex Input Description oL e e e e e

Example e e e e

21 Tessellation

21.1
21.2
213
21.4
21.5
21.6
21.7

Tessellator e e e e e e
Tessellator Patch Discard e
Tessellator Spacing e e e
Triangle Tessellation L e e e e e e e
Quad Tessellation e
Isoline Tessellation e e

Tessellation Pipeline State

22 Geometry Shading

22.1
222
223
224

Geometry Shader Input Primitives L L
Geometry Shader Output Primitives
Multiple Invocations of Geometry Shaders L oL

Geometry Shader Primitive Ordering o L

23 Fixed-Function Vertex Post-Processing

23.1
232
233
234
235

Flatshading o e e
Primitive CLIppINg o . e e
Clipping Shader Outputs e
Coordinate Transformations e

Controlling the VIewport

24 Rasterization

24.1
24.2
243
24.4

245

24.6

Discarding Primitives Before Rasterization L oo
Multisampling e e e
Sample Shading L e e e e e
Points L e
24.4.1 Basic Point Rasterization L
Line Segments e e e e
24.5.1 Basic Line Segment Rasterizationo e
Polygons
24.6.1 Basic Polygon Rasterization
24.6.2 PolygonMode e
2463 DepthBias e

389
389
390
393
397

399
399
401
401
402
404
406
406

409
409
410
410
411

413
413
414
415
416
416

Vulkan 1.0 - A Specification Xi
25 Fragment Operations 435
25.1 Early Per-Fragment Tests o 0 e e e e e e e e e e e e 435
252 Scissor Test e e e 435
25.3 Sample Mask L e e 437
25.4 Early Fragment TestMode e 437
25.5 Late Per-Fragment Tests e 437
25.6 Multisample COVErage vt vttt e e e e e e e 438
25.7 Depthand Stencil Operations e e e e e e e 439
25.8 Depth Bounds Test o L e 440
25.9 Stencil Test L L e e 441
25.10Depth Test o o o e e e e e e e e e e e e 447
25.11Sample Counting e e e e e e e e e e e e 448

26 The Framebuffer 449
26.1 Blending L 449
26.1.1 Blend Factors e e 452

26.1.2 Dual-Source Blending 454

26.1.3 Blend Operations e e e e 454

26.2 Logical Operations i e e e e e 456

27 Dispatching Commands 459
28 Sparse Resources 465
28.1 Sparse Resource Features L 465
28.2 Sparse Buffers and Fully-Resident Images 466
28.2.1 Sparse Buffer and Fully-Resident Image Block Size 467

28.3 Sparse Partially-Resident Buffers 467
28.4 Sparse Partially-Resident Images L 467
28.4.1 Accessing Unbound Regions Lo 467

28.42 Mip Tail Regions 468

28.4.3 Standard Image Block Sizes 472

28.4.4 Custom Image Block Sizes 473

28.4.5 Multiple ASPECtS e e e e 474

28.4.5.1 Metadata oL e 474

28.5 Sparse Memory Aliasing e e e e e e e 475
28.6 Sparse Resource Implementation Guidelines 475
28.7 Sparse Resource API 477

28.7.1

28.7.2
28.7.3

28.7.4
28.7.5

28.7.6

Physical Device Features e
28.7.1.1 Sparse Physical Device Features,
Physical Device Sparse Properties
Sparse Image Format Properties e
28.7.3.1 Sparse Image Format Properties API
Sparse Resource Creation e
Sparse Resource Memory Requirements
28.7.5.1 Buffer and Fully-ResidentImages
28.7.5.2 Partially Resident Images
28.7.5.3 Sparse Image Memory Requirements L.
Binding Resource Memory e e e e e

28.7.6.1 Sparse Memory Binding Functions

28.8 Examples e e

28.8.1
28.8.2

Basic Sparse Resources L

Advanced Sparse Resources

29 Extended Functionality

29.1 Layers

202 EXIENSIONS o o v o o e e e e e e e e e

30 Features, Limits, and Formats

30.1 Features e e

30.1.1
30.2 Limits
30.2.1

Feature Requirements e e e e

Limit Requirements

30.3 Formats e e e e

30.3.1

30.3.2
30.3.3

Format Definition e
30.3.1.1 Packed Formats
30.3.1.2 Identification of Formats
30.3.1.3 Representation e e e e e e e e
30.3.1.4 Depth/Stencil Formats e
30.3.1.5 Format Compatibility Classes
Format Properties L

Required Format Support L

30.4 Additional Image Capabilities L

31 Glossary

499
499
502

505
505
514
514
524
530
530
546
547
548
550
550
555
557
568

571

Vulkan 1.0 - A Specification

xiii

32 Common Abbreviations

33 Prefixes

A Vulkan Environment for SPIR-V

A.1 Required Versions and
A.2 Capabilities

Formats e e

A.3 Validation Rules withinaModule e

A.4 Precision and Operation of SPIR-V Instructions

A.5 Compatibility Between SPIR-V Image Formats And Vulkan Formats

B Compressed Image Formats

B.1 Block Compressed Image Formats e

B.2 ETC Compressed Image Formats e e e

B.3 ASTC Compressed Image Formats e

C Layers & Extensions

C.1 Introduction

C.2 General Rules/Guidelines e

C.3 Extension and Layer Naming Conventions

C.4 Extension Command, Token, and Type Naming Conventions

C.5 The Vulkan Registry

C.6 Registering an Author Prefix with Khronos L oo

C.7 Registering a Vendor ID with Khronos

C.8 Registering Extensions and Layers e

C.9 Documenting EXtensions e e e e e e e

C.10 Assigning Extension Token Values L

C.11 Required Extension Tokens o 0 e e e

C.12 Extension Objects, Enums, and Typedefs

C.13 Extension Function Prototypes e e

C.14 Accessing Extension Function from Programs
C.14.1 Reserving Bitfield Values e

C.15 Extension Interactions

D Invariance
D.1 Repeatability
D.2 Multi-pass Algorithms
D.3 Invariance Rules . . .

D.4 Tessellation Invariance

E Credits

583

585

587
587
587
588
589
590

593
594
595
596

597
597
598
598
599
599
600
600
600
601
602
603
603
603
604
604
604

607
607
607
608
609

611

Vulkan 1.0 - A Specification

XV

Copyright © 2014-2016 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Khronos Group. You may use this specification for
implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the
specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or
distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy
and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of the API is used whenever possible.
Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as such product includes significant
independent work developed by the seller. A link to the current version of this specification on the Khronos Group
web-site should be included whenever possible with specification distributions.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is Attachment A of the
Khronos Group Membership Agreement available at www.khronos.org/files/member_agreement.pdf. This specification
contains substantially unmodified functionality from, and is a successor to, Khronos specifications including OpenGL,
OpenGL ES and OpenCL.

Some parts of this Specification are purely informative and do not define requirements necessary for compliance and so
are outside the Scope of this Specification. These parts of the Specification are marked by the “Note” icon or designated
“Informative”.

Where this Specification uses terms, defined in the Glossary or otherwise, that refer to enabling technologies that are not
expressly set forth as being required for compliance, those enabling technologies are outside the Scope of this
Specification.

Where this Specification uses the terms “may”, or “optional”, such features or behaviors do not define requirements
necessary for compliance and so are outside the Scope of this Specification.

Where this Specification uses the terms “not required”, such features or behaviors may be omitted from certain
implementations, but when they are included, they define requirements necessary for compliance and so are INCLUDED
in the Scope of this Specification.

Where this Specification includes normative references to external documents, the specifically identified sections and
functionality of those external documents are in Scope. Requirements defined by external documents not created by
Khronos may contain contributions from non-members of Khronos not covered by the Khronos Intellectual Property
Rights Policy.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this
specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties,
express or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their respective
partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct, indirect,
special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos and Vulkan are trademarks of The Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL is a
registered trademark of Silicon Graphics International, both used under license by Khronos.

Vulkan 1.0 - A Specification 1/615

Chapter 1

Introduction

This chapter is Informative except for the sections on Terminology and Normative References.

This document, referred to as the “Vulkan Specification” or just the “Specification” hereafter, describes the Vulkan
graphics system: what it is, how it acts, and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the essentials of computer graphics
algorithms and terminology as well as with modern GPUs (Graphic Processing Units).

The canonical version of the Specification is available in the official Vulkan Registry, located at URL

http://www.khronos.org/registry/vulkan/

1.1 What is the Vulkan Graphics System?

Vulkan is an API (Application Programming Interface) for graphics and compute hardware. The API consists of many
commands that allow a programmer to specify shader programs, compute kernels, objects, and operations involved in
producing high-quality graphical images, specifically color images of three-dimensional objects.

1.1.1 The Programmer’s View of Vulkan

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders, kernels,
data used by kernels or shaders, and state controlling aspects of Vulkan outside the scope of shaders. Typically, the data
represents geometry in two or three dimensions and texture images, while the shaders and kernels control the processing
of the data, rasterization of the geometry, and the lighting and shading of fragments generated by rasterization, resulting
in the rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display device
onto which the program will draw. Then, calls are made to open gueues to which command buffers are submitted. The
command buffers contain lists of commands which will be executed by the underlying hardware. The application can
also allocate device memory, associate resources with memory and refer to these resources from within command
buffers. Drawing commands cause application-defined shader programs to be invoked, which can then consume the data
in the resources and use them to produce graphical images. To display the resulting images, further platform-specific
commands are made to transfer the resulting image to a display device or window.

http://www.khronos.org/registry/vulkan/

1.1.2 The Implementor’s View of Vulkan

To the implementor, Vulkan is a set of commands that allow the construction and submission of command buffers to a
device. Modern devices accelerate virtually all Vulkan operations, storing data and framebuffer images in high-speed
memory and executing shaders in dedicated GPU processing resources.

The implementor’s task is to provide a software library on the host which implements the Vulkan API, while mapping
the work for each Vulkan command to the graphics hardware as appropriate for the capabilities of the device.

1.1.3 Our View of Vulkan

We view Vulkan as a pipeline having some programmable stages and some state-driven fixed-function stages that are
invoked by a set of specific drawing operations. We expect this model to result in a specification that satisfies the needs
of both programmers and implementors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the specified methods, but may carry out
particular computations in ways that are more efficient than the one specified.

1.2 Filing Bug Reports

Issues with and bug reports on the Vulkan Specification and the API Registry can be filed in the Khronos Vulkan Github
repository, located at URL

http://github.com/KhronosGroup/Vulkan-Docs

Please tag issues with appropriate labels, such as “Specification”, “Ref Pages” or “Registry”, to help us triage and assign
them appropriately.

1.3 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommend, may, and optional in this
document are to be interpreted as described in RFC 2119:

http://www.ietf.org/rfc/rfc2119.txt

must
This word, or the terms required or shall, mean that the definition is an absolute requirement of the specification.

must not
This phrase, or the phrase shall not, means that the definition is an absolute prohibition of the specification.

should
This word, or the adjective recommended, means that there may exist valid reasons in particular circumstances to
ignore a particular item, but the full implications must be understood and carefully weighed before choosing a
different course.

should not
This phrase, or the phrase not recommended, means that there may exist valid reasons in particular circumstances
when the particular behavior is acceptable or even useful, but the full implications should be understood and the
case carefully weighed before implementing any behavior described with this label.

http://github.com/KhronosGroup/Vulkan-Docs
http://www.ietf.org/rfc/rfc2119.txt

Vulkan 1.0 - A Specification 3/615

may
This word, or the adjective optional, means that an item is truly optional. One vendor may choose to include the
item because a particular marketplace requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item. An implementation which does not include a particular option must be
prepared to interoperate with another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation which does include a particular option must be prepared to
interoperate with another implementation which does not include the option (except, of course, for the feature the
option provides).

The additional terms can and cannot are to be interpreted as follows:

can
This word means that the particular behavior described is a valid choice for an application, and is never used to
refer to implementation behavior.

cannot
This word means that the particular behavior described is not achievable by an application. For example, an entry
point does not exist, or shader code is not capable of expressing an operation.

Note

There is an important distinction between cannot and must not, as used in this Specification. Cannot means
something the application literally is unable to express or accomplish through the API, while must not means
something that the application is capable of expressing through the API, but that the consequences of doing so
are undefined and potentially unrecoverable for the implementation.

1.4 Normative References

Normative references are references to external documents or resources to which implementers of Vulkan must comply.

IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
http://dx.doi.org/10.1109/IEEESTD.2008.4610935, August, 2008.

A. Garrard, Khronos Data Format Specification, version 1.1,
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html, February 16, 2015.

J. Kessenich, SPIR-V Extended Instructions for GLSL, Version 1.00, https://www.khronos.org/registry/spir-v/,
February 10, 2016.

J. Kessenich and B. Ouriel, The Khronos SPIR-V Specification, Version 1.00,
https://www.khronos.org/registry/spir-v/, February 10, 2016.

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/

Vulkan 1.0 - A Specification 5/615

Chapter 2

Fundamentals

This chapter introduces fundamental concepts including the Vulkan execution model, API syntax, queues, pipeline
configurations, numeric representation, state and state queries, and the different types of objects and shaders. It provides
a framework for interpreting more specific descriptions of commands and behavior in the remainder of the Specification.

2.1 Execution Model

This section outlines the execution model of a Vulkan system.

Vulkan exposes one or more devices, each of which exposes one or more queues which may process work
asynchronously to one another. The queues supported by a device are divided into families, each of which supports one
or more types of functionality and may contain multiple queues with similar characteristics. Queues within a single
family are considered compatible with one another, and work produced for a family of queues can be executed on any
queue within that family. This specification defines four types of functionality that queues may support: graphics,
compute, transfer, and sparse memory management.

Note

It is possible that a single device may report multiple similar queue families rather than, or as well as reporting
multiple members of one or more of those families. This indicates that while members of those families have
similar capabilities, they are not directly compatible with one another.

Device memory is explicitly managed by the application. Each device may advertise one or more heaps, representing
different areas of memory. Memory heaps are either device local or host local, but are always visible to the device.
Further detail about memory heaps is exposed via memory types available on that heap. Examples of memory areas that
may be available on an implementation include device local (memory that is physically connected to the device), device
local, host visible (device local memory that is visible to the host) and host local, host visible (memory that is local to the
host and visible to the device and host). On other architectures, there may only be a single heap that can be used for any

purpose.

A Vulkan application controls a set of devices through the submission of command buffers which have recorded device
commands issued via Vulkan library calls. The content of command buffers is specific to the underlying hardware and is
opaque to the application. Once constructed, a command buffer can be submitted once or many times to a queue for
execution. Multiple command buffers can be built in parallel by employing multiple threads within the application.

Command buffers submitted to different queues may execute in parallel or even out of order with respect to one another.
Command buffers submitted to a single queue respect the submission order, as described further in Queue Operation.
Command buffer execution by the device is also asynchronous to host execution. Once a command buffer is submitted to
a queue, control may return to the application immediately. Synchronization between the device and host, and between
different queues is the responsibility of the application.

2.1.1 Queue Operation

Vulkan queues provide an interface to the execution engines of a device. Commands are recorded into command buffers
ahead of execution time. These command buffers are then submitted to queues for execution. Command buffers
submitted to a single queue play back the commands in the order they were recorded, both within and across command
buffer boundaries. Work performed by those commands respects the ordering guarantees provided by explicit and
implicit dependencies, as described below. Work submitted to separate queues may execute in any relative order unless
otherwise specified. Therefore, the application must explicitly synchronize work between queues when needed.

In order to control relative order of execution of work both within a queue and across multiple queues, Vulkan provides
several synchronization primitives, which include semaphores, events, pipeline barriers, and fences. These are covered
in depth in Synchronization and Cache Control. In broad terms, semaphores are used to synchronize work across queues
or across coarse-grained submissions to a single queue, events and barriers are used to synchronize work within a
command buffer or sequence of command buffers submitted to a single queue, and fences are used to synchronize work
between the device and the host.

Note
Implementations have significant freedom to overlap execution of work submitted to a queue, and this is common
due to deep pipelining and parallelism in Vulkan devices.

Work is submitted to queues using queue submission commands that typically take the form vkQueuex (e.g.
vkQueueSubmit, vkQueueBindSparse), and usually take a list of semaphores upon which to wait before work
begins and a list of semaphores to signal once work has completed. Unless otherwise ordered by semaphores, command
buffer execution from multiple queue submissions done using the vkQueueSubmit command may overlap (but not be
reordered), sparse binding operations done using the vkQueueBindSparse command from multiple batches may
overlap or be reordered, and command buffer submissions and sparse binding operations may overlap or be reordered
against operations of the other type.

Command buffer boundaries, both between primary command buffers of the same or different batches or submissions as
well as between primary and secondary command buffers, do not introduce any implicit ordering constraints. In other
words, submitting the set of command buffers (which can include executing secondary command buffers) between any
semaphore or fence operations plays back the recorded commands as if they had all been recorded into a single primary
command buffer, except that the current state is reset on each boundary.

Commands recorded in command buffers either perform actions (draw, dispatch, clear, copy, query/timestamp
operations, begin/end subpass operations), set state (bind pipelines, descriptor sets, and buffers, set dynamic state, push
constants, set render pass/subpass state), or perform synchronization (set/wait events, pipeline barrier, render
pass/subpass dependencies). Some commands perform more than one of these tasks. State setting commands update the
current state of the command buffer. Some commands that perform actions (e.g. draw/dispatch) do so based on the
current state set cumulatively since the start of the command buffer. The work involved in performing action commands
is often allowed to overlap or to be reordered, but doing so must not alter the state to be used by each action command. In
general, action commands are those commands that alter framebuffer attachments, read/write buffer or image memory, or
write to query pools.

Synchronization commands introduce explicit execution and memory dependencies between two sets of action
commands, where the second set of commands depends on the first set of commands. These dependencies enforce that

Vulkan 1.0 - A Specification 7/615

both the execution of certain pipeline stages in the later set occur after the execution of certain stages in the source set,
and that the effects of memory accesses performed by certain pipeline stages occur in order and are visible to each other.
When not enforced by an explicit dependency or otherwise forbidden by the specification, action commands may overlap
execution or execute out of order, and may not see the side effects of each other’s memory accesses.

Submitting command buffers and sparse memory operations, signaling fences, and signaling and waiting on semaphores

each provide Implicit Ordering Guarantees. Signaling a fence or semaphore each guarantees that the previous commands
have completed execution and that memory writes from those commands are available to future commands. Waiting on a
semaphore or submitting command buffers after a fence has been signaled each guarantees that previous writes that were
available are also visible to subsequent commands.

Within a subpass of a render pass instance, for a given (x,y,layer,sample) sample location, the following stages are
guaranteed to execute in API order for each separate primitive that includes that sample location:

depth bounds test

* stencil test, stencil op and stencil write
* depth test and depth write

* occlusion queries

* blending, logic op and color write
where the API order sorts primitives:

* First, by the action command that generates them.

* Second, by the order they are processed by primitive assembly.
Within this order, implementations also sort primitives:

* Third, by an implementation-dependent ordering of new primitives generated by tessellation, if a tessellation shader is
active.

* Fourth, by the order new primitives are generated by geometry shading, if geometry shading is active.

* Fifth, by an implementation-dependent ordering of primitives generated due to the polygon mode.

The device executes command buffers from queues asynchronously from the host. Control is returned to an application
immediately following command buffer submission to a queue. The application must synchronize work between the host
and device as needed.

As part of each submission to a queue, a list of semaphores upon which to wait, and a list of semaphores to signal is
provided along with the list of command buffers to execute. This is covered in more detail in Section 5.4.

2.2 Object Model

The devices, queues, and other entities in Vulkan are represented by Vulkan objects. At the API level, all objects are
referred to by handles. There are two classes of handles, dispatchable and non-dispatchable. Dispatchable handle types
are a pointer to an opaque type. This pointer may be used by layers as part of intercepting API commands, and thus each
API command takes a dispatchable type as its first parameter. Each object of a dispatchable type has a unique handle
value.

Non-dispatchable handle types are a 64-bit integer type whose meaning is implementation-dependent, and may encode
object information directly in the handle rather than pointing to a software structure. Objects of a non-dispatchable type
may not have unique handle values within a type or across types. If handle values are not unique, then destroying one
such handle must not cause identical handles of other types to become invalid, and must not cause identical handles of
the same type to become invalid if that handle value has been created more times than it has been destroyed.

All objects created or allocated from a VkDevice (i.e. with a VkDevice as the first parameter) are private to that
device, and must not be used on other devices.

2.2.1 Obiject Lifetime

Objects are created or allocated by vkCreatex* and vkAllocate* commands, respectively. Once an object is created
or allocated, its “structure” is considered to be immutable, though the contents of certain object types is still free to
change. Objects are destroyed or freed by vkDestroy* and vkFree* commands, respectively.

Objects that are allocated (rather than created) take resources from an existing pool object or memory heap, and when
freed return resources to that pool or heap. While object creation and destruction are generally expected to be
low-frequency occurences during runtime, allocating and freeing objects can occur at high frequency. Pool objects help
accommodate improved performance of the allocations and frees.

It is an application’s responsibility to track the lifetime of Vulkan objects, and not to destroy them while they are still in
use.

Application-owned memory is immediately consumed by any Vulkan command it is passed into. The application can
alter or free this memory as soon as the commands that consume it have returned.

The following object types are consumed when they are passed into a Vulkan command and not further accessed by the
objects they are used to create. They can be destroyed at any time they are not in use by an API command:

* VkShaderModule
* VkPipelineCache

* VkPipelineLayout

VkDescriptorSetLayout objects may be accessed by commands that operate on descriptor sets allocated using that
layout, and those descriptor sets must not be updated with vkUpdateDescriptorSets after the descriptor set layout
has been destroyed. Otherwise, descriptor set layouts can be destroyed any time they are not in use by an API command.

The application must not destroy any other type of Vulkan object until any uses of that object by the device (such as via
command buffer execution) have completed.

The following Vulkan objects can be destroyed when no command buffers using the object are executing:

* VkEvent

* VkQueryPool
* VkBuffer

* VkBufferView
* VkImage

* VkImageView

* VkPipeline

Vulkan 1.0 - A Specification 9/615

* VkSampler

* VkDescriptorPool
* VkFramebuffer

* VkRenderPass

* VkCommandPool

* VkDeviceMemory

* VkDescriptorSet
The following Vulkan objects can be destroyed when work on the queue that uses the object has been completed:

e VkFence
* VkSemaphore
e VkCommandBuffer

e VkCommandPool

In general, objects can be destroyed or freed in any order, even if the object being freed is involved in the use of another
object (e.g. use of a resource in a view, use of a view in a descriptor set, use of an object in a command buffer, binding of
a memory allocation to a resource), as long as any object that uses the freed object is not further used in any way except
to be destroyed or to be reset in such a way that it no longer uses the other object (such as resetting a command buffer). If
the object has been reset, then it can be used as if it never used the freed object. An exception to this is when there is a
parent/child relationship between objects. In this case, the application must not destroy a parent object before its
children, except when the parent is explicitly defined to free its children when it is destroyed (i.e. for pool objects, as
defined below).

VkCommandPool objects are parents of VkCommandBuf fer objects. VkDescriptorPool objects are parents of
VkDescriptorSet objects. VkDevice objects are parents of many object types (all that take a VkDevice as a
parameter to their creation).

The following Vulkan objects have specific restrictions for when they can be destroyed:
* VkQueue objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the VkDevice object

they are retrieved from is destroyed.

 Destroying a pool object implicitly frees all objects allocated from that pool. Specifically, destroying
VkCommandPool frees all vkCommandBuf fer objects that were allocated from it, and destroying
VkDescriptorPool frees all VkDescriptorSet objects that were allocated from it.

* VkDevice objects can be destroyed when all VkQueue objects retrieved from them are idle, and all objects created
from them have been destroyed. This includes the following objects:

VkFence

VkSemaphore
VkEvent

VkQueryPool
VkBuffer

VkBufferView

— VkImage

— VkImageView

— VkShaderModule

— VkPipelineCache
— VkPipeline

— VkPipelineLayout
— VkSampler

— VkDescriptorSetLayout
— VkDescriptorPool
— VkFramebuffer

— VkRenderPass

— VkCommandPool

— VkCommandBuffer

— VkDeviceMemory

* VkPhysicalDevice objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the
VkInstance object they are retrieved from is destroyed.

* VkInstance objects can be destroyed once all VkDevice objects created from any of its VkPhysicalDevice
objects have been destroyed.

2.3 Command Syntax

The Specification describes Vulkan commands as functions or procedures using C99 syntax. Language bindings for
other languages such as C++ and Javascript may allow for stricter parameter passing, or object-oriented interfaces.

With few exceptions, Vulkan uses the standard C types for parameters (int types from stdint.h, etc). Exceptions to this are
using VkResult for return values, using VkBoo132 for boolean values, VkDeviceSize for sizes and offsets
pertaining to device address space, and VkFlags for passing bits or sets of bits of predefined values.

Commands that create Vulkan objects are of the form vkCreatex and take Vk«CreateInfo structures with the
parameters needed to create the object. These Vulkan objects are destroyed with commands of the form vkDestroy*.

The last in-parameter to each command that creates or destroys a Vulkan object is pAllocator. The pAllocator
parameter can be set to a non-NULL value such that allocations for the given object are delegated to an application
provided callback; refer to the Memory Allocation chapter for further details.

Commands that allocate Vulkan objects owned by pool objects are of the form vkAllocatex, and take
Vk*AllocateInfo structures. These Vulkan objects are freed with commands of the form vkFreex. These objects
do not take allocators; if host memory is needed, they will use the allocator that was specified when their parent pool was
created.

Information is retrieved from the implementation with commands of the form vkGet *.

Commands are recorded into a command buffer by calling API commands of the form vkCmdx. Each such command
may have different restrictions on where it can be used: in a primary and/or secondary command buffer, inside and/or
outside a render pass, and in one or more of the supported queue types. These restrictions are documented together with
the definition of each such command.

Vulkan 1.0 - A Specification 11/615

2.4 Threading Behavior

Vulkan is intended to provide scalable performance when used on multiple host threads. All commands support being
called concurrently from multiple threads, but certain parameters, or components of parameters are defined to be
externally synchronized. This means that the caller must guarantee that no more than one thread is using such a
parameter at a given time.

More precisely, Vulkan commands use simple stores to update software structures representing Vulkan objects. A
parameter declared as externally synchronized may have its software structures updated at any time during the host
execution of the command. If two commands operate on the same object and at least one of the commands declares the
object to be externally synchronized, then the caller must guarantee not only that the commands do not execute
simultaneously, but also that the two commands are separated by an appropriate memory barrier (if needed).

Note

Memory barriers are particularly relevant on the ARM CPU architecture which is more weakly ordered than
many developers are accustomed to from x86/x64 programming. Fortunately, most higher-level synchronization
primitives (like the pthread library) perform memory barriers as a part of mutual exclusion, so mutexing Vulkan
objects via these primitives will have the desired effect.

Many object types are immutable, meaning the objects cannot change once they have been created. These types of objects
never need external synchronization, except that they must not be destroyed while they are in use on another thread. In
certain special cases, mutable object parameters are internally synchronized such that they do not require external
synchronization. One example of this is the use of a VkPipelineCache in vkCreateGraphicsPipelines and
vkCreateComputePipelines, where external synchronization around such a heavyweight command would be
impractical. The implementation must internally synchronize the cache in this example, and may be able to do so in the
form of a much finer-grained mutex around the command. Any command parameters that are not labeled as externally
synchronized are either not mutated by the command or are internally synchronized. Additionally, certain objects related
to a command’s parameters (e.g. command pools and descriptor pools) may be affected by a command, and must also be
externally synchronized. These implicit parameters are documented as described below.

Parameters of commands that are externally synchronized are listed below.

Externally Synchronized Parameters

* The instance parameter in vkDestroyInstance
* The device parameter in vkDestroyDevice

* The queue parameter in vkQueueSubmit

* The fence parameter in vkQueueSubmit

* The memory parameter in vkFreeMemory

* The memory parameter in vkMapMemory

* The memory parameter in vkUnmapMemory

* The buffer parameter in vkBindBuf ferMemory

The image parameter in vkBindImageMemory

The queue parameter in vkQueueBindSparse

The fence parameter in vkQueueBindSparse

The fence parameter in vkDestroyFence

The semaphore parameter in vkDestroySemaphore

The event parameter in vkDestroyEvent

The event parameter in vkSetEvent

The event parameter in vkResetEvent

The queryPool parameter in vkDestroyQueryPool

The buffer parameter in vkDestroyBuffer

The bufferview parameter in vkDestroyBufferView

The image parameter in vkDestroyImage

The imageView parameter in vkDestroyImageView

The shaderModule parameter in vkDestroyShaderModule

The pipelineCache parameter in vkDestroyPipelineCache

The dstCache parameter in vkMergePipelineCaches

The pipeline parameter in vkDestroyPipeline

The pipelineLayout parameter in vkDestroyPipelinelayout

The sampler parameter in vkDestroySampler

The descriptorSetLayout parameter in vkDestroyDescriptorSetLayout
The descriptorPool parameter in vkDestroyDescriptorPool

The descriptorPool parameter in vkResetDescriptorPool

The descriptorPool member of the pAllocateInfo parameter in vkAllocateDescriptorSets
The descriptorPool parameter in vkFreeDescriptorSets

The framebuffer parameter in vkDestroyFramebuffer

The renderpPass parameter in vkDestroyRenderPass

The commandPool parameter in vkDestroyCommandPool

The commandPool parameter in vkResetCommandPool

The commandPool member of the pAllocateInfo parameter in vkAllocateCommandBuffers
The commandPool parameter in vkFreeCommandBuffers

The commandBuffer parameter in vkBeginCommandBuffer

Vulkan 1.0 - A Specification

13/615

* The commandBuffer parameter in vkEndCommandBuffer

* The commandBuffer parameter in vkResetCommandBuffer
* The commandBuffer parameter in vkCmdBindPipeline

* The commandBuffer parameter in vkCmdSetViewport

* The commandBuffer parameter in vkCmdSetScissor

* The commandBuffer parameter in vkCmdSetLineWidth

* The commandBuffer parameter in vkCmdSetDepthBias

* The commandBuffer parameter in vkCmdSetBlendConstants

* The commandBuffer parameter in vkCmdSetDepthBounds

* The commandBuffer parameter in vkCmdSet StencilCompareMask
* The commandBuffer parameter in vkCmdSet StencilWriteMask
* The commandBuffer parameter in vkCmdSet StencilReference

* The commandBuffer parameter in vkCmdBindDescriptorSets

* The commandBuffer parameter in vkCmdBindIndexBuffer

* The commandBuffer parameter in vkCmdBindVertexBuffers

* The commandBuffer parameter in vkCmdDraw
* The commandBuffer parameter in vkCmdDrawIndexed

* The commandBuffer parameter in vkCmdDrawIndirect

* The commandBuffer parameter in vkCmdDrawIndexedIndirect

* The commandBuffer parameter in vkCmdDispatch

* The commandBuffer parameter in vkCmdDispatchIndirect
* The commandBuffer parameter in vkCmdCopyBuffer

* The commandBuffer parameter in vkCmdCopyImage

* The commandBuffer parameter in vkCmdBlit Image

* The commandBuffer parameter in vkCmdCopyBufferToImage

* The commandBuffer parameter in vkCmdCopyImageToBuffer

* The commandBuffer parameter in vkCmdUpdateBuffer
* The commandBuffer parameter in vkCmdFillBuffer

* The commandBuffer parameter in vkCmdClearColorImage

* The commandBuffer parameter in vkCmdClearDepthStencilImage

* The commandBuffer parameter in vkCmdClearAttachments

* The commandBuffer parameter in vkCmdResolveImage

* The commandBuffer parameter in vkCmdSetEvent

* The commandBuffer parameter in vkCmdResetEvent

* The commandBuffer parameter in vkCmdWaitEvents

* The commandBuffer parameter in vkCmdPipelineBarrier
* The commandBuffer parameter in vkCmdBeginQuery

* The commandBuffer parameter in vkCmdEndQuery

* The commandBuffer parameter in vkCmdResetQueryPool

* The commandBuffer parameter in vkCmdWriteTimestamp

* The commandBuffer parameter in vkCmdCopyQueryPoolResults
* The commandBuffer parameter in vkCmdPushConstants

* The commandBuffer parameter in vkCmdBeginRenderPass
* The commandBuffer parameter in vkCmdNext Subpass

* The commandBuffer parameter in vkCmdEndRenderPass

* The commandBuffer parameter in vkCmdExecuteCommands

There are also a few instances where a command can take in a user allocated list whose contents are externally
synchronized parameters. In these cases, the caller must guarantee that at most one thread is using a given element within
the list at a given time. These parameters are listed below.

Externally Synchronized Parameter Lists
* Each element of the piaitSemaphores member of each element of the pSubmi t s parameter in
vkQueueSubmit

* Each element of the pSignalSemaphores member of each element of the pSubmits parameter in
vkQueueSubmit

* Each element of the pwaitSemaphores member of each element of the pBindInfo parameter in
vkQueueBindSparse

* Each element of the pSignalSemaphores member of each element of the pBindInfo parameter in
vkQueueBindSparse

¢ The buffer member of each element of the pBufferBinds member of each element of the pBindInfo
parameter in vkQueueBindSparse

¢ The image member of each element of the pImageOpaqueBinds member of each element of the pBindInfo
parameter in vkQueueBindSparse

Vulkan 1.0 - A Specification 15/615

* The image member of each element of the pTmageBinds member of each element of the pBindInfo parameter
in vkQueueBindSparse

» Each element of the pFences parameter in vkResetFences

» Each element of the ppescriptorSets parameter in vkFreeDescriptorSets

* The dstSet member of each element of the pDescriptorirites parameter in vkUpdateDescriptorSets
* The dstSet member of each element of the pDescriptorCopies parameter in vkUpdateDescriptorSets

» Each element of the pCommandBuf fers parameter in vkFreeCommandBuffers

In addition, there are some implicit parameters that need to be externally synchronized. For example, all
commandBuffer parameters that need to be externally synchronized imply that the commandPoo1l that was passed in
when creating that command buffer also needs to be externally synchronized. The implicit parameters and their
associated object are listed below.

Implicit Externally Synchronized Parameters

* All VkQueue objects created from device in vkDeviceWaitIdle

* Any VkDescriptorSet objects allocated from descriptorPool in vkResetDescriptorPool

¢ The VkCommandPool that commandBuffer was allocated from, in vkCmdBindPipeline

¢ The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewport

* The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissor

* The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineWidth

e The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias

¢ The VkCommandPool that commandBuffer was allocated from, in vkCmdSetBlendConstants

e The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBounds

e The VkCommandPool that commandBuf fer was allocated from, in vkCmdSet StencilCompareMask
e The VkCommandPool that commandBuf fer was allocated from, in vkCmdSet StencilWriteMask
e The VkCommandPool that commandBuf fer was allocated from, in vkCmdSet StencilReference
* The VkCommandPool that commandBuffer was allocated from, in vkCmdBindDescriptorSets

e The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer

e The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers

e The VkCommandPool that commandBuffer was allocated from, in vkCmdDraw

e The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexed

The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirect

The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexedIndirect
The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatch

The VkCommandPool that commandBuf fer was allocated from, in vkCmdDispatchIndirect
The VkCommandPool that commandBuf fer was allocated from, in vkCmdCopyBuffer

The VkCommandPool that commandBuf fer was allocated from, in vkCmdCopy Image

The VkCommandPool that commandBuf fer was allocated from, in vkCmdBlit Image

The VkCommandPool that commandBuf fer was allocated from, in vkCmdCopyBufferToImage
The VkCommandPool that commandBuf fer was allocated from, in vkCmdCopyImageToBuffer
The VkCommandPool that commandBuffer was allocated from, in vkCmdUpdateBuffer

The VkCommandPool that commandBuffer was allocated from, in vkCmdFillBuffer

The VkCommandPool that commandBuf fer was allocated from, in vkCmdClearColorImage

The VkCommandPool that commandBuf fer was allocated from, in vkCmdClearDepthStencilImage
The VkCommandPool that commandBuffer was allocated from, in vkCmdClearAttachments
The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage

The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent

The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent

The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents

The VkCommandPool that commandBuf fer was allocated from, in vkCmdPipelineBarrier

The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginQuery

The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQuery

The VkCommandPool that commandBuffer was allocated from, in vkCmdResetQueryPool

The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp

The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyQueryPoolResults
The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants

The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass

The VkCommandPool that commandBuffer was allocated from, in vkCmdNext Subpass

The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass

The VkCommandPool that commandBuffer was allocated from, in vkCmdExecuteCommands

Vulkan 1.0 - A Specification 17/615

2.5 Errors

Vulkan is a layered API. The lowest layer is the core Vulkan layer, as defined by this Specification. The application can
use additional layers above the core for debugging, validation, and other purposes.

One of the core principles of Vulkan is that building and submitting command buffers should be highly efficient. Thus
error checking and validation of state in the core layer is minimal, although more rigorous validation can be enabled
through the use of layers.

The core layer assumes applications are using the API correctly. Except as documented elsewhere in the Specification,
the behavior of the core layer to an application using the API incorrectly is undefined, and may include program
termination. However, implementations must ensure that incorrect usage by an application does not affect the integrity of
the operating system, the Vulkan implementation, or other Vulkan client applications in the system, and does not allow
one application to access data belonging to another application. Applications can request stronger robustness guarantees
by enabling the robustBufferAccess feature as described in Chapter 30.

Validation of correct API usage is left to validation layers. Applications should be developed with validation layers
enabled, to help catch and eliminate errors. Once validated, released applications should not enable validation layers by
default.

2.5.1 Valid Usage

Certain usage rules apply to all commands in the API unless explicitly denoted differently for a command. These rules
are as follows.

Any input parameter to a command that is an object handle must be a valid object handle, unless otherwise specified. An
object handle is valid if:

* It has been created or allocated by a previous, successful call to the API. Such calls are noted in the specification.
* It has not been deleted or freed by a previous call to the API. Such calls are noted in the specification.

* Any objects used by that object, either as part of creation or execution, must also be valid.

The reserved handle VK_NULL_HANDLE can be passed in place of valid object handles when explicitly called out in the
specification. Any command that creates an object successfully must not return VK_NULL_HANDLE. It is valid to pass
VK_NULL_HANDLE to any vkDestroy* or vkFree* command, which will silently ignore these values.

Any parameter that is a pointer must be a valid pointer. A pointer is valid if it points at memory containing values of the
number and type(s) expected by the command, and all fundamental types accessed through the pointer (e.g. as elements
of an array or as members of a structure) satisfy the alignment requirements of the host processor.

Any parameter that is an enumerant must be a valid value for that enumerant type. A value is valid for an enumerant if:

* The value is defined as part of the enumerant type.

* The value is not one of the special values defined for an enumerant type, which are suffixed with _BEGIN_RANGE, _
END_RANGE, _ RANGE_STIZE or _MAX_ENUM.

Any parameter that is a flag value must be a valid combination of bit flags. A valid combination is either zero or the
bitwise OR of valid bit flags. A bit flag is valid if:

* The value is defined as part of the bits type, where the bits type is obtained by taking the flag type and replacing the
trailing Flags with FlagBits. For example, a flag value of type VkColorComponentFlags must contain only
values selected from the bit flags in VkColorComponentFlagBits.

* The flag is allowed in the context in which it is being used. For example, in some cases, certain bit flags or
combinations of bit flags are mutually exclusive.

Any parameter that is a structure containing a VkSt ructureType sType member must have a value of sType
matching the type of the structure. The correct value is described for each structure type, but as a general rule, the name
of this value is obtained by taking the structure name, stripping the leading Vk, prefixing each capital letter with _,
converting the entire resulting string to upper case, and prefixing it with VK_STRUCTURE_TYPE. For example,
structures of type VkImageCreateInfo must have a sType value of VK_STRUCTURE_TYPE_IMAGE_CREATE_
INFO.

The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and VK_STRUCTURE_TYPE_
LOADER_DEVICE_CREATE_INFO are reserved for internal use by the loader, and don’t have corresponding Vulkan
structures in this specification.

Any parameter that is a structure containing a void* pNext member must have a value of pNext that is either NULL, or
points to a valid structure that is defined by an enabled extension. Extension structures are not described in the base
Vulkan specification, but either in layered specifications incorporating those extensions, or in separate vendor-provided
documents.

The above rules also apply recursively to members of structures provided as input to a command, either as a direct
argument to the command, or themselves a member of another structure.

Specifics on valid usage of each command are covered in their individual sections.

2.5.2 Return Codes

While the core Vulkan API is not designed to capture incorrect usage, some circumstances still require return codes.
Commands in Vulkan return their status via return codes that are in one of two categories:

* Successful completion codes are returned when a command needs to communicate success or status information. All
successful completion codes are non-negative values.

* Run time error codes are returned when a command needs to communicate a failure that could only be detected at run
time. All run time error codes are negative values.

All return codes in Vulkan are reported via VkResult return values. The possible codes are:

typedef enum VkResult ({
VK_SUCCESS = 0,
VK_NOT_READY =
VK_TIMEOUT = 2,
VK_EVENT_SET = 3,
VK_EVENT_RESET = 4,
VK_INCOMPLETE = 5,
VK_ERROR_OUT_OF_HOST_MEMORY = -1,
VK_ERROR_OUT_OF_DEVICE_MEMORY = -2,
VK_ERROR_INITIALIZATION_FAILED = -3,
VK_ERROR_DEVICE_LOST = -4,
VK_ERROR_MEMORY_MAP_FAILED = -5,
VK_ERROR_LAYER_NOT_PRESENT -6,
VK_ERROR_EXTENSION_NOT_PRESENT = -7,
VK_ERROR_FEATURE_NOT_PRESENT
VK_ERROR_INCOMPATIBLE_DRIVER = -9,
VK_ERROR_TOO_MANY_OBJECTS = -10,
VK_ERROR_FORMAT_NOT_SUPPORTED = -11,

} VkResult;

1,

I
|
[e¢)
~

Vulkan 1.0 - A Specification 19/615

SUCCESS CODES

* VK_SUCCESS Command successfully completed

* VK_NOT_READY A fence or query has not yet completed

* VK_TIMEOUT A wait operation has not completed in the specified time
* VK_EVENT_SET An event is signaled

* VK_EVENT_RESET An event is unsignaled

* VK_INCOMPLETE A return array was too small for the result
ERROR CODES

* VK_ERROR_OUT_OF_HOST_MEMORY A host memory allocation has failed.
* VK_ERROR_OUT_OF_DEVICE_MEMORY A device memory allocation has failed.

* VK_ERROR_INITIALIZATION_FAILED Initialization of an object could not be completed for
implementation-specific reasons.

* VK_ERROR_DEVICE_LOST The logical or physical device has been lost. See Lost Device

* VK_ERROR_MEMORY_MAP_FAILED Mapping of a memory object has failed.

* VK_ERROR_LAYER_NOT_PRESENT A requested layer is not present or could not be loaded.
* VK_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

* VK_ERROR_FEATURE_NOT_PRESENT A requested feature is not supported.

* VK_ERROR_INCOMPATIBLE_DRIVER The requested version of Vulkan is not supported by the driver or is
otherwise incompatible for implementation-specific reasons.

* VK_ERROR_TOO_MANY_OBJECTS Too many objects of the type have already been created.

* VK_ERROR_FORMAT_NOT_SUPPORTED A requested format is not supported on this device.

If a command returns a run time error, it will leave any result pointers unmodified.

Out of memory errors do not damage any currently existing Vulkan objects. Objects that have already been successfully
created can still be used by the application.

Performance-critical commands generally do not have return codes. If a run time error occurs in such commands, the
implementation will defer reporting the error until a specified point. For commands that record into command buffers
(vkCmd~) run time errors are reported by vkEndCommandBuffer.

2.6 Numeric Representation and Computation

Implementations normally perform computations in floating-point, and must meet the range and precision requirements
defined under “Floating-Point Computation” below.

These requirements only apply to computations performed in Vulkan operations outside of shader execution, such as
texture image specification and sampling, and per-fragment operations. Range and precision requirements during shader
execution differ and are specified by the Precision and Operation of SPIR-V Instructions section.

In some cases, the representation and/or precision of operations is implicitly limited by the specified format of vertex or
texel data consumed by Vulkan. Specific floating-point formats are described later in this section.

2.6.1 Floating-Point Computation

Most floating-point computation is performed in SPIR-V shader modules. The properties of computation within shaders
are constrained as defined by the Precision and Operation of SPIR-V Instructions section.

Some floating-point computation is performed outside of shaders, such as viewport and depth range calculations. For
these computations, we do not specify how floating-point numbers are to be represented, or the details of how operations
on them are performed, but only place minimal requirements on representation and precision as described in the
remainder of this section.

We require simply that numbers’ floating-point parts contain enough bits and that their exponent fields are large enough
so that individual results of floating-point operations are accurate to about 1 part in 10°. The maximum representable
magnitude for all floating-point values must be at least 232, x-0 = 0-x = 0 for any non-infinite and non-NaN x.
l-x=x1=x.x+0=0+x=x.00=1.

Occasionally, further requirements will be specified. Most single-precision floating-point formats meet these
requirements.

The special values Inf and —Inf encode values with magnitudes too large to be represented; the special value NaN
encodes “Not A Number” values resulting from undefined arithmetic operations such as 0/0. Implementations may
support Infs and NaNs in their floating-point computations.

Any representable floating-point value is legal as input to a Vulkan command that requires floating-point data. The result
of providing a value that is not a floating-point number to such a command is unspecified, but must not lead to Vulkan
interruption or termination. In [IEEE 754] arithmetic, for example, providing a negative zero or a denormalized number
to an Vulkan command must yield deterministic results, while providing a NaN or Inf yields unspecified results.

2.6.2 16-Bit Floating-Point Numbers

16-bit floating point numbers are defined in the “16-bit floating point numbers” section of the Khronos Data Format
Specification.

Any representable 16-bit floating-point value is legal as input to a Vulkan command that accepts 16-bit floating-point
data. The result of providing a value that is not a floating-point number (such as Inf or NaN) to such a command is
unspecified, but must not lead to Vulkan interruption or termination. Providing a denormalized number or negative zero
to Vulkan must yield deterministic results.

2.6.3 Unsigned 11-Bit Floating-Point Numbers

Unsigned 11-bit floating point numbers are defined in the “Unsigned 11-bit floating point numbers” section of the
Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 11-bit floating-point representation, finite values are rounded to
the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This means negative values
are converted to zero. Likewise, finite positive values greater than 65024 (the maximum finite representable unsigned
11-bit floating-point value) are converted to 65024. Additionally: negative infinity is converted to zero; positive infinity
is converted to positive infinity; and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 11-bit floating-point value is legal as input to a Vulkan command that accepts 11-bit
floating-point data. The result of providing a value that is not a floating-point number (such as Inf or NaN) to such a
command is unspecified, but must not lead to Vulkan interruption or termination. Providing a denormalized number to
Vulkan must yield deterministic results.

Vulkan 1.0 - A Specification 21/615

2.6.4 Unsigned 10-Bit Floating-Point Numbers

Unsigned 10-bit floating point numbers are defined in the “Unsigned 10-bit floating point numbers” section of the
Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 10-bit floating-point representation, finite values are rounded to
the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This means negative values
are converted to zero. Likewise, finite positive values greater than 64512 (the maximum finite representable unsigned
10-bit floating-point value) are converted to 64512. Additionally: negative infinity is converted to zero; positive infinity
is converted to positive infinity; and both positive and negative NalN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a Vulkan command that accepts 10-bit
floating-point data. The result of providing a value that is not a floating-point number (such as Inf or NaN) to such a
command is unspecified, but must not lead to Vulkan interruption or termination. Providing a denormalized number to
Vulkan must yield deterministic results.

2.6.5 General Requirements

Some calculations require division. In such cases (including implied divisions performed by vector normalization),
division by zero produces an unspecified result but must not lead to Vulkan interruption or termination.

2.7 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are represented as integers, they are often (but not
always) considered to be normalized. Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point.

In the remainder of this section, b denotes the bit width of the fixed-point integer representation. When the integer is one
of the types defined by the APL, b is the bit width of that type. When the integer comes from an image containing color or
depth component texels, b is the number of bits allocated to that component in its specified image format.

The signed and unsigned fixed-point representations are assumed to be b-bit binary two’s-complement integers and
binary unsigned integers, respectively.

2.7.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1]. The conversion from an unsigned
normalized fixed-point value c to the corresponding floating-point value f is defined as

c
fﬁZb—l

Signed normalized fixed-point integers represent numbers in the range [—1, 1]. The conversion from a signed normalized
fixed-point value ¢ to the corresponding floating-point value f is performed using

c
f:max{zb_l_l,—l.()}

Only the range [—2°~1 41,21 — 1] is used to represent signed fixed-point values in the range [—1, 1]. For example, if
b = 8, then the integer value —127 corresponds to —1.0 and the value 127 corresponds to 1.0. Note that while zero is
exactly expressible in this representation, one value (—128 in the example) is outside the representable range, and must
be clamped before use. This equation is used everywhere that signed normalized fixed-point values are converted to
floating-point, including for all signed normalized fixed-point parameters in Vulkan commands, such as vertex attribute
values, as well as for specifying texture or framebuffer values using signed normalized fixed-point.

2.7.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned normalized fixed-point value c is defined by
first clamping f to the range [0, 1], then computing

f' = convertFloatToUint(f x (2° —1),b)

where convertFloatToUint(r, b) returns one of the two unsigned binary integer values with exactly b bits which are
closest to the floating-point value » (where rounding to nearest is preferred). If is equal to an integer, then that integer
value is returned. In particular, if f is equal to 0.0 or 1.0, then f’ must be assigned 0 or 22 — 1, respectively.

The conversion from a floating-point value f to the corresponding signed normalized fixed-point value c is performed by
clamping f to the range [—1, 1], then computing

f" = convertFloatTolnt(f x (2°~! —1),b)

where convertFloatTolInt(r, b) returns one of the two signed two’s-complement binary integer values with exactly b bits
which are closest to the floating-point value r (where rounding to nearest is preferred). If r is equal to an integer, then
that integer value is returned. In particular, if f is equal to -1.0, 0.0, or 1.0, then f’ must be assigned —(2°~! — 1), 0, or
20=1 _ 1, respectively.

This equation is used everywhere that floating-point values are converted to signed normalized fixed-point, including
when querying floating-point state and returning integers, as well as for specifying signed normalized texture or
framebuffer values using floating-point.

2.8 API Version Numbers and Semantics

The Vulkan version number is used in several places in the API. In each such use, the API major version number, minor
version number, and patch version number are packed into a 32-bit integer as follows:

* The major version number is a 10-bit integer packed into bits 31-22.
* The minor version number is a 10-bit integer packed into bits 21-12.

 The patch version number is a 12-bit integer packed into bits 11-0.

Differences in any of the Vulkan version numbers indicates a change to the API in some way, with each part of the
version number indicating a different scope of changes.

A difference in patch version numbers indicates that some usually small aspect of the specification or header has been
modified, typically to fix a bug, and may have an impact on the behavior of existing functionality. Differences in this
version number should not affect either full compatibility or backwards compatibility between two versions, or add
additional interfaces to the APL

A difference in minor version numbers indicates that some amount of new functionality has been added. This will
usually include new interfaces in the header, and may also include behavior changes and bug fixes. Functionality may be
deprecated in a minor revision, but will not be removed. When a new minor version is introduced, the patch version is
reset to 0, and each minor revision maintains its own set of patch versions. Differences in this version should not affect
backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially including new functionality
and header interfaces, behavioral changes, removal of deprecated features, modification or outright replacement of any
feature, and is thus very likely to break any and all compatibility. Differences in this version will typically require
significant modification to an application in order for it to function.

Vulkan 1.0 - A Specification 23/615

2.9 Common Object Types

Some types of Vulkan objects are used in many different structures and command parameters, and are described here.
These types include offsets, extents, and rectangles.

2.9.1 Offsets

Offsets are used to describe a pixel location within an image or framebuffer, as an (x,y) location for two-dimensional
images, or an (X,y,z) location for three-dimensional images. Two- and three-dimensional offsets are respectively defined
by the structures

typedef struct VkOffset2D {
int32_t X;
int32_t '

} VkOffset2D;

typedef struct VkOffset3D {

int32_t X;
int32_t Vi
int32_t Z8

} VkOffset3D;

2.9.2 Extents

Extents are used to describe the size of a block of pixels within an image or framebuffer, as (width,height) for
two-dimensional images, or as (width,height,depth) for three-dimensional images. Two- and three-dimensional extents
are respectively defined by the structures

typedef struct VkExtent2D {
uint32_t width;
uint32_t height;

} VkExtent2D;

typedef struct VkExtent3D {

uint32_t width;
uint32_t height;
uint32_t depth;

} VkExtent3D;

2.9.3 Rectangles

Rectangles are used to describe a specified rectangular block of pixels within an image or framebuffer. Rectangles
include both an offset and an extent of the same dimensionality, as described above. Two-dimensional rectangles are
defined by the structure

typedef struct VkRect2D {
VkOffset2D offset;
VkExtent2D extent;
} VkRect2D;

Vulkan 1.0 - A Specification 25/615

Chapter 3

Initialization

Before using Vulkan, an application must initialize it by loading the Vulkan commands, and creating a VkInstance
object.

3.1 Command Function Pointers

Vulkan commands are not necessarily exposed statically on a platform. Function pointers for all Vulkan commands can
be obtained with the command:

PFN_vkVoidFunction vkGetInstanceProcAddr (
VkInstance instance,
const charx pName) ;

* instance is the instance that the function pointer will be compatible with.

* pName is the name of the command to obtain.

Valid Usage

e If instanceis not NULL, instance must be a valid Vk Instance handle
* pName must be a null-terminated string

* If instance is NULL, pName must be one of: vkEnumerateInstanceExtensionProperties,
vkEnumerateInstancelayerProperties or vkCreateInstance

e If instance is not NULL, pName must be the name of a core command or a command from an enabled extension,
other than: vkEnumerateInstanceExtensionProperties,
vkEnumerateInstancelayerProperties or vkCreateInstance

vkGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the loader library
will export this command as a function symbol, so applications can link against the loader library, or load it dynamically
and look up the symbol using platform-specific APIs. Loaders are encouraged to export function symbols for all other
core Vulkan commands as well; if this is done, then applications that use only the core Vulkan commands have no need
to use vkGetInstanceProcAddr.

Function pointers to commands that don’t operate on a specific instance can be obtained by using this command with
instance equal to NULL. The following commands can be accessed this way:

* vkEnumerateInstanceExtensionProperties
* vkEnumeratelInstancelayerProperties

e vkCreateInstance

If instanceis a valid VkInstance, function pointers to any commands that operate on instance or a child of
instance can be obtained. The returned function pointer must only be called with a dispatchable object (the first
parameter) that is a child of instance.

If pName is not the name of a core Vulkan command, or is an extension command for any extension not supported by any
available layer or implementation, then vkGet InstanceProcAddr will return NULL.

In order to support systems with multiple Vulkan implementations comprising heterogenous collections of hardware and
software, the function pointers returned by vkGet InstanceProcAddr may point to dispatch code, which calls a
different real implementation for different VkDevice objects (and objects created from them). The overhead of this
internal dispatch can be avoided by obtaining device-specific function pointers for any commands that use a device or
device-child object as their dispatchable object. Such function pointers can be obtained with the command:

PFN_vkVoidFunction vkGetDeviceProcAddr (
VkDevice device,
const charx pName) ;

* device is the logical device that provides the function pointer.
* pName is the name of any Vulkan command whose first parameter is one of
— VkDevice

— VkQueue
— VkCommandBuffer

If pName is not the name of one of these Vulkan commands, and is not the name of an extension command belonging to
an extension enabled for device, then vkGetDeviceProcAddr will return NULL.

Valid Usage

* device must be a valid VkDevice handle
* pName must be a null-terminated string

* pName must be the name of a supported command that has a first parameter of type VkDevice, VkQueue or
VkCommandBuf fer, either in the core API or an enabled extension

Vulkan 1.0 - A Specification 27/615

3.2 Instances

There is no global state in Vulkan and all per-application state is stored in a VkInstance object. Creating a
VkInstance object initializes the Vulkan library and allows the application to pass information about itself to the
implementation.

To create an instance object, call:

VkResult vkCreatelInstance (

const VkInstanceCreateInfox pCreatelnfo,
const VkAllocationCallbacksx* pAllocator,
VkInstancex pInstance) ;

* pCreatelInfo points to an instance of VkInstanceCreateInfo controlling creation of the instance.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pInstance points a VkInstance handle in which the resulting instance is returned.

Valid Usage

* pCreateInfo must be a pointer to a valid VkInstanceCreateInfo structure
e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pInstance must be a pointer to a VkInstance handle

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY

* VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_INITIALIZATION_FAILED
¢ VK_ERROR_LAYER_NOT_PRESENT

e VK_ERROR_EXTENSION_NOT_PRESENT
¢ VK_ERROR_INCOMPATIBLE_DRIVER

The definition of VkInstanceCreateInfois:

typedef struct VkInstanceCreateInfo {

—-—

VkStructureType sType;

const voidx pNext;
VkInstanceCreateFlags flags;

const VkApplicationInfox pApplicationInfo;
uint32_t enabledLayerCount;

const charx constx ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* constx ppEnabledExtensionNames;

VkInstanceCreatelInfo;

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.
flags is reserved for future use.

pApplicationInfois NULL or a pointer to an instance of VkApplicationInfo. If not NULL, this information
helps implementations recognize behavior inherent to classes of applications. VkApplicationInfo is defined in
detail below.

enabledLayerCount is the number of global layers to enable.

ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings containing
the names of layers to enable.

enabledExtensionCount is the number of global extensions to enable.

ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8 strings
containing the names of extensions to enable.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO
e pNext must be NULL
e flags mustbe 0

* If pApplicationInfois not NULL, pApplicationInfo mustbe a pointer to a valid VkApplicationInfo
structure

* If enabledLayerCount is not 0, ppEnabledLayerNames must be a pointer to an array of
enabledLayerCount null-terminated strings

* If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of
enabledExtensionCount null-terminated strings

* Any given element of ppEnabledLayerNames must be the name of a layer present on the system, exactly
matching a string returned in the VkLayerProperties structure by
vkEnumerateInstancelayerProperties

Vulkan 1.0 - A Specification 29/615

* Any given element of ppEnabledExtensionNames must be the name of an extension present on the system,
exactly matching a string returned in the VkExtensionProperties structure by
vkEnumerateInstanceExtensionProperties

* If an extension listed in ppEnabledExtensionNames is provided as part of a layer, then both the layer and
extension must be enabled to enable that extension

vkCreateInstance creates the instance, then enables and initializes global layers and extensions requested by the
application. If an extension is provided by a layer, both the layer and extension must be specified at
vkCreateInstance time.

The pApplicationInfo member of VkInstanceCreateInfo can point to an instance of
VkApplicationInfo. This structure is defined as:

typedef struct VkApplicationInfo {

VkStructureType sType;
const voidx pNext;
const charx pApplicationName;
uint32_t applicationVersion;
const charx pEngineName;
uint32_t engineVersion;
uint32_t apiVersion;

} VkApplicationInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* pApplicationName is a pointer to a null-terminated UTF-8 string containing the name of the application.

* applicationVersion is an unsigned integer variable containing the developer-supplied version number of the
application.

* pEngineName is a pointer to a null-terminated UTF-8 string containing the name of the engine (if any) used to create
the application.

* engineVersion is an unsigned integer variable containing the developer-supplied version number of the engine used
to create the application.

* apiVersionis the version of the Vulkan API against which the application expects to run, encoded as described in the
API Version Numbers and Semantics section. If apiVersion is 0 the implementation must ignore it, otherwise if the
implementation does not support the requested apiVersion it must return VK_ERROR_INCOMPATIBLE_DRIVER.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_APPLICATION_INFO

e pNext must be NULL

* If pApplicationName is not NULL, pApplicationName must be a null-terminated string
* If pEngineName is not NULL, pEngineName must be a null-terminated string

* apiVersion must be zero, or otherwise it must be a version that the implementation supports, or supports an
effective substitute for

To destroy an instance, call:

void vkDestroyInstance (
VkInstance instance,
const VkAllocationCallbacksx pAllocator);

* instance is the handle of the instance to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

e If instanceis not NULL, instance must be a valid VkInstance handle

* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

All child objects created using instance must have been destroyed prior to destroying instance

* If VkAllocationCallbacks were provided when instance was created, a compatible set of callbacks must
be provided here

If no VkAllocationCallbacks were provided when instance was created, pAllocator must be NULL

Host Synchronization

* Host access to instance must be externally synchronized

Vulkan 1.0 - A Specification 31/615

Chapter 4

Devices and Queues

Once Vulkan is initialized, devices and queues are the primary objects used to interact with a Vulkan implementation.

Vulkan separates the concept of physical and logical devices. A physical device usually represents a single device in a
system (perhaps made up of several individual hardware devices working together), of which there are a finite number. A
logical device represents an application’s view of the device.

4.1 Physical Devices

To retrieve a list of physical device objects representing the physical devices installed in the system, call:

VkResult vkEnumeratePhysicalDevices (

VkInstance instance,
uint32_t« pPhysicalDeviceCount,
VkPhysicalDevicex pPhysicalDevices) ;

* instance is a handle to a Vulkan instance previously created with vkCreateInstance.

* If pphysicalDevices is NULL, the number of physical devices available is returned in pPhysicalDeviceCount. If
pPhysicalDevices is not NULL,

* pPhysicalDeviceCount must point to a variable set by the user to the size of the array pointed to by
pPhysicalDevices, and is overwritten with the number of physical devices actually written to pPhysicalDevices.

Valid Usage

* instance must be a valid VkInstance handle
* pPhysicalDeviceCount must be a pointer to a uint32_t value

* If the value referenced by pPhysicalDeviceCount is not 0, and pPhysicalDevices is not NULL,
pPhysicalDevices must be a pointer to an array of pPhysicalDeviceCount VkPhysicalDevice handles

Return Codes

Success
e VK_SUCCESS

Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY

¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_INITIALIZATION_FAILED

Once enumerated, general properties of the physical devices are queried by calling:

void vkGetPhysicalDeviceProperties (
VkPhysicalDevice
VkPhysicalDevicePropertiesx

physicalDevice,
pProperties);

* physicalDevice is the handle to the physical device whose properties will be queried.

* pProperties points to an instance of the VkPhysicalDeviceProperties structure, that will be filled with

returned information.

Valid Usage

* physicalDevice mustbe a valid VkPhysicalDevice handle

* pProperties must be a pointer to a VkPhysicalDeviceProperties structure

The definition of VkPhysicalDeviceProperties is:

typedef struct VkPhysicalDeviceProperties {

uint32_t

uint32_t

uint32_t

uint32_t

VkPhysicalDeviceType

char

uint8_t

VkPhysicalDeviceLimits

VkPhysicalDeviceSparseProperties
} VkPhysicalDeviceProperties;

apiVersion;

driverVersion;

vendorID;

devicelD;

deviceType;

deviceName [VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
pipelineCacheUUID [VK_UUID_SIZE];

limits;

sparseProperties;

Vulkan 1.0 - A Specification 33/615

The members of VkPhysicalDeviceProperties have the following meanings:

apiVersion is the version of Vulkan supported by the device, encoded as described in the API Version Numbers and
Semantics section.

driverVersion is the vendor-specified version of the driver.

vendorID is a unique identifier for the vendor (see below) of the physical device.

devicelID is a unique identifier for the physical device among devices available from the vendor.
deviceTypeis a VkPhysicalDeviceType specifying the type of device.

deviceName is a pointer to a null-terminated UTF-8 string containing the name of the device.

pipelineCacheUUID is an array of size VK_UUID_SIZE, containing 8-bit values that represent a universally unique
identifier for the device.

limitsisthe VkPhysicalDeviceLimits structure which specifies device-specific limits of the physical device.
See Limits for details.

sparsePropertiesisthe VkPhysicalDeviceSparseProperties structure which specifies various sparse
related properties of the physical device. See Sparse Properties for details.

The vendorID and deviceID fields are provided to allow applications to adapt to device characteristics that are not
adequately exposed by other Vulkan queries. These may include performance profiles, hardware errata, or other
characteristics. In PCI-based implementations, the low sixteen bits of vendorID and deviceID must contain
(respectively) the PCI vendor and device IDs associated with the hardware device, and the remaining bits must be set to
zero. In non-PCI implementations, the choice of what values to return may be dictated by operating system or platform
policies. It is otherwise at the discretion of the implementer, subject to the following constraints and guidelines:

For purposes of physical device identification, the vendor of a physical device is the entity responsible for the most
salient characteristics of the hardware represented by the physical device handle. In the case of a discrete GPU, this
should be the GPU chipset vendor. In the case of a GPU or other accelerator integrated into a system-on-chip (SoC),
this should be the supplier of the silicon IP used to create the GPU or other accelerator.

If the vendor of the physical device has a valid PCI vendor ID issued by PCI-SIG, that ID should be used to construct
the value of vendorID as described above for PCI-based implementations. Implementations that do not return a PCI
vendor ID in vendorID must return a valid Khronos vendor ID, obtained as defined in the Registering a Vendor ID
with Khronos section. Khronos vendor IDs are allocated starting at 0x10000, to distinguish them from the PCI vendor
ID namespace.

The vendor of the physical device is responsible for selecting the value of deviceID. The value selected should
uniquely identify both the device version and any major configuration options (for example, core count in the case of
multicore devices). The same device ID should be used for all physical implementations of that device version and
configuration. For example, all uses of a specific silicon IP GPU version and configuration should use the same device
ID, even if those uses occur in different SoCs.

The physical devices types are:

typedef enum VkPhysicalDeviceType {

VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU =
VK_PHYSICAL DEVICE TYPE DISCRETE_GPU = 2,
VK_PHYSICAL_DEVICE_TYPE VIRTUAL_GPU = 3,
VK_PHYSICAL_DEVICE_TYPE_CPU = 4,

1,

} VkPhysicalDeviceType;

https://pcisig.com/

* VK_PHYSICAL_DEVICE_TYPE_OTHER The device does not match any other available types.

* VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU The device is typically one embedded in or tightly coupled
with the host.

* VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU The device is typically a separate processor connected to the
host via an interlink.

* VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU The device is typically a virtual node in a virtualization
environment.

* VK_PHYSICAL_DEVICE_TYPE_CPU The device is typically running on the same processors as the host.

The physical device type is advertised for informational purposes only, and does not directly affect the operation of the
system. However, the device type may correlate with other advertised properties or capabilities of the system, such as
how many memory heaps there are.

Properties of queues available on a physical device are queried by calling:

void vkGetPhysicalDeviceQueueFamilyProperties (

VkPhysicalDevice physicalDevice,
uint32_tx* pQueueFamilyPropertyCount,
VkQueueFamilyPropertiesx* pQueueFamilyProperties);

* physicalDevice is the handle to the physical device whose properties will be queried.

* pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families available or
queried, as described below.

* pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties structures.

If pOQueueFamilyProperties is NULL, then the number of queue families available is returned in
pQueueFamilyPropertyCount. Otherwise, pQueueFamilyPropertyCount must point to a variable set by the user
to the number of elements in the pQueueFamilyProperties array, and on return the variable is overwritten with the
number of structures actually written to pQueueFamilyProperties. If the value of pQueueFamilyPropertyCount
is less than the number of queue families available, at most pQueueFamilyPropertyCount structures will be written.

Valid Usage

* physicalDevice must be a valid VkPhysicalDevice handle
* pQueueFamilyPropertyCount must be a pointer to a uint32_t value

* If the value referenced by poueueFamilyPropertyCount is not 0, and pQueueFamilyProperties is not
NULL, pQueueFamilyProperties must be a pointer to an array of pQueueFamilyPropertyCount
VkQueueFamilyProperties structures

The definition of VkQueueFamilyProperties is:

Vulkan 1.0 - A Specification 35/615

typedef struct VkQueueFamilyProperties {

VkQueueFlags queueFlags;

uint32_t queueCount;

uint32_t timestampValidBits;

VkExtent 3D minImageTransferGranularity;

} VkQueueFamilyProperties;
The members of VkQueueFamilyProperties have the following meanings:

* gueueFlags contains flags indicating the capabilities of the queues in this queue family.
* gueueCount is the unsigned integer count of queues in this queue family.

* timestampValidBits is the unsigned integer count of meaningful bits in the timestamps written via
vkCmdWriteTimestamp. The valid range for the count is 36..64 bits, or a value of 0, indicating no support for
timestamps. Bits outside the valid range are guaranteed to be zeros.

* minImageTransferGranularity is the minimum granularity supported for image transfer operations on the queues
in this queue family.

The bits specified in queueFlags are:

typedef enum VkQueueFlagBits {
VK_QUEUE_GRAPHICS_BIT = 0x00000001,
VK_QUEUE_COMPUTE_BIT = 0x00000002,
VK_QUEUE_TRANSFER_BIT = 0x00000004,
VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,
VkQueueFlagBits;

—

* if VK_QUEUE_GRAPHICS_BIT is set, then the queues in this queue family support graphics operations.
* if VK_QUEUE_COMPUTE_BIT is set, then the queues in this queue family support compute operations.
* if VK_QUEUE_TRANSFER_BIT is set, then the queues in this queue family support transfer operations.

* if VK_QUEUE_SPARSE_BINDING_BIT is set, then the queues in this queue family support sparse memory
management operations (see Sparse Resources). If any of the sparse resource features are enabled, then at least one
queue family must support this bit.

If an implementation exposes any queue family that supports graphics operations, at least one queue family of at least
one physical device exposed by the implementation must support both graphics and compute operations.

For further details see Queues.

The value returned in minImageTransferGranularity has a unit of blocks for images having a block compressed
format, and a unit of texels otherwise.

Possible values of minImageTransferGranularity are:

* (0,0,0) which indicates that only whole mip levels must be transferred using the image transfer operations on the
corresponding queues. In this case, the following restrictions apply to all offset and extent parameters of image transfer
operations:

— The x, y, and z members of a VkOf f set 3D parameter must always be zero.

— The width, height, and depth members of a VkExtent 3D parameter must always match the width, height, and
depth of the image subresource corresponding to the parameter, respectively.

* (Ax,Ay,Az) where Ax, Ay, and Az are all integer powers of two. In this case the following restrictions apply to all image
transfer operations:

- x,y,and z of a VkOf fset 3D parameter must be integer multiples of Ax, Ay, and Az, respectively.

— width of a VkExtent 3D parameter must be an integer multiple of Ax, or else (x4 width) must equal the width of
the image subresource corresponding to the parameter.

— height of a VkExtent 3D parameter must be an integer multiple of Ay, or else (v + height) must equal the height
of the image subresource corresponding to the parameter.

— depth of a VkExtent 3D parameter must be an integer multiple of Az, or else (z + depth) must equal the depth of
the image subresource corresponding to the parameter.

— If the format of the image corresponding to the parameters is one of the block compressed formats then for the
purposes of the above calculations the granularity must be scaled up by the block size.

Queues supporting graphics and/or compute operations must report (1,1,1) in minTmageTransferGranularity,
meaning that there are no additional restrictions on the granularity of image transfer operations for these queues. Other
queues supporting image transfer operations are only required to support whole mip level transfers, thus the value of
minImageTransferGranularity for queues belonging to such queue families may be (0,0,0).

The Device Memory section describes memory properties queried from the physical device.

For physical device feature queries see the Features chapter.

4.2 Devices

Device objects represent logical connections to physical devices. Each device exposes a number of queue families each
having one or more queues. All queues in a queue family support the same operations.

As described in Physical Devices, a Vulkan application will first query for all physical devices in a system. Each physical
device can then be queried for its capabilities, including its queue and queue family properties. Once an acceptable
physical device is identified, an application will create a corresponding logical device. An application must create a
separate logical device for each physical device it will use. The created logical device is then the primary interface to the
physical device.

How to enumerate the physical devices in a system and query those physical devices for their queue family properties is
described in the Physical Device Enumeration section above.

4.2.1 Device Creation

A logical device is created as a connection to a physical device. To create a logical device, call:

VkResult vkCreateDevice (

VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfox pCreatelInfo,
const VkAllocationCallbacksx pAllocator,
VkDevicex* pDevice) ;

* physicalDevice must be one of the device handles returned from a call to vkEnumeratePhysicalDevices
(see Physical Device Enumeration).

Vulkan 1.0 - A Specification 37/615

* pCreateInfois apointer to a VkDeviceCreateInfo structure containing information about how to create the
device.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pDevice points to a handle in which the created VkDevice is returned.

Valid Usage

e physicalDevice must be a valid VkPhysicalDevice handle
* pCreateInfo must be a pointer to a valid VkDeviceCreateInfo structure
e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pDevice must be a pointer to a VkDevice handle

Return Codes

Success
* VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY

¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
e VK_ERROR_INITIALIZATION_FAILED
¢ VK_ERROR_LAYER_NOT_PRESENT

¢ VK_ERROR_EXTENSION_NOT_PRESENT
¢ VK_ERROR_FEATURE_NOT_PRESENT

¢ VK_ERROR_TOO_MANY_OBJECTS

¢ VK_ERROR_DEVICE_LOST

The definition of VkDeviceCreateInfois:

typedef struct VkDeviceCreateInfo {

VkStructureType sType;
const voidx pNext;
VkDeviceCreateFlags flags;
uint32_t queueCreateInfoCount;

const VkDeviceQueueCreateInfox* pQueueCreatelInfos;

uint32_t enabledLayerCount;

const char*x constx ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* constx ppEnabledExtensionNames;
const VkPhysicalDeviceFeaturesx pEnabledFeatures;

} VkDeviceCreateInfo;

The members of VkDeviceCreateInfo have the following meanings:

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.
flags is reserved for future use.

queueCreateInfoCount is the unsigned integer size of the pQueueCreateInfos array. Refer to the Queue
Creation section below for further details.

pQueueCreatelInfos is a pointer to an array of VkDeviceQueueCreateInfo structures describing the queues
that are requested to be created along with the logical device. Refer to the Queue Creation section below for further
details.

enabledLayerCount is the number of device layers to enable.

ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings containing
the names of layers to enable for the created device. See the Querying Layers and Extensions chapter for further
details.

enabledExtensionCount is the number of device extensions to enable.

ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8 strings
containing the names of extensions to enable for the created device. See the Querying Layers and Extensions chapter
for further details.

pEnabledFeatures is a pointer to a VkPhysicalDeviceFeatures structure that contains boolean indicators of
all the features to be enabled. Refer to the Features section for further details.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO
¢ pNext must be NULL
e flags mustbe 0

* pQueueCreatelInfos must be a pointer to an array of queueCreateInfoCount valid
VkDeviceQueueCreateInfo structures

e If enabledLayerCount is not 0, and ppEnabledLayerNames is not NULL, ppEnabledLayerNames must be a
pointer to an array of enabledLayerCount null-terminated strings

Vulkan 1.0 - A Specification 39/615

e If enabledExtensionCount is not 0, and ppEnabledExtensionNames is not NULL,
ppEnabledExtensionNames must be a pointer to an array of enabledExtensionCount null-terminated
strings

* pEnabledFeatures must be a pointer to a valid VkPhysicalDeviceFeatures structure
* The value of queueCreateInfoCount must be greater than 0

* Any given element of ppEnabledLayerNames must be the name of a layer present on the system, exactly
matching a string returned in the VkLayerProperties structure by
vkEnumerateDevicelayerProperties

* Any given element of ppEnabledExtensionNames must be the name of an extension present on the system,
exactly matching a string returned in the VkExtensionProperties structure by
vkEnumerateDeviceExtensionProperties

o If an extension listed in ppEnabledExtensionNames is provided as part of a layer, then both the layer and
extension must be enabled to enable that extension

* The queueFamilyIndex member of any given element of pQueueCreateInfos must be unique within
pQueueCreateInfos

Multiple logical devices can be created from the same physical device. Logical device creation may fail due to lack of
device-specific resources (in addition to the other errors). If that occurs, vkCreateDevice will return VK_ERROR_
TOO_MANY_OBJECTS.

4.2.2 Device Use
The following is a high-level list of VkDevice uses along with references on where to find more information:

* Creation of queues. See the Queues section below for further details.

* Creation and tracking of various synchronization constructs. See Synchronization and Cache Control for further
details.

* Allocating, freeing, and managing memory. See Memory Allocation and Resource Creation for further details.
* Creation and destruction of command buffers and command buffer pools. See Command Buffers for further details.

* Creation, destruction, and management of graphics state. See Pipelines and Resource Descriptors, among others, for
further details.

4.2.3 Device Idle

A device is active while any of its queues have work to process. Once all device queues are idle, the device is idle. To
wait for this condition, call:

VkResult vkDeviceWaitIdle (
VkDevice device);

* device is the logical device to idle.

Valid Usage

e device must be a valid VkDevice handle

Host Synchronization

* Host access to all VkQueue objects created from device must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_DEVICE_LOST

4.2.4 Lost Device

A logical device may become /ost because of hardware errors, execution timeouts, power management events and/or
platform-specific events. This may cause pending and future command execution to fail and cause hardware resources to
be corrupted. When this happens, certain commands will return VK_ERROR_DEVICE_LOST (see Error Codes for a list
of such commands). After any such event, the logical device is considered lost. It is not possible to reset the logical
device to a non-lost state, however the lost state is specific to a logical device (VkDevice), and the corresponding
physical device (VkPhysicalDevice) may be otherwise unaffected. In some cases, the physical device may also be
lost, and attempting to create a new logical device will fail, returning VK_ERROR_DEVICE_LOST. This is usually
indicative of a problem with the underlying hardware, or its connection to the host. If the physical device has not been
lost, and a new logical device is successfully created from that physical device, it must be in the non-lost state.

Vulkan 1.0 - A Specification 41/615

Note
Whilst logical device loss may be recoverable, in the case of physical device loss, it is unlikely that an application
will be able to recover unless additional, unaffected physical devices exist on the system. The error is largely
informational and intended only to inform the user that their hardware has probably developed a fault or become
physically disconnected, and should be investigated further. In many cases, physical device loss may cause
other more serious issues such as the operating system crashing; in which case it may not be reported via the
Vulkan API.

& Note

Undefined behavior caused by an application error may cause a device to become lost. However, such unde-
fined behavior may also cause unrecoverable damage to the process, and it is then not guaranteed that the API
objects, including the VkPhysicalDevice or the VkInstance are still valid or that the error is recover-
able.

When a device is lost, its child objects are not implicitly destroyed and their handles are still valid. Those objects must
still be destroyed before their parents or the device can be destroyed (see Lifetime). The host address space
corresponding to device memory mapped using vkMapMemory is still valid, and host memory accesses to these mapped
regions are still valid, but the contents are undefined. It is still legal to call any API command on the device and child
objects.

Once a device is lost, command execution may fail, and commands that return a VkResult may return VK_ERROR_
DEVICE_LOST. Commands that do not allow run-time errors must still operate correctly for valid usage and, if
applicable, return valid data.

Commands that wait indefinitely for device execution (namely vkDeviceWaitIdle, vkQueueWaitIdle,
vkWaitForFences with a maximum timeout, and vkGetQueryPoolResults with the VK_QUERY_RESULT__
WAIT_BIT bit set in f1ags) must return in finite time even in the case of a lost device, and return either VK_SUCCESS
or VK_ERROR_DEVICE_LOST. For any command that may return VK_ERROR_DEVICE_LOST, for the purpose of
determining whether a command buffer is pending execution, or whether resources are considered in-use by the device, a
return value of VK_ERROR_DEVICE_LOST is equivalent to VK_SUCCESS.

4.2.5 Device Destruction

To destroy a device, call:

void vkDestroyDevice (
VkDevice device,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

e If deviceis not NULL, device must be a valid VkDevice handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

All child objects created on device must have been destroyed prior to destroying device

If VkAllocationCallbacks were provided when device was created, a compatible set of callbacks must be
provided here

e Ifno VkAllocationCallbacks were provided when device was created, pAllocator must be NULL

Host Synchronization

* Host access to device must be externally synchronized

To ensure that no work is active on the device, vkDeviceWaitIdle can be used to gate the destruction of the device.
Prior to destroying a device, an application is responsible for destroying/freeing any Vulkan objects that were created
using that device as the first parameter of the corresponding vkCreatex or vkAllocate* command.

= Note
The lifetime of each of these objects is bound by the lifetime of the VkDevice object. Therefore, to avoid
resource leaks, it is critical that an application explicitly free all of these resources prior to calling vkDestroy
Device.

4.3 Queues

4.3.1 Queue Family Properties

As discussed in the Physical Device Enumeration section above, the
vkGetPhysicalDeviceQueueFamilyProperties command is used to retrieve details about the queue families
and queues supported by a device.

Each index in the poueueFamilyProperties array returned by
vkGetPhysicalDeviceQueueFamilyProperties describes a unique queue family on that physical device.
These indices are used when creating queues, and they correspond directly with the queueFamilyIndex thatis passed
to the vkCreateDevice command via the VkDeviceQueueCreateInfo structure as described in the Queue
Creation section below.

Grouping of queue families within a physical device is implementation-dependent.

Vulkan 1.0 - A Specification 43/615

3 Note
The general expectation is that a physical device groups all queues of matching capabilities into a single family.
However, this is a recommendation to implementations and it is possible that a physical device may return two
separate queue families with the same capabilities.

Once an application has identified a physical device with the queue(s) that it desires to use, it will create those queues in
conjunction with a logical device. This is described in the following section.

4.3.2 Queue Creation

Creating a logical device also creates the queues associated with that device. The queues to create are described by a set
of VkDeviceQueueCreateInfo structures that are passed to vkCreateDevice in pQueueCreateInfos. The
definition of VkDeviceQueueCreateInfo is:

typedef struct VkDeviceQueueCreateInfo {

VkStructureType sType;

const voidx pNext;
VkDeviceQueueCreateFlags flags;

uint32_t queueFamilyIndex;
uint32_t queueCount;

const float= pQueuePriorities;

} VkDeviceQueueCreateInfo;

The members of VkDeviceQueueCreateInfo have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* flags is reserved for future use.

* gqueueFamilyIndex is an unsigned integer indicating the index of the queue family to create on this device. The
value of this index corresponds to the index of an element of the pQueueFamilyProperties array that was returned
by vkGetPhysicalDeviceQueueFamilyProperties.

* gqueueCount is an unsigned integer specifying the number of queues to create in the queue family indicated by
queueFamilyIndex.

* pQueuePriorities is an array of queueCount normalized floating point values, specifying priorities of work that
will be submitted to each created queue. See Queue Priority for more information.

Valid Usage

. sTypeHﬂmtbeVK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO
e pNext must be NULL

e flags mustbe 0

* pQueuePriorities must be a pointer to an array of queueCount f£loat values
* The value of queueCount must be greater than 0

* gqueueFamilyIndex must be less than the value of pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties

* gueueCount must be less than or equal to the value of the queueCount member of the
VkQueueFamilyProperties structure, as returned by
vkGetPhysicalDeviceQueueFamilyProperties in the
pQueueFamilyProperties|[queueFamilyIndex]

* The value of any given element of pQueuePriorities must be between 0.0 and 1. 0 inclusive

To retrieve a handle to a VkQueue object, call:

void vkGetDeviceQueue (

VkDevice device,

uint32_t queueFamilyIndex,
uint32_t queuelndex,
VkQueue * pQueue) ;

* device is the logical device that owns the queue.
* gueueFamilyIndex is the index of the queue family to which the queue belongs.
* gueueIndex is the index within this queue family of the queue to retrieve.

* pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested queue.

Valid Usage

* device must be a valid VkDevice handle
* pQueue must be a pointer to a VkQueue handle

* gueueFamilyIndex must be one of the queue family indexes specified when device was created, via the
VkDeviceQueueCreateInfo structure

* gueueIndex must be less than the number of queues created for the specified queue family index when device
was created, via the queueCount member of the VkDeviceQueueCreateInfo structure

4.3.3 Queue Family Index

The queue family index is used in multiple places in Vulkan in order to tie operations to a specific family of queues.

Vulkan 1.0 - A Specification 45/615

When retrieving a handle to the queue via vkGetDeviceQueue, the queue family index is used to select which queue
family to retrieve the VkQueue handle from as described in the previous section.

When creating a VkCommandPool object (see Command Pools), a queue family index is specified in the
VkCommandPoolCreateInfo structure. Command buffers from this pool can only be submitted on queues
corresponding to this queue family.

When creating Vk Image (see Images) and VkBuf fer (see Buffers) resources, a set of queue families is included in the
VkImageCreateInfo and VkBufferCreateInfo structures to specify the queue families that can access the
resource.

When inserting a VkBuf ferMemoryBarrier or VkImageMemoryBarrier (see Section 6.3) a source and
destination queue family index is specified to allow the ownership of a buffer or image to be transferred from one queue
family to another. See the Resource Sharing section for details.

4.3.4 Queue Priority

Each queue is assigned a priority, as set in the VkDeviceQueueCreateInfo structures when creating the device.
The priority of each queue is a normalized floating point value between 0.0 and 1.0, which is then translated to a discrete
priority level by the implementation. Higher values indicate a higher priority, with 0.0 being the lowest priority and 1.0
being the highest.

Within the same device, queues with higher priority may be allotted more processing time than queues with lower
priority. The implementation makes no guarantees with regards to ordering or scheduling among queues with the same
priority, other than the constraints defined by explicit scheduling primitives. The implementation make no guarantees
with regards to queues across different devices.

An implementation may allow a higher-priority queue to starve a lower-priority queue on the same VkDevice until the
higher-priority queue has no further commands to execute. The relationship of queue priorities must not cause queues on
one VkDevice to starve queues on another VkDevice.

No specific guarantees are made about higher priority queues receiving more processing time or better quality of service
than lower priority queues.

4.3.5 Queue Synchronization

To wait on the completion of all work within a single queue, call:

VkResult vkQueueWaitIdle (
VkQueue queue) ;

* gueue is the queue on which to wait.

vkQueueWaitIdle will block until all command buffers and sparse binding operations in the queue have completed.

Valid Usage

e gueue must be a valid VkQueue handle

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
- - Any

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_DEVICE_LOST

Synchronization between queues is done using Vulkan semaphores as described in the Synchronization and Cache
Control chapter.

4.3.6 Sparse Memory Binding

In Vulkan it is possible to sparsely bind memory to buffers and images as described in the Sparse Resource chapter.
Sparse memory binding is a queue operation. A queue whose flags include the VK_QUEUE_SPARSE_BINDING_BIT
must be able to support the mapping of a virtual address to a physical address on the device. This causes an update to the
page table mappings on the device. This update must be synchronized on a queue to avoid corrupting page table
mappings during execution of graphics commands. By binding the sparse memory resources on queues, all commands
that are dependent on the updated bindings are synchronized to only execute after the binding is updated. See the
Synchronization and Cache Control chapter for how this synchronization is accomplished.

4.3.7 Queue Destruction

Queues are created along with a logical device during vkCreateDevice. All queues associated with a logical device
are destroyed when vkDestroyDevice is called on that device.

Vulkan 1.0 - A Specification 47 /615

Chapter 5

Command Buffers

Command buffers are objects used to record commands which can be subsequently submitted to a device queue for
execution. There are two levels of command buffers - primary command buffers, which can execute secondary command
buffers, and which are submitted to queues, and secondary command buffers, which can be executed by primary
command buffers, and which are not directly submitted to queues.

Recorded commands include commands to bind pipelines and descriptor sets to the command buffer, commands to
modify dynamic state, commands to draw (for graphics rendering), commands to dispatch (for compute), commands to
execute secondary command buffers (for primary command buffers only), commands to copy buffers and images, and
other commands.

Each command buffer manages state independently of other command buffers. There is no inheritance of state across
primary and secondary command buffers, or between secondary command buffers. When a command buffer begins
recording, all state in that command buffer is undefined. When secondary command buffer(s) are recorded to execute on
a primary command buffer, the secondary command buffer inherits no state from the primary command buffer, and all
state of the primary command buffer is undefined after an execute secondary command buffer command is recorded.
There is one exception to this rule - if the primary command buffer is inside a render pass instance, then the render pass
and subpass state is not disturbed by executing secondary command buffers. Whenever the state of a command buffer is
undefined, the application must set all relevant state on the command buffer before any state dependent commands such
as draws and dispatches are recorded, otherwise the behavior of executing that command buffer is undefined.

Unless otherwise specified, and without explicit synchronization, the various commands submitted to a queue via
command buffers may execute in arbitrary order relative to each other, and/or concurrently. Also, the memory
side-effects of those commands may not be directly visible to other commands without memory barriers. This is true
within a command buffer, and across command buffers submitted to a given queue. See Section 6.3, Section 6.5 and
Section 6.5.3 about synchronization primitives suitable to guarantee execution order and side-effect visibility between
commands on a given queue.

Each command buffer is always in one of three states:
e [nitial state: Before vkBeginCommandBuf fer. Either vkBeginCommandBuf fer has never been called, or the

command buffer has been reset since it last recorded commands.

* Recording state: Between vkBeginCommandBuf fer and vkEndCommandBuf fer. The command buffer is in a
state where it can record commands.

» Executable state: After vkEndCommandBuffer. The command buffer is in a state where it has finished recording
commands and can be executed.

Resetting a command buffer is an operation that discards any previously recorded commands and puts a command buffer
in the initial state. Resetting occurs as a result of vkResetCommandBuffer or vkResetCommandPool, or as part
of vkBeginCommandBuf fer (which additionally puts the command buffer in the recording state).

5.1 Command Pools

Command pools are opaque objects that command buffer memory is allocated from, and which allow the implementation
to amortize the cost of resource creation across multiple command buffers. Command pools are
application-synchronized, meaning that a command pool must not be used concurrently in multiple threads. That
includes use via recording commands on any command buffers allocated from the pool, as well as operations that
allocate, free, and reset command buffers or the pool itself.

To create a command pool, call:

VkResult vkCreateCommandPool (

VkDevice device,

const VkCommandPoolCreateInfox pCreatelnfo,
const VkAllocationCallbacksx* pAllocator,
VkCommandPool* pCommandPool) ;

* device is the logical device that creates the command pool.
* pCreateInfo contains information used to create the command pool.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pCommandPool points to an VkCommandPool handle in which the created pool is returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkCommandPoolCreateInfo structure
e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pCommandPool must be a pointer to a VkCommandPool handle

Return Codes

Success

¢ VK_SUCCESS

Vulkan 1.0 - A Specification 49/615

Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandPoolCreateInfo structure is defined as follows:

typedef struct VkCommandPoolCreateInfo {

—

VkStructureType sType;
const voidx pNext;
VkCommandPoolCreateFlags flags;
uint32_t queueFamilyIndex;

VkCommandPoolCreateInfo;

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.

flags is a combination of bitfield flags indicating usage behavior for the pool and command buffers allocated from it.
Possible values include:

typedef enum VkCommandPoolCreateFlagBits ({
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT = 0x00000001,
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT = 0x00000002,
} VkCommandPoolCreateFlagBits;

— VK_COMMAND_POOL_CREATE_TRANSIENT_BIT indicates that command buffers allocated from the pool will
be short-lived, meaning that they will be reset or freed in a relatively short timeframe. This flag may be used by the
implementation to control memory allocation behavior within the pool.

— VK_COMMAND_POOI_CREATE_RESET_COMMAND_BUFFER_BIT controls whether command buffers allocated
from the pool can be individually reset. If this flag is set, individual command buffers allocated from the pool can be
reset either explicitly, by calling vkReset CommandBuf fer, or implicitly, by calling
vkBeginCommandBuffer on an executable command buffer. If this flag is not set, then
vkResetCommandBuf fer and vkBeginCommandBuffer (on an executable command buffer) must not be
called on the command buffers allocated from the pool, and they can only be reset in bulk by calling
vkResetCommandPool.

queueFamilyIndex designates a queue family as described in section Queue Family Properties. All command
buffers created from this command pool must be submitted on queues from the same queue family.

Valid Usage

¢ sType must be VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO
* pNext must be NULL
* flags must be a valid combination of VkCommandPoolCreateFlagBits values

* gueueFamilyIndex must be the index of a queue family available in the calling command’s device parameter

Reset a command pool by calling:

VkResult vkResetCommandPool (

VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags);

* device is the logical device that owns the command pool.
* commandPool is the command pool to reset.

* flags contains additional flags controlling the behavior of the reset.

Valid Usage

* device must be a valid VkDevice handle

e commandPool must be a valid VkCommandP ool handle

e flags must be a valid combination of VkCommandPoolResetFlagBits values
* commandPool must have been created, allocated or retrieved from device

e Each of device and commandPool must have been created, allocated or retrieved from the same
VkPhysicalDevice

* All vkCommandBuf fer objects allocated from commandPool must not currently be pending execution

Host Synchronization

* Host access to commandPool must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

Vulkan 1.0 - A Specification 51/615

Resetting a command pool recycles all of the resources from all of the command buffers allocated from the command
pool back to the command pool. All command buffers that have been allocated from the command pool are put in the
initial state.

flagsis of type VkCommandPoolResetFlags, which is defined as:

typedef enum VkCommandPoolResetFlagBits {
VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandPoolResetFlagBits;

If f1agsincludes VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT, resetting a command pool recycles
all of the resources from the command pool back to the system.

To destroy a command pool, call:

void vkDestroyCommandPool (

VkDevice device,
VkCommandPool commandPool,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the command pool.
* commandPool is the handle of the command pool to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If commandPool is not VK_NULL_HANDLE, commandPool must be a valid VkCommandPool handle

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If commandPool is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and commandPool that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

* All VkCommandBuf fer objects allocated from commandPool must not be pending execution

* If VkAllocationCallbacks were provided when commandPool was created, a compatible set of callbacks
must be provided here

* IfnoVkAllocationCallbacks were provided when commandPool was created, pAllocator must be
NULL

Host Synchronization

* Host access to commandPool must be externally synchronized

When a pool is destroyed, all command buffers allocated from the pool are implicitly freed and become invalid.
Command buffers allocated from a given pool do not need to be freed before destroying that command pool.

5.2 Command Buffer Lifetime

Command buffers are allocated by calling:

VkResult vkAllocateCommandBuffers (

VkDevice device,
const VkCommandBufferAllocateInfox pAllocateInfo,
VkCommandBufferx* pCommandBuffers) ;

* device is the logical device that owns the command pool.

* pAllocateInfo is an instance of the VkCommandBufferAllocateInfo structure which defines additional
information about creating the pool.

* pCommandBuffers points to an array in which the allocated command buffers are returned. Each allocated command
buffer begins in the initial state.

Valid Usage

* device must be a valid VkDevice handle
* pAllocateInfo must be a pointer to a valid VkCommandBufferAllocateInfo structure

* pCommandBuffers must be a pointer to an array of pAllocateInfo—commandBufferCount
VkCommandBuf fer handles

Host Synchronization

* Host access to pAllocateInfo—commandPool must be externally synchronized

Vulkan 1.0 - A Specification 53/615

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferAllocateInfo structure is defined as:

typedef struct VkCommandBufferAllocateInfo {

VkStructureType sType;

const voidx pNext;
VkCommandPool commandPool;
VkCommandBufferLevel level;

uint32_t commandBufferCount;

} VkCommandBufferAllocateInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* commandPool is the name of the command pool that the command buffers allocate their memory from.

* level determines whether the command buffers are primary or secondary command buffers. Possible values include:
typedef enum VkCommandBufferLevel ({
VK_COMMAND_BUFFER_LEVEL_PRIMARY = 0,

VK_COMMAND_BUFFER_LEVEL_SECONDARY = 1,
} VkCommandBufferLevel;

* commandBufferCount is the number of command buffers to allocate from the pool.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO
* pNext must be NULL
e commandPool must be a valid VkCommandPool handle

* Jevel must be a valid VkCommandBufferLevel value

Command buffers are reset by calling:

VkResult vkResetCommandBuffer (
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags);

* commandBuf fer is the command buffer to reset. The command buffer can be in any state, and is put in the initial state.

* flagsisof type VkCommandBufferResetFlags:

typedef enum VkCommandBufferResetFlagBits ({
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = 0x00000001,
} VkCommandBufferResetFlagBits;

+ If f1ags includes VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT, then most or all memory
resources currently owned by the command buffer should be returned to the parent command pool. If this flag is not set,
then the command buffer may hold onto memory resources and reuse them when recording commands.

Valid Usage

e commandBuffer must be a valid VkCommandBuf fer handle
e flags must be a valid combination of VkCommandBufferResetFlagBits values
* commandBuf fer must not currently be pending execution

* commandBuf fer must have been allocated from a pool that was created with the VK_COMMAND_POOL__
CREATE_RESET_COMMAND_BUFFER_BIT

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Return Codes

Success

¢ VK_SUCCESS

Vulkan 1.0 - A Specification

55/615

Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

Command buffers are freed by calling:

void vkFreeCommandBuffers (
VkDevice
VkCommandPool
uint32_t
const VkCommandBufferx

* device is the logical device that owns the command pool.

* commandPool is the handle of the command pool that the command buffers were allocated from.

device,
commandPool,
commandBufferCount,
pCommandBuffers) ;

* commandBufferCount is the length of the pCommandBuf fers array.

* pCommandBuffers is an array of handles of command buffers to free.

Valid Usage

e device must be a valid VkDevice handle

commandPool

e commandPool must be a valid VkCommandPoo1l handle

* The value of commandBufferCount must be greater than O

e commandPool must have been created, allocated or retrieved from device

* All elements of pCommandBuffers must not be pending execution

¢ Each element of pcommandBuffers that is a valid handle must have been created, allocated or retrieved from

e Each of device, commandPool and the elements of pCommandBuf fers that are valid handles must have been
created, allocated or retrieved from the same VkPhysicalDevice

* pCommandBuffers must be a pointer to an array of commandBufferCount VkCommandBuf fer handles, each
element of which must either be a valid handle or VK_NULL_HANDLE

Host Synchronization

* Host access to commandPool must be externally synchronized

» Host access to each member of pCommandBuf fers must be externally synchronized

5.3 Command Buffer Recording

To begin recording a command buffer, call:

VkResult vkBeginCommandBuffer (
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfox pBeginInfo);

* commandBuffer is the handle of the command buffer which is to be put in the recording state.

* pBeginInfois an instance of the VkCommandBuf ferBeginInfo structure, which defines additional information
about how the command buffer begins recording.

Valid Usage

e commandBuffer must be a valid VkCommandBuf fer handle
* pBeginInfo must be a pointer to a valid VkCommandBufferBeginInfo structure
* commandBuffer must not be in the recording state

e If commandBuffer was allocated from a VkCommandPool which did not have the VK_COMMAND_POOL__
CREATE_RESET_COMMAND_BUFFER_BIT flag set, commandBuf fer must be in the initial state.

* If commandBuffer is a secondary command buffer, the prnheritanceInfo member of pBeginInfo must be a
valid VkCommandBufferInheritanceInfo structure

* If commandBuffer is a secondary command buffer and either the occlusionQueryEnable member of the
pInheritanceInfo member of pBeginInfois VK_FALSE, or the precise occlusion queries feature is not
enabled, the queryFlags member of the pInheritanceInfo member pBeginInfo must not contain VK_
QUERY_CONTROL_PRECISE_BIT

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Vulkan 1.0 - A Specification 57 /615

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferBeginInfo structure is defined as:

typedef struct VkCommandBufferBeginInfo ({

VkStructureType sType;
const voidx pNext;
VkCommandBufferUsageFlags flags;
const VkCommandBufferInheritanceInfox pInheritanceInfo;

} VkCommandBufferBeginInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* flags is a combination of bitfield flags indicating usage behavior for the command buffer. Possible values include:

typedef enum VkCommandBufferUsageFlagBits {
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT = 0x00000001,
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT = 0x00000002,
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT = 0x00000004,

} VkCommandBufferUsageFlagBits;

— VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT indicates that each recording of the command
buffer will only be submitted once, and the command buffer will be reset and recorded again between each
submission.

— VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT indicates that a secondary command buffer
is considered to be entirely inside a render pass. If this is a primary command buffer, then this bit is ignored.

— Setting VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT allows the command buffer to be
resubmitted to a queue or recorded into a primary command buffer while it is pending execution.

* pInheritancelInfois a pointer to a VkCommandBufferInheritanceInfo structure, which is used if
commandBuf fer is a secondary command buffer. If this is a primary command buffer, then this value is ignored.

Valid Usage

¢ sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO
* pNext must be NULL
e flags must be a valid combination of VkCommandBufferUsageFlagBits values

e If f1ags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the renderPass
member of pTnheritanceInfo must be a valid VkRenderPass

e If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the subpass member
of pInheritanceInfo must be a valid subpass index within the renderPass member of pTnheritanceInfo

o If F1 ags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the framebuffer
member of pInheritanceInfo must be either VK_NULL_HANDLE, or a valid VkFramebuf fer thatis
compatible with the renderPass member of pInheritanceInfo

If the command buffer is a secondary command buffer, then the VkCommandBufferInheritanceInfo structure
defines any state that will be inherited from the primary command buffer:

typedef struct VkCommandBufferInheritanceInfo {

VkStructureType sType;

const void= pNext;

VkRenderPass renderPass;

uint32_t subpass;
VkFramebuffer framebuffer;

VkBool32 occlusionQueryEnable;
VkQueryControlFlags queryFlags;
VkQueryPipelineStatisticFlags pipelineStatistics;

VkCommandBufferInheritanceInfo;

—

* renderPassis a VkRenderPass object that must be compatible with the one that is bound when the
VkCommandBuf fer is executed if the command buffer was allocated with the VK_COMMAND_BUFFER_USAGE_
RENDER_PASS_CONTINUE_BTIT set.

* subpass is the index of the subpass within renderpPass that the VkCommandBuf fer will be rendering against if it
was allocated with the VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT set.

» framebuffer refers to the VkFramebuf fer object that the VkCommandBuf fer will be rendering to if it was
allocated with the VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT set. It can be VK_NULL_
HANDLE if the framebuffer is not known.

Note
Specifying the exact framebuffer that the secondary command buffer will be executed with may result in better
performance at command buffer execution time.

* occlusionQueryEnable indicates whether the command buffer can be executed while an occlusion query is active
in the primary command buffer. If this is VK_TRUE, then this command buffer can be executed whether the primary
command buffer has an occlusion query active or not. If this is VK_FALSE, then the primary command buffer must not
have an occlusion query active.

Vulkan 1.0 - A Specification 59/615

* gueryFlags indicates the query flags that can be used by an active occlusion query in the primary command buffer
when this secondary command buffer is executed. If this value includes the VK_QUERY_CONTROL_PRECISE_BIT
bit, then the active query can return boolean results or actual sample counts. If this bit is not set, then the active query
must not use the VK_QUERY_CONTROL_PRECISE_BIT bit. If this is a primary command buffer, then this value is
ignored.

* pipelineStatistics indicates the set of pipeline statistics that can be counted by an active query in the primary
command buffer when this secondary command buffer is executed. If this value includes a given bit, then this
command buffer can be executed whether the primary command buffer has a pipeline statistics query active that
includes this bit or not. If this value excludes a given bit, then the active pipeline statistics query must not be from a
query pool that counts that statistic.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO
e pNext must be NULL

e Each of renderPass and framebuffer that are valid handles must have been created, allocated or retrieved
from the same VkDevice

* If the inherited queries feature is not enabled, occlusionQueryEnable must be VK_FALSE

* If the inherited queries feature is enabled, gueryFlags must be a valid combination of
VkQueryControlFlagBits values

« If the pipeline statistics queries feature is not enabled, pipelineStatistics mustbe 0

A primary command buffer is considered to be pending execution from the time it is submitted via vkQueueSubmit
until that submission completes.

A secondary command buffer is considered to be pending execution from the time its execution is recorded into a
primary buffer (via vkCmdExecuteCommands) until the final time that primary buffer’s submission to a queue
completes. If, after the primary buffer completes, the secondary command buffer is recorded to execute on a different
primary buffer, the first primary buffer must not be resubmitted until after it is reset with vkReset CommandBuffer.

If VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT is not set on a secondary command buffer, that
command buffer must not be used more than once in a given primary command buffer. Furthermore, if a secondary
command buffer without VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set is recorded to execute in
a primary command buffer with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set, the primary
command buffer must not be pending execution more than once at a time.

Note

On some implementations, not using the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT bit
enables command buffers to be patched in-place if needed, rather than creating a copy of the command buffer.

If a command buffer is in the executable state and the command buffer was allocated from a command pool with the VK__
COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then vkBeginCommandBuf fer implicitly

resets the command buffer, behaving as if vkResetCommandBuf fer had been called with VK_COMMAND_BUFFER__
RESET_RELEASE_RESOURCES_BIT not set. It then puts the command buffer in the recording state.

Once recording starts, an application records a sequence of commands (vkCmd+) to set state in the command buffer,
draw, dispatch, and other commands.

To complete recording of a command buffer, call:

VkResult vkEndCommandBuffer (
VkCommandBuffer commandBuffer) ;

* commandBuf fer is the command buffer to complete recording. The command buffer must have been in the recording
state, and is moved to the executable state.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle
* commandBuffer must be in the recording state
* vkEndCommandBuf fer must not be called inside a render pass instance

* All queries made active during the recording of commandBuffer must have been made inactive

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_ DEVICE_MEMORY

Vulkan 1.0 - A Specification

61/615

If there was an error during recording, the application will be notified by an unsuccessful return code returned by
vkEndCommandBuffer. If the application wishes to further use the command buffer, the command buffer must be
reset.

When a command buffer is in the executable state, it can be submitted to a queue for execution.

5.4 Command Buffer Submission

Command buffers are submitted to a queue by calling:

VkResult vkQueueSubmit (

VkQueue
uint32_t
const VkSubmitInfox
VkFence

queue,
submitCount,
pSubmits,
fence);

* gueue is the handle of the queue that the command buffers will be submitted to.

* submitCount is the number of elements in the pSubmits array.

* pSubmits is a pointer to an array of VkSubmit Info structures which describe the work to submit. All work
described by pSubmi t s must be submitted to the queue before the command returns.

* fence is an optional handle to a fence. If fence is not VK_NULL_HANDLE, the fence is signaled when execution of
all VkSubmitInfo::pCommandBuffers members of pSubmits is completed. If submitCount is zero but fence is
not VK_NULL_HANDLE, the fence will still be submitted to the queue and will become signaled when all work
previously submitted to the queue has completed.

Valid Usage

queue must be a valid VkQueue handle

If submitCount is not 0, pSubmits must be a pointer to an array of submitCount valid VkSubmitInfo

structures

If fenceis not VK_NULIL_HANDLE, fence must be a valid VkFence handle

Each of queue and fence that are valid handles must have been created, allocated or retrieved from the same

VkDevice

fence must be unsignalled

fence must not be associated with any other queue command that has not yet completed execution on that queue

Host Synchronization

* Host access to queue must be externally synchronized
» Host access to pSubmi t s[].pWaitSemaphores[] must be externally synchronized
» Host access to pSubmi t s[].pSignalSemaphores[] must be externally synchronized

» Host access to fence must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
- - Any

Return Codes

Success

e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_DEVICE_LOST

Each submission of work is represented by a sequence of command buffers, each preceded by a list of semaphores upon
which to wait before beginning execution of specific stages of commands in the command buffers, and followed by a
second list of semaphores to signal upon completion of the work contained in the command buffers.

Note

The exact definition of a submission is platform-specific, but is considered a relatively expensive operation. In
general, applications should attempt to batch work together into as few calls to vkQueueSubmit as possible.

Each call to vkQueueSubmit submits zero or more batches of work to the queue for execution. submitCount is used
to specify the number of batches to submit. Each batch includes zero or more semaphores to wait upon, and a

Vulkan 1.0 - A Specification 63/615

corresponding set of stages that will wait for the semaphore to be signalled before executing any work, followed by a
number of command buffers that will be executed, and finally, zero or more semaphores that will be signaled after
command buffer execution completes. Each batch is represented as an instance of the Vk Submit Info structure stored
in an array, the address of which is passed in pSubmitInfo. The definition of VkSubmitInfo is:

typedef struct VkSubmitInfo {

—

VkStructureType sType;

const voidx pNext;

uint32_t waitSemaphoreCount;

const VkSemaphorex pWaitSemaphores;

const VkPipelineStageFlagsx pWaitDstStageMask;

uint32_t commandBufferCount;

const VkCommandBufferx pCommandBuffers;

uint32_t signalSemaphoreCount;

const VkSemaphorex pSignalSemaphores;
VkSubmitInfo;

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.

waitSemaphoreCount is the number of semaphores upon which to wait before executing the command buffers for
the batch.

pWaitSemaphores is a pointer to an array of semaphores upon which to wait before executing the command buffers
in the batch.

pWaitDstStageMask is a pointer to an array of pipeline stages at which each corresponding semaphore wait will
occur.

commandBufferCount contains the number of command buffers to execute in the batch.

pCommandBuffers is a pointer to an array of command buffers to execute in the batch. The command buffers
submitted in a batch begin execution in the order they appear in pCommandBuffers, but may complete out of order.

signalSemaphoreCount is the number of semaphores to be signaled once the commands specified in
pCommandBuf fers have completed execution.

pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the command buffers for
this batch have completed execution.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO
* pNext must be NULL

* If waitSemaphoreCount is not 0, paitSemaphores must be a pointer to an array of waitSemaphoreCount
valid VkSemaphore handles

* If waitSemaphoreCount is not 0, piaitDstStageMask must be a pointer to an array of
waitSemaphoreCount valid combinations of VkPipelineStageFlagBits values

¢ Each element of pwaitDstStageMask must not be 0

* If commandBufferCount is not 0, pCommandBuf fers must be a pointer to an array of commandBufferCount
valid VkCommandBuf fer handles

* If signalSemaphoreCount is not 0, pSignalSemaphores must be a pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

¢ Each of the elements of pwaitSemaphores, the elements of pCommandBuffers and the elements of
pSignalSemaphores that are valid handles must have been created, allocated or retrieved from the same
VkDevice

* Any given element of pSignalSemaphores must currently be unsignalled

* Any given element of pCommandBuf fers must either have been recorded with the VK_COMMAND_BUFFER _
USAGE_SIMULTANEOUS_USE_BIT, or not currently be executing on the device

* Any given element of pCommandBuf fers must be in the executable state

* If any given element of pCommandBuf fers contains commands that execute secondary command buffers, those
secondary command buffers must have been recorded with the VK_COMMAND_BUFFER_USAGE_
SIMULTANEOUS_USE_BIT, or not currently be executing on the device

* If any given element of pCommandBuf fers was created with VK_COMMAND_BUFFER_USAGE_ONE_TIME_
SUBMIT_BIT, it must not have been previously submitted without re-recording that command buffer

* Any given element of pCommandBuf fers must not contain commands that execute a secondary command buffer,
if that secondary command buffer has been recorded in another primary command buffer after it was recorded into
this VkCommandBuffer

* Any given element of pCommandBuf fers must have been created on a VkCommandPool that was created for
the same queue family that the calling command’s queue belongs to

* Any given element of pCommandBuf fers must not have been created with VK_COMMAND_BUFFER_LEVEL_
SECONDARY

* Any given element of VkSemaphore in pWaitSemaphores must refer to a prior signal of that VkSemaphore
that won’t be consumed by any other wait on that semaphore

* If the geometry shaders feature is not enabled, any given element of pwaitDstStageMask must not contain VK _
PIPELINE_STAGE_GEOMETRY_SHADER BIT

* If the tessellation shaders feature is not enabled, any given element of pwaitDstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL SHADER BIT Or VK_PIPELINE_STAGE_TESSELLATION_
EVALUATION_SHADER BIT

If fence is provided, it must be in the unsignaled state (see Fences) and a fence must only be associated with a single
submission until that submission completes, and the fence is subsequently reset. When all command buffers in
pCommandBuf fers have completed execution, the status of fence is set to signaled, providing certain implicit ordering
guarantees.

Vulkan 1.0 - A Specification 65/615

5.5 Queue Forward Progress

The application must ensure that command buffer submissions will be able to complete without any subsequent
operations by the application on any queue. After any call to vkQueueSubmit, for every queued wait on a semaphore
there must be a prior signal of that semaphore that won’t be consumed by a different wait on the semaphore.

Command buffers in the submission can include vkCmdWaitEvents commands that wait on events that won’t be
signaled by earlier commands in the queue. Such events must be signaled by the application using vkSetEvent, and
the vkCmdWaitEvents commands that wait upon them must not be inside a render pass instance. Implementations
may have limits on how long the command buffer will wait, in order to avoid interfering with progress of other clients of
the device. If the event isn’t signaled within these limits, results are undefined and may include device loss.

5.6 Secondary Command Buffer Execution

A secondary command buffer must not be directly submitted to a queue. Instead, secondary command buffers are
recorded to execute as part of a primary command buffer with the command:

void vkCmdExecuteCommands (

VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer= pCommandBuffers) ;

* commandBuffer is a handle to a primary command buffer that the secondary command buffers are submitted to, and
must be in the recording state.

* commandBufferCount is the length of the pCommandBuffers array.

* pCommandBuffers is an array of secondary command buffer handles, which are recorded to execute in the primary
command buffer in the order they are listed in the array.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle
* pCommandBuffers must be a pointer to an array of commandBufferCount valid VkCommandBuf fer handles
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support transfer, graphics or compute
operations

* commandBuffer must be a primary VkCommandBuffer
* The value of commandBufferCount must be greater than O

e Each of commandBuffer and the elements of pCommandBuffers must have been created, allocated or retrieved
from the same VkDevice

commandBuf fer must have been created with a 1evel value of VK_COMMAND_BUFFER_LEVEL
PRIMARY

Any given element of pCommandBuf fers must have been created with a 1evel value of VK_COMMAND_
BUFFER_LEVEL_SECONDARY

Any given element of pCommandBuf fers must not be already pending execution in commandBuffer, or appear
twice in pCommandBuffers, unless it was created with the VK_COMMAND_BUFFER_USAGE_
SIMULTANEOUS_USE_BIT flag

Any given element of pCommandBuf fers must not be already pending execution in any other
VkCommandBuf fer, unless it was created with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_
USE_BIT flag

Any given element of pCommandBuffers must be in the executable state

If vkCmdExecuteCommands is being called within a render pass instance, that render pass instance must have
been begun with the content s parameter of vkCmdBeginRenderPass set to VK_SUBPASS_CONTENTS_
SECONDARY_COMMAND_BUFFERS

If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBuffers must have been recorded with the VK_ COMMAND_BUFFER_USAGE_RENDER_PASS__
CONTINUE_BIT

If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBu f fers must have been recorded with the subpass member of the inheritanceInfo structure set
to the index of the subpass which the given command buffer will be executed in

If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBuf fers must have been recorded with a render pass that is compatible with the current render pass -
see Section 7.2

If vkCmdExecuteCommands is being called within a render pass instance, and any given element of
pCommandBuffers was recorded with the framebuffer member of the
VkCommandBufferInheritanceInfo structure not equal to VK_NULL_HANDLE, that VkFramebuffer
must be compatible with the VkFramebuf fer used in the current render pass instance

If the inherited queries feature is not enabled, commandBuffer must not have any queries active

If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuf fers must have been recorded with
VkCommandBufferBeginInfo:iocclusionQueryEnable setto VK_TRUE

If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuf fers must have been recorded with VkCommandBufferBeginInfo::queryFlags having all
bits set that are set for the query

If commandBuffer hasa VK_QUERY_TYPE_PIPELINE_STATISTICS query active, then each element of
pCommandBu f fers must have been recorded with VkCommandBufferBeginInfo:pipelineStatistics
having all bits set that are set in the VkQueryPool the query uses

Any given element of pCommandBuffers must not begin any query types that are active in commandBuffer

Vulkan 1.0 - A Specification

67 /615

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both TRANSFER
GRAPHICS
COMPUTE

Once vkCmdExecuteCommands has been called, any prior executions of the secondary command buffers specified by
pCommandBuf fers in any other primary command buffer become invalidated, unless those secondary command buffers
were recorded with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT.

Vulkan 1.0 - A Specification 69/615

Chapter 6

Synchronization and Cache Control

Synchronization of access to resources is primarily the responsibility of the application. In Vulkan, there are four forms
of concurrency during execution: between the host and device, between the queues, between queue submissions, and
between commands within a command buffer. Vulkan provides the application with a set of synchronization primitives
for these purposes. Further, memory caches and other optimizations mean that the normal flow of command execution
does not guarantee that all memory transactions from a command are immediately visible to other agents with views into
a given block of memory. Vulkan also provides barrier operations to ensure this type of synchronization.

Four synchronization primitive types are exposed by Vulkan. These are:

* Fences
* Semaphores
* Events

e Barriers

Each is covered in detail in its own subsection of this chapter. Fences are used to communicate completion of execution
of command buffer submissions to queues back to the application. Fences can therefore be used as a coarse-grained
synchronization mechanism. Semaphores are generally associated with resources or groups of resources and can be used
to marshal ownership of shared data. Their status is not visible to the host. Events provide a finer-grained
synchronization primitive which can be signaled at command level granularity by both device and host, and can be
waited upon by either. Barriers provide execution and memory synchronization between sets of commands.

6.1 Fences

Fences can be used by the host to determine completion of execution of submissions to queues performed with
vkQueueSubmit and vkQueueBindSparse.

A fence’s status is always either signaled or unsignaled. The host can poll the status of a single fence, or wait for any or
all of a group of fences to become signaled.

To create a new fence object, use the command

VkResult vkCreateFence (

VkDevice device,
const VkFenceCreateInfox pCreatelnfo,
const VkAllocationCallbacksx pAllocator,

VkFencex pFence) ;

* device is the logical device that creates the fence.
* pCreateInfo points to a VkFenceCreateInfo structure specifying the state of the fence object.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pFence points to a handle in which the resulting fence object is returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkFenceCreateInfo structure
* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pFence must be a pointer to a VkFence handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkFenceCreateInfo is:

typedef struct VkFenceCreateInfo {

VkStructureType sType;
const voidx pNext;
VkFenceCreateFlags flags;

} VkFenceCreatelInfo;

The f1ags member of the VkFenceCreateInfo structure pointed to by pCreateInfo contains flags defining the
initial state and behavior of the fence. The flags are:

typedef enum VkFenceCreateFlagBits ({
VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,
} VkFenceCreateFlagBits;

Vulkan 1.0 - A Specification 71/615

If f1ags contains VK_FENCE_CREATE_SIGNALED_BIT then the fence object is created in the signaled state.
Otherwise it is created in the unsignaled state.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO
* pNext must be NULL

* flags must be a valid combination of VkFenceCreateFlagBits values

A fence can be passed as a parameter to the queue submission commands, and when the associated queue submissions all
complete execution the fence will transition from the unsignaled to the signaled state. See Command Buffer Submission
and Binding Resource Memory.

To destroy a fence, call:

void vkDestroyFence (

VkDevice device,
VkFence fence,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the fence.
» fence is the handle of the fence to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If fenceisnot VK_NULL_HANDLE, fence must be a valid VkFence handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
» If fence is a valid handle, it must have been created, allocated or retrieved from device

* Each of device and fence that are valid handles must have been created, allocated or retrieved from the same
VkPhysicalDevice

* fence must not be associated with any queue command that has not yet completed execution on that queue

* [f VkAllocationCallbacks were provided when fence was created, a compatible set of callbacks must be
provided here

* IfnoVkAllocationCallbacks were provided when fence was created, pAllocator must be NULL

Host Synchronization

* Host access to fence must be externally synchronized

To query the status of a fence from the host, use the command

VkResult vkGetFenceStatus (
VkDevice device,
VkFence fence);

* device is the logical device that owns the fence.

* fence is the handle of the fence to query.

Valid Usage

e device must be a valid VkDevice handle
e fence must be a valid VkFence handle
e fence must have been created, allocated or retrieved from device

e Each of device and fence must have been created, allocated or retrieved from the same VkPhysicalDevice

Return Codes

Success

* VK_SUCCESS
e VK_NOT_READY

Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY
e VK_ERROR_DEVICE_LOST

Upon success, vkGetFenceStatus returns the status of the fence, which is one of:

Vulkan 1.0 - A Specification 73/615

* VK_SUCCESS indicates that the fence is signaled.

* VK_NOT_READY indicates that the fence is unsignaled.

To reset the status of one or more fences to the unsignaled state, so that they can be reused after a queue submission
completes, use the command:

VkResult vkResetFences (

VkDevice device,
uint32_t fenceCount,
const VkFencex pFences) ;

* device is the logical device that owns the fences.
* fenceCount is the number of fences to reset.

* pFences is a pointer to an array of fenceCount fence handles to reset.

Valid Usage

* device must be a valid VkDevice handle

* pFences must be a pointer to an array of fenceCount valid VkFence handles

* The value of fenceCount must be greater than 0

¢ Each element of pFences must have been created, allocated or retrieved from device

e Each of device and the elements of pFences must have been created, allocated or retrieved from the same
VkPhysicalDevice

* Any given element of pFences must not currently be associated with any queue command that has not yet
completed execution on that queue

Host Synchronization

* Host access to each member of pFences must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

To cause the host to wait until any one or all of a group of fences is signaled, use the command:

VkResult vkWaitForFences (

VkDevice device,
uint32_t fenceCount,
const VkFencex pFences,
VkBool32 waitAll,
uint64_t timeout) ;

* device is the logical device that owns the fences.
* fenceCount is the number of fences to wait on.
* pFences is a pointer to an array of fenceCount fence handles.

* waitAll is the condition that must be satisfied to successfully unblock the wait. If waitAl1l is VK_TRUE, then the
condition is that all fences in pFences are signaled. Otherwise, the condition is that at least one fence in pFences is
signaled.

* timeout is the timeout period in units of nanoseconds. The value of timeout is adjusted to the closest value allowed
by the implementation-dependent timeout accuracy, which may be substantially longer than one nanosecond, and may
be longer than the requested period.

Valid Usage

* device must be a valid VkDevice handle

* pFences must be a pointer to an array of fenceCount valid VkFence handles

* The value of fenceCount must be greater than 0

¢ Each element of pFences must have been created, allocated or retrieved from device

e Each of device and the elements of pFences must have been created, allocated or retrieved from the same
VkPhysicalDevice

Vulkan 1.0 - A Specification 75/615

Return Codes

Success

* VK_SUCCESS
e VK_TIMEOUT

Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF DEVICE_MEMORY
e VK_ERROR_DEVICE_LOST

If the condition is satisfied when vkWaitForFences is called, then vkWaitForFences returns immediately. If the
condition is not satisfied at the time vkWaitForFences is called, then vkWaitForFences will block and wait up
to t imeout nanoseconds for the condition to become satisfied.

If the value of t imeout is zero, then vkWaitForFences does not wait, but simply returns the current state of the
fences. VK_TIMEOUT will be returned in this case if the condition is not satisfied, even though no actual wait was
performed.

If the specified timeout period expires before the condition is satisfied, vkWaitForFences returns VK_TIMEOUT. If
the condition is satisfied before timeout nanoseconds has expired, vkWaitForFences returns VK_SUCCESS.

Fences become signaled when the device completes executing the work that was submitted to a queue accompanied by
the fence. But this alone is not sufficient for the host to be guaranteed to see the results of device writes to memory. To
provide that guarantee, the application must insert a memory barrier between the device writes and the end of the
submission that will signal the fence, with dstAccessMask having the VK_ACCESS_HOST_READ_BIT bit set, with
dstStageMask having the VK_PIPELINE_STAGE_HOST_BIT bit set, and with the appropriate srcStageMask and
srcAccessMask members set to guarantee completion of the writes. If the memory was allocated without the VK__
MEMORY_PROPERTY_HOST_COHERENT_BIT set, then vkInvalidateMappedMemoryRanges must be called
after the fence is signaled in order to ensure the writes are visible to the host, as described in Host Access to Device
Memory Objects.

6.2 Semaphores

Semaphores are used to coordinate operations between queues and between queue submissions within a single queue. An
application might associate semaphores with resources or groups of resources to marshal ownership of shared data. A
semaphore’s status is always either signaled or unsignaled. Semaphores are signaled by queues and can also be waited
on in the same or different queues until they are signaled.

To create a new semaphore object, use the command

VkResult vkCreateSemaphore (

VkDevice device,
const VkSemaphoreCreateInfox pCreatelnfo,
const VkAllocationCallbacksx pAllocator,

VkSemaphorex* pSemaphore) ;

* device is the logical device that creates the semaphore.
* pCreateInfo points to a VkSemaphoreCreateInfo structure specifying the state of the semaphore object.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pSemaphore points to a handle in which the resulting semaphore object is returned. The semaphore is created in the
unsignaled state.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkSemaphoreCreateInfo structure
e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pSemaphore must be a pointer to a VkSemaphore handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkSemaphoreCreateInfo is:

typedef struct VkSemaphoreCreateInfo {

VkStructureType sType;
const voidx pNext;
VkSemaphoreCreateFlags flags;

} VkSemaphoreCreateInfo;

The members of VkSemaphoreCreateInfo have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

* flags is reserved for future use.

Vulkan 1.0 - A Specification 771615

Valid Usage

* sType must be VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO
* pNext must be NULL

* flags mustbe 0

To destroy a semaphore, call:

void vkDestroySemaphore (

VkDevice device,
VkSemaphore semaphore,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the semaphore.
* semaphore is the handle of the semaphore to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

* If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If semaphore is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and semaphore that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

* semaphore must not be associated with any queue command that has not yet completed execution on that queue

e If VkAllocationCallbacks were provided when semaphore was created, a compatible set of callbacks
must be provided here

* If no VkAllocationCallbacks were provided when semaphore was created, pAllocator must be NULL

Host Synchronization

* Host access to semaphore must be externally synchronized

To signal a semaphore from a queue, include it in an element of the array of VkSubmit Info structures passed through
the pSubmit Info parameter to a call to vkQueueSubmit, or in an element of the array of VkBindSparseInfo
structures passed through the pBindInfo parameter to a call to vkQueueBindSparse.

Semaphores included in the pSignalSemaphores array of one of the elements of a queue submission are signaled once
queue execution reaches the signal operation, and all previous work in the queue completes. Any operations waiting on
that semaphore in other queues will be released once it is signaled.

Similarly, to wait on a semaphore from a queue, include it in the pwaitSemaphores array of one of the elements of a
batch in a queue submission. When queue execution reaches the wait operation, will stall execution of subsequently
submitted operations until the semaphore reaches the signaled state due to a signaling operation. Once the semaphore is
signaled, the subsequent operations will be permitted to execute and the status of the semaphore will be reset to the
unsignaled state.

In the case of VkSubmit Info, command buffers wait at specific pipeline stages, rather than delaying the entire
command buffer’s execution, with the pipeline stages determined by the value of the corresponding element of the
pWaitDstStageMask member of VkSubmit Info. Execution of work by those stages in subsequent commands is
stalled until the corresponding semaphore reaches the signaled state. Subsequent sparse binding operations wait for the
semaphore to become signaled, regardless of the values of pwaitDstStageMask.

Vulkan 1.0 - A Specification 79/615

Note

A common scenario for using pwaitDstStageMask with values other than VK_PIPELINE_STAGE_ALL_
COMMANDS_BIT is when synchronizing a window system presentation operation against subsequent command
buffers which render the next frame. In this case, an image that was being presented must not be overwritten
until the presentation operation completes, but other pipeline stages can execute without waiting. A mask
of VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT prevents subsequent color attachment
writes from executing until the semaphore signals. Some implementations may be able to execute transfer
operations and/or vertex processing work before the semaphore is signaled.

If an image layout transition needs to be performed on a swapchain image before it is used in a framebuffer, that
can be performed as the first operation submitted to the queue after acquiring the image, and should not prevent
other work from overlapping with the presentation operation. For example, a VkImageMemoryBarrier
could use:

*» srcStageMask =VK_PIPELINE_STAGE_COLOR_ATTACHMENT_ OUTPUT_BIT
e srcAccessMask =VK_ACCESS_MEMORY_READ_BIT
* dstStageMask =VK_PIPELINE_STAGE_COLOR_ATTACHMENT_ OUTPUT_BIT

* dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACH
MENT_WRITE_BIT.

* oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
* newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL

Alternately, o1dLayout can be VK_IMAGE_LAYOUT_UNDEFINED, if the image’s contents need not be pre-
served.

This barrier accomplishes a dependency chain between previous presentation operations and subsequent color
attachment output operations, with the layout transition performed in between, and does not introduce a depen-
dency between previous work and any vertex processing stages. More precisely, the semaphore signals after
the presentation operation completes, then the semaphore wait stalls the VK_PIPELINE_STAGE_COLOR_
ATTACHMENT_OUTPUT_BIT stage, then there is a dependency from that same stage to itself with the layout
transition performed in between.

When a queue signals or waits upon a semaphore, certain implicit ordering guarantees are provided.

Semaphore operations may not make the side effects of commands visible to the host.

6.3 Events

Events represent a fine-grained synchronization primitive that can be used to gauge progress through a sequence of
commands executed on a queue by Vulkan. An event is initially in the unsignaled state. It can be signaled by a device,
using commands inserted into the command buffer, or by the host. It can also be reset to the unsignaled state by a device
or the host. The host can query the state of an event. A device can wait for one or more events to become signaled.

To create an event, call:

VkResult vkCreateEvent (

VkDevice device,
const VkEventCreateInfox pCreatelnfo,
const VkAllocationCallbacksx pAllocator,

VkEvent x pEvent) ;

* device is the logical device that creates the event.

* pCreateInfois a pointer to an instance of the VkEventCreateInfo structure which contains information about

how the event is to be created.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pEvent points to a handle in which the resulting event object is returned.

Valid Usage

e device must be a valid VkDevice handle

* pEvent must be a pointer to a VkEvent handle

* pCreatelInfo must be a pointer to a valid VkEventCreateInfo structure

* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

Return Codes

Success
* VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkEventCreateInfo is:

typedef struct VkEventCreatelInfo {

VkStructureType sType;
const voidx pNext;
VkEventCreateFlags flags;

} VkEventCreatelInfo;

The fl1ags member of the VkEventCreateInfo structure pointed to by pCreateInfo contains flags defining the
behavior of the event. Currently, no flags are defined. When created, the event object is in the unsignaled state.

Vulkan 1.0 - A Specification 81/615

Valid Usage

* sType must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO
* pNext must be NULL

e flags mustbe 0

To destroy an event, call:

void vkDestroyEvent (

VkDevice device,
VkEvent event,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the event.
* event is the handle of the event to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If event is not VK_NULL_HANDLE, event must be a valid VkEvent handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If event is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and event that are valid handles must have been created, allocated or retrieved from the same
VkPhysicalDevice

* All submitted commands that refer to event must have completed execution

e [f VkAllocationCallbacks were provided when event was created, a compatible set of callbacks must be
provided here

* IfnoVkAllocationCallbacks were provided when event was created, pAllocator must be NULL

Host Synchronization

* Host access to event must be externally synchronized

To query the state of an event from the host, call:

VkResult vkGetEventStatus (
VkDevice device,
VkEvent event) ;

* device is the logical device that owns the event.

* event is the handle of the event to query.

Valid Usage

e device must be a valid VkDevice handle
* event must be a valid VkEvent handle
* event must have been created, allocated or retrieved from device

* Each of device and event must have been created, allocated or retrieved from the same VkPhysicalDevice

Return Codes

Success

e VK_EVENT_SET
¢ VK_EVENT_RESET

Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_DEVICE_LOST

Upon success, vkGetEvent Status returns the state of the event object with the following return codes:

Status Meaning
VK_EVENT_SET The event specified by event is signaled.
VK_EVENT_RESET The event specified by event is unsignaled.

The state of an event can be updated by the host. The state of the event is immediately changed, and subsequent calls to
vkGetEventStatus will return the new state.

Vulkan 1.0 - A Specification

83/615

To set the state of an event to signaled from the host, call:

VkResult vkSetEvent (
VkDevice device,
VkEvent event) ;

* device is the logical device that owns the event.

e event is the event to set.

Valid Usage

e device must be a valid VkDevice handle
* event must be a valid VkEvent handle

* event must have been created, allocated or retrieved from device

* Each of device and event must have been created, allocated or retrieved from the same VkPhysicalDevice

Host Synchronization

* Host access to event must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_ DEVICE_MEMORY

To set the state of an event to unsignaled from the host, call:

VkResult vkResetEvent (
VkDevice device,
VkEvent event) ;

* device is the logical device that owns the event.

* event is the event to reset.

Valid Usage

e device must be a valid VkDevice handle
e event must be a valid VkEvent handle
* event must have been created, allocated or retrieved from device

* Each of device and event must have been created, allocated or retrieved from the same VkPhysicalDevice

Host Synchronization

* Host access to event must be externally synchronized

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The state of an event can also be updated on the device by commands inserted in command buffers. To set the state of an
event to signaled from a device, call:

Vulkan 1.0 - A Specification 85/615

void vkCmdSetEvent (

VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask) ;

e commandBuffer is the command buffer into which the command is recorded.
* event is the event that will be signaled.

* stageMask specifies the pipeline stage at which the state of event is updated as described below.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* event must be a valid VkEvent handle

* stageMask must be a valid combination of VkPipelineStageFlagBits values

* stageMask must not be 0

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations
* This command must only be called outside of a render pass instance

¢ Each of commandBuffer and event must have been created, allocated or retrieved from the same VkDevice

* If the geometry shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_GEOMETRY
SHADER_BIT

« If the tessellation shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL SHADER BIT Or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER
BIT

Host Synchronization

» Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary COMPUTE

To set the state of an event to unsignaled from a device, call:

volid vkCmdResetEvent (

VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask) ;

e commandBuffer is the command buffer into which the command is recorded.
e event is the event that will be reset.

* stageMask specifies the pipeline stage at which the state of event is updated as described below.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* event must be a valid VkEvent handle

* stageMask must be a valid combination of VkPipelineStageFlagBits values

* stageMask must not be 0

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations
* This command must only be called outside of a render pass instance

e Each of commandBuffer and event must have been created, allocated or retrieved from the same VkDevice

* If the geometry shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_GEOMETRY
SHADER_BIT

« If the tessellation shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROIL_SHADER_BIT Or VK_PIPELINE_STAGE _TESSELLATION_EVALUATION_SHADER
BIT

Vulkan 1.0 - A Specification 87/615

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary COMPUTE

For both vkCmdSetEvent and vkCmdResetEvent, the status of event is updated once the pipeline stages
specified by stageMask (see Section 6.5.2) have completed executing prior commands. The command modifying the
event is passed through the pipeline bound to the command buffer at time of execution.

To wait for one or more events to enter the signaled state on a device, call:

void vkCmdWaitEvents (

VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEventx pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,

uint32_t

const VkMemoryBarrierx
uint32_t

const VkBufferMemoryBarrierx
uint32_t

const VkImageMemoryBarrierx

memoryBarrierCount,
pMemoryBarriers,
bufferMemoryBarrierCount,
pBufferMemoryBarriers,
imageMemoryBarrierCount,
pImageMemoryBarriers) ;

commandBuf fer is the command buffer into which the command is recorded.

eventCount is the length of the pEvent s array.

pEvents is an array of event object handles to wait on.

srcStageMask (see Section 6.5.2) is the bitwise OR of the pipeline stages used to signal the event object handles in

pEvents.

dstStageMask is the pipeline stages at which the wait will occur.

pMemoryBarriers is a pointer to an array of memoryBarrierCount VkMemoryBarrier structures.

pBufferMemoryBarriers iS a pointer to an array of bufferMemoryBarrierCount

VkBufferMemoryBarrier structures.

pImageMemoryBarriers is a pointer to an array of imageMemoryBarrierCount VkImageMemoryBarrier
structures. See Section 6.5.3 for more details about memory barriers.

Valid Usage

commandBuffer must be a valid VkCommandBuf fer handle

pEvents must be a pointer to an array of eventCount valid VkEvent handles
srcStageMask must be a valid combination of VkPipelineStageFlagBits values
srcStageMask must not be 0

dstStageMask must be a valid combination of VkPipelineStageFlagBits values
dstStageMask must not be 0

If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of memoryBarrierCount
valid VkMemoryBarrier structures

If bufferMemoryBarrierCount is not O, pBuf ferMemoryBarriers must be a pointer to an array of
bufferMemoryBarrierCount valid VkBuf ferMemoryBarrier structures

If imageMemoryBarrierCount is not O, pImageMemoryBarriers must be a pointer to an array of
imageMemoryBarrierCount valid VkImageMemoryBarrier structures

commandBuf fer must be in the recording state
The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations
The value of eventCount must be greater than 0

Each of commandBuffer and the elements of pEvents must have been created, allocated or retrieved from the
same VkDevice

srcStageMask must be the bitwise OR of the stageMask parameter used in previous calls to
vkCmdSetEvent with any of the members of pEvents and VK_PIPELINE_STAGE_HOST_BIT if any of the
members of pEvents was set using vkSetEvent

If the geometry shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER _BIT

If the geometry shaders feature is not enabled, dst StageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

If the tessellation shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT Or VK_PIPELINE_STAGE TESSELLATION EVALUATION_ SHADER
BIT

If the tessellation shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE._
TESSELLATION_CONTROI_SHADER_BIT Or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER
BIT

If pEvent s includes one or more events that will be signaled by vkSetEvent after commandBuffer has been
submitted to a queue, then vkCmdWaitEvents must not be called inside a render pass instance

Vulkan 1.0 - A Specification 89/615

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

vkCmdWaitEvents waits for events set by either vkSetEvent or vkCmdSetEvent to become signaled.
Logically, it has three phases:

1. Wait at the pipeline stages specified by dstStageMask (see Section 6.5.2) until the eventCount event objects
specified by pEvents become signaled. Implementations may wait for each event object to become signaled in
sequence (starting with the first event object in pEvents, and ending with the last), or wait for all of the event
objects to become signaled at the same time.

2. Execute the memory barriers specified by pMemoryBarriers, pBufferMemoryBarriers and
pImageMemoryBarriers (see Section 6.5.3).

3. Resume execution of pipeline stages specified by dstStageMask

Implementations may not execute commands in a pipelined manner, so vkCmdWaitEvents may not observe the
results of a subsequent vkCmdSetEvent or vkCmdResetEvent command, even if the stages in dstStageMask
occur after the stages in srcStageMask.

Commands that update the state of events in different pipeline stages may execute out of order, unless the ordering is
enforced by execution dependencies.

Note

Applications should be careful to avoid race conditions when using events. For example, an event should only
be reset if no vkCmdWaitEvents command is executing that waits upon that event.

An act of setting or resetting an event in one queue may not affect or be visible to other queues. For cross-queue
synchronization, semaphores can be used.

6.4 Execution And Memory Dependencies

Synchronization commands introduce explicit execution and memory dependencies between two sets of action
commands, where the second set of commands depends on the first set of commands. The two sets can be:

¢ First set: commands before a vkCmdSet Event command.

Second set: commands after a vkCmdWaitEvents command in the same queue, using the same event.

* First set: commands in a lower numbered subpass (or before a render pass instance).

Second set: commands in a higher numbered subpass (or after a render pass instance), where there is a subpass
dependency between the two subpasses (or between a subpass and VK_SUBPASS_EXTERNAL).

* First set: commands before a pipeline barrier.

Second set: commands after that pipeline barrier in the same queue (possibly limited to within the same subpass).

An execution dependency is a single dependency between a set of source and destination pipeline stages, which
guarantees that all work performed by the set of pipeline stages included in srcStageMask (see Pipeline Stage Flags) of
the first set of commands completes before any work performed by the set of pipeline stages included in dstStageMask
of the second set of commands begins.

An execution dependency chain from a set of source pipeline stages A to a set of destination pipeline stages B is a
sequence of execution dependencies submitted to a queue in order between a first set of commands and a second set of
commands, satisfying the following conditions:

* the first dependency includes A or VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT or VK_PIPELINE_STAGE_
ALL_COMMANDS_BIT in the srcStageMask. And,

* the final dependency includes B or VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT or VK_PIPELINE_STAGE_
ALL_COMMANDS_BIT in the dstStageMask. And,

» for each dependency in the sequence (except the first) at least one of the following conditions is true:

— srcStageMask of the current dependency includes at least one bit C that is present in the dst StageMask of the
previous dependency. Or,

— srcStageMask of the current dependency includes VK_PIPELINE_STAGE_ALL_COMMANDS_BIT or VK_
PIPELINE_STAGE _BOTTOM OF_PIPE_BIT.Or,

— dstStageMask of the previous dependency includes VK_PIPELINE_STAGE_ALL_COMMANDS_BIT or VK_
PIPELINE_STAGE_TOP_OF_ PIPE_ BIT.Or,

— srcStageMask of the current dependency includes VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, and
dstStageMask of the previous dependency includes at least one graphics pipeline stage. Or,

— dstStageMask of the previous dependency includes VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, and
srcStageMask of the current dependency includes at least one graphics pipeline stage.

A pair of consecutive execution dependencies in an execution dependency chain accomplishes a dependency between the
stages A and B via intermediate stages C, even if no work is executed between them that uses the pipeline stages included
inC.

An execution dependency chain guarantees that the work performed by the pipeline stages A in the first set of commands
completes before the work performed by pipeline stages B in the second set of commands begins.

An execution dependency is by-region if its dependencyF1lags parameter includes VK_DEPENDENCY_BY_REGION_
BIT. Such a barrier describes a per-region (x,y,layer) dependency. That is, for each region, the implementation must

Vulkan 1.0 - A Specification 91/615

ensure that the source stages for the first set of commands complete execution before any destination stages begin
execution in the second set of commands for the same region. Since fragment shader invocations are not specified to run
in any particular groupings, the size of a region is implementation-dependent, not known to the application, and must be
assumed to be no larger than a single pixel. If dependencyFlags does not include VK_DEPENDENCY_BY_REGION_
BIT, it describes a global dependency, that is for all pixel regions, the source stages must have completed for preceding
commands before any destination stages starts for subsequent commands.

Memory dependencies synchronize accesses to memory between two sets of commands. They operate according to two
“halves” of a dependency to synchronize two sets of commands, the commands that execute first vs the commands that
execute second, as described above. The first half of the dependency makes memory accesses using the set of access
types in srcAccessMask performed in pipeline stages in srcStageMask by the first set of commands complete and
writes be available for subsequent commands. The second half of the dependency makes any available writes from
previous commands visible to pipeline stages in dstStageMask using the set of access types in dstAccessMask for the
second set of commands, if those writes have been made available with the first half of the same or a previous
dependency. The two halves of a memory dependency can either be expressed as part of a single command, or can be
part of separate barriers as long as there is an execution dependency chain between them. The application must use
memory dependencies to make writes visible before subsequent reads can rely on them, and before subsequent writes can
overwrite them. Failure to do so causes the result of the reads to be undefined, and the order of writes to be undefined.

Global memory barriers apply to all resources owned by the device. Buffer and image memory barriers apply to the
buffer range(s) or image subresource(s) included in the command. For accesses to a byte of a buffer or subresource of an
image to be synchronized between two sets of commands, the byte or subresource must be included in both the first and
second halves of the dependencies described above, but need not be included in each step of the execution dependency
chain between them.

An execution dependency chain is by-region if all stages in all dependencies in the chain are framebuffer-space pipeline
stages, and if the VK_DEPENDENCY_BY_REGION_BIT bit is included in all dependencies in the chain. Otherwise, the
execution dependency chain is not by-region. The two halves of a memory dependency form a by-region dependency if
all execution dependency chains between them are by-region. In other words, if there is any execution dependency
between two sets of commands that is not by-region, then the memory dependency is not by-region.

When an image memory barrier includes a layout transition, the barrier first makes writes via srcStageMask and
srcAccessMask available, then performs the layout transition, then makes the contents of the image subresource(s) in
the new layout visible to memory accesses in dstStageMask and dstAccessMask, as if there is an execution and
memory dependency between the source masks and the transition, as well as between the transition and the destination
masks. Any writes that have previously been made available are included in the layout transition, but any previous writes
that have not been made available may become lost or corrupt the image.

All dependencies must include at least one bit in each of the srcStageMask and dstStageMask.

Memory dependencies are used to solve data hazards, e.g. to ensure that write operations are visible to subsequent read
operations (read-after-write hazard), as well as write-after-write hazards. Write-after-read and read-after-read hazards
only require execution dependencies to synchronize.

6.5 Pipeline Barriers

A pipeline barrier inserts an execution dependency and a set of memory dependencies between a set of commands earlier
in the command buffer and a set of commands later in the command buffer. A pipeline barrier is recorded by calling:

void vkCmdPipelineBarrier (

VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrierx pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrierx pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrierx pImageMemoryBarriers) ;

e commandBuffer is the command buffer into which the command is recorded.

* srcStageMask is a bitmask of VkPipelineStageFlagBits specifying a set of source pipeline stages (see
Section 6.5.2).

* dstStageMask is a bitmask specifying a set of destination pipeline stages.

The pipeline barrier specifies an execution dependency such that all work performed by the set of pipeline stages
included in srcStageMask of the first set of commands completes before any work performed by the set of pipeline
stages included in dstStageMask of the second set of commands begins.

* dependencyFlags is a bitmask of VkDependencyFlagBits. The execution dependency is by-region if the mask
includes VK_DEPENDENCY_BY_REGION_BIT.

* memoryBarrierCount is the length of the pMemoryBarriers array.

* pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

* bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

* pBufferMemoryBarriers is a pointer to an array of VkBuf ferMemoryBarrier structures.

* imageMemoryBarrierCount is the length of the pTmageMemoryBarriers array.

* pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

Each element of the pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers arrays specifies

two halves of a memory dependency, as defined above. Specifics of each type of memory barrier and the memory access
types are defined further in Memory Barriers.

If vkCmdPipelineBarrier is called outside a render pass instance, then the first set of commands is all prior
commands submitted to the queue and recorded in the command buffer and the second set of commands is all subsequent
commands recorded in the command buffer and submitted to the queue. If vkCmdPipelineBarrier is called inside
a render pass instance, then the first set of commands is all prior commands in the same subpass and the second set of
commands is all subsequent commands in the same subpass.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* srcStageMask must be a valid combination of VkPipelineStageFlagBits values
* srcStageMask must not be 0

* dstStageMask must be a valid combination of VkPipelineStageFlagBits values

e dstStageMask must not be 0

Vulkan 1.0 - A Specification 93/615

* dependencyF1lags must be a valid combination of VkDependencyFlagBits values

* If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of memoryBarrierCount
valid VkMemoryBarrier structures

» If bufferMemoryBarrierCount is not 0, pBuf ferMemoryBarriers must be a pointer to an array of
bufferMemoryBarrierCount valid VkBuf ferMemoryBarrier structures

* If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of
imageMemoryBarrierCount valid VkImageMemoryBarrier structures

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support transfer, graphics or compute
operations

* If the geometry shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER BIT

* If the geometry shaders feature is not enabled, dst St ageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

« If the tessellation shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROIL_SHADER_BIT Or VK_PIPELINE_STAGE _TESSELLATION_EVALUATION_SHADER
BIT

« If the tessellation shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT Or VK_PIPELINE_STAGE TESSELLATION EVALUATION_SHADER
BIT

* If vkCmdPipelineBarrier is called within a render pass instance, the render pass must declare at least one
self-dependency from the current subpass to itself - see Subpass Self-dependency

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both TRANSFER
Secondary GRAPHICS

COMPUTE

6.5.1 Subpass Self-dependency

If vkCmdPipelineBarrier is called inside a render pass instance, the following restrictions apply. For a given
subpass to allow a pipeline barrier, the render pass must declare a self-dependency from that subpass to itself. That is,
there must exist a VkSubpassDependency in the subpass dependency list for the render pass with srcSubpass and
dstSubpass equal to that subpass index. More than one self-dependency can be declared for each subpass.
Self-dependencies must only include pipeline stage bits that are graphics stages. Self-dependencies must not have any
earlier pipeline stages depend on any later pipeline stages. More precisely, this means that whatever is the last pipeline
stage in srcStageMask must be no later than whatever is the first pipeline stage in dst StageMask (the latest source
stage can be equal to the earliest destination stage). If the source and destination stage masks both include
framebuffer-space stages, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT.

A vkCmdPipelineBarrier command inside a render pass instance must be a subset of one of the self-dependencies
of the subpass it is used in, meaning that the stage masks and access masks must each include only a subset of the bits of
the corresponding mask in that self-dependency. If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT set,
then so must the pipeline barrier. Pipeline barriers within a render pass instance can only be types VkMemoryBarrier
or VkImageMemoryBarrier. If a VkImageMemoryBarrier is used, the image and subresource range specified
in the barrier must be a subset of one of the image views used by the framebuffer in the current subpass. Additionally,
oldLayout must be equal to newLayout, and both the srcQueueFamilyIndex and dstQueueFamilyIndex must be
VK_QUEUE_FAMILY_IGNORED

6.5.2 Pipeline Stage Flags

Several of the event commands, vkCmdPipelineBarrier, and VkSubpassDependency depend on being able to
specify where in the logical pipeline events can be signaled or the source and destination of an execution dependency.
These pipeline stages are specified with the bitfield:

typedef enum VkPipelineStageFlagBits {
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_ INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT 0x00010000,

} VkPipelineStageFlagBits;

The meaning of each bit is:

* VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT: Stage of the pipeline where commands are initially received by the
queue.

Vulkan 1.0 - A Specification 95/615

* VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT: Stage of the pipeline where Draw/DispatchlIndirect data
structures are consumed.

* VK_PIPELINE_STAGE_VERTEX_INPUT_BIT: Stage of the pipeline where vertex and index buffers are consumed.
* VK_PIPELINE_STAGE_VERTEX_SHADER_BIT: Vertex shader stage.

* VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT: Tessellation control shader stage.

* VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT: Tessellation evaluation shader stage.

e VK_PIPELINE_STAGE_GEOMETRY_SHADER_ BIT: Geometry shader stage.

* VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT: Fragment shader stage.

* VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT: Stage of the pipeline where early fragment tests (depth
and stencil tests before fragment shading) are performed.

* VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT: Stage of the pipeline where late fragment tests (depth
and stencil tests after fragment shading) are performed.

* VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT: Stage of the pipeline after blending where the
final color values are output from the pipeline. This stage also includes resolve operations that occur at the end of a
subpass. Note that this does not necessarily indicate that the values have been committed to memory.

* VK_PIPELINE_STAGE_TRANSFER_BIT: Execution of copy commands. This includes the operations resulting
from all transfer commands. The set of transfer commands comprises vkCmdCopyBuffer, vkCmdCopyImage,
vkCmdBlitImage, vkCmdCopyBufferToImage, vkCmdCopyImageToBuffer, vkCmdUpdateBuffer,
vkCmdFillBuffer, vkCmdClearColorImage, vkCmdClearDepthStencilImage,
vkCmdResolveImage, and vkCmdCopyQueryPoolResults.

* VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT: Execution of a compute shader.

* VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT: Final stage in the pipeline where commands complete
execution.

* VK_PIPELINE_STAGE_HOST_BIT: A pseudo-stage indicating execution on the host of reads/writes of device
memory.

* VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT: Execution of all graphics pipeline stages.

* VK_PIPELINE_STAGE_ALL_COMMANDS_BIT: Execution of all stages supported on the queue.

Note
The VK_PIPELINE_STAGE_ALL_COMMANDS_BIT and VK_PIPELINE_STAGE_ALL_GRAPHICS_
BIT differ from VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_RIT inthatthey correspond to all (or all graph-
ics) stages, rather than to a specific stage at the end of the pipeline. An execution dependency with only
- VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT in dstStageMask will not delay subsequent commands,
while including either of the other two bits will. Similarly, when defining a memory dependency, if the stage
mask(s) refer to all stages, then the indicated access types from all stages will be made available and/or visi-
ble, but using only VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT would not make any accesses avail-
able and/or visible because this stage doesn’'t access memory. The VK_PIPELINE_STAGE_BOTTOM_OF_
PIPE_BIT is useful for accomplishing memory barriers and layout transitions when the next accesses will be
done in a different queue or by a presentation engine; in these cases subsequent commands in the same queue
do not need to wait, but the barrier or transition must complete before semaphores associated with the batch
signal.

Note

If an implementation is unable to update the state of an event at any specific stage of the pipeline, it may

instead update the event at any logically later stage. For example, if an implementation is unable to signal

an event immediately after vertex shader execution is complete, it may instead signal the event after color
attachment output has completed. In the limit, an event may be signaled after all graphics stages complete. If
ﬂ an implementation is unable to wait on an event at any specific stage of the pipeline, it may instead wait on it at

any logically earlier stage.

Similarly, if an implementation is unable to implement an execution dependency at specific stages of the pipeline,

it may implement the dependency in a way where additional source pipeline stages complete and/or where

additional destination pipeline stages’ execution is blocked to satisfy the dependency.

If an implementation makes such a substitution, it must not affect the semantics of execution or memory depen-

dencies or image and buffer memory barriers.

Certain pipeline stages are only available on queues that support a particular set of operations. The following table lists,
for each pipeline stage flag, which queue capability flag must be supported by the queue. When multiple flags are
enumerated in the second column of the table, it means that the pipeline stage is supported on the queue if it supports any
of the listed capability flags. For further details on queue capabilities see Physical Device Enumeration and Queues.

Table 6.1: Supported pipeline stage flags

Pipeline stage flag Required queue capability flag
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT None
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_VERTEX_SHADER BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_ VK_QUEUE_GRAPHICS_BIT
BIT
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT VK_QUEUE_COMPUTE_BIT
VK_PIPELINE_STAGE_TRANSFER_BIT VK_QUEUE_GRAPHICS_BIT,
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT None
VK_PIPELINE_STAGE_HOST_BIT None
VK_PIPELINE_STAGE_ALIL_GRAPHICS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_ALIL_COMMANDS_BIT None

6.5.3 Memory Barriers

Memory barriers express the two halves of a memory dependency between an earlier set of memory accesses against a
later set of memory accesses. Vulkan provides three types of memory barriers: global memory, buffer memory, and

Vulkan 1.0 - A Specification 97 /615

image memory.

6.5.4 Global Memory Barriers

The global memory barrier type is specified with an instance of the VkMemoryBarrier structure. This type of barrier
applies to memory accesses involving all memory objects that exist at the time of its execution. The definition of
VkMemoryBarrier is:

typedef struct VkMemoryBarrier {

VkStructureType sType;
const voidx pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

The members of VkMemoryBarrier have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

* srcAccessMask is a mask of the classes of memory accesses performed by the first set of commands that will
participate in the dependency.

* dstAccessMask is a mask of the classes of memory accesses performed by the second set of commands that will
participate in the dependency.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER
e pNext must be NULL
e srcAccessMask must be a valid combination of VkAccessFlagBits values

e dstAccessMask must be a valid combination of VkAccessFlagBits values

srcAccessMask and dstAccessMask, along with srcStageMask and dstStageMask from
vkCmdPipelineBarrier, define the two halves of a memory dependency and an execution dependency. Memory
accesses using the set of access types in srcAccessMask performed in pipeline stages in srcStageMask by the first set
of commands must complete and be available to later commands. The side effects of the first set of commands will be
visible to memory accesses using the set of access types in dstAccessMask performed in pipeline stages in
dstStageMask by the second set of commands. If the barrier is by-region, these requirements only apply to invocations
within the same framebuffer-space region, for pipeline stages that perform framebuffer-space work. The execution
dependency guarantees that execution of work by the destination stages of the second set of commands will not begin
until execution of work by the source stages of the first set of commands has completed.

A common type of memory dependency is to avoid a read-after-write hazard. In this case, the source access mask and
stages will include writes from a particular stage, and the destination access mask and stages will indicate how those

writes will be read in subsequent commands. However, barriers can also express write-after-read dependencies and
write-after-write dependencies, and are even useful to express read-after-read dependencies across an image layout
change.

srcAccessMask and dstAccessMask are each masks of the following bitfield:

typedef enum VkAccessFlagBits {
VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,
VK_ACCESS_INDEX_READ_BIT = 0x00000002,
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,
VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT = 0x00000010,
VK_ACCESS_SHADER READ BIT = 0x00000020,
VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT = 0x00000080,
VK_ACCESS_COLOR_ATTACHMENT WRITE_BIT = 0x00000100,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_ READ_BIT = 0x00000200,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT WRITE_BIT = 0x00000400,
VK_ACCESS_TRANSFER_READ BIT = 0x00000800,
VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,
VK_ACCESS_HOST_READ_BIT = 0x00002000,
VK_ACCESS_HOST WRITE BIT = 0x00004000,
VK_ACCESS_MEMORY_READ_BIT = 0x00008000,
VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,

} VkAccessFlagBits;

VkAccessFlagBits has the following meanings:

e VK_ACCESS_INDIRECT_COMMAND_READ_BIT indicates that the access is an indirect command structure read as
part of an indirect drawing command.

e VK_ACCESS_INDEX_READ_BIT indicates that the access is an index buffer read.

* VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT indicates that the access is a read via the vertex input bindings.

* VK_ACCESS_UNIFORM_READ_BIT indicates that the access is a read via a uniform buffer or dynamic uniform
buffer descriptor.

* VK_ACCESS_INPUT_ATTACHMENT_READ_BIT indicates that the access is a read via an input attachment
descriptor.

* VK_ACCESS_SHADER_READ_BIT indicates that the access is a read from a shader via any other descriptor type.

e VK_ACCESS_SHADER_WRITE_BIT indicates that the access is a write or atomic from a shader via the same
descriptor types as in VK_ACCESS_SHADER_READ_BIT.

e VK_ACCESS_COLOR_ATTACHMENT READ_BIT indicates that the access is a read via a color attachment.

e VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT indicates that the access is a write via a color or resolve
attachment.

* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT indicates that the access is a read via a depth/stencil
attachment.

* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT indicates that the access is a write via a depth/stencil
attachment.

* VK_ACCESS_TRANSFER_READ_BIT indicates that the access is a read from a transfer (copy, blit, resolve, etc.)
operation. For the complete set of transfer operations, see VK_PIPELINE_STAGE_TRANSFER_BIT.

Vulkan 1.0 - A Specification 99/615

* VK_ACCESS_TRANSFER_WRITE_BIT indicates that the access is a write from a transfer (copy, blit, resolve, etc.)
operation. For the complete set of transfer operations, see VK_PIPELINE_STAGE_TRANSFER_BIT.

e VK_ACCESS_HOST_READ_BIT indicates that the access is a read via the host.
e VK_ACCESS_HOST_WRITE_BIT indicates that the access is a write via the host.

* VK_ACCESS_MEMORY_READ_BIT indicates that the access is a read via a non-specific unit attached to the memory.
This unit may be external to the Vulkan device or otherwise not part of the core Vulkan pipeline. When included in
dstAccessMask, all writes using access types in srcAccessMask performed by pipeline stages in srcStageMask
must be visible in memory.

* VK_ACCESS_MEMORY_WRITE_BIT indicates that the access is a write via a non-specific unit attached to the
memory. This unit may be external to the Vulkan device or otherwise not part of the core Vulkan pipeline. When
included in srcAccessMask, all access types in dstAccessMask from pipeline stages in dstStageMask will
observe the side effects of commands that executed before the barrier. When included in dstAccessMask all writes
using access types in srcAccessMask performed by pipeline stages in srcStageMask must be visible in memory.

Color attachment reads and writes are automatically (without memory or execution dependencies) coherent and ordered
against themselves and each other for a given sample within a subpass of a render pass instance, executing in API order.
Similarly, depth/stencil attachment reads and writes are automatically coherent and ordered against themselves and each
other in the same circumstances.

Shader reads and/or writes through two variables (in the same or different shader invocations) decorated with
Coherent and which use the same image view or buffer view are automatically coherent with each other, but require
execution dependencies if a specific order is desired. Similarly, shader atomic operations are coherent with each other
and with Coherent variables. Non-Coherent shader memory accesses require memory dependencies for writes to be
available and reads to be visible.

Certain memory access types are only supported on queues that support a particular set of operations. The following
table lists, for each access flag, which queue capability flag must be supported by the queue. When multiple flags are
enumerated in the second column of the table it means that the access type is supported on the queue if it supports any of
the listed capability flags. For further details on queue capabilities see Physical Device Enumeration and Queues.

Table 6.2: Supported access flags

Access flag Required queue capability flag
VK_ACCESS_INDIRECT_COMMAND_READ_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT
VK_ACCESS_INDEX_READ_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_VERTEX ATTRIBUTE_READ_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_UNIFORM_READ_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_SHADER_READ_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT
VK_ACCESS_SHADER WRITE_BIT VK_QUEUE_GRAPHICS_BIT or
VK_QUEUE_COMPUTE_BIT
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_COLOR_ATTACHMENT WRITE_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_ _WRITE_BIT VK_QUEUE_GRAPHICS_BIT
VK_ACCESS_TRANSFER_READ_BIT VK_QUEUE_GRAPHICS_BIT,
VK_QUEUE_COMPUTE_BTIT or
VK_QUEUE_TRANSFER_BIT

Table 6.2: (continued)

Access flag Required queue capability flag
VK_ACCESS_TRANSFER_WRITE_BIT VK_QUEUE_GRAPHICS_BIT,
VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_ACCESS_HOST_READ_BIT None
VK_ACCESS_HOST_WRITE_BIT None
VK_ACCESS_MEMORY_READ_BIT None
VK_ACCESS_MEMORY_WRITE_BIT None

6.5.5 Buffer Memory Barriers

The buffer memory barrier type is specified with an instance of the VkBuf ferMemoryBarrier structure. This type
of barrier only applies to memory accesses involving a specific range of the specified buffer object. That is, a memory
dependency formed from a buffer memory barrier is scoped to the specified range of the buffer. It is also used to transfer
ownership of a buffer range from one queue family to another, as described in the Resource Sharing section.

VkBufferMemoryBarrier has the following definition:

typedef struct VkBufferMemoryBarrier {

VkStructureType sType;

const void= pNext;

VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
VkBuffer buffer;

VkDeviceSize offset;

VkDeviceSize size;

} VkBufferMemoryBarrier;
The members of VkBuf ferMemoryBarrier have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

* srcAccessMask is a mask of the classes of memory accesses performed by the first set of commands that will
participate in the dependency.

* dstAccessMask is a mask of the classes of memory accesses performed by the second set of commands that will
participate in the dependency.

* srcQueueFamilyIndex is the queue family that is relinquishing ownership of the range of buffer to another queue,
or VK_QUEUE_FAMILY_IGNORED if there is no transfer of ownership.

* dstQueueFamilyIndex is the queue family that is acquiring ownership of the range of buf fer from another queue,
or VK_QUEUE_FAMILY_IGNORED if there is no transfer of ownership.

* bufrfer is a handle to the buffer whose backing memory is affected by the barrier.

Vulkan 1.0 - A Specification 101/615

* offset is an offset in bytes into the backing memory for buf fer; this is relative to the base offset as bound to the
buffer (see vkBindBuf ferMemory).

* sizeis asize in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use the range
from offset to the end of the buffer.

Valid Usage

e sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER

e pNext must be NULL

* srcAccessMask must be a valid combination of VkAccessFlagBits values

* dstAccessMask must be a valid combination of VkAccessFlagBits values

* buffer must be a valid VkBuf fer handle

* The value of offset must be less than the size of buffer

* The sum of offset and size must be less than or equal to than the size of buffer

* If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT, srcQueueFamilyIndex
and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

* If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, srcQueueFamilyIndex
and dstQueueFamilyIndex must either both be VK_QUEUE_FAMILY_IGNORED, or both be a valid queue
family (see Section 4.3.1)

* If bufrfer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are valid queue families, at least one of them must be the
same as the family of the queue that will execute this barrier

6.5.6 Image Memory Barriers

The image memory barrier type is specified with an instance of the Vk ImageMemoryBarrier structure. This type of
barrier only applies to memory accesses involving a specific subresource range of the specified image object. That is, a
memory dependency formed from a image memory barrier is scoped to the specified subresources of the image. It is also
used to perform a layout transition for an image subresource range, or to transfer ownership of an image subresource
range from one queue family to another as described in the Resource Sharing section.

VkImageMemoryBarrier has the following definition:

typedef struct VkImageMemoryBarrier ({

VkStructureType sType;

const voidx pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkImageLayout oldLayout;
VkImageLayout newLayout;

uint32_t srcQueueFamilyIndex;

uint32_t dstQueueFamilyIndex;
VkImage image;
VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

The members of VkImageMemoryBarrier have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

* srcAccessMask is a mask of the classes of memory accesses performed by the first set of commands that will
participate in the dependency.

* dstAccessMask is a mask of the classes of memory accesses performed by the second set of commands that will
participate in the dependency.

* oldLayout describes the current layout of the image subresource(s).
* newLayout describes the new layout of the image subresource(s).

* srcQueueFamilyIndex is the queue family that is relinquishing ownership of the image subresource(s) to another
queue, or VK_QUEUE_FAMILY_IGNORED if there is no transfer of ownership).

* dstQueueFamilyIndex is the queue family that is acquiring ownership of the image subresource(s) from another
queue, or VK_QUEUE_FAMILY_IGNORED if there is no transfer of ownership).

* image is a handle to the image whose backing memory is affected by the barrier.

* subresourceRange describes an area of the backing memory for image (see Section 11.5 for the description of
VkImageSubresourceRange), as well as the set of subresources whose image layouts are modified.

Valid Usage

¢ sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER

¢ pNext must be NULL

* srcAccessMask must be a valid combination of VkAccessFlagBits values
* dstAccessMask must be a valid combination of VkAccessFlagBits values
* oldLayout must be a valid VkImageLayout value

* newLayout must be a valid Vk ImageLayout value

* image must be a valid Vk Image handle

* subresourceRange must be a valid VkImageSubresourceRange structure

e oldLayout must be VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PREINITIALIZED or the
current layout of the image region affected by the barrier

* newLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

Vulkan 1.0 - A Specification 103/615

* If image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT, srcQueueFamilyIndex
and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

* If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, srcQueueFamilyIndex and
dstQueueFamilyIndex must either both be VK_QUEUE_FAMILY_IGNORED, or both be a valid queue
family (see Section 4.3.1)

* If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and srcQueueFamilyIndex
and dstQueueFamilyIndex are valid queue families, at least one of them must be the same as the family of the
queue that will execute this barrier

* subresourceRange must be a valid subresource range for the image (see Section 11.5)

* If image has a depth/stencil format with both depth and stencil components, then aspectMask member of
subresourceRange must include both VK_TIMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_
STENCIL_BIT

e If either oldLayout or newLayout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image
must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set

e If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIIL_ATTACHMENT_OPTIMAL
then image must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

e If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_ OPTIMAL
then image must have been created with VK_TMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

e If either oldLayout or newLayout is VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image
must have been created with VK_ IMAGE _USAGE_SAMPLED_ BIT or VK_IMAGE USAGE_INPUT__
ATTACHMENT_BIT set

e If either oldLayout or newLayout is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must
have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT set

e If either oldLayout or newLayout is VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must
have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT set

If o1dLayout differs from newLayout, a layout transition occurs as part of the image memory barrier, affecting the data
contained in the region of the image defined by the subresourceRange. If oldLayout is VK_IMAGE_LAYOUT_
UNDEF INED, then the data is undefined after the layout transition. This may allow a more efficient transition, since the
data may be discarded. The layout transition must occur after all operations using the old layout are completed and
before all operations using the new layout are started. This is achieved by ensuring that there is a memory dependency
between previous accesses and the layout transition, as well as between the layout transition and subsequent accesses,
where the layout transition occurs between the two halves of a memory dependency in an image memory barrier.

Layout transitions that are performed via image memory barriers are automatically ordered against other layout
transitions, including those that occur as part of a render pass instance.

Note

See Section 11.4 for details on available image layouts and their usages.

6.6 Implicit Ordering Guarantees

Submitting command buffers and sparse memory operations, signaling fences, and signaling and waiting on semaphores
each perform implicit memory barriers. The following guarantees are made:

After a fence or semaphore is signaled, it is guaranteed that:

* All commands in any command buffer submitted to the queue before and including the submission that signals the
fence, or the batch that signals the semaphore, have completed execution.

* The side effects of these commands are available to any commands or sparse binding operations (on any queue) that
follow a semaphore wait, if the semaphore they wait upon was signaled at a later time than this fence or semaphore, or
that are submitted to any queue after the fence is signaled. Those side effects are also visible to the same sparse
binding operations that follow the semaphore wait. If the semaphore wait is part of a Vk Submit Info structure
passed to vkQueueSubmit, they are also visible to the pipeline stages specified in the pwaitDst StageMask
element corresponding to the semaphore wait, for the same commands that follow the semaphore wait. If the
semaphore wait is part of a VkSubmit Info structure passed to vkQueueBindSparse, they are visible to all
stages for the same commands.

* All sparse binding operations submitted to the queue before and including the submission that signals the fence, or the
batch that signals the semaphore, have completed.

* The bindings performed by these operations are available to any commands or sparse binding operations (on any
queue) that follow a semaphore wait, if the semaphore they wait upon was signaled at a later time than this fence or
semaphore, or that are submitted to any queue after the fence is signaled. Those bindings are also visible to the same
sparse binding operations that follow the semaphore wait. If the semaphore wait is part of a Vk SubmitInfo
structure passed to vkQueueSubmit, they are also visible to the pipeline stages specified in the
pWaitDstStageMask element corresponding to the semaphore wait, for the same commands that follows the
semaphore wait. If the semaphore wait is part of a Vk Submit Info structure passed to vkQueueBindSparse,
they are visible to all stages for the same commands.

* Objects that were used in previous command buffers in this queue before the fence was signaled, or in another queue
that has signaled a semaphore after using the objects and before this fence or semaphore was signaled, and which are
not used in any subsequent command buffers, can be freed or destroyed, including the command buffers themselves.

* The fence can be reset or destroyed.

* The semaphore can be destroyed.

These rules define how a signal and wait operation combine to form the two halves of an implicit dependency. Signaling
a fence or semaphore guarantees that previous work is complete and the effects are available to later operations. Waiting
on a semaphore, waiting on a fence before submitting further work, or some combination of the two (e.g. waiting on a
fence in a different queue, after using semaphores to synchronize between two queues) guarantees that the effects of the
work that came before the synchronization primitive is visible to subsequent work that executes in the specified
pWaitDstStageMask stages (in the case of commands following a semaphore wait as part of a vkQueueSubmit
submission), or any stage (for all the other cases).

The rules are phrased in terms of wall clock time (before, at a later time, etc.). However, for these rules to apply, the
order in wall clock time of two operations must be enforced either by:

* signaling a semaphore after the first operation and waiting on the semaphore before the second operation

* signaling a fence after the first operation, waiting on the host for the fence to be signaled, and then submitting
command buffers or sparse binding operations to perform the second operation

Vulkan 1.0 - A Specification 105/615

* a combination of two or more uses of these ordering rules applied transitively.

vkQueueWaitIdle provides implicit ordering equivalent to having used a fence in the most recent submission on the
queue and then waiting on that fence. vkDeviceWait Idle provides implicit ordering equivalent to using
vkQueueWaitIdle on all queues owned by the device.

Signaling a semaphore or fence does not guarantee that device writes are visible to the host.
When submitting batches of command buffers to a queue via vkQueueSubmit, it is guaranteed that:
» Host writes to mappable device memory that occured before the call to vkQueueSubmit are visible to the command

buffers in that submission, if the device memory is coherent or if the memory range was flushed with
vkFlushMappedMemoryRanges.

Vulkan 1.0 - A Specification 107 /615

Chapter 7

Render Pass

A render pass represents a collection of attachments, subpasses, and dependencies between the subpasses, and describes
how the attachments are used over the course of the subpasses. The use of a render pass in a command buffer is a render
pass instance.

An attachment description describes the properties of an attachment including its format, sample count, and how its
contents are treated at the beginning and end of each render pass instance.

A subpass represents a phase of rendering that reads and writes a subset of the attachments in a render pass. Rendering
commands are recorded into a particular subpass of a render pass instance.

A subpass description describes the subset of attachments that is involved in the execution of a subpass. Each subpass
can read from some attachments as input attachments, write to some as color attachments or depth/stencil attachments,
and do resolve operations to others as resolve attachments. A subpass description can also include a set of preserve
attachments, which are attachments that are not read or written by the subpass but whose contents must be preserved
throughout the subpass.

A subpass uses an attachment if the attachment is a color, depth/stencil, resolve, or input attachment for that subpass. A
subpass does not use an attachment if that attachment is preserved by the subpass. The first use of an attachment is in the
lowest numbered subpass that uses that attachment. Similarly, the last use of an attachment is in the highest numbered
subpass that uses that attachment.

The subpasses in a render pass all render to the same dimensions, and fragments for pixel (x,y,layer) in one subpass can
only read attachment contents written by previous subpasses at that same (x,y,layer) location.

Note
By describing a complete set of subpasses a priori, render passes provide the implementation an opportunity to
ﬂ optimize the storage and transfer of attachment data between subpasses.
In practice, this means that subpasses with a simple framebuffer-space dependency may be merged into a single
tiled rendering pass, keeping the attachment data on-chip for the duration of a render pass instance. However,
it is also quite common for a render pass to only contain a single subpass.

Subpass dependencies describe ordering restrictions between pairs of subpasses. If no dependencies are specified,
implementations may reorder or overlap portions (e.g., certain shader stages) of the execution of subpasses.
Dependencies limit the extent of overlap or reordering, and are defined using masks of pipeline stages and memory
access types. Each dependency acts as an execution and memory dependency, similarly to how pipeline barriers are
defined. Dependencies are needed if two subpasses operate on attachments with overlapping ranges of the same
VkDeviceMemory object and at least one subpass writes to that range.

A subpass dependency chain is a sequence of subpass dependencies in a render pass, where the source subpass of each
subpass dependency (after the first) equals the destination subpass of the previous dependency.

A render pass describes the structure of subpasses and attachments independent of any specific image views for the
attachments. The specific image views that will be used for the attachments, and their dimensions, are specified in
VkFramebuf fer objects. Framebuffers are created with respect to a specific render pass that the framebuffer is
compatible with (see Render Pass Compatibility). Collectively, a render pass and a framebuffer define the complete
render target state for one or more subpasses as well as the algorithmic dependencies between the subpasses.

The various pipeline stages of the drawing commands for a given subpass may execute concurrently and/or out of order,
both within and across drawing commands. However for a given (x,y,layer,sample) sample location, certain per-sample
operations are performed in API order.

7.1 Render Pass Creation

A render pass is created by calling:

VkResult vkCreateRenderPass (

VkDevice device,

const VkRenderPassCreateInfox pCreatelInfo,
const VkAllocationCallbacksx* pAllocator,
VkRenderPassx* pRenderPass) ;

* device is the logical device that creates the render pass.

* pCreateInfois a pointer to an instance of the VkRenderPassCreateInfo structure that describes the
parameters of the render pass.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pRenderPass points to a VkRenderPass handle in which the resulting render pass object is returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkRenderPassCreateInfo structure
e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pRenderPass must be a pointer to a VkRenderPass handle

Return Codes

Vulkan 1.0 - A Specification 109/615

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkRenderPassCreateInfo structure is defined as:

typedef struct VkRenderPassCreateInfo {

VkStructureType sType;

const voidx pNext;
VkRenderPassCreateFlags flags;

uint32_t attachmentCount;
const VkAttachmentDescriptionx pAttachments;
uint32_t subpassCount;
const VkSubpassDescriptionx pSubpasses;
uint32_t dependencyCount;
const VkSubpassDependencyx* pDependencies;

VkRenderPassCreatelInfo;

—

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* flags is reserved for future use.

* attachmentCount is the number of attachments used by this render pass, or zero indicating no attachments.
Attachments are referred to by zero-based indices in the range [0,at tachmentCount).

* pAttachments points to an array of attachmentCount number of VkAttachmentDescription structures
describing properties of the attachments, or NULL if at tachmentCount is zero.

* subpassCount is the number of subpasses to create for this render pass. Subpasses are referred to by zero-based
indices in the range [0,subpassCount). A render pass must have at least one subpass.

* pSubpasses points to an array of subpassCount number of VkSubpassDescription structures describing
properties of the subpasses.

* dependencyCount is the number of dependencies between pairs of subpasses, or zero indicating no dependencies.

* pDependencies points to an array of dependencyCount number of Vk SubpassDependency structures
describing dependencies between pairs of subpasses, or NULL if dependencyCount is zero.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO

* pNext must be NULL
e flags mustbe 0

» If attachmentCount is not O, pAttachments must be a pointer to an array of attachmentCount valid
VkAttachmentDescription structures

* pSubpasses must be a pointer to an array of subpassCount valid VkSubpassDescription structures

* If dependencyCount is not 0, pDependencies must be a pointer to an array of dependencyCount valid
VkSubpassDependency structures

* The value of subpassCount must be greater than 0

* If any two subpasses operate on attachments with overlapping ranges of the same VkDeviceMemory object, and
at least one subpass writes to that area of VkDeviceMemory, a subpass dependency must be included (either
directly or via some intermediate subpasses) between them

* If the attachment member of any element of pTnputAttachments, pColorAttachments,
pResolveAttachments Or pDepthStencilAttachment, or the attachment indexed by any element of
pPreserveAttachments in any given element of pSubpasses is bound to a range of a VkDeviceMemory
object that overlaps with any other attachment in any subpass (including the same subpass), the
VkAttachmentDescription structures describing them must include VK_ATTACHMENT_
DESCRIPTION_MAY ALIAS_BITin flags

* If the attachment member of any element of pTnputAttachments, pColorAttachments,
pResolveAttachments Or pDepthStencilAttachment, or the value of any element of
pPreserveAttachments in any given element of pSubpasses is not VK_ATTACHMENT_UNUSED, it must be
less than the value of attachmentCount

* The value of any element of the pPreserveAttachments member in any given element of pSubpasses must
not be VK_ATTACHMENT_UNUSED

VkAttachmentDescription is defined as:

typedef struct VkAttachmentDescription {

VkAttachmentDescriptionFlags flags;

VkFormat format;
VkSampleCountFlagBits samples;
VkAttachmentLoadOp loadOp;
VkAttachmentStoreOp storeOp;
VkAttachmentLoadOp stencilLoadOp;
VkAttachmentStoreOp stencilStoreOp;
VkImageLayout initialLayout;
VkImageLayout finallLayout;

—

VkAttachmentDescription;

* format is a VkFormat value specifying the format of the image that will be used for the attachment.
* samples is the number of samples of the image as defined in VkSampleCountFlagBits.

* loadop specifies how the contents of color and depth components of the attachment are treated at the beginning of the
subpass where it is first used:

Vulkan 1.0 - A Specification 111/615

typedef enum VkAttachmentLoadOp {
VK_ATTACHMENT_LOAD_OP_LOAD = O,
VK_ATTACHMENT_LOAD_OP_CLEAR = 1,
VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,
} VkAttachmentLoadOp;

— VK_ATTACHMENT_LOAD_OP_LOAD means the contents within the render area will be preserved.

— VK_ATTACHMENT_ LOAD_OP_CLEAR means the contents within the render area will be cleared to a uniform
value, which is specified when a render pass instance is begun.

— VK_ATTACHMENT_LOAD_OP_DONT_CARE means the contents within the area need not be preserved; the
contents of the attachment will be undefined inside the render area.

* storeOp specifies how the contents of color and depth components of the attachment are treated at the end of the
subpass where it is last used:

typedef enum VkAttachmentStoreOp {
VK_ATTACHMENT_STORE_OP_STORE = 0,
VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,
} VkAttachmentStoreOp;

— VK_ATTACHMENT_STORE_OP_STORE means the contents within the render area are written to memory and will
be available for reading after the render pass instance completes once the writes have been synchronized with VK_
ACCESS_COLOR_ATTACHMENT_WRITE_BTIT (for color attachments) or VK_ACCESS_DEPTH_STENCII_
ATTACHMENT_WRITE_BIT (for depth/stencil attachments).

— VK_ATTACHMENT_STORE_OP_DONT_CARE means the contents within the render area are not needed after
rendering, and may be discarded; the contents of the attachment will be undefined inside the render area.

* stencilLoadOp specifies how the contents of stencil components of the attachment are treated at the beginning of the
subpass where it is first used, and must be one of the same values allowed for 10adop above.

* stencilStoreOp specifies how the contents of stencil components of the attachment are treated at the end of the last
subpass where it is used, and must be one of the same values allowed for st oreoOp above.

* initialLayout is the layout the attachment image subresource will be in when a render pass instance begins.

* finalLayout is the layout the attachment image subresource will be transitioned to when a render pass instance ends.
During a render pass instance, an attachment can use a different layout in each subpass, if desired.

* flagsisabitfield of VkAttachmentDescriptionFlagBits describing additional properties of the attachment:
typedef enum VkAttachmentDescriptionFlagBits {

VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT = 0x00000001,
} VkAttachmentDescriptionFlagBits;

Valid Usage

* flags must be a valid combination of VkAttachmentDescriptionFlagBits values

* format must be a valid VkFormat value

* samples must be a valid VkSampleCountFlagBits value

* loadop must be a valid VkAttachmentLoadOp value

* storeOp must be a valid VkAttachment StoreOp value

* stencilLoadOp must be a valid VkAttachmentLoadOp value

* stencilStoreOp must be a valid VkAttachmentStoreOp value
* initialLayout mustbe a valid VkImageLayout value

* finalLayout must be a valid VkImageLayout value

If the attachment uses a color format, then 1oadop and storeOp are used, and stencilLoadOp and stencilStoreOp
are ignored. If the format has depth and/or stencil components, 1oadOp and st oreOp apply only to the depth data, while
stencilLoadOp and stencilStoreOp define how the stencil data is handled.

During a renderpass instance, input/color attachments with color formats that have a component size of 8, 16, or 32 bits
must be represented in the attachment’s format throughout the instance. Attachments with other floating- or fixed-point
color formats, or with depth components may be represented in a format with a precision higher than the attachment
format, but must be represented with the same range. When such a component is loaded via the 10adop, it will be
converted into an implementation-dependent format used by the render pass. Such components must be converted from
the render pass format, to the format of the attachment, before they are stored or resolved at the end of a render pass
instance via storeOp. Conversions occur as described in Numeric Representation and Computation and Fixed-Point
Data Conversions.

If f1agsincludes VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, then the attachment is treated as if it
shares physical memory with another attachment in the same render pass. This information limits the ability of the
implementation to reorder certain operations (like layout transitions and the 10ad0Op) such that it is not improperly
reordered against other uses of the same physical memory via a different attachment. This is described in more detail
below.

If a render pass uses multiple attachments that alias the same device memory, those attachments must each include the
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bitin their attachment description flags. Attachments aliasing
the same memory occurs in multiple ways:

* Multiple attachments being assigned the same image view as part of framebuffer creation.
* Attachments using distinct image views that correspond to the same subresource of an image.

» Attachments using views of distinct image subresources which are bound to overlapping memory.

Render passes must include subpass dependencies (either directly or via a subpass dependency chain) between any two
subpasses that operate on the same attachment or aliasing attachments and those subpass dependencies must include
execution and memory dependencies separating uses of the aliases, if at least one of those subpasses writes to one of the
aliases. Those dependencies must not include the VK_DEPENDENCY_BY_REGION_BIT if the aliases are views of
distinct image subresources which overlap in memory.

Multiple attachments that alias the same memory must not be used in a single subpass. A given attachment index must
not be used multiple times in a single subpass, with one exception: two subpass attachments can use the same attachment
index if at least one use is as an input attachment and neither use is as a resolve or preserve attachment. In other words,

Vulkan 1.0 - A Specification 113/615

the same view can be used simultaneously as an input and color or depth/stencil attachment, but must not be used as
multiple color or depth/stencil attachments nor as resolve or preserve attachments. This valid scenario is described in
more detail below.

If a set of attachments alias each other, then all except the first to be used in the render pass must use an
initialLayout of VK_IMAGE_LAYOUT_UNDEFINED, since the earlier uses of the other aliases make their contents
undefined. Once an alias has been used and a different alias has been used after it, the first alias must not be used in any
later subpasses. However, an application can assign the same image view to multiple aliasing attachment indices, which
allows that image view to be used multiple times even if other aliases are used in between. Once an attachment needs the
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit, there should be no additional cost of introducing
additional aliases, and using these additional aliases may allow more efficient clearing of the attachments on multiple
uses via VK_ATTACHMENT_LOAD_OP_CLEAR.

Note

The exact set of attachment indices that alias with each other is not known until a framebuffer is created using
the render pass, so the above conditions cannot be validated at render pass creation time.

VkSubpassDescription is defined as:

typedef struct VkSubpassDescription {

VkSubpassDescriptionFlags flags;
VkPipelineBindPoint pipelineBindPoint;
uint32_t inputAttachmentCount;
const VkAttachmentReferencex pInputAttachments;
uint32_t colorAttachmentCount;
const VkAttachmentReferencex pColorAttachments;

const VkAttachmentReferencex pResolveAttachments;
const VkAttachmentReferencex pDepthStencilAttachment;
uint32_t preserveAttachmentCount;
const uint32_t«* pPreserveAttachments;

—

VkSubpassDescription;

* flags is reserved for future use.

* pipelineBindPoint isaVkPipelineBindPoint value specifying whether this is a compute or graphics
subpass. Currently, only graphics subpasses are supported.

* inputAttachmentCount is the number of input attachments.

* pInputAttachments is an array of VkAttachmentReference structures (defined below) that lists which of the
render pass’s attachments can be read in the shader during the subpass, and what layout the attachment images will be
in during the subpass. Each element of the array corresponds to an input attachment unit number in the shader, i.e. if
the shader declares an input variable layout (input_attachment_index=X, set=Y, binding=2Z) then it
uses the attachment provided in pInputAttachment s[X]. Input attachments must also be bound to the pipeline with
a descriptor set, with the input attachment descriptor written in the location (set=Y, binding=7).

e colorAttachmentCount is the number of color attachments.

* pColorAttachments is an array of colorAttachmentCount VkAttachmentReference structures that lists
which of the render pass’s attachments will be used as color attachments in the subpass, and what layout the
attachment images will be in during the subpass. Each element of the array correponds to a fragment shader output
location, i.e. if the shader declared an output variable layout (location=X) then it uses the attachment provided
in pColorAttachments[X].

* pResolveAttachments is NULL or a pointer to an array of VkAttachmentReference structures. If
pResolveAttachments is not NULL, each of its elements corresponds to a color attachment (the element in
pColorAttachments at the same index). At the end of each subpass, the subpass’s color attachments are resolved to
corresponding resolve attachments, unless the resolve attachment index is VK_ATTACHMENT_UNUSED or
pResolveAttachments is NULL. If the first use of an attachment in a render pass is as a resolve attachment, then the
loadop is effectively ignored as the resolve is guaranteed to overwrite all pixels in the render area.

* pDepthStencilAttachment is a pointer to a VkAttachmentReference specifying which attachment will be
used for depth/stencil data and the layout it will be in during the subpass. Setting the attachment index to VK_
ATTACHMENT_UNUSED or leaving this pointer as NULL indicates that no depth/stencil attachment will be used in the
subpass.

* preserveAttachmentCount is the number of preserved attachments.
* pPreserveAttachments is an array of preserveAttachmentCount render pass attachment indices describing the

attachments that are not used by a subpass, but whose contents must be preserved throughout the subpass.

The contents of an attachment within the render area become undefined at the start of a subpass S if all of the following
conditions are true:

» The attachment is used as a color, depth/stencil, or resolve attachment in any subpass in the render pass.

» There is a subpass S1 that uses or preserves the attachment, and a subpass dependency from S1 to S.

* The attachment is not used or preserved in subpass S.

Once the contents of an attachment become undefined in subpass S, they remain undefined for subpasses in subpass

dependency chains starting with subpass S until they are written again. However, they remain valid for subpasses in other
subpass dependency chains starting with subpass S1 if those subpasses use or preserve the attachment.

Valid Usage

e flags mustbe 0
* pipelineBindPoint must be a valid VkPipelineBindPoint value

* If inputAttachmentCount is not O, pInputAttachments must be a pointer to an array of
inputAttachmentCount valid VkAttachmentReference structures

* If colorAttachmentCount is not 0, pColorAttachments must be a pointer to an array of
colorAttachmentCount valid VkAttachmentReference structures

e If colorAttachmentCount is not 0, and presolveAttachments is not NULL, pResolveAttachments must
be a pointer to an array of colorAttachmentCount valid VkAttachmentReference structures

» If ppepthStencilAttachment is not NULL, pDepthStencilAttachment must be a pointer to a valid
VkAttachmentReference structure

* If preserveAttachmentCount is not O, pPreserveAttachments must be a pointer to an array of
preserveAttachmentCount uint32_t values

* pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

Vulkan 1.0 - A Specification 115/615

* The value of colorcount must be less than or equal to
VkPhysicalDevicelLimits:imaxColorAttachments

* If the first use of an attachment in this render pass is as an input attachment, and the attachment is not also used as
a color or depth/stencil attachment in the same subpass, then 1oadop must not be VK_ATTACHMENT_LOAD__
OP_CLEAR

e If presolveAttachments is not NULL, for each resolve attachment that does not have the value VK_
ATTACHMENT_UNUSED, the corresponding color attachment must not have the value VK_ATTACHMENT_
UNUSED

* If presolveAttachments is not NULL, the sample count of each element of pColorAttachments must be
anything other than VK_SAMPLE_COUNT_1_BIT

* Any given element of pResolveAttachments must have a sample count of VK_SAMPLE_COUNT_1_BIT

* Any given element of pResolveAttachments must have the same VkFormat as its corresponding color
attachment

¢ All attachments in pColorAttachments and pDepthStencilAttachment that are not VK_ATTACHMENT_
UNUSED must have the same sample count

* If any input attachments are VK_ATTACHMENT_UNUSED, then any pipelines bound during the subpass must not
accesss those input attachments from the fragment shader

* The attachment member of any element of pPreserveAttachments must not be VK_ATTACHMENT_
UNUSED

* Any given element of ppreserveAttachments must not also be an element of any other member of the subpass
description

* If any attachment is used as both an input attachment and a color or depth/stencil attachment, then each use must
use the same Iayout

The VkAttachmentReference structure is defined as:

typedef struct VkAttachmentReference ({
uint32_t attachment;
VkImageLayout layout;

} VkAttachmentReference;

* attachment is the index of the attachment of the render pass, and corresponds to the index of the corresponding
element in the pAttachments array of the VkRenderPassCreateInfo structure. If any color or depth/stencil
attachments are VK_ATTACHMENT_UNUSED, then no writes occur for those attachments.

* layoutisaVkImageLayout value specifying the layout the attachment uses during the subpass. The
implementation will automatically perform layout transitions as needed between subpasses to make each subpass use
the requested layouts.

Valid Usage

e layout must be a valid Vk ImageLayout value

The VkSubpassDependency structure is defined as:

typedef struct VkSubpassDependency {

uint32_t srcSubpass;
uint32_t dstSubpass;
VkPipelineStageFlags srcStageMask;
VkPipelineStageFlags dstStageMask;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

* srcSubpass and dstSubpass are the subpass indexes of the producer and consumer subpasses, respectively.
srcSubpass and dstSubpass can also have the special value VK_SUBPASS_EXTERNAL. The source subpass must
always be a lower numbered subpass than the destination subpass (excluding external subpasses and
self-dependencies), so that the order of subpass descriptions is a valid execution ordering, avoiding cycles in the
dependency graph.

e srcStageMask, dstStageMask, srcAccessMask, dstAccessMask, and dependencyFlags describe an

execution and memory dependency between subpasses. The bits that can be included in dependencyFlags are:

typedef enum VkDependencyFlagBits {
VK_DEPENDENCY_BY_REGION_BIT = 0x00000001,
} VkDependencyFlagBits;

* If dependencyFlags contains VK_DEPENDENCY_BY_REGION_BIT, then the dependency is by-region as defined
in Execution And Memory Dependencies.

Each subpass dependency defines an execution and memory dependency between two sets of commands, with the second
set depending on the first set. When srcSubpass does not equal dstSubpass then the first set of commands is:

e All commands in the subpass indicated by srcSubpass, if srcSubpass is not VK_SUBPASS_EXTERNAL.

* All commands before the render pass instance, if srcSubpass is VK_SUBPASS_EXTERNAL.
While the corresponding second set of commands is:

* All commands in the subpass indicated by dst Subpass, if dst Subpass is not VK_SUBPASS_EXTERNAL.
* All commands after the render pass instance, if dst Subpass is VK_SUBPASS_EXTERNAL.
When srcSubpass equals dstSubpass then the first set consists of commands in the subpass before a call to

vkCmdPipelineBarrier and the second set consists of commands in the subpass following that same call as
described in the Subpass Self-dependency section.

Vulkan 1.0 - A Specification 117 /615

The srcStageMask, dstStageMask, srcAccessMask, dstAccessMask, and dependencyFlags parameters of the

dependency are interpreted the same way as for other dependencies, as described in Synchronization and Cache Control.

Valid Usage

* srcStageMask must be a valid combination of VkPipelineStageFlagBits values
* srcStageMask must not be 0

* dstStageMask must be a valid combination of VkPipelineStageFlagBits values
* dstStageMask must not be 0

* srcAccessMask must be a valid combination of VkAccessFlagBits values

* dstAccessMask must be a valid combination of VkAccessFlagBits values

* dependencyFlags must be a valid combination of VkDependencyFlagBits values

* If the geometry shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

* If the geometry shaders feature is not enabled, dst St ageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

e If the tessellation shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL SHADER BIT Or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER
BIT

« If the tessellation shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT Or VK_PIPELINE_STAGE TESSELLATION_ EVALUATION_SHADER
BIT

* The value of srcSubpass must be less than or equal to dstSubpass, unless one of them is VK_SUBPASS__
EXTERNAL, to avoid cyclic dependencies and ensure a valid execution order

* The values of srcSubpass and dst Subpass must not both be equal to VK_SUBPASS_EXTERNAL

Automatic image layout transitions between subpasses also interact with the subpass dependencies. If two subpasses are

connected by a dependency and those two subpasses use the same attachment in a different layout, then the layout
transition will occur after the memory accesses via srcAccessMask have completed in all pipeline stages included in
srcStageMask in the source subpass, and before any memory accesses via dstAccessMask occur in any pipeline
stages included in dstStageMask in the destination subpass.

The automatic image layout transitions from initialLayout to the first used layout (if it is different) are performed
according to the following rules:

e If the attachment does not include the VK_ATTACHMENT_DESCRIPTION_MAY ALIAS_BIT bit and there is no

subpass dependency from VK_SUBPASS_EXTERNAL to the first subpass that uses the attachment, then it is as if there

were such a dependency with srcStageMask = srcAccessMask =0 and dstStageMask and dstAccessMask
including all relevant bits (all graphics pipeline stages and all access types that use image resources), with the

transition executing as part of that dependency. In other words, it may overlap work before the render pass instance and
is complete before the subpass begins.

* If the attachment does not include the VK_ATTACHMENT_DESCRIPTION_MAY_ ALIAS_BIT bit and there is a
subpass dependency from VK__SUBPASS_EXTERNAL to the first subpass that uses the attachment, then the transition
executes as part of that dependency and according to its stage and access masks. It must not overlap work that came
before the render pass instance that is included in the source masks, but it may overlap work in previous subpasses.

« If the attachment includes the VK_ATTACHMENT DESCRIPTION_MAY_ ALIAS_BIT bit, then the transition
executes according to all the subpass dependencies with dstSubpass equal to the first subpass index that the
attachment is used in. That is, it occurs after all memory accesses in the source stages and masks from all the source
subpasses have completed and are available, and before the union of all the destination stages begin, and the new
layout is visible to the union of all the destination access types. If there are no incoming subpass dependencies, then
this case follows the first rule.

Similar rules apply for the transition to the finalLayout, using dependencies with dst Subpass equal to VK_
SUBPASS_EXTERNAL

If an attachment specifies the VK_ATTACHMENT_LOAD_OP_CLEAR load operation, then it will logically be cleared at
the start of the first subpass where it is used.

Note
Implementations may move clears earlier as long as it does not affect the operation of a render pass instance.
ﬂ For example, an implementation may choose to clear all attachments at the start of the render pass instance. If
an attachment has the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT flag set, then the clear must
occur at the start of subpass where the attachment is first used, in order to preserve the operation of the render
pass instance.

The first use of an attachment must not specify a layout equal to VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_
ONLY_OPTIMAL or VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL if the attachment specifies that the
loadOpis VK_ATTACHMENT_LOAD_OP_CLEAR. If a subpass uses the same attachment as both an input attachment
and either a color attachment or a depth/stencil attachment, then both uses must observe the result of the clear.

Similarly, if an attachment specifies that the storeop is VK_ATTACHMENT_STORE_OP_ STORE, then it will logically
be stored at the end of the last subpass where it is used.

Note

Implementations may move stores later as long as it does not affect the operation of a render pass instance. If
an attachment has the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT flag set, then the store must
occur at the end of the highest numbered subpass that uses the attachment.

If an attachment is not used by any subpass, then the 10adop and the st ore0Op are ignored and the attachment’s memory
contents will not be modified by execution of a render pass instance.

It will be common for a render pass to consist of a simple linear graph of dependencies, where subpass N depends on
subpass N-1 for all N, and the operation of the memory barriers and layout transitions is fairly straightforward to reason
about for those simple cases. But for more complex graphs, there are some rules that govern when there must be
dependencies between subpasses.

As stated earlier, render passes must include subpass dependencies which (either directly or via a subpass dependency
chain) separate any two subpasses that operate on the same attachment or aliasing attachments, if at least one of those

Vulkan 1.0 - A Specification 119/615

subpasses writes to the attachment. If an image layout changes between those two subpasses, the implementation uses
the stageMasks and accessMasks indicated by the subpass dependency as the masks that control when the layout
transition must occur. If there is not a layout change on the attachment, or if an implementation treats the two layouts
identically, then it may treat the dependency as a simple execution/memory barrier.

If two subpasses use the same attachment in different layouts but both uses are read-only (i.e. input attachment, or
read-only depth/stencil attachment), the application does not need to express a dependency between the two subpasses.
Implementations that treat the two layouts differently may deduce and insert a dependency between the subpasses, with
the implementation choosing the appropriate stage masks and access masks based on whether the attachment is used as
an input or depth/stencil attachment, and may insert the appropriate layout transition along with the execution/memory
barrier. Implementations that treat the two layouts identically need not insert a barrier, and the two subpasses may
execute simultaneously. The stage masks and access masks are chosen as follows:

« for input attachments, stage mask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, access mask = VK__
ACCESS_INPUT_ATTACHMENT_READ_BIT.

* for depth/stencil attachments, stage mask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BITI|VK_
PIPELINE_STAGE_LATE_FRAGMENT_ TESTS_BIT, access mask = VK_ACCESS_DEPTH_STENCIIL_
ATTACHMENT_READ_BIT

where srcStageMask and srcAccessMask are taken based on usage in the source subpass and dstStageMask and
dstAccessMask are taken based on usage in the destination subpass.

If a subpass uses the same attachment as both an input attachment and either a color attachment or a depth/stencil
attachment, reads from the input attachment are not automatically coherent with writes through the color or depth/stencil
attachment. In order to achieve well-defined results, one of two criteria must be satisfied. First, if the color components
or depth/stencil components read by the input attachment are mutually exclusive with the components written by the
color or depth/stencil attachment then there is no feedback loop and the reads and writes both function normally, with the
reads observing values from the previous subpass(es) or from memory. This option requires the graphics pipelines used
by the subpass to disable writes to color components that are read as inputs via the colorwriteMask, and to disable
writes to depth/stencil components that are read as inputs via depthWriteEnable Oor stencilTestEnable.

Second, if the input attachment reads components that are written by the color or depth/stencil attachment, then there is a
feedback loop and a pipeline barrier must be used between when the attachment is written and when it is subsequently
read by later fragments. This pipeline barrier must follow the rules of a self-dependency as described in Subpass
Self-dependency, where the barrier’s flags include:

* dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,

* dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, and

* srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT (for color attachments) or srcAccessMask
=VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT (for depth/stencil attachments).

* srcStageMask =VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT (for color attachments) or
srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BITI|VK_PIPELINE_STAGE_EARLY
FRAGMENT_TESTS_BIT (for depth/stencil attachments).

* dependencyFlags =VK_DEPENDENCY_BY_ REGION_BIT.

A pipeline barrier is needed each time a fragment will read a particular (x,y,layer,sample) location if that location has
been written since the most recent pipeline barrier, or since the start of the subpass if there have been no pipeline barriers
since the start of the subpass.

An attachment used as both an input attachment and color attachment must be in the VK_IMAGE_LAYOUT_GENERAL
layout. An attachment used as both an input attachment and depth/stencil attachment must be in either the VK_IMAGE_

LAYOUT_GENERALOrVK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMALlaymn.Shwean
attachment in the VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL layout is read-only, this
situation is not a feedback loop.

To destroy a render pass, call:

void vkDestroyRenderPass (

VkDevice device,
VkRenderPass renderPass,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the render pass.
* renderPass is the handle of the render pass to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If renderPassis not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If renderpPass is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and renderpPass that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

 All submitted commands that refer to renderPass must have completed execution

* If VkAllocationCallbacks were provided when renderPass was created, a compatible set of callbacks
must be provided here

* Ifno VkAllocationCallbacks were provided when renderPass was created, pAllocator must be NULL

Host Synchronization

* Host access to renderPass must be externally synchronized

Vulkan 1.0 - A Specification 121/615

7.2 Render Pass Compatibility

Framebuffers and graphics pipelines are created based on a specific render pass object. They must only be used with that
render pass object, or one compatible with it.

Two attachment references are compatible if they have matching format and sample count, or are both VK_
ATTACHMENT_UNUSED or the pointer that would contain the reference is NULL.

Two arrays of attachment references are compatible if all corresponding pairs of attachments are compatible. If the
arrays are of different lengths, attachment references not present in the smaller array are treated as VK_ATTACHMENT__
UNUSED.

Two render passes that contain only a single subpass are compatible if their corresponding color, input, resolve, and
depth/stencil attachment references are compatible.

If two render passes contain more than one subpass, they are compatible if they are identical except for:

* Initial and final image layout in attachment descriptions
* Load and store operations in attachment descriptions

* Image layout in attachment references

A framebuffer is compatible with a render pass if it was created using the same render pass or a compatible render pass.

7.3 Framebuffers

Render passes operate in conjunction with framebuffers, which represent a collection of specific memory attachments
that a render pass instance uses.

An application creates a framebuffer by calling:

VkResult vkCreateFramebuffer (

VkDevice device,

const VkFramebufferCreateInfox pCreatelnfo,
const VkAllocationCallbacksx pAllocator,
VkFramebufferx pFramebuffer);

* device is the logical device that creates the framebuffer.

* pCreatelInfo points to a VkFramebufferCreateInfo structure which describes additional information about
framebuffer creation.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pFramebuffer points to a VkFramebuf fer handle in which the resulting framebuffer object is returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkFramebufferCreateInfo structure
* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pFramebuffer must be a pointer to a VkFramebuf fer handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFramebufferCreateInfo structure is defined as:

typedef struct VkFramebufferCreateInfo {

VkStructureType sType;

const voidx pNext;
VkFramebufferCreateFlags flags;
VkRenderPass renderPass;
uint32_t attachmentCount;
const VkImageViewx pAttachments;
uint32_t width;

uint32_t height;

uint32_t layers;

VkFramebufferCreateInfo;

—

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
e flags is reserved for future use.

* renderPass is a render pass that defines what render passes the framebuffer will be compatible with. See Render
Pass Compatibility for details.

e attachmentCount is the number of attachments.

* pAttachments is an array of Vk ImageView handles, each of which will be used as the corresponding attachment in
a render pass instance.

e width, height and layers define the dimensions of the framebuffer.

Vulkan 1.0 - A Specification 123/615

Valid Usage

* sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO
e pNext must be NULL

e flags mustbe 0

* renderPass must be a valid VkRenderPass handle

* If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount valid
VkImageView handles

e Each of renderPass and the elements of pAttachment s that are valid handles must have been created,
allocated or retrieved from the same VkDevice

* The value of attachmentCount must be equal to the attachment count specified in renderPass

* Any given element of pAttachments that is used as a color attachment or resolve attachment by renderPass
must have been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

* Any given element of pAttachments that is used as a depth/stencil attachment by renderPass must have been
created with a usage value including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

* Any given element of pAttachments that is used as an input attachment by renderPass must have been created
with a usage value including VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

* Any given element of pAttachments must have been created with an VkFormat value that matches the
VkFormat specified by the corresponding VkAttachmentDescription in renderPass

* Any given element of pAttachments must have been created with a samples value that matches the samples
value specified by the corresponding VkAttachmentDescription in renderPass

* Any given element of pAttachments must have dimensions at least as large as the corresponding framebuffer
dimension

* Any given element of pAttachments must only specify a single mip-level

* Any given element of pAttachments must have been created with identity swizzle

* The value of width must be less than or equal to VkPhysicalDeviceLimits:imaxFramebufferWidth

* The value of height must be less than or equal to VkPhysicalDevicelLimits:imaxFramebufferHeight

* The value of 1ayers must be less than or equal to VkPhysicalDevicelimits:imaxFramebufferLayers

Image subresources used as attachments must not be used via any non-attachment usage for the duration of a render pass
instance.

3 Note
This restriction means that the render pass has full knowledge of all uses of all of the attachments, so that the
implementation is able to make correct decisions about when and how to perform layout transitions, when to
overlap execution of subpasses, etc.

It is legal for a subpass to use no color or depth/stencil attachments, and rather use shader side effects such as image
stores and atomics to produce an output. In this case, the subpass continues to use the width, height, and layers of
the framebuffer to define the dimensions of the rendering area, and the rasterizationSamples from each pipeline’s
VkPipelineMultisampleStateCreateInfo to define the number of samples used in rasterization; however, if
VkPhysicalDeviceFeatures:variableMultisampleRate is VK_FALSE, then all pipelines to be bound with a
given zero-attachment subpass must have the same value for
VkPipelineMultisampleStateCreateInfo:irasterizationSamples.

To destroy a framebuffer, call:

void vkDestroyFramebuffer (

VkDevice device,
VkFramebuffer framebuffer,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the framebuffer.
* framebuffer is the handle of the framebuffer to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If framebuffer is not VK_NULL_HANDLE, framebuffer must be a valid VkFramebuf fer handle

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If Framebufrfer is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and framebuffer that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

* All submitted commands that refer to framebuffer must have completed execution

* If VkAllocationCallbacks were provided when framebuffer was created, a compatible set of callbacks
must be provided here

* Ifno VkAllocationCallbacks were provided when framebuffer was created, pAllocator must be
NULL

Vulkan 1.0 - A Specification 125/615

Host Synchronization

» Host access to framebuf fer must be externally synchronized

7.4 Render Pass Commands

An application records the commands for a render pass instance one subpass at a time, by beginning a render pass
instance, iterating over the subpasses to record commands for that subpass, and then ending the render pass instance.

To begin a render pass instance, call:

void vkCmdBeginRenderPass (

VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfox pPRenderPassBegin,
VkSubpassContents contents) ;

e commandBuffer is the command buffer in which to record the command.

* pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure (defined below) which indicates the
render pass to begin an instance of, and the framebuffer the instance uses.

* contents specifies how the commands in the first subpass will be provided, and is one of the values:

typedef enum VkSubpassContents {
VK_SUBPASS_CONTENTS_INLINE = O,
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS = 1,
} VkSubpassContents;

If contentsis VK_SUBPASS_CONTENTS_INLINE, the contents of the subpass will be recorded inline in the
primary command buffer, and secondary command buffers must not be executed within the subpass. If contents is
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS, the contents are recorded in secondary command
buffers that will be called from the primary command buffer, and vkCmdExecuteCommands is the only valid
command on the command buffer until vkCmdNext Subpass or vkCmdEndRenderPass.

Valid Usage

e commandBuffer must be a valid VkCommandBuf fer handle

* pRenderPassBegin must be a pointer to a valid VkRenderPassBeginInfo structure
* contents must be a valid VkSubpassContents value

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support graphics operations

* This command must only be called outside of a render pass instance
* commandBuffer must be a primary VkCommandBuffer

e Ifany of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the 1ayout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderpPass member of prenderPassBeginis VK_IMAGE_LAYOUT_COLOR_
ATTACHMENT_OPTIMAL then the corresponding attachment image of the framebuffer specified in the
framebuffer member of pRenderPassBegin must have been created with VK_IMAGE_USAGE_COLOR__
ATTACHMENT_BIT set

e Ifany of the initiallLayout or finalLayout member of the VkAttachmentDescription structures or
the 1ayout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderpPass member of pRenderPassBeginis VK_IMAGE_LAYOUT_DEPTH_STENCIL_
ATTACHMENT OPTIMAL or VK_IMAGE_LAYOUT DEPTH_STENCIL_READ_ONLY_ OPTIMAL then the
corresponding attachment image of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT__
BIT set

e Ifany of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the Iayout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderpPass member of pRenderPassBeginis VK_IMAGE_LAYOUT_SHADER_READ_
ONLY_OPTIMAL then the corresponding attachment image of the framebuffer specified in the framebuffer
member of pRenderPassBegin must have been created with VK_IMAGE_USAGE_SAMPLED_BIT or VK_
IMAGE_USAGE_INPUT_ATTACHMENT_BIT set

e Ifany of the initiallLayout or finalLayout member of the VkAttachmentDescription structures or
the 1ayout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderPass member of pRenderPassBeginis VK_IMAGE_LAYOUT_TRANSFER_SRC_BIT
then the corresponding attachment image of the framebuffer specified in the framebuf fer member of
pRenderPassBegin must have been created with VK_TIMAGE_USAGE_TRANSFER_SRC_BIT set

e Ifany of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the 1ayout member of the VkAt tachmentReference structures specified when creating the render pass
Speciﬁed in the renderPass member of pRenderPassBeginis VK_IMAGE_LAYOUT_TRANSFER_DST_BIT
then the corresponding attachment image of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT set

Host Synchronization

* Host access to commandBuf fer must be externally synchronized

Vulkan 1.0 - A Specification

127 /615

Command Properties

Command Buffer Levels Render Pass Scope

Supported Queue Types

Primary Outside

GRAPHICS

After beginning a render pass instance, the command buffer is ready to record the commands for the first subpass of that
render pass.

The VkRenderPassBeginInfo structure is defined as:

typedef struct VkRenderPassBeginInfo {

—-—

VkStructureType sType;

const voidx pNext;
VkRenderPass renderPass;
VkFramebuffer framebuffer;
VkRect2D renderArea;
uint32_t clearValueCount;
const VkClearValuex pClearValues;

VkRenderPassBeginInfo;

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

renderPass is the render pass to begin an instance of.

framebuffer is the framebuffer containing the attachments that are used with the render pass.

renderArea is the render area that is affected by the render pass instance, and is described in more detail below.

clearValueCount is the number of elements in pClearvalues.

pClearValues is an array of VkClearValue structures that contains clear values for each attachment, if the
attachment uses a 1oadop value of VK_ATTACHMENT_LOAD_OP_CLEAR. The array is indexed by attachment

number, with elements corresponding to uncleared attachments being unused.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO

e pNext must be NULL
e renderPass must be a valid VkRenderPass handle

e framebuffer must be a valid VkFramebuf fer handle

e If clearvalueCount is not 0, pClearValues must be a pointer to an array of clearValueCount

VkClearValue unions

e Each of renderPass and framebuffer must have been created, allocated or retrieved from the same
VkDevice

* The value of clearvalueCount must be greater than or equal to the number of attachments in renderpPass that
specify a 1oadop of VK_ATTACHMENT_LOAD_OP_CLEAR

renderArea is the render area that is affected by the render pass instance. The effects of attachment load, store and
resolve operations are restricted to the pixels whose x and y coordinates fall within the render area on all attachments.
The render area extends to all layers of framebuffer. The application must ensure (using scissor if necessary) that all
rendering is contained within the render area, otherwise the pixels outside of the render area become undefined and
shader side effects may or may not occur for fragments outside the render area. The render area must be contained within
the framebuffer dimensions.

Note

There may be a performance cost for using a render area smaller than the framebuffer, unless it matches the
render area granularity for the render pass.

The render area granularity is queried by calling:

void vkGetRenderAreaGranularity (

VkDevice device,
VkRenderPass renderPass,
VkExtent2Dx* pGranularity);

* device is the logical device that owns the render pass.
* renderPass is a handle to a render pass.

* pGranularity points to a VkExtent 2D structure in which the granularity is returned.

Valid Usage

* device must be a valid VkDevice handle

* renderPass must be a valid VkRenderPass handle

* pGranularity must be a pointer to a VkExtent 2D structure

* renderPass must have been created, allocated or retrieved from device

¢ Each of device and renderPass must have been created, allocated or retrieved from the same
VkPhysicalDevice

The conditions leading to an optimal renderArea are:

Vulkan 1.0 - A Specification 129/615

* the offset.x member in renderArea is a multiple of the width member of the returned VkExtent 2D (the
horizontal granularity).

* the offset.y member in renderArea is a multiple of the height of the returned VkExtent 2D (the vertical
granularity).

e either the offset.width member in renderArea is a multiple of the horizontal granularity or offset.x+offset.
width is equal to the width of the framebufrfer in the VkRenderPassBeginInfo.

* either the offset.height member in renderArea is a multiple of the vertical granularity or offset.y+offset.
height is equal to the height of the framebuffer in the VkRenderPassBeginInfo.

After recording the commands for a subpass, an application transitions to the next subpass in the render pass instance by
calling:

void vkCmdNextSubpass (
VkCommandBuffer commandBuffer,
VkSubpassContents contents);

e commandBuffer is the command buffer in which to record the command.

* contents specifies how the commands in the first subpass will be provided, in the same fashion as the corresponding
parameter of vkCmdBeginRenderPass.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* contents must be a valid VkSubpassContents value

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support graphics operations
* This command must only be called inside of a render pass instance

* commandBuffer must be a primary VkCommandBuffer

* The current subpass index must be less than the number of subpasses in the render pass minus one

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Inside GRAPHICS

The subpasses indices for a render pass begin at zero when vkCmdBeginRenderPass is recorded, and increments
each time vkCmdNext Subpass is recorded.

Moving to the next subpass automatically performs any multisample resolve operations in the subpass being ended.
End-of-subpass multisample resolves are treated as color attachment writes for the purposes of synchronization. That is,
they are considered to execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage
and their writes are synchronized with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
rendering within a subpass and any resolve operations at the end of the subpass occurs automatically, without need for
explicit dependencies or pipeline barriers. However, if the resolve attachment is also used in a different subpass, an
explicit dependency is needed.

After transitioning to the next subpass, the application can record the commands for that subpass.

After recording the commands for the last subpass, an application records a command to end a render pass instance by
calling:

void vkCmdEndRenderPass (
VkCommandBuffer commandBuffer) ;

* commandBuf fer is the command buffer in which to end the current render pass instance.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics operations
* This command must only be called inside of a render pass instance

* commandBuffer must be a primary VkCommandBuffer

* The current subpass index must be equal to the number of subpasses in the render pass minus one

Vulkan 1.0 - A Specification

131/615

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels

Render Pass Scope

Supported Queue Types

Primary

Inside

GRAPHICS

Ending a render pass instance performs any multisample resolve operations on the final subpass.

Vulkan 1.0 - A Specification 133/615

Chapter 8

Shaders

A shader specifies programmable operations that execute for each vertex, control point, tessellated vertex, primitive,
fragment, or workgroup in the corresponding stage(s) of the graphics and compute pipelines.

Graphics pipelines include vertex shader execution as a result of primitive assembly, followed, if enabled, by tessellation
control and evaluation shaders operating on patches, geometry shaders, if enabled, operating on primitives, and fragment
shaders, if present, operating on fragments generated by Rasterization. In this specification, vertex, tessellation control,
tessellation evaluation and geometry shaders are collectively referred to as vertex processing stages and occur in the
logical pipeline before rasterization. The fragment shader occurs logically after rasterization.

Only the compute shader stage is included in a compute pipeline. Compute shaders operate on compute invocations in a
workgroup.

Shaders can read from input variables, and read from and write to output variables. Input and output variables can be
used to transfer data between shader stages, or to allow the shader to interact with values that exist in the execution
environment. Similarly, the execution environment provides constants that describe capabilities.

Shader variables are associated with execution environment-provided inputs and outputs using built-in decorations in the
shader. The available decorations for each stage are documented in the following subsections.

8.1 Shader Modules

Shader modules contain shader code and one or more entry points. Shaders are selected from a shader module by
specifying an entry point as part of pipeline creation. The stages of a pipeline can use shaders that come from different
modules. The shader code defining a shader module must be in the SPIR-V format, as described by the Vulkan
Environment for SPIR-V appendix.

A shader module is created by calling:

VkResult vkCreateShaderModule (

VkDevice device,

const VkShaderModuleCreateInfox pCreatelInfo,
const VkAllocationCallbacksx pAllocator,
VkShaderModulex* pShaderModule) ;

* device is the logical device that creates the shader module.

* pCreateInfo parameter is a pointer to an instance of the VkShaderModuleCreateInfo structure.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pShaderModule points to a VkShaderModule handle in which the resulting render pass object is returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkShaderModuleCreateInfo structure
* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pShaderModule must be a pointer to a VkShaderModule handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkShaderModuleCreateInfo structure is defined as:

typedef struct VkShaderModuleCreateInfo {

VkStructureType sType;
const void= pNext;
VkShaderModuleCreateFlags flags;
size_t codeSize;
const uint32_t#* pCode;

—-—

VkShaderModuleCreatelInfo;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

e flags is reserved for future use.

* codeSize is the size, in bytes, of the code pointed to by pCode.

* pCode points to code that is used to create the shader module. The type and format of the code is determined from the
content of the memory addressed by pCode.

Vulkan 1.0 - A Specification 135/615

Valid Usage

sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO

pNext must be NULL

flags must be 0

pCode must be a pointer to an array of codeSize/4 uint32_t values

codeSize must be greater than 0

codeSize must be a multiple of 4

pCode must point to valid SPIR-V code, formatted and packed as described by the SPIR-V Specification v1.0

pCode must adhere to the validation rules described by the Validation Rules within a Module section of the
SPIR-V Environment appendix

pCode must declare the Shader capability

pCode must not declare any capability that is not supported by the API, as described by the Capabilities section of
the SPIR-V Environment appendix

If pcode declares any of the capabilities that are listed as not required by the implementation, the relevant feature
must be enabled, as listed in the SPIR-V Environment appendix

Once a shader module has been created, any entry points it contains can be used in pipeline shader stages as described in
Compute Pipelines and Graphics Pipelines.

To destroy a shader module, call:

void vkDestroyShaderModule (

VkDevice device,
VkShaderModule shaderModule,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the shader module.

* shaderModule is the handle of the shader module to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

A shader module can be destroyed while pipelines created using its shaders are still in use.

Valid Usage

https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.html

* device must be a valid VkDevice handle

e If shaderModule is not VK_NULIL_HANDLE, shaderModule must be a valid VkShaderModule handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
» If shaderModule is a valid handle, it must have been created, allocated or retrieved from device

» Each of device and shaderModule that are valid handles must have been created, allocated or retrieved from
the same VkPhysicalDevice

e [f VkAllocationCallbacks were provided when shaderModule was created, a compatible set of callbacks
must be provided here

* IfnoVkAllocationCallbacks were provided when shaderModule was created, pAllocator must be
NULL

Host Synchronization

* Host access to shaderModule must be externally synchronized

8.2 Shader Execution

At each stage of the pipeline, multiple invocations of a shader may execute simultaneously. Further, invocations of a
single shader produced as the result of different commands may execute simultaneously. The relative execution order of
invocations of the same shader type is undefined. Shader invocations may complete in a different order than that in which
the primitives they originated from were drawn or dispatched by the application. However, fragment shader outputs are
written to attachments in API order.

The relative order of invocations of different shader types is largely undefined. However, when invoking a shader whose
inputs are generated from a previous pipeline stage, the shader invocations from the previous stage are guaranteed to
have executed far enough to generate input values for all required inputs.

8.3 Shader Memory Access Ordering

The order in which image or buffer memory is read or written by shaders is largely undefined. For some shader types
(vertex, tessellation evaluation, and in some cases, fragment), even the number of shader invocations that may perform
loads and stores is undefined.

In particular, the following rules apply:

* Vertex and tessellation evaluation shaders will be invoked at least once for each unique vertex, as defined in those
sections.

Vulkan 1.0 - A Specification 137 /615

» Fragment shaders will be invoked zero or more times, as defined in that section.

* The relative order of invocations of the same shader type are undefined. A store issued by a shader when working on
primitive B might complete prior to a store for primitive A, even if primitive A is specified prior to primitive B. This
applies even to fragment shaders; while fragment shader outputs are always written to the framebuffer in primitive
order, stores executed by fragment shader invocations are not.

* The relative order of invocations of different shader types is largely undefined.

& Note

The above limitations on shader invocation order make some forms of synchronization between shader invoca-
tions within a single set of primitives unimplementable. For example, having one invocation poll memory written
by another invocation assumes that the other invocation has been launched and will complete its writes in finite
time.

Stores issued to different memory locations within a single shader invocation may not be visible to other invocations in
the order they were performed. The OpMemoryBarrier instruction can be used to provide stronger ordering of reads and
writes performed by a single invocation. OpMemoryBarrier guarantees that any memory transactions issued by the
shader invocation prior to the instruction complete prior to the memory transactions issued after the instruction. Memory
barriers are needed for algorithms that require multiple invocations to access the same memory and require the
operations to be performed in a partially-defined relative order. For example, if one shader invocation does a series of
writes, followed by an OpMemoryBarrier instruction, followed by another write, then another invocation that sees the
results of the final write will also see the previous writes. Without the memory barrier, the final write may be visible
before the previous writes.

The built-in atomic memory transaction instructions can be used to read and write a given memory address atomically.
While built-in atomic functions issued by multiple shader invocations are executed in undefined order relative to each
other, these functions perform both a read and a write of a memory address and guarantee that no other memory
transaction will write to the underlying memory between the read and write.

Note

Atomics allow shaders to use shared global addresses for mutual exclusion or as counters, among other uses.

8.4 Shader Inputs and Outputs

Data is passed into and out of shaders using variables with input or output storage class, respectively. User-defined inputs
and outputs are connected between stages by matching their Location decorations. Additionally, data can be provided
by or communicated to special functions provided by the execution environment using Built In decorations.

In many cases, the same BuiltIn decoration can be used in multiple shader stages with similar meaning. The specific
behavior of variables decorated as BuiltIn is documented in the following sections.

8.5 Vertex Shaders

Each vertex shader invocation operates on one vertex and its associated vertex attribute data, and outputs one vertex and
associated data. Graphics pipelines must include a vertex shader, and the vertex shader stage is always the first shader
stage in the graphics pipeline.

8.5.1 Vertex Shader Execution

A vertex shader must be executed at least once for each vertex specified by a draw command. During execution, the
shader is presented with the index of the vertex and instance for which it has been invoked. Input variables declared in
the vertex shader are filled by the implementation with the values of vertex attributes associated with the invocation being
executed.

If a vertex is a part of more than one input primitive, for example by including the same index value multiple times in an
index buffer, the vertex shader may be invoked only once and the results shared amongst the resulting primitives. This is
known as vertex reuse.

Implementor’s Note

If a vertex is repeated in a draw command (i.e. the same index is repeated in an indexed draw), the shader may be
executed anywhere from one to the number of repetitions times for that vertex, depending on the implementation’s
ability to reuse shader results.

8.6 Tessellation Control Shaders

The tessellation control shader is used to read an input patch provided by the application and to produce an output patch.
Each tessellation control shader invocation operates on an input patch (after all control points in the patch are processed
by a vertex shader) and its associated data, and outputs a single control point of the output patch and its associated data,
and can also output additional per-patch data. The input patch is sized according to the pat chControlPoints member
of VkPipelineTessellationStateCreatelInfo, as part of input assembly. The size of the output patch is
controlled by the OpExecutionMode OutputVertices specified in the tessellation control or tessellation
evaluation shaders, which must be specified in at least one of the shaders. The size of the input and output patches must
each be greater than zero and less than or equal to VkPhysicalDeviceLimits::imaxTessellationPatchSize.

8.6.1 Tessellation Control Shader Execution

A tessellation control shader is invoked at least once for each oufput vertex in a patch.

Inputs to the tessellation control shader are generated by the vertex shader. Each invocation of the tessellation control
shader can read the attributes of any incoming vertices and their associated data. The invocations corresponding to a
given patch execute logically in parallel, with undefined relative execution order. However, the OpControlBarrier
instruction can be used to provide limited control of the execution order by synchronizing invocations within a patch,
effectively dividing tessellation control shader execution into a set of phases. Tessellation control shaders will read
undefined values if one invocation reads a per-vertex or per-patch attribute written by another invocation at any point
during the same phase, or if two invocations attempt to write different values to the same per-patch output in a single
phase.

8.7 Tessellation Evaluation Shaders

The Tessellation Evaluation Shader operates on an input patch of control points and their associated data, and a single
input barycentric coordinate indicating the invocation’s relative position within the subdivided patch, and outputs a single
vertex and its associated data.

Vulkan 1.0 - A Specification 139/615

8.7.1 Tessellation Evaluation Shader Execution

A tessellation evaluation shader is invoked at least once for each unique vertex generated by the tessellator.

8.8 Geometry Shaders

The geometry shader operates on a group of vertices and their associated data assembled from a single input primitive,
and emits zero or more output primitives and the group of vertices and their associated data required for each output
primitive.

8.8.1 Geometry Shader Execution

A geometry shader is invoked at least once for each primitive produced by the tessellation stages, or at least once for
each primitive generated by primitive assembly when tessellation is not in use. The number of geometry shader
invocations per input primitive is determined from the invocation count of the geometry shader specified by the
OpExecutionMode Invocations in the geometry shader. If the invocation count is not specified, then a default of
one invocation is executed.

8.9 Fragment Shaders

Fragment shaders are invoked as the result of rasterization in a graphics pipeline. Each fragment shader invocation
operates on a single fragment and its associated data. With few exceptions, fragment shaders do not have access to any
data associated with other fragments and is considered to execute in isolation of fragment shader invocations associated
with other fragments.

8.9.1 Fragment Shader Execution

For each fragment generated by rasterization, a fragment shader may or may not be invoked. A fragment shader must not
be invoked if the Early Per-Fragment Tests cause it to have no coverage.

Furthermore, if it is determined that a fragment generated as the result of rasterizing a first primitive will have its outputs
entirely overwritten by a fragment generated as the result of rasterizing a second primitive in the same subpass, and the
fragment shader used for the fragment has no other side effects, then the fragment shader may not be executed for the
fragment from the first primitive.

Relative ordering of execution of different fragment shader invocations is not defined.

The number of fragment shader invocations produced per-pixel is determined as follows:

* If per-sample shading is enabled, the fragment shader is invoked once per covered sample.

» Otherwise, the fragment shader is invoked at least once per fragment but no more than once per covered sample.

In addition to the conditions outlined above for the invocation of a fragment shader, a fragment shader invocation may be
produced as a helper invocation. A helper invocation is a fragment shader invocation that is created solely for the
purposes of evaluating derivatives for use in non-helper fragment shader invocations. Stores and atomics performed by
helper invocations must not have any effect on memory, and values returned by atomic instructions in helper invocations
are undefined.

8.9.2 Early Fragment Tests

An explicit control is provided to allow fragment shaders to enable early fragment tests. If the fragment shader specifies
the EarlyFragmentTests OpExecutionMode, the per-fragment tests described in Early Fragment Test Mode are
performed prior to fragment shader execution. Otherwise, they are performed after fragment shader execution.

8.10 Compute Shaders

Compute shaders are invoked via vkCmdDispatch and vkCmdDispatchIndirect commands. In general, they
have access to similar resources as shader stages executing as part of a graphics pipeline.

Compute workloads are formed from groups of work items called workgroups and processed by the compute shader in
the current compute pipeline. A workgroup is a collection of shader invocations that execute the same shader, potentially
in parallel. Compute shaders execute in global workgroups which are divided into a number of local workgroups with a
size that can be set by assigning a value to the LocalSize execution mode either in the shader code or via
Specialization Constants. An invocation within a local workgroup can share data with other members of the local
workgroup through shared variables and issue memory and control flow barriers to synchronize with other members of
the local workgroup.

8.11 Interpolation Decorations

Interpolation decorations control the behavior of attribute interpolation in the fragment shader stage. Interpolation
decorations can be applied to Input storage class variables in the fragment shader stage’s interface, and control the
interpolation behavior of those variables.

Inputs that could be interpolated can be decorated by at most one of the following decorations:

* Flat: no interpolation

* NoPerspective: linear interpolation (for lines and polygons).

Fragment input variables decorated with neither F1at nor NoPerspective use perspective-correct interpolation (for
lines and polygons).

The presence of and type of interpolation is controlled by the above interpolation decorations as well as the auxiliary
decorations Centroid and Sample.

A variable decorated with F1lat will not be interpolated. Instead, it will have the same value for every fragment within a
triangle. This value will come from a single provoking vertex. A variable decorated with Flat can also be decorated
with Centroid or Sample, which will mean the same thing as decorating it only as Flat.

For fragment shader input variables decorated with neither Centroid nor Sample, the value of the assigned variable
may be interpolated anywhere within the pixel and a single value may be assigned to each sample within the pixel.

Centroid and Sample can be used to control the location and frequency of the sampling of the decorated fragment
shader input. If a fragment shader input is decorated with Centroid, a single value may be assigned to that variable for
all samples in the pixel, but that value must be interpolated to a location that lies in both the pixel and in the primitive
being rendered, including any of the pixel’s samples covered by the primitive. Because the location at which the variable
is interpolated may be different in neighboring pixels, and derivatives may be computed by computing differences
between neighboring pixels, derivatives of centroid-sampled inputs may be less accurate than those for non-centroid
interpolated variables. If a fragment shader input is decorated with Sample, a separate value must be assigned to that
variable for each covered sample in the pixel, and that value must be sampled at the location of the individual sample.

Vulkan 1.0 - A Specification 141 /615

When rasterizationSamplesis VK_SAMPLE_COUNT_1_BIT, the pixel center must be used for Centroid,
Sample, and undecorated attribute interpolation.

Fragment shader inputs that are signed or unsigned integers, integer vectors, or any double-precision floating-point type
must be decorated with Flat.

8.12 Static Use

A SPIR-V module declares a global object in memory using the OpVariable instruction, which results in a pointer x
to that object. A specific entry point in a SPIR-V module is said to statically use that object if that entry-point’s call tree
contains a function that contains a memory instruction or image instruction with x as an id operand. See the “Memory
Instructions” and “Image Instructions” subsections of section 3 “Binary Form” of the SPIR-V specification for the
complete list of SPIR-V memory instructions.

Static use is not used to control the behavior of variables with Input and Output storage. The effects of those
variables are applied based only on whether they are present in a shader entry point’s interface.

Vulkan 1.0 - A Specification 143 /615

Chapter 9

Pipelines

The following figure shows a block diagram of the Vulkan pipelines. Some Vulkan commands specify geometric objects
to be drawn or computational work to be performed, while others specify state controlling how objects are handled by the
various pipeline stages, or control data transfer between memory organized as images and buffers. Commands are
effectively sent through a processing pipeline, either a graphics pipeline or a compute pipeline.

The first stage of the graphics pipeline (Input Assembler) assembles vertices to form geometric primitives such as points,
lines, and triangles, based on a requested primitive topology. In the next stage (Vertex Shader) vertices can be
transformed, computing positions and attributes for each vertex. If tessellation and/or geometry shaders are supported,
they can then generate multiple primitives from a single input primitive, possibly changing the primitive topology or
generating additional attribute data in the process.

The final resulting primitives are clipped to a clip volume in preparation for the next stage, Rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional description of a point, line segment, or
triangle. Each fragment so produced is fed to the next stage (Fragment Shader) that performs operations on individual
fragments before they finally alter the framebuffer. These operations include conditional updates into the framebuffer
based on incoming and previously stored depth values (to effect depth buffering), blending of incoming fragment colors
with stored colors, as well as masking, stenciling, and other logical operations on fragment values.

Framebuffer operations read and write the color and depth/stencil attachments of the framebuffer for a given subpass of a
render pass instance. The attachments can be used as input attachments in the fragment shader in a later subpass of the
same render pass.

The compute pipeline is a separate pipeline from the graphics pipeline, which operates on one-, two-, or
three-dimensional work groups which can read from and write to buffer and image memory.

This ordering is meant only as a tool for describing Vulkan, not as a strict rule of how Vulkan is implemented, and we
present it only as a means to organize the various operations of the pipelines.

praw < Indirect Buffer Binding ———> pispateh
Input Assembler Compute Assembler
Vertex Shader <> <= Compute Shader
v <— Push Constants —

Tessellation Assembler seveeccsceccscecctccccscccanans .
. Descriptor Sets

Tessellation Control Shader €>l€— Sampled Image -%

Tessellation Evaluation Shader <€

Tessellation Primitive Generator -

v
Geometry Assembler

Geometryhader <>{<>| Swngesifier <>

v
Primitive Assembler

Rasterization

v

Pre-Fragment Operations <% Legend
Fragment Assembler eessettttttttitttnttntntnnannns _ Fixed Function Stage
: Framebuffer :
. P ble Sta:
Fragment Shader Input Attachment M
Post-Fragment Operations (ﬁ» Depth/Stencil Attachment < ‘ —
Color/Blending Operations ~ <€——> Color Attachment \ Constants

Figure 9.1: Block diagram of the Vulkan pipeline

Each pipeline is controlled by a monolithic object created from a description of all of the shader stages and any relevant
fixed-function stages. Linking the whole pipeline together allows the optimization of shaders based on their
input/outputs and eliminates expensive draw time state validation.

A pipeline object is bound to the device state in command buffers. Any pipeline object state that is marked as dynamic is
not applied to the device state when the pipeline is bound. Dynamic state not set by binding the pipeline object can be
modified at any time and persists for the lifetime of the command buffer, or until modified by another dynamic state

Vulkan 1.0 - A Specification 145/615

command or another pipeline bind. No state, including dynamic state, is inherited from one command buffer to another.
Only dynamic state that is required for the operations performed in the command buffer needs to be set. For example, if
blending is disabled by the pipeline state then the dynamic color blend constants do not need to be specified in the
command buffer, even if this state is marked as dynamic in the pipeline state object. If a new pipeline object is bound
with state not marked as dynamic after a previous pipeline object with that same state as dynamic, the new pipeline
object state will override the dynamic state. Modifying dynamic state that is not set as dynamic by the pipeline state
object will lead to undefined results.

9.1 Compute Pipelines

Compute pipelines consist of a single static compute shader stage and the pipeline layout.

The compute pipeline encapsulates a compute shader and is created by calling vkCreateComputePipelines with
module and pName selecting an entry point from a shader module, where that entry point defines a valid compute shader,
in the VkPipelineShaderStageCreateInfo structure contained within the
VkComputePipelineCreateInfo structure.

Compute pipelines are created by calling:

VkResult vkCreateComputePipelines (

VkDevice device,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkComputePipelineCreateInfox pCreatelInfos,
const VkAllocationCallbacksx pAllocator,
VkPipelinex pPipelines);

* device is the logical device that creates the compute pipelines.

* pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the handle of a valid
pipeline cache object, in which case use of that cache is enabled for the duration of the command.

* createlInfoCount is the length of the pCreateInfos and Pipelines arrays.
* pCreateInfos is an array of VkComputePipelineCreateInfo structures.
* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pPipelines is a pointer to an array in which the resulting compute pipeline objects are returned.

Valid Usage

* device must be a valid VkDevice handle
e If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache handle

* pCreateInfos must be a pointer to an array of createInfoCount valid
VkComputePipelineCreateInfo structures

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pPipelines must be a pointer to an array of createInfoCount VkPipeline handles
* The value of createInfoCount must be greater than 0
e If pipelineCache is a valid handle, it must have been created, allocated or retrieved from device

* Each of device and pipelineCache that are valid handles must have been created, allocated or retrieved from
the same VkPhysicalDevice

* If the value of the £1ags member of any given element of pCreateInfos contains the VK_PIPELINE_
CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same element is not -1, the
value of basePipelineIndex must be less than the index into pCreateInfos that corresponds to that element

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkComputePipelineCreateInfo is:

typedef struct VkComputePipelineCreateInfo {

—

VkStructureType sType;

const voidx pNext;
VkPipelineCreateFlags flags;
VkPipelineShaderStageCreateInfo stage;
VkPipelineLayout layout;

VkPipeline basePipelineHandle;
int32_t basePipelinelIndex;

VkComputePipelineCreatelInfo;

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

flags provides options for pipeline creation, and is of type VkPipelineCreateFlagBits.
stageisaVkPipelineShaderStageCreateInfo describing the compute shader.

layout is the description of binding locations used by both the pipeline and descriptor sets used with the pipeline.
basePipelineHandle is a pipeline to derive from

basePipelineIndex is an index into the pCreateInrfos parameter to use as a pipeline to derive from

Vulkan 1.0 - A Specification 147 /615

Valid Usage

* sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO
e pNext must be NULL

e flags must be a valid combination of VkPipelineCreateFlagBits values

* stage must be a valid VkPipelineShaderStageCreateInfo structure

e Jlayout must be a valid VkPipelineLayout handle

e Each of layout and basePipelineHandle that are valid handles must have been created, allocated or retrieved
from the same VkDevice

* If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not —
1, basePipelineHandle must be VK_NULL_HANDLE

* If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not —
1, it must be a valid index into the calling command’s pCreateInfos parameter

* If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineIndex must be —1

 If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineHandle must be a valid VkPipeline handle

* If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, it must be a valid handle to a compute VkPipeline

¢ The stage member of stage must be VK_SHADER_STAGE_COMPUTE_BIT

* The shader code for the entry point identified by stage and the rest of the state identified by this structure must
adhere to the pipeline linking rules described in the Shader Interfaces chapter

* layout must be consistent with all shaders specified in pStages

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline Derivatives.
The parameter stage member of type VkPipelineShaderStageCreateInfois:

typedef struct VkPipelineShaderStageCreatelInfo {

VkStructureType sType;

const voidx pNext;
VkPipelineShaderStageCreateFlags flags;
VkShaderStageFlagBits stage;
VkShaderModule module;

const charx* pName;

const VkSpecializationInfox pSpecializationInfo;

} VkPipelineShaderStageCreateInfo;

The members of the VkPipelineShaderStageCreateInfo structure are as follows:

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

flags is reserved for future use.

stageis a VkShaderStageFlagBits naming the pipeline stage.

moduleis a VkShaderModule object that contains the shader for this stage.

pName is a null-terminated UTF-8 string specifying the entry point name of the shader for this stage.

pSpecializationInfois apointer to VkSpecializationInfo, as described in Specialization Constants, and
can be NULL.

Valid Usage

e sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO
e pNext must be NULL

e flags mustbe 0

* stage must be a valid VkShaderStageFlagBits value

* module must be a valid VkShaderModule handle

* pName must be a null-terminated string

* If pSpecializationInfois not NULL, pSpecializationInfo mustbe a pointer to a valid
VkSpecializationInfo structure

* If the geometry shaders feature is not enabled, stage must not be VK_SHADER STAGE_GEOMETRY_BIT

e If the tessellation shaders feature is not enabled, st age must not be VK_SHADER_STAGE_TESSELLATION
CONTROL_BIT or VK_SHADER_STAGE_TESSELLATION EVALUATION BIT

* stage must not be VK_SHADER_STAGE_ALL_GRAPHICS, or VK_SHADER_STAGE_ALL
* pName must be the name of an OpEntryPoint in module with an execution model that matches stage

» If the identified entry point includes any variable in its interface that is declared with the ClipDistance
BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDevicelLimits:imaxClipDistances

* If the identified entry point includes any variable in its interface that is declared with the CullDistance
BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDevicelLimits:imaxCullDistances

* If the identified entry point includes any variables in its interface that are declared with the ClipDistance or
CullDistance BuiltIn decoration, those variables must not have array sizes which sum to more than
VkPhysicalDevicelLimits:imaxCombinedClipAndCullDistances

Vulkan 1.0 - A Specification 149 /615

* If the identified entry point includes any variable in its interface that is declared with the SampleMask
BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDevicelimits:imaxSampleMaskWords

e If stageis VK_SHADER_STAGE_VERTEX_BRIT, the identified entry point must not include any input variable
in its interface that is decorated with CullDistance

e If stageis VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or VK_SHADER_STAGE_
TESSELLATION_EVALUATION_BIT, and the identified entry point has an OpExecut ionMode instruction
that specifies a patch size with OutputVertices, the patch size must be greater than 0 and less than or equal
to VkPhysicalDevicelLimits:imaxTessellationPatchSize

* If stageis VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction that specifies a maximum output vertex count that is greater than 0 and less
than or equal to VkPhysicalDeviceLimits:imaxGeometryOutputVertices

* If stageis VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction that specifies an invocation count that is greater than 0 and less than or equal to
VkPhysicalDevicelimits:imaxGeometryShaderInvocations

* If stageis VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to Layer for any
primitive, it must write the same value to Layer for all vertices of a given primitive

* If stageis VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to Viewport Index
for any primitive, it must write the same value to Viewport Index for all vertices of a given primitive

* If stageis VK_SHADER_STAGE_FRAGMENT_BIT, the identified entry point must not include any output
variables in its interface decorated with CullDistance

* If stageis VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to FragDepth in any
execution path, it must write to FragDepth in all execution paths

The VkShaderStageFlagBits flags are defined as:

typedef enum VkShaderStageFlagBits {
VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 0x00000004,
VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,
VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,
VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,
VK_SHADER_STAGE_ALL_GRAPHICS = O0x1F,
VK_SHADER_STAGE_ALL = Ox7FFFFFFF,

} VkShaderStageFlagBits;

9.2 Graphics Pipelines

Graphics pipelines consist of multiple shader stages, multiple fixed-function pipeline stages, and a pipeline layout, and
are created by calling vkCreateGraphicsPipelines:

VkResult vkCreateGraphicsPipelines (
VkDevice device,

VkPipelineCache pipelineCache,

uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfox pCreatelInfos,
const VkAllocationCallbacksx pAllocator,
VkPipelinex pPipelines) ;

device is the logical device that creates the graphics pipelines.

pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the handle of a valid
pipeline cache object, in which case use of that cache is enabled for the duration of the command.

createInfoCount is the length of the pCreateInfos and Pipelines arrays.
pCreatelnfosis an array of VkGraphicsPipelineCreateInfo structures.
pAllocator controls host memory allocation as described in the Memory Allocation chapter.

pPipelines is a pointer to an array in which the resulting graphics pipeline objects are returned.

Valid Usage

e device must be a valid VkDevice handle
e If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache handle

* pCreateInfos must be a pointer to an array of createInfoCount valid
VkGraphicsPipelineCreateInfo structures

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
* pPipelines must be a pointer to an array of createInfoCount VkPipeline handles

* The value of createInfoCount must be greater than 0

* If pipelineCache is a valid handle, it must have been created, allocated or retrieved from device

* Each of device and pipelineCache that are valid handles must have been created, allocated or retrieved from
the same VkPhysicalDevice

o If the value of the f1ags member of any given element of pCreateInfos contains the VK_PIPELINE_
CREATE_DERIVATIVE_BIT flag, and the basePipelineIndex member of that same element is not —1, the
value of basePipelineIndex must be less than the index into pCreateInfos that corresponds to that element

Return Codes

Success

Vulkan 1.0 - A Specification 151 /615

* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkGraphicsPipelineCreateInfo structure includes an array of shader create info structures containing all
the desired active shader stages, as well as creation info to define all relevant fixed-function stages, and a pipeline layout.
The definition of VkGraphicsPipelineCreateInfois:

typedef struct VkGraphicsPipelineCreatelInfo {

—

VkStructureType sType;

const voidx pNext;
VkPipelineCreateFlags flags;

uint32_t stageCount;

const VkPipelineShaderStageCreateInfox pStages;

const VkPipelineVertexInputStateCreateInfox pVertexInputState;
const VkPipelineInputAssemblyStateCreateInfox pInputAssemblyState;
const VkPipelineTessellationStateCreateInfox pTessellationState;
const VkPipelineViewportStateCreateInfox pViewportState;
const VkPipelineRasterizationStateCreateInfox pRasterizationState;
const VkPipelineMultisampleStateCreateInfox pMultisampleState;
const VkPipelineDepthStencilStateCreateInfox pDepthStencilState;
const VkPipelineColorBlendStateCreateInfox pColorBlendState;
const VkPipelineDynamicStateCreateInfox pDynamicState;
VkPipelineLayout layout;

VkRenderPass renderPass;

uint32_t subpass;

VkPipeline basePipelineHandle;
int32_t basePipelinelIndex;

VkGraphicsPipelineCreateInfo;

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.

flagsis a bitfield of VkPipelineCreateFlagBits controlling how the pipeline will be generated, as described
below.

stageCount is the number of entries in the pStages array.

pStages is an array of size stageCount structures of type VkPipelineShaderStageCreateInfo describing
the set of the shader stages to be included in the graphics pipeline.

pVertexInputState is a pointer to an instance of the VkPipelineVertexInputStateCreateInfo
structure.

pInputAssemblyState is a pointer to an instance of the VkPipelineInputAssemblyStateCreateInfo
structure which determines input assembly behavior, as described in Drawing Commands.

pTessellationState is a pointer to an instance of the VkPipelineTessellationStateCreateInfo
structure, or NULL if the pipeline does not include a tessellation control shader stage and tessellation evaluation shader
stage.

pViewportState is a pointer to an instance of the VkPipelineViewportStateCreateInfo structure, or
NULL if the pipeline has rasterization disabled.

pRasterState is a pointer to an instance of the VkPipelineRasterizationStateCreateInfo structure.

pMultisampleState is a pointer to an instance of the VkPipelineMultisampleStateCreateInfo, or
NULL if the pipeline has rasterization disabled.

pDepthStencilState is a pointer to an instance of the VkPipelineDepthStencilStateCreatelInfo
structure, or NULL if the pipeline has rasterization disabled or if the subpass of the render pass the pipeline is created
against does not use a depth/stencil attachment.

pColorBlendState is a pointer to an instance of the VkPipelineColorBlendStateCreateInfo structure,
or NULL if the pipeline has rasterization disabled or if the subpass of the render pass the pipeline is created against
does not use any color attachments.

pDynamicState is a pointer to VkPipelineDynamicStateCreateInfo and is used to indicate which
properties of the pipeline state object are dynamic and can be changed independently of the pipeline state. This can be
NULL, which means no state in the pipeline is considered dynamic.

layout is the description of binding locations used by both the pipeline and descriptor sets used with the pipeline.

renderPass is a handle to a render pass object describing the environment in which the pipeline will be used; the
pipeline can be used with an instance of any render pass compatible with the one provided. See Render Pass
Compatibility for more information.

subpass is the index of the subpass in renderPass where this pipeline will be used.
basePipelineHandle is a pipeline to derive from.

basePipelinelIndex is an index into the pCreateInrfos parameter to use as a pipeline to derive from.

Valid Usage

¢ sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO
* pNext must be NULL
e flags must be a valid combination of VkPipelineCreateFlagBits values

* pStages must be a pointer to an array of stageCount valid VkPipelineShaderStageCreateInfo
structures

* pVertexInputState must be a pointer to a valid VkPipelineVertexInputStateCreateInfo
structure

* pInputAssemblyState must be a pointer to a valid VkPipelineInputAssemblyStateCreateInfo
structure

* pRasterizationState mustbe a pointer to a valid VkPipelineRasterizationStateCreateInfo
structure

* If ppynamicState is not NULL, pDynamicState must be a pointer to a valid
VkPipelineDynamicStateCreateInfo structure

Vulkan 1.0 - A Specification 153/615

e layout must be a valid VkPipelineLayout handle
* renderPass must be a valid VkRenderPass handle
* The value of stageCount must be greater than 0

e Each of layout, renderPass and basePipelineHandle that are valid handles must have been created,
allocated or retrieved from the same VkDevice

* If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not —
1, basePipelineHandle must be VK_NULL_HANDLE

* If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not —
1, it must be a valid index into the calling command’s pCreateInfos parameter

 If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineIndex must be —1

 If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineHandle must be a valid VkPipeline handle

* If f1ags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, it must be a valid handle to a graphics VkPipeline

* stageCount must be greater than or equal to 1

* The stage member of each element of pStages must be unique

e The stage member of one element of pStages must be VK_SHADER_STAGE_VERTEX_BIT

* The stage member of any given element of pStages must not be VK_SHADER_STAGE_COMPUTE_BIT
* If pStages includes a tessellation control shader stage, it must include a tessellation evaluation shader stage
* If pStages includes a tessellation evaluation shader stage, it must include a tessellation control shader stage

* If pStages includes a tessellation control shader stage and a tessellation evaluation shader stage,
pTessellationState must not be NULL

* If pSstages includes both a tessellation control shader stage and a tessellation evaluation shader stage, the shader
code of at least one must contain an OpExecut ionMode instruction that specifies the type of subdivision in the
pipeline

* If pstages includes both a tessellation control shader stage and a tessellation evaluation shader stage, and the
shader code of both contain an OpExecutionMode instruction that specifies the type of subdivision in the
pipeline, they must both specify the same subdivision mode

* If pstages includes both a tessellation control shader stage and a tessellation evaluation shader stage, the shader
code of at least one must contain an OpExecut ionMode instruction that specifies the output patch size in the
pipeline

* If pstages includes both a tessellation control shader stage and a tessellation evaluation shader stage, and the
shader code of both contain an OpExecutionMode instruction that specifies the out patch size in the pipeline,
they must both specify the same patch size

* If pSstages includes tessellation shader stages, the t opology member of pTnputAssembly must be VK_
PRIMITIVE_TOPOLOGY_PATCH_LIST

If pStages includes a geometry shader stage, and doesn’t include any tessellation shader stages, its shader code
must contain an OpExecutionMode instruction that specifies an input primitive type that is compatible with the
primitive topology specified in pInputAssembly

If pstages includes a geometry shader stage, and also includes tessellation shader stages, its shader code must
contain an OpExecutionMode instruction that specifies an input primitive type that is compatible with the
primitive topology that is output by the tessellation stages

If pstages includes a fragment shader stage and a geometry shader stage, and the fragment shader code reads
from an input variable that is decorated with PrimitiveID, then the geometry shader code must write to a
matching output variable, decorated with PrimitiveID, in all execution paths

If pStages includes a fragment shader stage, its shader code must not read from any input attachment that is
defined as VK_ATTACHMENT_UNUSED in subpass

The shader code for the entry points identified by pStages, and the rest of the state identified by this structure
must adhere to the pipeline linking rules described in the Shader Interfaces chapter

If subpass uses a depth/stencil attachment in renderpass that has a layout of VK_IMAGE_LAYOUT_DEPTH_
STENCIL_READ_ONLY_OPTIMAL in the VkAttachmentReference defined by subpass, and
pDepthStencilState is not NULL, the depthWriteEnable member of pDepthStencilState must be VK_
FALSE

If subpass uses a depth/stencil attachment in renderpass that has a layout of VK_IMAGE_LAYOUT_DEPTH_
STENCIL_READ_ONLY_OPTIMAL in the VkAttachmentReference defined by subpass, and
pDepthStencilState is not NULL, the value of the failOp, passOp and depthFailOp members of each of
the front and back members of pDepthStencilState must be VK_STENCIL_OP_KEEP

If pcolorBlendState is not NULL, the value of the blendEnable member of each element of the
pAttachment member of pColorBlendState must be VK_FALSE if the format of the attachment referred to
in subpass of renderpPass does not support color blend operations, as specified by the VK_FORMAT_
FEATURE_COLOR_ATTACHMENT_BLEND_BIT flag in VkFormatProperties::linearTilingFeatures
or VkFormatProperties:ioptimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

If pColorBlendState is not NULL, The attachmentCount member of pColorBlendState must be equal to
the value of colorAttachmentCount used to create subpass

If no element of the pDynamicStates member of pDynamicStateis VK_DYNAMIC_STATE_VIEWPORT, the
pViewports member of pViewportState must be a pointer to an array of pViewportState—viewportCount
VkViewport structures

If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_SCISSOR, the
pScissors member of pViewportState must be a pointer to an array of pViewportState—sscissorCount
VkRect 2D structures

If the wide lines feature is not enabled, and no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_LINE_WIDTH, the 1ineWidth member of pRasterizationState mustbe 1.0

If the rasterizerDiscardEnable member of pRasterizationStateis VK_FALSE, pViewportState
must be a pointer to a valid VkPipelineViewportStateCreateInfo structure

If the rasterizerDiscardEnable member of prasterizationStateis VK_FALSE, pMultisampleState
must be a pointer to a valid VkPipelineMultisampleStateCreateInfo structure

Vulkan 1.0 - A Specification 155/615

e If the rasterizerDiscardEnable member of prasterizationStateis VK_FALSE, and subpass uses a
depth/stencil attachment, pDepthStencilState must be a pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

e Ifthe rasterizerDiscardEnable member of pRasterizationStateis VK_FALSE, and subpass uses
color attachments, pColorBlendState must be a pointer to a valid
VkPipelineColorBlendStateCreateInfo structure

* If the depth bias clamping feature is not enabled, no element of the pDynamicStates member of
pDynamicStateis VK_DYNAMIC_STATE_DEPTH_BIAS, and the depthBiasEnable member of
pDepthStencil is VK_TRUE, the depthBiasClamp member of ppepthStencil mustbe 0.0

e If no element of the ppynamicStates member of pDynamicStateis VK_DYNAMIC_STATE_DEPTH_
BOUNDS, and the dept hBoundsTestEnable member of pDepthStencil is VK_TRUE, the value of the
minDepthBounds and maxDept hBounds members of pDepthStencil must be between 0.0 and 1.0,
inclusive

* layout must be consistent with all shaders specified in pStages

* If subpass uses color and/or depth/stencil attachments, then the rasterizationSamples member of
pMultisampleState must be the same as the sample count for those subpass attachments

* If subpass does not use any color and/or depth/stencil attachments, then the rasterizationSamples member
of pMultisampleState must follow the rules for a zero-attachment subpass

* subpass must be a valid subpass within renderpass

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline Derivatives.

pStages points to an array of VkPipelineShaderStageCreateInfo structures, which were previously
described in Compute Pipelines.

Bits which can be set in flags are:

typedef enum VkPipelineCreateFlagBits {
VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT = 0x00000001,
VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT = 0x00000002,
VK_PIPELINE_CREATE_DERIVATIVE_BIT = 0x00000004,
VkPipelineCreateFlagBits;

—

* VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT specifies that the created pipeline will not be
optimized. Using this flag may reduce the time taken to create the pipeline.

* VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT specifies that the pipeline to be created is allowed to be
the parent of a pipeline that will be created in a subsequent call to vkCreateGraphicsPipelines.

e VK_PIPELINE_CREATE_DERIVATIVE_BIT specifies that the pipeline to be created will be a child of a previously
created parent pipeline.

It is valid to set both VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and VK_PIPELINE_CREATE_
DERIVATIVE_BIT. This allows a pipeline to be both a parent and possibly a child in a pipeline hierarchy. See Pipeline
Derivatives for more information.

The definition of the pDynamicState member of type VkPipelineDynamicStateCreateInfois:

typedef struct VkPipelineDynamicStateCreatelInfo {

VkStructureType sType;

const voidx pNext;
VkPipelineDynamicStateCreateFlags flags;

uint32_t dynamicStateCount;
const VkDynamicStatex pDynamicStates;

} VkPipelineDynamicStateCreateInfo;

The members of the VkPipelineDynamicStateCreateInfo structure are as follows:

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

e flags is reserved for future use.

* dynamicStateCount is the number of elements in the pDynamicStates array.

* pDynamicStates is an array of VkDynamicState enums which indicate which pieces of pipeline state will use the
values from dynamic state commands rather than from the pipeline state creation info.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO

* pNext must be NULL

e flags mustbe 0

* pDynamicStates must be a pointer to an array of dynamicStateCount valid VkDynamicState values

* The value of dynamicStateCount must be greater than 0

The definition of the VkDynamicState enumeration is as follows:

typedef enum VkDynamicState {
VK_DYNAMIC_STATE_VIEWPORT = 0,
VK_DYNAMIC_STATE_SCISSOR = 1,
VK_DYNAMIC_STATE_LINE_WIDTH =
VK_DYNAMIC_STATE_DEPTH BIAS
VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
VK_DYNAMIC_ STATE_STENCIL_COMPARE_MASK = 6,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,

} VkDynamicState;

Il
w
~

e VK_DYNAMIC_STATE_VIEWPORT indicates that the pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewport before any draw commands. The number of viewports used by a pipeline is still specified by
the viewportCount member of VkPipelineViewportStateCreateInfo.

Vulkan 1.0 - A Specification 157 /615

* VK_DYNAMIC_STATE_SCISSOR indicates that the pScissors state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetScissor before any draw commands. The number of scissor rectangles used by a pipeline is still
specified by the scissorCount member of VkPipelineViewportStateCreatelInfo.

* VK_DYNAMIC_STATE_LINE_WIDTH indicates that the 1ineWidth state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetLineWidth before any draw commands that generate line primitives for the rasterizer.

e VK_DYNAMIC_STATE_DEPTH_BIAS indicates that the dept hBiasConstantFactor, depthBiasClamp and
depthBiasSlopeFactor states in VkPipelineRasterizationStateCreateInfo will be ignored and must
be set dynamically with vkCmdSetDepthBias before any draws are performed with depthBiasEnable in
VkPipelineRasterizationStateCreatelInfo setto VK_TRUE.

e VK_DYNAMIC_STATE_BLEND_CONSTANTS indicates that the blendConstants state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetBlendConstants before any draws are performed with a pipeline state with
VkPipelineColorBlendAttachmentState member blendEnable set to VK_TRUE and any of the blend
functions using a constant blend color.

e VK_DYNAMIC_STATE_DEPTH_BOUNDS indicates that the minDept hBounds and maxDept hBounds states of
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBounds before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member depthBoundsTestEnable set to VK_TRUE.

* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK indicates that the compareMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSet StencilCompareMask before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member stencilTestEnable setto VK_TRUE

* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK indicates that the writeMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilWriteMask before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member stencilTestEnable setto VK_TRUE

e VK_DYNAMIC_STATE_STENCIL_REFERENCE indicates that the reference state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSet StencilReference before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member stencilTestEnable setto VK_TRUE

If tessellation shader stages are omitted, the tessellation shading and fixed-function stages of the pipeline are skipped.
If a geometry shader is omitted, the geometry shading stage is skipped.

If a fragment shader is omitted, the results of fragment processing are undefined. Specifically, any fragment color outputs
are considered to have undefined values, and the fragment depth is considered to be unmodified. This can be useful for
depth-only rendering.

Presence of a shader stage in a pipeline is indicated by including a valid VkPipelineShaderStageCreateInfo
with module and pName selecting an entry point from a shader module, where that entry point is valid for the stage
specified by stage.

Presence of some of the fixed-function stages in the pipeline is implicitly derived from enabled shaders and provided
state. For example, the fixed-function tessellator is always present when the pipeline has valid Tessellation Control and
Tessellation Evaluation shaders.

FOR EXAMPLE:

* Depth/stencil-only rendering in a subpass with no color attachments

— Active Pipeline Shader Stages
* Vertex Shader
— Required: Fixed-Function Pipeline Stages

* VkPipelineVertexInputStateCreatelInfo

* VkPipelineInputAssemblyStateCreateInfo
* VkPipelineViewportStateCreateInfo

* VkPipelineRasterizationStateCreatelInfo
* VkPipelineMultisampleStateCreateInfo

* VkPipelineDepthStencilStateCreateInfo

* Color-only rendering in a subpass with no depth/stencil attachment

— Active Pipeline Shader Stages

Vertex Shader
Fragment Shader

— Required: Fixed-Function Pipeline Stages

* VkPipelineVertexInputStateCreatelInfo

* VkPipelineInputAssemblyStateCreateInfo
* VkPipelineViewportStateCreateInfo

* VkPipelineRasterizationStateCreatelInfo
* VkPipelineMultisampleStateCreateInfo

* VkPipelineColorBlendStateCreateInfo

» Rendering pipeline with tessellation and geometry shaders

— Active Pipeline Shader Stages

* Vertex Shader

+ Tessellation Control Shader

+ Tessellation Evaluation Shader
% Geometry Shader

* Fragment Shader

— Required: Fixed-Function Pipeline Stages

* VkPipelineVertexInputStateCreateInfo

* VkPipelineInputAssemblyStateCreateInfo
* VkPipelineTessellationStateCreateInfo
* VkPipelineViewportStateCreateInfo

* VkPipelineRasterizationStateCreateInfo
* VkPipelineMultisampleStateCreateInfo

* VkPipelineDepthStencilStateCreatelInfo
* VkPipelineColorBlendStateCreateInfo

Vulkan 1.0 - A Specification 159/615

9.3 Pipeline destruction

To destroy a graphics or compute pipeline, call:

void vkDestroyPipeline (

VkDevice device,
VkPipeline pipeline,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the pipeline.
* pipeline is the handle of the pipeline to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If pipelineis not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If pipelineis a valid handle, it must have been created, allocated or retrieved from device

e Each of device and pipeline that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

* All submitted commands that refer to pipeline must have completed execution

e [f VkAllocationCallbacks were provided when pipeline was created, a compatible set of callbacks must
be provided here

* IfnovkAllocationCallbacks were provided when pipeline was created, pAllocator must be NULL

Host Synchronization

* Host access to pipeline must be externally synchronized

9.4 Multiple Pipeline Creation

Multiple pipelines can be created simultaneously by passing an array of VkGraphicsPipelineCreateInfo or
VkComputePipelineCreateInfo structures into the vkCreateGraphicsPipelines and

vkCreateComputePipelines commands, respectively. Applications can group together similar pipelines to be
created in a single call, and implementations are encouraged to look for reuse opportunities within a group-create.

When an application attempts to create many pipelines in a single command, it is possible that some subset may fail
creation. In that case, the corresponding entries in the pPipelines output array will be filled with VK_NULL_HANDLE
values. If any pipeline fails creation (for example, due to out of memory errors), the vkCreate*Pipelines
commands will return an error code. The implementation will attempt to create all pipelines, and only return VK_NULL_
HANDLE values for those that actually failed.

9.5 Pipeline Derivatives

A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent are expected to have
much commonality. The goal of derivative pipelines is that they be cheaper to create using the parent as a starting point,
and that it be more efficient (on either host or device) to switch/bind between children of the same parent.

A derivative pipeline is created by setting the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag in the
Vk+PipelineCreateInfo structure. If this is set, then exactly one of basePipelineHandle or
basePipelineIndex members of the structure must have a valid handle/index, and indicates the parent pipeline. If
basePipelineHandle is used, the parent pipeline must have already been created. If basePipelineIndex is used,
then the parent is being created in the same command. VK_NULL_HANDLE acts as the invalid handle for
basePipelineHandle, and -1 is the invalid index for basePipelineIndex. If basePipelineIndex is used, the
base pipeline must appear earlier in the array. The base pipeline must have been created with the VK_PIPELINE_
CREATE_ALLOW_DERIVATIVES_BIT flag set.

9.6 Pipeline Cache

Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and between runs of an
application. Reuse between pipelines is achieved by passing the same pipeline cache object when creating multiple
related pipelines. Reuse across runs of an application is achieved by retrieving pipeline cache contents in one run of an
application, saving the contents, and using them to preinitialize a pipeline cache on a subsequent run. The contents and
size of the pipeline cache objects is managed by the implementation. Applications can control the amount of data
retrieved from a pipeline cache object.

Pipeline cache objects are created by calling:

VkResult vkCreatePipelineCache (

VkDevice device,

const VkPipelineCacheCreateInfox pCreatelnfo,
const VkAllocationCallbacksx pAllocator,
VkPipelineCachex pPipelineCache) ;

* device is the logical device that creates the pipeline cache object.

* pCreateInfois apointer to a VkPipelineCacheCreateInfo structure that contains the initial parameters for
the pipeline cache object.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pPipelineCache is a pointer to a VkPipelineCache handle in which the resulting pipeline cache object is
returned.

Vulkan 1.0 - A Specification 161/615

Valid Usage

* device must be a valid VkDevice handle
* pCreatelInfo must be a pointer to a valid VkPipelineCacheCreateInfo structure
* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pPipelineCache must be a pointer to a VkPipelineCache handle

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkPipelineCacheCreateInfo is:

typedef struct VkPipelineCacheCreateInfo {

VkStructureType sType;

const voidx pNext;
VkPipelineCacheCreateFlags flags;

size_t initialDataSize;
const voidx pInitialData;

—

VkPipelineCacheCreateInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
e flags is reserved for future use.

* initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the pipeline cache will
initially be empty.

* pInitialData is a pointer to previously retrieved pipeline cache data. If the pipeline cache data is incompatible (as
defined below) with the device, the pipeline cache will be initially empty. If initialbataSize is zero,
pInitialData is ignored.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO

* pNext must be NULL

e flagsmustbe 0

e If initialDataSizeisnot O, pInitialData must be a pointer to an array of initialDataSize bytes

e If initialDataSize is not O, it must be equal to the size of pInitialData, as returned by
vkGetPipelineCacheData when pInitialData was originally retrieved

e If initialDataSizeisnot O, pInitialData must have been retrieved from a previous call to
vkGetPipelineCacheData

Once created, a pipeline cache can be passed to the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands. If the pipeline cache passed into these commands is not VK_NULL__
HANDLE, the implementation will query it for possible reuse opportunities and update it with new content. The use of the
pipeline cache object in these commands is internally synchronized, and the same pipeline cache object can be used in
multiple threads simultaneously.

Note

Implementations should make every effort to limit any critical sections to the actual accesses to the cache,
which is expected to be significantly shorter than the duration of the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands.

Pipeline cache objects can be merged using the command:

VkResult vkMergePipelineCaches (

VkDevice device,
VkPipelineCache dstCache,
uint32_t srcCacheCount,
const VkPipelineCachex pSrcCaches) ;

* device is the logical device that owns the pipeline cache objects.
* dstcCache is the handle of the pipeline cache to merge results into.
* srcCacheCount is the length of the pSrcCaches array

* pSrcCaches is an array of pipeline cache handles, which will be merged into dstCache. The previous contents of
dstCache are included after the merge.

Vulkan 1.0 - A Specification 163 /615

Valid Usage

* device must be a valid VkDevice handle

e dstCache must be a valid VkPipelineCache handle

* pSrcCaches must be a pointer to an array of srcCacheCount valid VkPipelineCache handles
* The value of srcCacheCount must be greater than 0

e dstCache must have been created, allocated or retrieved from device

¢ Each element of pSrcCaches must have been created, allocated or retrieved from device

¢ Each of device, dstCache and the elements of pSrcCaches must have been created, allocated or retrieved from
the same VkPhysicalDevice

* dstCache must not appear in the list of source caches

Host Synchronization

» Host access to dstCache must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

Note

The details of the merge operation are implementation dependent, but implementations are recommended: to
merge the contents of the specified pipelines and prune duplicate entries.

Data can be retrieved from a pipeline cache object using the command:

VkResult vkGetPipelineCacheData (

VkDevice device,
VkPipelineCache pipelineCache,
size_t«* pDataSize,
void#* pDhata) ;

* device is the logical device that owns the pipeline cache.
* pipelineCache is the pipeline cache to retrieve data from.
* pDataSize is a pointer to a value related to the amount of data in the pipeline cache, as described below.

* pData is either NULL or a pointer to a buffer.

If ppata is NULL, then the maximum size of the data that can be retrieved from the pipeline cache, in bytes, is returned
in ppatasSize. Otherwise, pDataSize must point to a variable set by the user to the size of the buffer, in bytes, pointed
to by pData, and on return the variable is overwritten with the amount of data actually written to pData.

If the value of datasize is less than the maximum size that can be retrieved by the pipeline cache, at most ppatasize
bytes will be written to pData, and vkGetPipelineCacheData will return VK_INCOMPLETE. Any data written to
pData is valid and can be provided as the prnitialData member of the VkPipelineCacheCreateInfo structure
passed to vkCreatePipelineCache.

Valid Usage

e device must be a valid VkDevice handle
e pipelineCache must be a valid VkPipelineCache handle
* pDataSize must be a pointer to a size_t value

* If the value referenced by ppatasSizeis not 0, and pData is not NULL, pData must be a pointer to an array of
pDataSize bytes

e pipelineCache must have been created, allocated or retrieved from device

e Each of device and pipelineCache must have been created, allocated or retrieved from the same
VkPhysicalDevice

Return Codes

Success

¢ VK_SUCCESS

Vulkan 1.0 - A Specification 165/615

Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

Applications can store the data retrieved from the pipeline cache, and use these data, possibly in a future run of the
application, to populate new pipeline cache objects. The results of pipeline compiles, however, may depend on the
vendor ID, device ID, driver version, and other details of the device. To enable applications to detect when previously
retrieved data is incompatible with the device, the initial bytes written to pData must be a header consisting of the
following members:

Table 9.1: Layout for pipeline cache header version VK_PIPELINE_
CACHE_HEADER_VERSION_ONE

Offset | Size Meaning

0 4 length in bytes of the entire pipeline cache header written as a
stream of bytes, with the least significant byte first

4 4 aVkPipelineCacheHeaderVersion value written as a
stream of bytes, with the least significant byte first

8 4 a vendor ID equal to

VkPhysicalDeviceProperties::vendorID written as a
stream of bytes, with the least significant byte first

12 4 a device ID equal to
VkPhysicalDeviceProperties:deviceID written as a
stream of bytes, with the least significant byte first

16 VK_UUID_SIZE | apipeline cache ID equal to
VkPhysicalDeviceProperties:pipelineCacheUUID

The first four bytes encode the length of the entire pipeline header, in bytes. This value includes all fields in the header
including the pipeline cache version field and the size of the length field.

The next four bytes encode the pipeline cache version. This field is a VkPipelineCacheHeaderVersion value. A
consumer of the pipeline cache should use this value to interpret the remainder of the cache header.

If the value of datasize is less than what is necessary to store this header, nothing will be written to pData and zero
will be written to dataSize.

To destroy a pipeline cache, call:

void vkDestroyPipelineCache (

VkDevice device,
VkPipelineCache pipelineCache,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the pipeline cache object.
* pipelineCache is the handle of the pipeline cache to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

* If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache handle
e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If pipelineCache is a valid handle, it must have been created, allocated or retrieved from device

* Each of device and pipelineCache that are valid handles must have been created, allocated or retrieved from
the same VkPhysicalDevice

* If VkAllocationCallbacks were provided when pipelineCache was created, a compatible set of
callbacks must be provided here

e Ifno VkAllocationCallbacks were provided when pipelineCache was created, pAllocator must be
NULL

Host Synchronization

» Host access to pipelineCache must be externally synchronized

9.7 Specialization Constants

Specialization constants are a mechanism whereby constants in a SPIR-V module can have their constant value specified
at the time the VkPipeline is created. This allows a SPIR-V module to have constants that can be modified while
executing an application that uses the Vulkan APL.

Note

Specialization constants are useful to allow a compute shader to have its work group size changed at runtime
by the user, for example.

Each instance of the VkPipelineShaderStageCreateInfo structure contains a parameter
pSpecializationInfo, which can be NULL to indicate no specialization constants. The definition of the
VkSpecializationInfo structure is:

typedef struct VkSpecializationInfo {
uint32_t mapEntryCount;
const VkSpecializationMapEntryx pMapEntries;

Vulkan 1.0 - A Specification 167 /615

size_t dataSize;
const voidx pData;
} VkSpecializationInfo;

The members of VkSpecializationInfo are as follows:

* mapEntryCount is the number of entries in the pMapEnt ries array.

* pMapEntries is a pointer to an array of VkSpecializationMapEntry which maps constant IDs to offsets in
pData.

* dataSize is the byte size of the ppata buffer.

* pData contains the actual constant values to specialize with.

Valid Usage

* If mapEntryCount is not 0, pMapEntries must be a pointer to an array of mapEnt ryCount
VkSpecializationMapEntry structures

» If datasizeis not 0, pData must be a pointer to an array of dataSize bytes

* The offset member of any given element of pMapEnt ries must be less than datasSize

* The sum of the offset and size members of any given element of pMapEnt ries must be less than or equal to
dataSize

The definition of the pMapEnt ries member of type VkSpecializationMapEntry is:

typedef struct VkSpecializationMapEntry {

uint32_t constantID;
uint32_t offset;
size_t size;

} VkSpecializationMapEntry;

The members of VkSpecializationMapEntry are as follows:

* constantID ID of the specialization constant in SPIR-V.
* offset byte offset of the specialization constant value within the supplied data buffer.

* size byte size of the specialization constant value within the supplied data buffer.

If a constant ID value is not a specialization constant ID used in the shader, that map entry does not affect the behavior
of the pipeline.

In human readable SPIR-V:

OpDecorate %$x SpecId 13 ; decorate .x component of WorkgroupSize with ID 13
OpDecorate %y SpecId 42 ; decorate .y component of WorkgroupSize with ID 42
OpDecorate %z SpecId 3 ; decorate .z component of WorkgroupSize with ID 3
OpDecorate %$wgsize BuiltIn WorkgroupSize ; decorate WorkgroupSize onto constant
%132 = OpTypeInt 32 0 ; declare an unsigned 32-bit type

uvec3 = OpTypeVector %132 3 ; declare a 3 element vector type of unsigned 32-bit

x = OpSpecConstant %132 1 ; declare the .x component of WorkgroupSize
y = OpSpecConstant %132 1 ; declare the .y component of WorkgroupSize
z = OpSpecConstant %i32 1 ; declare the .z component of WorkgroupSize

o
%
$wgsize = OpSpecConstantComposite %$uvec3 $x %y %z ; declare WorkgroupSize

From the above we have three specialization constants, one for each of the x, y & z elements of the WorkgroupSize
vector.

Now to specialize the above via the specialization constants mechanism:

const VkSpecializationMapEntry entries[] =

{

13, // constantID
0 x sizeof (uint32_t), // offset
sizeof (uint32_t) // size
}o
{
42, // constantID
1 * sizeof (uint32_t), // offset
sizeof (uint32_t) // size
}’
{
3, // constantID
2 % sizeof (uint32_t), // offset
sizeof (uint32_t) // size
}
}i
const uint32_t datal[] = { 16, 8, 4 }; // our workgroup size is 16x8x4

const VkSpecializationInfo info =

{

3, // mapEntryCount
entries, // pMapEntries

3 x sizeof (uint32_t), // dataSize
data, // pData

}i

Then when calling vkCreateComputePipelines, and passing the VkSpecializationInfo we defined as the
pSpecializationInfo parameter of VkPipelineShaderStageCreateInfo, we will create a compute pipeline
with the runtime specified work group size.

Another example would be that an application has a SPIR-V module that has some platform-dependent constants they
wish to use.

In human readable SPIR-V:

OpDecorate %1 SpecId 0 ; decorate our signed 32-bit integer constant
OpDecorate %2 SpecId 12 ; decorate our 32-bit floating-point constant
%132 = OpTypeInt 32 1 ; declare a signed 32-bit type

Vulkan 1.0 - A Specification

169/615

loat = OpTypeFloat 32 ; declare a 32-bit floating-point type
= OpSpecConstant %132 -1 ; some signed 32-bit integer constant
= OpSpecConstant %$float 0.5 ; some 32-bit floating-point constant

o° o° o°
N — Hh

From the above we have two specialization constants, one is a signed 32-bit integer and the second is a 32-bit
floating-point.

Now to specialize the above via the specialization constants mechanism:

VkSpecializationMapEntry entries[2];

const VkSpecializationMapEntry entries[] =

{

0, // constantID
0 x sizeof (int32_t), // offset
sizeof (int32_t) // size

}I

{
12, // constantID
1 % sizeof (int32_t), // offset
sizeof (float) // size

}i
int32_t datal2];

data[0] = —-42; // set the data for the 32-bit integer
((floatx)data) [1] = 42.0f; // set the data for the 32-bit floating-point

const VkSpecializationInfo info =

{

2 // mapEntryCount
entries, // pMapEntries

2 % sizeof (int32_t), // dataSize
data, // pData

}i

It is legal for a SPIR-V module with specializations to be compiled into a pipeline where no specialization info was
provided. SPIR-V specialization constants contain default values such that if a specialization is not provided, the default

value will be used. In the examples above, it would be valid for an application to only specialize some of the

specialization constants within the SPIR-V module, and let the other constants use their default values encoded within

the OpSpecConstant declarations.

9.8 Pipeline Binding

Once a pipeline has been created, it can be bound to the command buffer using the command:

void vkCmdBindPipeline (

VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline);

* commandBuf fer is the command buffer that the pipeline will be bound to.

pipelineBindPoint specifies the bind point, and must have one of the values

typedef enum VkPipelineBindPoint ({
VK_PIPELINE_BIND_POINT_GRAPHICS = 0,
VK_PIPELINE_BIND_POINT_COMPUTE = 1,
} VkPipelineBindPoint;

specifying whether pipeline will be bound as a compute (VK_PIPELINE_BIND_POINT_COMPUTE) or graphics
(VK_PIPELINE_BIND_POINT_GRAPHICS) pipeline. There are separate bind points for each of graphics and
compute, so binding one does not disturb the other.

pipeline is the pipeline to be bound.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* pipelineBindPoint must be a valid VkPipelineBindPoint value

* pipeline must be a valid VkPipeline handle

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations

* Each of commandBuffer and pipeline must have been created, allocated or retrieved from the same
VkDevice

e If the value of pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, the VkCommandPool that
commandBuf fer was allocated from must support compute operations

e If the value of pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, the VkCommandPool
that commandBuf fer was allocated from must support graphics operations

e If the value of pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, pipeline must be a
compute pipeline

e If the value of pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline must be a
graphics pipeline

* If the variable multisample rate feature is not supported, pipeline is a graphics pipeline, the current subpass has
no attachments, and this is not the first call to this function with a graphics pipeline after transitioning to the
current subpass, then the sample count specified by this pipeline must match that set in the previous pipeline

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Vulkan 1.0 - A Specification

171/615

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

Once bound, a pipeline binding affects subsequent graphics or compute commands in the command buffer until a
different pipeline is bound to the bind point. The pipeline bound to VK_PIPELINE_BIND_POINT_COMPUTE controls
the behavior of vkCmdDispatch and vkCmdDispatchIndirect. The pipeline bound to VK_PIPELINE_BIND_
POINT_GRAPHICS controls the behavior of vkCmdDraw, vkCmdDrawIndexed, vkCmdDrawIndirect, and
vkCmdDrawIndexedIndirect. No other commands are affected by the pipeline state.

Vulkan 1.0 - A Specification 173/615

Chapter 10

Memory Allocation

Vulkan memory is broken up into two categories, host memory and device memory.

10.1 Host Memory

Host memory is memory needed by the Vulkan implementation for non-device-visible storage. This storage may be used
for e.g. internal software structures.

Vulkan provides applications the opportunity to perform host memory allocations on behalf of the Vulkan
implementation. If this feature is not used, the implementation will perform its own memory allocations. Since most
memory allocations are off the critical path, this is not meant as a performance feature. Rather, this can be useful for
certain embedded systems, for debugging purposes (e.g. putting a guard page after all host allocations), or for memory
allocation logging.

Allocators are provided by the application as a pointer to a VkAllocationCallbacks structure:

typedef struct VkAllocationCallbacks {

voidx pUserData;
PFN_vkAllocationFunction pfnAllocation;
PFN_vkReallocationFunction pfnReallocation;
PFN_vkFreeFunction pfnFree;
PFN_vkInternalAllocationNotification pfnInternalAllocation;
PFN_vkInternalFreeNotification pfnInternalFree;

} VkAllocationCallbacks;

* pUserData is a value to be interpreted by the implementation of the callbacks. When any of the callbacks in
VkAllocationCallbacks are called, the Vulkan implementation will pass this value as the first parameter to the
callback. This value can vary each time an allocator is passed into a command, even when the same object takes an
allocator in multiple commands.

* pfnAllocation is a pointer to an application-defined memory allocation function of type PEN__
vkAllocationFunction.

* pfnReallocation is a pointer to an application-defined memory reallocation function of type PEN__
vkReallocationFunction.

* pfnFree is a pointer to an application-defined memory free function of type PFN_vkFreeFunction.

* pfniInternalAllocation is a pointer to an application-defined function that is called by the implementation when
the implementation makes internal allocations, and it is of type PFN_vkInternalAllocationNotification.

* pfniInternalFree is a pointer to an application-defined function that is called by the implementation when the
implementation frees internal allocations, and it is of type PEN_vkInternalFreeNotification.

Valid Usage

* pfnAllocation must be a pointer to a valid user-defined PFN_vkAllocationFunction
* pfnReallocation must be a pointer to a valid user-defined PFN_vkReallocationFunction
* pfnFree must be a pointer to a valid user-defined PFN_vkFreeFunction

e If either of pfnInternalAllocatione or pfnInternalFree is not NULL, both must be valid callbacks

An allocator indicates an error condition by returning NULL from pfnAllocation or pfnReallocation. If this
occurs, the implementation should treat it as a run time error and should report VK_ERROR_OUT_OF_HOST_MEMORY
at the appropriate time for the command in which the condition was detected, as described in Section 2.5.2.

The type of pfnAllocationis:

typedef voidx (VKAPI_PTR *PFN_vkAllocationFunction) (

voidx pUserData,

size_t size,

size_t alignment,
VkSystemAllocationScope allocationScope) ;

* pUserData is the value specified for VkAllocationCallbacks.pUserData in the allocator specified by the
application.

* sizeis the size in bytes of the requested allocation.
* alignment is the requested alignment of the allocation in bytes and must be a power of two.
* allocationScopeisaVkSystemAllocationScope value specifying the scope of the lifetime of the allocation,

as described here.

pfnAllocation must either return NULL (in case of allocation failure or if size is zero) or a valid pointer to a memory
allocation containing at least size bytes, and with the pointer value being a multiple of a1ignment.

The type of pfnReallocationis:

typedef voidx (VKAPI_PTR xPFN_vkReallocationFunction) (

voidx* pUserData,
voidx* pOriginal,
size_t size,

size_t alignment,

VkSystemAllocationScope allocationScope) ;

Vulkan 1.0 - A Specification 175/615

* pUserData is the value specified for VkAllocationCallbacks.pUserData in the allocator specified by the
application.

* pOriginal must be either NULL or a pointer previously returned by pfnReallocation or pfnAllocation of the
same allocator.

* sizeis the size in bytes of the requested allocation.
* alignment is the requested alignment of the allocation in bytes and must be a power of two.

* allocationScopeisaVkSystemAllocationScope value specifying the scope of the lifetime of the allocation,
as described here.

pfnReallocation must alter the size of the allocation poriginal, either by shrinking or growing it, to accommodate
the new size.

If pOriginal is NULL, then pfnReallocation must behave similarly to PFN_vkAllocationFunction. If size
is zero, then pfnReallocation must behave similarly to PFN_vkFreeFunction. The contents of the original
allocation from bytes zero to min(original size, new size) — 1, inclusive, must be preserved in the new allocation. If the
new allocation is larger than the old allocation, then the contents of the additional space are undefined. If pOriginal is
non-NULL, alignment must be equal to the originally requested alignment. If satisfying these requirements involves
creating a new allocation, then the old allocation must be freed. If this function fails, it must return NULL and not free the
old allocation.

The type of pfnFreeis:

typedef void (VKAPI_PTR xPFN_vkFreeFunction) (
voidx* pUserData,
voidx* pMemory) ;

* pUserData is the value specified for VkAllocationCallbacks.pUserData in the allocator specified by the
application.

e pMemory is the allocation to be freed.

pMemory may be NULL, which the callback must handle safely. If pMemory is non-NULL, it must be a pointer
previously allocated by pfnAllocation or pfnReallocation and must be freed by the function.

The type of pfnInternalAllocationis:

typedef void (VKAPI_PTR xPFN_vkInternalAllocationNotification) (

voidx* pUserData,

size_t size,
VkInternalAllocationType allocationType,
VkSystemAllocationScope allocationScope) ;

* pUserData is the value specified for VkAllocationCallbacks.pUserData in the allocator specified by the
application.

* sizeis the requested size of an allocation.
* allocationType is the requested type of an allocation.

* allocationScopeisaVkSystemAllocationScope value specifying the scope of the lifetime of the allocation,
as described here.

This is a purely informational callback.
The type of pfnIinternalFreeis:

typedef void (VKAPI_PTR *PFN_vkInternalFreeNotification) (

voidx pUserData,

size_t size,
VkInternalAllocationType allocationType,
VkSystemAllocationScope allocationScope) ;

* pUserData is the value specified for VkAllocationCallbacks.pUserData in the allocator specified by the
application.

* sizeis the requested size of an allocation.
* allocationType is the requested type of an allocation.

* allocationScopeisaVkSystemAllocationScope value specifying the scope of the lifetime of the allocation,
as described here.

Each allocation has a scope which defines its lifetime and which object it is associated with. The scope is provided in the
allocationScope parameter and takes a value of type VkSystemAllocationScope:

typedef enum VkSystemAllocationScope {
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND = 0,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT = 1,
VK_SYSTEM_ALLOCATION_SCOPE_CACHE = 2,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE = 3,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE = 4,

VkSystemAllocationScope;

—

* VK_SYSTEM_ALLOCATION_SCOPE_COMMAND - The allocation is scoped to the lifetime of the Vulkan command.

* VK_SYSTEM_ALLOCATION_SCOPE_OBJECT - The allocation is scoped to the lifetime of the Vulkan object that is
being created or used.

* VK_SYSTEM_ALLOCATION_SCOPE_CACHE - The allocation is scoped to the lifetime of a VkPipelineCache
object.

* VK_SYSTEM_ALLOCATION_SCOPE_DEVICE - The allocation is scoped to the lifetime of the Vulkan device.

* VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE - The allocation is scoped to the lifetime of the Vulkan instance.

Most Vulkan commands operate on a single object, or there is a sole object that is being created or manipulated. When
an allocation uses a scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT or VK_SYSTEM_ALLOCATION_
SCOPE_CACHE, the allocation is scoped to the object being created or manipulated.

When an implementation requires host memory, it will make callbacks to the application using the most specific allocator
and scope available:

* If an allocation is scoped to the duration of a command, the allocator will use the VK_SYSTEM_ALLOCATION_
SCOPE_COMMAND scope. The most specific allocator available is used: if the object being created or manipulated has
an allocator, that object’s allocator will be used, else if the parent VkDevice has an allocator it will be used, else if
the parent Vk Instance has an allocator it will be used. Else,

Vulkan 1.0 - A Specification 177 /615

* If an allocation is associated with an object of type VkPipelineCache, the allocator will use the VK_SYSTEM__
ALLOCATION_SCOPE_CACHE scope. The most specific allocator available is used (pipeline cache, else device, else
instance). Else,

* If an allocation is scoped to the lifetime of an object, that object is being created or manipulated by the command, and
that object’s type is not VkDevice or VkInstance, the allocator will use a scope of VK_SYSTEM_ALLOCATION_
SCOPE_OBJECT. The most specific allocator available is used (object, else device, else instance). Else,

* If an allocation is scoped to the lifetime of a device, the allocator will use scope of VK_SYSTEM_ALLOCATION_
SCOPE_DEVICE. The most specific allocator available is used (device, else instance). Else,

« If the allocation is scoped to the lifetime of an instance and the instance has an allocator, its allocator will be used with
aSameOfVK_SYSTEM_ALLOCATION_SCOPE_INSTANCE

* Otherwise an implementation will allocate memory through an alternative mechanism that is unspecified.

Objects that are allocated from pools do not specify their own allocator. When an implementation requires host memory
for such an object, that memory is sourced from the object’s parent pool’s allocator.

The application is not expected to handle allocating memory that is intended for execution by the host due to the
complexities of differing security implementations across multiple platforms. The implementation will allocate such
memory internally and invoke an application provided informational callback when these internal allocations are
allocated and freed. Upon allocation of executable memory, pfnInternalAllocation will be called. Upon freeing
executable memory, prnInternalFree will be called. An implementation will only call an informational callback for
executable memory allocations and frees.

The allocationType parameter to the pfnIinternalAllocation and pfnInternalFree functions may be one of
the following values:

typedef enum VkInternalAllocationType {
VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE = 0,
} VkInternalAllocationType;

* VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE - The allocation is intended for execution by the host.

An implementation must only make calls into an application-provided allocator from within the scope of an API
command. An implementation must only make calls into an application-provided allocator from the same thread that
called the provoking API command. The implementation should not synchronize calls to any of the callbacks. If
synchronization is needed, the callbacks must provide it themselves. The informational callbacks are subject to the same
restrictions as the allocation callbacks.

If an implementation intends to make calls through an VkAllocationCallbacks structure between the time a
vkCreate* command returns and the time a corresponding vkDest roy* command begins, that implementation must
save a copy of the allocator before the vkCreatex command returns. The callback functions and any data structures
they rely upon must remain valid for the lifetime of the object they are associated with.

If an allocator is provided to a vkCreatex command, a compatible allocator must be provided to the corresponding
vkDestroy* command. Two VkAllocationCallbacks structures are compatible if memory created with
pfnAllocation Or pfnReallocation in each can be freed with pfnReallocation or pfnFree in the other. An
allocator must not be provided to a vkDestroy* command if an allocator was not provided to the corresponding
vkCreatex* command.

If a non-NULL allocator is used, the pfnAllocation, pfnReallocation and pfnFree members must be non-NULL
and point to valid implementations of the callbacks. An application can choose to not provide informational callbacks by
setting both pfnInternalAllocationand pfnInternalFree to NULL. pfnIinternalAllocation and
pfnInternalFree must either both be NULL or both be non-NULL.

If pfnAllocationor pfnReallocation fail, the implementation may fail object creation and/or generate an VK__
ERROR_OUT_OF_HOST_MEMORY error, as appropriate.

The following sets of rules define when an implementation is permitted to call the allocator callbacks.

pfnAllocationor pfnReallocation may be called in the following situations:

» Host memory scoped to the lifetime of a VkDevice or VkInstance may be allocated from any API command.

* Host memory scoped to the lifetime of a VkPipelineCache may only be allocated from:

vkCreatePipelineCache

vkMergePipelineCaches for dstCache

vkCreateGraphicsPipelines for ppipelineCache

vkCreateComputePipelines for pPipelineCache
» Host memory scoped to the lifetime of a VkDescriptorPool may only be allocated from:

— any command that takes the pool as a direct argument
— vkAllocateDescriptorSets for the descriptorPool member of its pAllocateInfo parameter

— vkCreateDescriptorPool

* Host memory scoped to the lifetime of a VkCommandPool may only be allocated from:

any command that takes the pool as a direct argument

vkCreateCommandPool

vkAllocateCommandBuffers for the commandPool member of its pAllocateInfo parameter

any vkCmd* command whose commandBuffer was created from that Vk CommandPool

* Host memory scoped to the lifetime of any other object may only be allocated in that object’s vkCreate* command.
pfnFree may be called in the following situations:

* Host memory scoped to the lifetime of a VkDevice or VkInstance may be freed from any API command.
» Host memory scoped to the lifetime of a VkPipelineCache may be freed from vkDestroyPipelineCache.

* Host memory scoped to the lifetime of a VkDescriptorPool may be freed from
— any command that takes the pool as a direct argument
* Host memory scoped to the lifetime of a VkCommandPool may be freed from:

— any command that takes the pool as a direct argument

— vkResetCommandBuffer whose commandBuffer was created from that VkCommandPool

» Host memory scoped to the lifetime of any other object may be freed in that object’s vkDest roy* command.

* Any command that allocates host memory may also free host memory of the same scope.

Vulkan 1.0 - A Specification 179/615

10.2 Device Memory

Device memory is memory that is visible to the device, for example the contents of opaque images that can be natively
used by the device, or uniform buffer objects that reside in on-device memory.

The memory properties of the physical device describe the memory heaps and memory types available to a physical
device. These can be queried by calling:

void vkGetPhysicalDeviceMemoryProperties (
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryPropertiesx pMemoryProperties);

* physicalDevice is the handle to the device to query.

* pMemoryProperties points to an instance of VkPhysicalDeviceMemoryProperties structure in which the
properties are returned.

Valid Usage

* physicalDevice mustbe a valid VkPhysicalDevice handle

* pMemoryProperties must be a pointer to a VkPhysicalDeviceMemoryProperties structure

The definition of VkPhysicalDeviceMemoryProperties is:

typedef struct VkPhysicalDeviceMemoryProperties {

uint32_t memoryTypeCount;
VkMemoryType memoryTypes [VK_MAX_ MEMORY_TYPES];
uint32_t memoryHeapCount;
VkMemoryHeap memoryHeaps [VK_MAX_MEMORY_HEAPS];

} VkPhysicalDeviceMemoryProperties;

The VkPhysicalDeviceMemoryProperties structure describes a number of memory heaps as well as a number
of memory types that can be used to access memory allocated in those heaps. Each heap describes a memory resource of
a particular size, and each memory type describes a set of memory properties (e.g. host cached vs uncached) that can be
used with a given memory heap. Allocations using a particular memory type will consume resources from the heap
indicated by that memory type’s heap index. More than one memory type may share each heap, and the heaps and
memory types provide a mechanism to advertise an accurate size of the physical memory resources while allowing the
memory to be used with a variety of different properties.

The number of memory heaps is given by memoryHeapCount and is less than or equal to VK_MAX_MEMORY_HEAPS.
Each heap is described by an element of the memoryHeaps array, as a VkMemoryHeap structure. The number of
memory types available across all memory heaps is given by memoryTypeCount and is less than or equal to VK_MAX__
MEMORY_TYPES. Each memory type is described by an element of the memoryTypes array, as a VkMemoryType
structure.

The definition of VkMemoryHeap is:

typedef struct VkMemoryHeap {
VkDeviceSize size;
VkMemoryHeapFlags flags;
} VkMemoryHeap;

* sizeis the total memory size in bytes in the heap.

* flags is a bitmask of attribute flags for the heap. The bits specified in f1ags are:

typedef enum VkMemoryHeapFlagBits ({
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,
} VkMemoryHeapFlagBits;

* if flags contains VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, it means the heap corresponds to device local
memory. Device local memory may have different performance characteristics than host local memory, and may
support different memory property flags.

In a unified memory architecture (UMA) system, there is often only a single memory heap which is considered to be
equally “local” to the host and to the device. If there is only one heap, that heap must be marked as VK_MEMORY__
HEAP_DEVICE_LOCAL_BIT. If there are multiple heaps that all have similar performance characteristics, they may all
be marked as VK_MEMORY_ HEAP DEVICE_LOCAL_BIT, but at least one will be device local.

The definition of VkMemoryType is:

typedef struct VkMemoryType {
VkMemoryPropertyFlags propertyFlags;
uint32_t heapIndex;

} VkMemoryType;

* heapIndex describes which memory heap this memory type corresponds to, and must be less than
memoryHeapCount from the VkPhysicalDeviceMemoryProperties structure.

* propertyFlags is a bitmask of properties for this memory type. The bits specified in propertyFlags are:

typedef enum VkMemoryPropertyFlagBits ({
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,
VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,
VkMemoryPropertyFlagBits;

—

* if propertyFlags has the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set, memory allocated with this
type is the most efficient for device access. This property will only be set for memory types belonging to heaps with
the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT set.

* if propertyFlags has the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit set, memory allocated with this
type can be mapped using vkMapMemory so that it can be accessed on the host.

Vulkan 1.0 - A Specification 181/615

* if propertyFlags has the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set, host cache management
commands vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to
make host writes visible to the device or device writes visible to the host, respectively.

* if propertyFlags has the VK_MEMORY_PROPERTY_HOST_CACHED_BIT bit set, memory allocated with this type
is cached on the host. Host memory accesses to uncached memory are slower than to cached memory, however
uncached memory is always host coherent.

* if propertyFlags has the VK_MEMORY_PROPERTY_LAZILY_ ALLOCATED_BIT bit set, the memory type only
allows device access to the memory. Memory types must not have both VK_MEMORY_PROPERTY_LAZILY_
ALLOCATED_BIT and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set. Additionally, the object’s baCking
memory may be provided by the implementation lazily as specified in Lazily Allocated Memory.

Each memory type returned by vkGetPhysicalDeviceMemoryProperties must have its propertyFlags set
to one of the following values:

* 0

e VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

* VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |VK_MEMORY_PROPERTY_ HOST VISIBLE_BIT |VK_
MEMORY_PROPERTY HOST_ COHERENT_BIT

* VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BITI|VK_
MEMORY_PROPERTY_HOST_CACHED_BIT

e VK_MEMORY_PROPERTY_ DEVICE_LOCAL_BIT |VK_MEMORY_PROPERTY HOST VISIBLE_BIT |VK_
MEMORY_PROPERTY HOST_CACHED_BIT|VK_MEMORY PROPERTY HOST COHERENT_BIT

* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT

* VK_MEMORY_PROPERTY_ HOST_VISIBLE_BIT |VK_MEMORY_PROPERTY_ HOST_ CACHED_BIT|VK_
MEMORY_PROPERTY HOST_ COHERENT_BIT

* VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

It is guaranteed that there is at least one memory type that has its propertyFlags with the VK_MEMORY_PROPERTY_
HOST_VISIBLE_BIT bit set and the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set.

The memory types are sorted according to a partial order which serves to aid in easily selecting an appropriate memory
type. Given two memory types X and Y, the partial order defines X <Y if:

* the memory property bits set for X are a subset of the memory property bits set for Y. Or,

 the memory property bits set for X are the same as the memory property bits set for Y, and X uses a memory heap with
greater or equal performance (as determined in an implementation-specific manner).

Memory types are ordered in the list such that X is assigned a lesser memoryTypeIndex than 'Y if X <Y according to
the partial order. Note that the list of all allowed memory property flag combinations above satisfies this partial order, but
other orders would as well. The goal of this ordering is to enable applications to use a simple search loop in selecting the
proper memory type, along the lines of:

// Searching for the best match for "properties"
for (i = 0; i < memoryTypeCount; ++i)
if ((memoryTypes[i].propertyFlags & properties) == properties)
return i;

This loop will find the first entry that has all bits requested in properties set. If there is no exact match, it will find a
closest match (i.e. a memory type with the fewest additional bits set), which has some additional bits set but which are
not detrimental to the behaviors requested by properties. If there are multiple heaps with the same properties, it will
choose the most performant memory.

A Vulkan device operates on data in device memory via memory objects that are represented in the API by a
VkDeviceMemory handle. Memory objects are allocated by calling vkAllocateMemory:

VkResult vkAllocateMemory (

VkDevice device,

const VkMemoryAllocateInfox pAllocatelInfo,
const VkAllocationCallbacksx pAllocator,
VkDeviceMemory* pMemory) ;

* device is the logical device that owns the memory.

* pAllocatelInfo is a pointer to a structure of type VkMemoryAllocateInfo, which contains parameters of the
allocation. A successful returned allocation must use the requested parameters—no substitution is permitted by the
implementation.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pMemory is a pointer to a VkDeviceMemory structure in which information about the allocated memory is returned.

Valid Usage

* device must be a valid VkDevice handle

* pAllocateInfo must be a pointer to a valid VkMemoryAllocateInfo structure

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
* pMemory must be a pointer to a VkDeviceMemory handle

* The number of currently valid memory objects, allocated from device, must be less than
VkPhysicalDevicelLimits:imaxMemoryAllocationCount

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_TOO_MANY_OBJECTS

Vulkan 1.0 - A Specification 183/615

VkMemoryAllocateInfo is defined as:

typedef struct VkMemoryAllocateInfo {

VkStructureType sType;

const void= pNext;
VkDeviceSize allocationSize;
uint32_t memoryTypeIndex;

—

VkMemoryAllocateInfo;

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* allocationSize is the size of the allocation in bytes

* memoryTypeIndex is the memory type index, which selects the properties of the memory to be allocated, as well as
the heap the memory will come from.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO
e pNext must be NULL

* The value of allocationSize must be less than or equal to the amount of memory available to the
VkMemoryHeap specified by memoryTypeIndex and the calling command’s VkDevice

* The value of allocationSize must be greater than 0

Allocations returned by vkAllocateMemory are guaranteed to meet any alignment requirement by the
implementation. For example, if an implementation requires 128 byte alignment for images and 64 byte alignment for
buffers, the device memory returned through this mechanism would be 128-byte aligned. This ensures that applications
can correctly suballocate objects of different types (with potentially different alignment requirements) in the same
memory object.

When memory is allocated, its contents are undefined.

There is an implementation-dependent maximum number of memory allocations which can be simultaneously created on
a device. This is specified by the maxMemoryAllocationCount member of the VkPhysicalDeviceLimits
structure. If maxMemoryAllocationCount is exceeded, vkAllocateMemory will return VK_ERROR_TOO_MANY__
OBJECTS.

Note

Some platforms may have a limit on the maximum size of a single allocation. For example, certain systems may
fail to create allocations with a size greater than or equal to 4GB. Such a limit is implementation-dependent, and
if such a failure occurs then the error VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned.

A memory object is freed by calling:

void vkFreeMemory (

VkDevice device,
VkDeviceMemory memory,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that owns the memory.
* memory is the VkDeviceMemory object to be freed.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If memory is not VK_NULIL_HANDLE, memory must be a valid VkDeviceMemory handle

e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If memory is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and memory that are valid handles must have been created, allocated or retrieved from the same
VkPhysicalDevice

* All submitted commands that refer to memory (via images or buffers) must have completed execution

Host Synchronization

* Host access to memory must be externally synchronized

Before freeing a memory object, an application must ensure the memory object is no longer in use by the device—for
example by command buffers queued for execution. The memory can remain bound to images or buffers at the time the
memory object is freed, but any further use of them (on host or device) for anything other than destroying those objects
will result in undefined behavior. If there are still any bound images or buffers, the memory may not be immediately
released by the implementation, but must be released by the time all bound images and buffers have been destroyed.
Once memory is released, it is returned to the heap from which it was allocated.

How memory objects are bound to Images and Buffers is described in detail in the Resource Memory Association
section.

Vulkan 1.0 - A Specification 185/615

10.2.1 Host Access to Device Memory Objects

Memory objects created with vkAllocateMemory are not directly host accessible.

Memory objects created with the memory property VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT are considered
mappable. Memory objects must be mappable in order to be successfully mapped on the host. An application retrieves a
host virtual address pointer to a region of a mappable memory object by calling:

VkResult vkMapMemory (

VkDevice device,
VkDeviceMemory memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
voidxx* ppData) ;

* device is the logical device that owns the memory.

* memory is the VkDeviceMemory object to be mapped.

* offset is a zero-based byte offset from the beginning of the memory object.

* sizeis the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of the allocation.
e flags is reserved for future use, and must be zero.

* ppData points to a pointer in which is returned a host-accessible pointer to the beginning of the mapped range. This
pointer minus offset must be aligned to at least VkPhysicalDevicelLimits:iminMemoryMapAlignment.

Valid Usage

* device must be a valid VkDevice handle

* memory must be a valid VkDeviceMemory handle

* flags mustbe 0

* ppData must be a pointer to a pointer

* memory must have been created, allocated or retrieved from device

* Each of device and memory must have been created, allocated or retrieved from the same
VkPhysicalDevice

* memory must not currently be mapped
e offset must be less than the size of memory

 If sizeisnotequal to VK_WHOLE_SIZE, the sum of offset and size must be less than or equal to the size
of the memory

* memory must have been created with a memory type that reports VK_MEMORY_PROPERTY_HOST_VISIBLE_
BIT

Host Synchronization

* Host access to memory must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_MEMORY_MAP_FATILED

It is an application error to call vkMapMemory on a memory object that is already mapped.

vkMapMemory does not check whether the device memory is currently in use before returning the host-accessible
pointer. The application must guarantee that any previously submitted command that writes to this sub-range has
completed before the host reads from or writes to that sub-range, and that any previously submitted command that reads
from that sub-range has completed before the host writes to that region (see here for details on fulfilling such a
guarantee). If the device memory was allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set,
these guarantees must be made for an extended sub-range: the application must round down the start of the sub-range to
the previous multiple of VkPhysicalDeviceLimits::inonCoherentAtomSize, and round the end of the range up
to the nearest multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize.

While a range of device memory is mapped for host access, the application is responsible for synchronizing both device
and host access to that memory range.

Note
It is important for the application developer to become meticulously familiar with all of the mechanisms described
in the chapter on Synchronization and Cache Control as they are crucial to maintaining memory access order-

ing.

Host-visible memory types that advertise the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property still require
memory barriers between host and device in order to be coherent, but do not require additional cache management
operations (vkFlushMappedMemoryRanges or vkInvalidateMappedMemoryRanges) to achieve coherency.
For host writes to be seen by subsequent command buffer operations, a pipeline barrier from a source of VK_ACCESS__
HOST_WRITE_BIT and VK_PIPELINE_STAGE_HOST_BIT to a destination of the relevant device pipeline stages
and access types must be performed. Note that such a barrier is performed implicitly upon each command buffer

Vulkan 1.0 - A Specification 187 /615

submission, so an explicit barrier is only rarely needed (e.g. if a command buffer waits upon an event signaled by the
host, where the host wrote some data after submission). For device writes to be seen by subsequent host reads, a pipeline
barrier is required to make the writes visible.

In order to enable applications to work with non-coherent memory allocations, two entry points are provided. To flush
host write caches, an application must use vkFlushMappedMemoryRanges, while
vkInvalidateMappedMemoryRanges allows invalidating host input caches so that device writes become visible
to the host. vkFlushMappedMemoryRanges must be called after the host writes to non-coherent memory have
completed and before command buffers that will read or write any of those memory locations are submitted to a queue.
Similarly, vkInvalidateMappedMemoryRanges must be called after command buffers that execute and flush (via
memory barriers) the device writes have completed, and before the host will read or write any of those locations.

VkResult vkFlushMappedMemoryRanges (

VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRangex* pMemoryRanges) ;

* device is the logical device that owns the memory ranges.
* memoryRangeCount is the length of the pMemoryRanges array.

* pMemoryRanges i$ a pointer to an array of VkMappedMemoryRange structures describing the memory ranges to
flush.

Valid Usage

e device must be a valid VkDevice handle

* pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange
structures

* The value of memoryRangeCount must be greater than 0

* The memory ranges specified by pMemoryRanges must all currently be mapped

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

VkResult vkInvalidateMappedMemoryRanges (

VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRangex pMemoryRanges) ;

* device is the logical device that owns the memory ranges.
* memoryRangeCount is the length of the pMemoryRanges array

* pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the memory ranges to
invalidate.

Valid Usage

e device must be a valid VkDevice handle

* pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange
structures

* The value of memoryRangeCount must be greater than 0

* The memory ranges specified by pMemoryRanges must all currently be mapped

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF DEVICE_MEMORY

VkMappedMemoryRange is defined as:

typedef struct VkMappedMemoryRange {

VkStructureType sType;
const voidx pNext;
VkDeviceMemory memory;
VkDeviceSize offset;
VkDeviceSize size;

} VkMappedMemoryRange;

Vulkan 1.0 - A Specification 189/615

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

* memory is the memory object to which this range belongs.

* offset is the zero-based byte offset from the beginning of the memory object.

* sizeis either the size of range, or VK_WHOLE_SIZE to affect the range from offset to the end of the current
mapping of the allocation.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE

* pNext must be NULL

* memory must be a valid VkDeviceMemory handle

* memory must currently be mapped

* offset must be less than the size of the currently mapped range of memory

* If sizeisnotequal to VK_WHOLE_SIZE, the sum of offset and size must be less than or equal to the size of
the currently mapped range of memory

* offset and size must each be a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize

Note

If the memory object was created with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, vkFlus
hMappedMemoryRanges and vkInvalidateMappedMemoryRanges are unnecessary and may have
performance cost.

Once host access to a memory object is no longer needed by the application, it can be unmapped by calling :

void vkUnmapMemory (
VkDevice device,
VkDeviceMemory memory) ;

* device is the logical device that owns the memory.

* memory is the memory object to be unmapped.

Valid Usage

e device must be a valid VkDevice handle
* memory must be a valid VkDeviceMemory handle
* memory must have been created, allocated or retrieved from device

¢ Each of device and memory must have been created, allocated or retrieved from the same
VkPhysicalDevice

* memory must currently be mapped

Host Synchronization

* Host access to memory must be externally synchronized

10.2.2 Lazily Allocated Memory

If the memory object is allocated from a heap with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set,
that object’s backing memory may be provided by the implementation lazily. The actual committed size of the memory
may initially be as small as zero (or as large as the requested size), and monotonically increases as additional memory is
needed.

A memory type with this flag set is only allowed to be bound to a VkImage whose usage flags include VK_IMAGE_
USAGE_TRANSIENT_ATTACHMENT_BIT

Note

Using lazily allocated memory objects for framebuffer attachments that are not needed once a render pass
instance has completed may allow some implementations to never allocate memory for such attachments.

Determining the amount of lazily-allocated memory that is currently committed for a memory object is achieved by
calling:

void vkGetDeviceMemoryCommitment (

VkDevice device,
VkDeviceMemory memory,
VkDeviceSizex pCommittedMemoryInBytes) ;

* device is the logical device that owns the memory.

* memory is the memory object being queried.

Vulkan 1.0 - A Specification 191/615

* pCommittedMemoryInBytes is a pointer to a VkDeviceSize value in which the number of bytes currently
committed is returned, on success.

Valid Usage

* device must be a valid VkDevice handle

* memory must be a valid VkDeviceMemory handle

* pCommittedMemoryInBytes must be a pointer to a VkDeviceSize value
¢ memory must have been created, allocated or retrieved from device

¢ Each of device and memory must have been created, allocated or retrieved from the same
VkPhysicalDevice

* memory must have been created with a memory type that reports VK_MEMORY_PROPERTY_LAZILY_
ALLOCATED_BIT

The implementation may update the commitment at any time, and the value returned by this query may be out of date.

The implementation guarantees to allocate any committed memory from the heapIndex indicated by the memory type
that the memory object was created with.

Vulkan 1.0 - A Specification 193/615

Chapter 11

Resource Creation

Vulkan supports two primary resource types: buffers and images. Resources are views of memory with associated
formatting and dimensionality. Buffers are essentially unformatted arrays of bytes whereas images contain format
information, can be multidimensional and may have associated metadata.

11.1 Buffers

Buffers represent linear arrays of data which are used for various purposes by binding them to the graphics pipeline via
descriptor sets or via certain commands, or by directly specifying them as parameters to certain commands.

Buffers are created by calling:

VkResult vkCreateBuffer (

VkDevice device,
const VkBufferCreateInfox pCreatelInfo,
const VkAllocationCallbacksx* pAllocator,
VkBuffer=* pBuffer);

* device is the logical device that creates the buffer object.

* pCreateInfois a pointer to an instance of the VkBuf ferCreateInfo structure containing parameters affecting
creation of the buffer.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pBuffer points to a VkBuf fer handle in which the resulting buffer object is returned.

Valid Usage

e device must be a valid VkDevice handle

* pCreateInfo must be a pointer to a valid VkBufferCreateInfo structure

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
* pBuffer must be a pointer to a VkBuf fer handle

e If the f1ags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT or VK_
BUFFER_CREATE_SPARSE_RESIDENCY_BIT, creating this VkBuf fer must not cause the total required
sparse memory for all currently valid sparse resources on the device to exceed
VkPhysicalDeviceLimits::sparseAddressSpaceSize

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkBufferCreateInfois:

typedef struct VkBufferCreatelInfo {

VkStructureType sType;

const voidx pNext;
VkBufferCreateFlags flags;

VkDeviceSize size;
VkBufferUsageFlags usage;

VkSharingMode sharingMode;

uint32_t queueFamilyIndexCount;
const uint32_t«* pQueueFamilyIndices;

} VkBufferCreatelInfo;

The members of VkBuf ferCreateInfo have the following meanings:

sType is the type of this structure.
pNext is NULL or a pointer to an extension-specific structure.

flags is a bitfield describing additional parameters of the buffer. See VkBufferCreateFlagBits below for a
description of the supported bits.

size is the size in bytes of the buffer to be created.

usage is a bitfield describing the allowed usages of the buffer. See VkBufferUsageFlagBits below for a
description of the supported bits.

sharingMode is the sharing mode of the buffer when it will be accessed by multiple queue families, see
VkSharingMode in the Resource Sharing section below for supported values.

Vulkan 1.0 - A Specification 195/615

* gqueueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

* pQueueFamilyIndices is a list of queue families that will access this buffer (ignored if sharingMode is not VK_
SHARING_MODE_CONCURRENT).

Valid Usage

* sType must be VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO

e pNext must be NULL

* flags must be a valid combination of VkBufferCreateFlagBits values
* usage must be a valid combination of VkBuf ferUsageFlagBits values

* usage must not be 0

* sharingMode must be a valid VkSharingMode value

* The value of size must be greater than 0

* If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an
array of queueFamilyIndexCount uint32_t values

* If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than 1

* If the sparse bindings feature is not enabled, £1ags must not contain VK_BUFFER_CREATE_SPARSE__
BINDING_BIT

* If the sparse buffer residency feature is not enabled, £1ags must not contain VK_BUFFER_CREATE_SPARSE_
RESIDENCY_BIT

* If the sparse aliased residency feature is not enabled, £1ags must not contain VK_BUFFER_CREATE_SPARSE_
ALIASED_BIT

e If flags contains VK_BUFFER_CREATE_SPARSE_ALIASED_BIT, it must also contain at least one of VK_
BUFFER_CREATE_SPARSE_BINDING_BIT or VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT

Bits which may be set in usage are:

typedef enum VkBufferUsageFlagBits {
VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001,
VK_BUFFER_USAGE_TRANSFER_DST_BIT 0x00000002,
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004,
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT = 0x00000008,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020,
VK_BUFFER_USAGE_INDEX BUFFER_BIT = 0x00000040,
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080,
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100,

} VkBufferUsageFlagBits;

* VK_BUFFER_USAGE_TRANSFER_SRC_BIT indicates that the buffer can be used as the source of a transfer
command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

e VK_BUFFER_USAGE_TRANSFER_DST_BIT indicates that the buffer can be used as the destination of a transfer
command.

e VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT indicates that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_UNIFORM_
TEXEL_BUFFER.

e VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT indicates that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_
TEXEL_BUFFER.

e VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT indicates that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type VK_
DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

e VK_BUFFER_USAGE_STORAGE_BUFFER_BIT indicates that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type VK_
DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

* VK_BUFFER_USAGE_INDEX_BUFFER_BIT indicates that the buffer is suitable for passing as the buffer
parameter to vkCmdBindIndexBuffer.

* VK_BUFFER_USAGE_VERTEX_BUFFER_BIT indicates that the buffer is suitable for passing as an element of the
pBuffers array to vkCmdBindVertexBuffers.

* VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT indicates that the buffer is suitable for passing as the buffer
parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, or vkCmdDispatchIndirect.

Any combination of bits can be specified for usage, but at least one of the bits must be set in order to create a valid
buffer.

Bits which may be set in flags are:

typedef enum VkBufferCreateFlagBits ({
VK_BUFFER_CREATE_SPARSE_BINDING_BIT = 0x00000001,
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT = 0x00000004,

} VkBufferCreateFlagBits;

These bitfields have the following meanings:
* VK_BUFFER_CREATE_SPARSE_BINDING_BIT indicates that the buffer will be backed using sparse memory
binding.

* VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT indicates that the buffer can be partially backed using sparse
memory binding.

* VK_BUFFER_CREATE_SPARSE_ALIASED_BIT indicates that the buffer will be backed using sparse memory
binding with memory ranges that might also simultaneously be backing another buffer (or another portion of the same
buffer).

See Sparse Resource Features and Physical Device Features for details of the sparse memory features supported on a
device.

To destroy a buffer, call:

Vulkan 1.0 - A Specification 197 /615

void vkDestroyBuffer (

VkDevice device,
VkBuffer buffer,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the buffer.
* buffer is the buffer to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If bufferis not VK_NULL_HANDLE, buffer must be a valid VkBuf fer handle

* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If buffer is a valid handle, it must have been created, allocated or retrieved from device

* Each of device and buffer that are valid handles must have been created, allocated or retrieved from the same
VkPhysicalDevice

* All submitted commands that refer to buf fer, either directly or via a VkBuf ferView, must have completed
execution

* If VkAllocationCallbacks were provided when buffer was created, a compatible set of callbacks must be
provided here

e If no VkAllocationCallbacks were provided when buffer was created, pAllocator must be NULL

Host Synchronization

* Host access to buffer must be externally synchronized

11.2 Buffer Views

A buffer view represents a contiguous range of a buffer and a specific format to be used to interpret the data. Buffer views
are used to enable shaders to access buffer contents interpreted as formatted data. In order to create a valid buffer view,
the buffer must have been created with at least one of the following usage flags:

e VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

e VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

A buffer view is created by calling:

VkResult vkCreateBufferView (
VkDevice
const VkBufferViewCreateInfox
const VkAllocationCallbacksx
VkBufferViewx*

* device is the logical device that creates the buffer view.

device,
pCreatelnfo,
pAllocator,
pView) ;

* pCreateInfois a pointer to an instance of the VkBuf ferViewCreateInfo structure containing parameters to be

used to create the buffer.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pView points to a VkBuf ferView handle in which the resulting buffer view object is returned.

Valid Usage

e device must be a valid VkDevice handle

* pView must be a pointer to a VkBuf ferView handle

* pCreatelInfo must be a pointer to a valid VkBuf ferViewCreateInfo structure

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkBufferViewCreateInfo is:

Vulkan 1.0 - A Specification 199/615

typedef struct VkBufferViewCreateInfo {

VkStructureType sType;
const voidx pNext;
VkBufferViewCreateFlags flags;
VkBuffer buffer;
VkFormat format;
VkDeviceSize offset;
VkDeviceSize range;

} VkBufferViewCreateInfo;
The members of VkBuf ferViewCreateInfo have the following meanings:

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

e flags is reserved for future use.

* bufferis aVkBuffer on which the view will be created.

* format is a VkFormat describing the format of the data elements in the buffer.

* offset is an offset in bytes from the base address of the buffer. Accesses to the buffer view from shaders use
addressing that is relative to this starting offset.

* range is a size in bytes of the buffer view. If range is equal to VK_WHOLE_SIZE, the range from offset to the end
of the buffer is used. If VK_WHOLE_STIZE is used and the remaining size of the buffer is not a multiple of the element
size of format, then the nearest smaller multiple is used.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO
* pNext must be NULL

e flags mustbe 0

* puffer must be a valid VkBuf fer handle

* format must be a valid VkFormat value

* The value of offset must be a multiple of
VkPhysicalDevicelLimits:minTexelBufferOffsetAlignment

* The value of range must be greater than 0

* If range is not equal to VK_WHOLE_SIZE, the sum of offset and range must be less than or equal to the size
of buffer

* If range is not equal to VK_WHOLE_SIZE, the value of range must be a multiple of the element size of format

* The value of range, divided by the size of an element of format, must be less than or equal to the value of
VkPhysicalDevicelimits:imaxTexelBufferElements

* buffer must have been created with a usage value containing at least one of VK_BUFFER_USAGE__
UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

* If buffer was created with usage containing VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
format must be supported for uniform texel buffers, as specified by the VK_FORMAT_FEATURE_UNIFORM_
TEXEL_BUFFER_BIT flag in VkFormatProperties:bufferFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If buffer was created with usage containing VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
format must be supported for storage texel buffers, as specified by the VK_FORMAT_FEATURE_STORAGE_
TEXEL_BUFFER_BIT flag in VkFormatProperties:bufferFeatures returned by
vkGetPhysicalDeviceFormatProperties

To destroy a buffer view, call:

void vkDestroyBufferView (

VkDevice device,
VkBufferView buffervView,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the buffer view.
* bufrferView is the buffer view to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If bufferview is not VK_NULL_HANDLE, bufferView must be a valid VkBuf ferView handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
» If bufferview is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and buffervView that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

* All submitted commands that refer to buf ferview must have completed execution

e [f VkAllocationCallbacks were provided when bufferview was created, a compatible set of callbacks
must be provided here

e IfnoVkAllocationCallbacks were provided when bufferview was created, pAllocator must be NULL

Vulkan 1.0 - A Specification 201/615

Host Synchronization

* Host access to buffervView must be externally synchronized

11.3 Images

Images represent multidimensional - up to 3 - arrays of data which can be used for various purposes (e.g. attachments,
textures), by binding them to the graphics pipeline via descriptor sets, or by directly specifying them as parameters to
certain commands.

Images are created by calling:

VkResult vkCreateImage (

VkDevice device,
const VkImageCreateInfox pCreatelnfo,
const VkAllocationCallbacksx pAllocator,
VkImagex* pImage) ;

* device is the logical device that creates the image.

* pCreatelInfois a pointer to an instance of the VkImageCreateInfo structure containing parameters to be used to
create the image.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pImage points to a VkImage handle in which the resulting image object is returned.

Valid Usage

* device must be a valid VkDevice handle

* pCreateInfo must be a pointer to a valid Vk ImageCreateInfo structure

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
* pImage must be a pointer to a Vk Image handle

* If the f1ags member of pCreatelnfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT or VK_
IMAGE_CREATE_SPARSE_RESIDENCY_BIT, creating this Vk Image must not cause the total required sparse
memory for all currently valid sparse resources on the device to exceed
VkPhysicalDevicelimits::sparseAddressSpaceSize

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkImageCreateInfo is:

typedef struct VkImageCreateInfo {

VkStructureType sType;

const voidx pNext;
VkImageCreateFlags flags;

VkImageType imageType;

VkFormat format;

VkExtent3D extent;

uint32_t mipLevels;

uint32_t arraylLayers;
VkSampleCountFlagBits samples;
VkImageTiling tiling;
VkImageUsageFlags usage;

VkSharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t«* pQueueFamilyIndices;
VkImageLayout initiallayout;

} VkImageCreatelInfo;

The members of VkImageCreateInfo have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.

* flagsis a bitfield describing additional parameters of the image. See VkImageCreateFlagBits below for a
description of the supported bits.

* imageType is the basic dimensionality of the image, and must be one of the values

typedef enum VkImageType {
VK_IMAGE_TYPE_1D = O,
VK_IMAGE_TYPE_2D = 1,
VK_IMAGE_TYPE_3D = 2,
} VkImageType;

specifying one-, two-, or three-dimensionality, respectively. Layers in array textures do not count as a dimension for
the purposes of the image type.

* format is a VkFormat describing the format and type of the data elements that will be contained in the image.

* extent is a VkExtent 3D describing the number of data elements in each dimension of the base level.

Vulkan 1.0 - A Specification 203 /615

* mipLevels describes the number of levels of detail available for minified sampling of the image.
* arrayLayers is the number of layers in the image.

* samples is the number of sub-data element samples in the image as defined in VkSampleCountFlagBits. See
Multisampling.

* tilingis the tiling arrangement of the data elements in memory, and must have one of the values:

typedef enum VkImageTiling {
VK_IMAGE_TILING_OPTIMAL = O,
VK_IMAGE_TILING_LINEAR = 1,
} VkImageTiling;

VK_IMAGE_TILING_OPTIMAL specifies optimal tiling (texels are laid out in an implementation-dependent
arrangement, for more optimal memory access), and VK_IMAGE_TILING_LINEAR specifies linear tiling (texels are
laid out in memory in row-major order, possibly with some padding on each row).

* usage is a bitfield describing the intended usage of the image. See Vk ImageUsageFlagBits below for a
description of the supported bits.

* sharingMode is the sharing mode of the image when it will be accessed by multiple queue families, and must be one
of the values described for Vk SharingMode in the Resource Sharing section below.

* gueueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

* pQueueFamilyIndices is a list of queue families that will access this image (ignored if sharingMode is not VK_
SHARING_MODE_CONCURRENT).

* initialLayout selects the initial Vk ImageLayout state of all subresources of the image. See Image Layouts.
initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.

Valid Usage

e sType must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

e pNext must be NULL

e flags must be a valid combination of VkImageCreateFlagBits values
e imageType must be a valid Vk ImageType value

* format must be a valid VkFormat value

e samples must be a valid VkSampleCountFlagBits value

e tiling must be a valid VkImageTiling value

* usage must be a valid combination of VkImageUsageFlagBits values

* usage must not be 0

e sharingMode must be a valid VkSharingMode value

e initialLayout mustbe a valid VkImageLayout value

If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an
array of queueFamilyIndexCount uint32_t values

If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than 1
format must not be VK_FORMAT_UNDEF INED

The values of the width, height and depth members of extent must all be greater than 0

The value of mipLevels must be greater than 0

The value of arrayLayers must be greater than 0

If imageType is VK_IMAGE_TYPE_ 1D, the value of extent.width must be less than or equal to the value of
VkPhysicalDeviceLimits:imaxImageDimensionlD, or the value of
VkImageFormatProperties:maxExtent.width (as returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure) - whichever is higher

If imageType is VK_IMAGE_TYPE_2D and flags does not contain VK_IMAGE_CREATE_CUBE_
COMPATIBLE_BIT, the value of extent.width and extent.height must be less than or equal to the value
of VkPhysicalDevicelLimits:imaxImageDimension2D, or the value of
VkImageFormatProperties:maxExtent.width/height (as returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure) - whichever is higher

If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_
BIT, the value of extent.width and extent . height must be less than or equal to the value of
VkPhysicalDevicelimits:imaxImageDimensionCube, or the value of
VkImageFormatProperties:maxExtent.width/height (as returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure) - whichever is higher

If imageTypeis VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_
BIT, the value of extent.width and extent . height must be equal

If imageTypeis VK_IMAGE_TYPE_ 3D, the value of extent.width, extent.height and extent.depth
must be less than or equal to the value of VkPhysicalDevicelLimits:imaxImageDimension3D, or the
value of VkImageFormatProperties:maxExtent.width/height/depth (as returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure) - whichever is higher

The value of mipLevels must be less than or equal to or equal to the value of
|log, (max (extent.width, extent.height, extent.depth)) | + 1

If the values of any of extent.width, extent.height or extent .depth are greater than the values of the
equivalently named members of VkPhysicalDeviceLimits:imaxImageDimension3D, mipLevels must
be less than or equal to the value of VkImageFormatProperties:maxMipLevels (as returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure)

The value of arrayLayers must be less than or equal to the value of
VkPhysicalDevicelLimits:maxImageArrayLayers, or the value of
VkImageFormatProperties:maxArrayLayers (as returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure) - whichever is higher

Vulkan 1.0 - A Specification 205/615

¢ The value of samples must be a bit value that is set in the value of
VkPhysicalDeviceLimits:sampleCounts returned by vkGetPhysicalDeviceProperties, or the
value of VkImageFormatProperties:maxExtent.sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with values of format, type, tiling, usage and
flags equal to those in this structure

* If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_
STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT or VK_IMAGE_
USAGE_INPUT_ATTACHMENT_BIT, the value of extent.width must be less than or equal to
VkPhysicalDevicelLimits:imaxFramebufferWidth

e If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_
STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT or VK_IMAGE_
USAGE_INPUT_ATTACHMENT_BIT, the value of extent.height must be less than or equal to
VkPhysicalDevicelimits:imaxFramebufferHeight

e If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, the value of samples must be a bit value
that is set in the value of VkPhysicalDeviceLimits:imaxFramebufferColorSamples

* If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a depth
aspect, the value of samples must be a bit value that is set in the value of
VkPhysicalDevicelimits:imaxFramebufferDepthSamples

e If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a
stencil aspect, the value of samples must be a bit value that is set in the value of
VkPhysicalDevicelimits:imaxFramebufferStencilSamples

* If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a color aspect, the value of
samples must be a bit value that is set in the value of
VkPhysicalDeviceLimits:maxSampledImageColorSamples

* If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a depth aspect, the value of
samples must be a bit value that is set in the value of
VkPhysicalDevicelLimits:maxSampledImageDepthSamples

* If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format is an integer format, the value of samples
must be a bit value that is set in the value of
VkPhysicalDevicelimits:maxSampledImageIntegerSamples

e If usage includes VK_IMAGE_USAGE_STORAGE_BIT, the value of samples must be a bit value that is set in
the value of VkPhysicalDevicelLimits:maxStorageImageSamples

* If the ETC2 texture compression feature is not enabled, format must not be VK_FORMAT_ETC2_R8G8B8__
UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM__
BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8AS8_SRGB_BLOCK, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT__
EAC_R11_SNORM_BLOCK, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, or VK_FORMAT_EAC_R11G11_
SNORM_BLOCK

o If the ASTC LDR texture compression feature is not enabled, format must not be VK_FORMAT_ASTC_4x4_
UNORM_BLOCK, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK__
FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC__
5x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_ASTC_

8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_
8x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_SRGB_
BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK__
FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_ASTC__
10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x10_
UNORM_BLOCK, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
or VK_FORMAT_ASTC_12x12_SRGB_BLOCK

If the BC texture compression feature is not enabled, format must not be VK_FORMAT_BC1_RGB_UNORM__
BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT__
BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK__
FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT BC5_UNORM_BLOCK, VK_FORMAT BC5_SNORM_
BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_
UNORM_BLOCK, or VK_FORMAT_BC7_SRGB_BLOCK

If the multisampled storage images feature is not enabled, and usage contains VK__IMAGE_USAGE_STORAGE_
BIT, samples must be VK_SAMPLE_COUNT_1_BRIT

If the sparse bindings feature is not enabled, £1ags must not contain VK_IMAGE_CREATE_SPARSE_
BINDING_BIT

If the sparse residency for 2D images feature is not enabled, and imageType is VK_IMAGE_TYPE_2D, flags
must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_ BIT

If the sparse residency for 3D images feature is not enabled, and imageType is VK_IMAGE_TYPE_3D, fiags
must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_ BIT

If the sparse residency for images with 2 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_2_ BIT, flags must not contain VK_IMAGE_CREATE_SPARSE__
RESIDENCY_BIT

If the sparse residency for images with 4 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_4_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE__
RESIDENCY_BIT

If the sparse residency for images with 8 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_8_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE__
RESIDENCY_BIT

If the sparse residency for images with 16 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samplesis VK_SAMPLE_COUNT_16_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT

If the value of tilingis VK_IMAGE_TILING_LINEAR, and the value of
VkFormatProperties::linearTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK_
FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_SAMPLED_
BIT

If the value of ti1ingis VK_IMAGE_TILING_LINEAR, and the value of
VkFormatProperties::linearTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK _
FORMAT_FEATURE_STORAGE_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_STORAGE_BIT

Vulkan 1.0 - A Specification 207 /615

e If the value of tilingis VK_IMAGE_TILING_LINEAR, and the value of
VkFormatProperties:linearTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK _
FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain VK_IMAGE_USAGE_COLOR_
ATTACHMENT_BIT

e If the value of tilingis VK_IMAGE_TILING_LINEAR, and the value of
VkFormatProperties::linearTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK_
FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, usage must not contain VK_IMAGE__
USAGE_DEPTH_STENCIIL_ATTACHMENT BIT

e If the value of tilingis VK_IMAGE_TILING_OPTIMAL, and the value of
VkFormatProperties:ioptimalTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK_
FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_SAMPLED__
BIT

e If the value of tilingis VK_IMAGE_TILING_OPTIMAL, and the value of
VkFormatProperties:ioptimalTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK _
FORMAT_FEATURE_STORAGE_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_STORAGE_BIT

e If the value of tilingis VK_IMAGE_TILING_OPTIMAL, and the value of
VkFormatProperties:ioptimalTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK_
FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain VK_IMAGE_USAGE_COLOR_
ATTACHMENT_BIT

e If the value of tilingis VK_IMAGE_TILING_OPTIMAL, and the value of
VkFormatProperties:ioptimalTilingFeatures (as returned by
vkGetPhysicalDeviceFormatProperties with the same value of format) does not include VK_
FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, usage must not contain VK_IMAGE__
USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

e If flags contains VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, it must also contain at least one of VK_
IMAGE_CREATE_SPARSE_BINDING_BIT or VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

Valid limits for the image extent, mipLevels, arrayLayers and samples members are queried with the
vkGetPhysicalDeviceImageFormatProperties command.

Images created with ti1ing equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits and
capabilities compared to images created with ti1ing equal to VK_IMAGE_TILING_OPTIMAL. Creation of images
with tiling VK_IMAGE_TILING_LINEAR may not be supported unless other parameters meet all of the constraints:

* imageTypeis VK_IMAGE_TYPE_2D
* format is not a depth/stencil format

* mipLevelsis 1

e arrayLayersis 1

* samplesis VK_SAMPLE_COUNT_1_BIT

* usage only includes VK_IMAGE_USAGE_TRANSFER_SRC_BIT and/or VK_IMAGE_USAGE_TRANSFER_DST_
BIT

Implementations may support additional limits and capabilities beyond those listed above. To determine the specific
capabilities of an implementation, query the valid usage bits by calling
vkGetPhysicalDeviceFormatProperties and the valid limits for mipLevels and arrayLayers by calling
vkGetPhysicalDeviceImageFormatProperties.

Bits which may be set in usage are:

typedef enum VkImageUsageFlagBits ({
VK_IMAGE_USAGE_TRANSFER_SRC_BIT 0x00000001,
VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,

} VkImageUsageFlagBits;

These bitfields have the following meanings:

* VK_IMAGE_USAGE_TRANSFER_SRC_BIT indicates that the image can be used as the source of a transfer
command.

* VK_IMAGE_USAGE_TRANSFER_DST_BIT indicates that the image can be used as the destination of a transfer
command.

* VK_IMAGE_USAGE_SAMPLED_BIT indicates that the image can be used to create a Vk ImageView suitable for
occupying a VkDescriptorSet slot either of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or VK_
DESCRIPTOR_TYPE_ COMBINED_IMAGE_SAMPLER, and be sampled by a shader.

* VK_IMAGE_USAGE_STORAGE_BIT indicates that the image can be used to create a Vk ImageView suitable for
occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

* VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT indicates that the image can be used to create a Vk ImageView
suitable for use as a color or resolve attachment in a VkFramebuffer.

* VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BRIT indicates that the image can be used to create a
VkImageView suitable for use as a depth/stencil attachment in a VkFramebuffer.

* VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT indicates that the memory bound to this image will have
been allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT (see Chapter 10 for more detail). If
this is set, then bits other than VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_
STENCIIL_ATTACHMENT_BIT, and VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be set.

* VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT indicates that the image can be used to create a Vk ImageView
suitable for occupying VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; be read
from a shader as an input attachment; and be used as an input attachment in a framebuffer.

Bits which may be set in flags are:

typedef enum VkImageCreateFlagBits {
VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,

Vulkan 1.0 - A Specification 209 /615

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
} VkImageCreateFlagBits;

These bitfields have the following meanings:
* VK_IMAGE_CREATE_SPARSE_BINDING_BIT indicates that the image will be backed using sparse memory
binding.

* VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT indicates that the image can be partially backed using sparse
memory binding.

* VK_IMAGE_CREATE_SPARSE_ALIASED_BIT indicates that the image will be backed using sparse memory
binding with memory ranges that might also simultaneously be backing another image (or another portion of the same
image). Sparse images created with this flag must also be created with the VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT.

If any of these three bits are set, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT must not also be set.

See Sparse Resource Features and Sparse Physical Device Featuers for more details.

* VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT indicates that the image can be used to create a Vk ImageView
with a different format from the image.

* VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT indicates that the image can be used to create a Vk ImageView
of type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

The layout of a subresource (mipLevel/arrayLayer) of an image created with linear tiling is queried by calling:

void vkGetImageSubresourcelLayout (

VkDevice device,
VkImage image,

const VkImageSubresourcex pSubresource,
VkSubresourceLayout pLayout) ;

* device is the logical device that owns the image.
* image is the image whose layout is being queried.
* pSubresource is a pointer to a Vk ImageSubresource structure selecting a specific image for the subresource.

* pLayout points to a VkSubresourceLayout structure in which the layout is returned.

Valid Usage

e device must be a valid VkDevice handle
* image must be a valid Vk Image handle

* pSubresource must be a pointer to a valid Vk ImageSubresource structure

pLayout must be a pointer to a VkSubresourcelayout structure

image must have been created, allocated or retrieved from device

Each of device and image must have been created, allocated or retrieved from the same VkPhysicalDevice

image must have been created with ti1ing equal to VK_IMAGE_TILING_LINEAR

The aspectMask member of pSubresource must only have a single bit set

The definition of the Vk ImageSubresource structure is:

typedef struct VkImageSubresource {

VkImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t arraylayer;

} VkImageSubresource;

* aspectMask is a VkImageAspectFlags selecting the image aspect.

* mipLevel selects the mipmap level.

* arrayLayer selects the array layer.

Valid Usage

aspectMask must be a valid combination of VkImageAspectFlagBits values

aspectMask must not be 0

mipLevel must be less than the mipLevels specified in Vk ImageCreateInfo when the image was created

arrayLayer must be less than the arrayLayers specified in Vk ImageCreateInfo when the image was

created

Information about the layout of the subresource is returned in a VkSubresourceLayout structure:

typedef struct VkSubresourcelLayout {

VkDeviceSize
VkDeviceSize
VkDeviceSize
VkDeviceSize
VkDeviceSize

offset;
size;
rowPitch;
arrayPitch;
depthPitch;

} VkSubresourceLayout;

* offset is the byte offset from the start of the image where the subresource begins.

Vulkan 1.0 - A Specification 211/615

* sizeis the size in bytes of the subresource. size includes any extra memory that is required based on the value of
rowPitch.

* rowPitch describes the number of bytes between each row of texels in an image.
* arrayPitch describes the number of bytes between each array layer of an image.

* depthPitch describes the number of bytes between each slice of 3D image.

For images created with linear tiling, rowPitch, arrayPitch and depthPitch describe the layout of the subresource
in linear memory. For uncompressed formats, rowPitch is the number of bytes between texels with the same x
coordinate in adjacent rows (y coordinates differ by one). arrayPitch is the number of bytes between texels with the
same x and y coordinate in adjacent array layers of the image (array layer values differ by one). dept hPitch is the
number of bytes between texels with the same x and y coordinate in adjacent slices of a 3D image (z coordinates differ
by one). Expressed as an addressing formula, the starting byte of a texel in the subresource has address:

// (x,v,z,layer) are in texel coordinates
address (x,v,z,layer) = layerxarrayPitch + zxdepthPitch + yxrowPitch + x*texelSize + <>
offset

For compressed formats, the rowPitch is the number of bytes between compressed blocks in adjacent rows.
arrayPitch is the number of bytes between blocks in adjacent array layers. depthPitch is the number of bytes
between blocks in adjacent slices of a 3D image.

// (xX,y,z,layer) are in block coordinates
address (x,v,z,layer) = layerxarrayPitch + zxdepthPitch + yxrowPitch + x*blockSize + <&
offset;

arrayPitch is undefined for images that were not created as arrays. depthPitch is defined only for 3D images.

For color formats, the aspectMask member of VkImageSubresource must be VK_IMAGE_ASPECT_COLOR_
BIT. For depth/stencil formats, aspect must be either VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_
STENCIL_BIT. On implementations that store depth and stencil aspects separately, querying each of these subresource
layouts will return a different offset and size representing the region of memory used for that aspect. On
implementations that store depth and stencil aspects interleaved, the same offset and size are returned and represent
the interleaved memory allocation.

To destroy an image, call:

void vkDestroyImage (

VkDevice device,
VkImage image,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the image.
* image is the image to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

device must be a valid VkDevice handle

If image is not VK_NULL_HANDLE, image must be a valid Vk Image handle

If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
If image is a valid handle, it must have been created, allocated or retrieved from device

Each of device and image that are valid handles must have been created, allocated or retrieved from the same
VkPhysicalDevice

All submitted commands that refer to image, either directly or via a Vk ImageView, must have completed
execution

If vkAllocationCallbacks were provided when image was created, a compatible set of callbacks must be
provided here

If no VkAllocationCallbacks were provided when image was created, pAllocator must be NULL

Host Synchronization

Host access to image must be externally synchronized

11.

4 Image Layouts

Images are stored in implementation-dependent opaque layouts in memory. Implementations may support several
opaque layouts, and the layout used at any given time is determined by the Vk ImageLayout state of the subresource.
Each layout has limitations on what kinds of operations are supported for subresources using the layout. Applications
have control over which layout each image subresource uses, and can transition an image subresource from one layout to
another. Transitions can happen with an image memory barrier, included as part of a vkCmdPipelineBarrier or a
vkCmdWaitEvents command buffer command (see Section 6.5.6), or as part of a subpass dependency within a render
pass (see VkSubpassDependency). The image layout state is per-subresource, and separate subresources of the same
image can be in different layouts at the same time with one exception - depth and stencil aspects of a given subresource
must always be in the same layout.

Note
Each layout may offer optimal performance for a specific usage of image memory. For example, an image with a

layout of VK_TIMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL may provide optimal performance for use

as a color attachment, but be unsupported for use in transfer commands. Applications can transition an image
subresource from one layout to another in order to achieve optimal performance when the subresource is used
for multiple kinds of operations. After initialization, applications need not use any layout other than the general
layout, though this may produce suboptimal performance on some implementations.

Vulkan 1.0 - A Specification 213/615

Upon creation, all subresources of an image are initially in the same layout, where that layout is selected by the
VkImageCreateInfo:initialLayout member. The initialLayout must be either VK_IMAGE_LAYOUT_
UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.Ifitis VK_IMAGE_LAYOUT_PREINITIALIZED, then
the image data can be pre-initialized by the host while using this layout, and the transition away from this layout will
preserve that data. If it is VK_IMAGE_LAYOUT_UNDEF INED, then the contents of the data are considered to be
undefined, and the transition away from this layout is not guaranteed to preserve that data. For either of these initial
layouts, any subresources must be transitioned to another layout before they are accessed by the device.

Host access to image memory is only well-defined for images created with VK_IMAGE_TILING_LINEAR tiling and
for subresources of those images which are currently in either the VK_IMAGE_LAYOUT_PREINITIALIZED or VK_
IMAGE_LAYOUT_GENERAL layout.

The set of image layouts consists of:

typedef enum VkImageLayout {
VK_IMAGE_LAYOUT_UNDEFINED = O,
VK_IMAGE_LAYOUT_GENERAL = 1,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 3,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_ OPTIMAL = 4,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,
VK_IMAGE_LAYOUT_PREINITIALIZED = 8,

} VkImageLayout;

The type(s) of device access supported by each layout are:

* VK_IMAGE_LAYOUT_UNDEFINED: Supports no device access. This layout must only be used as an
initialLayout or as the oldLayout in an image transition. When transitioning out of this layout, the contents of
the memory are not guaranteed to be preserved.

* VK_IMAGE_LAYOUT_PREINITIALIZED: Supports no device access. This layout must only be used as an
initialLayout or as the oldLayout in an image transition. When transitioning out of this layout, the contents of
the memory are preserved. This layout is intended to be used as the initial layout for an image whose contents are
written by the host, and hence the data can be written to memory immediately, without first executing a layout
transition. Currently, VK_IMAGE_LAYOUT_PREINITIALIZED is only useful with VK_IMAGE_TILING_
LINEAR images because there is not a standard layout defined for VK_IMAGE_TILING_OPTIMAL images.

* VK_IMAGE_LAYOUT_GENERAL: Supports all types of device access.

* VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: must only be used as a color or resolve attachment in a
VkFramebuffer. This layout is valid only for subresources of images created with the VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT usage bit enabled.

* VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: must only be used as a depth/stencil
attachment in a VkFramebuf fer. This layout is valid only for subresources of images created with the VK_IMAGE__
USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled.

* VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: must only be used as a read-only depth/stencil
attachment in a VkFramebuf fer and/or as a read-only image in a shader (which can be read as a sampled image,
combined image/sampler and/or input attachment). This layout is valid only for subresources of images created with
both the VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled.

* VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: must only be used as a read-only image in a shader
(which can be read as a sampled image, combined image/sampler and/or input attachment). This layout is valid only
for subresources of images created with the VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_
ATTACHMENT_BIT usage bit enabled.

* VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: must only be used as a source image of a transfer command
(see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT). This layout is valid only for subresources of images
created with the VK_TIMAGE_USAGE_TRANSFER_SRC_BIT usage bit enabled.

* VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: must only be used as a destination image of a transfer
command. This layout is valid only for subresources of images created with the VK_IMAGE_USAGE_TRANSFER__
DST_BIT usage bit enabled.

For each mechanism of accessing an image in the API, there is a parameter or structure member that controls the image
layout used to access the image. For transfer commands, this is a parameter to the command (see Chapter 17 and
Chapter 18). For use as a framebuffer attachment, this is a member in the substructures of the
VkRenderPassCreateInfo (see Render Pass). For use in a descriptor set, this is a member in the
VkDescriptorImageInfo structure (see Section 13.2.4). At the time that any command buffer command accessing
an image executes on any queue, the layouts of the image subresources that are accessed must all match the layout
specified via the API controlling those accesses.

The image layout of each image subresource must be well-defined at each point in the subresource’s lifetime. This means
that when performing a layout transition on the subresource, the old layout value must either equal the current layout of
the subresource (at the time the transition executes), or else be VK_IMAGE_LAYOUT_UNDEFINED (implying that the
contents of the subresource need not be preserved). The new layout used in a transition must not be VK_IMAGE__
LAYOUT_UNDEFINED or VK_TIMAGE_TLAYOUT_PREINITIALIZED.

11.5 Image Views

Image objects are not directly accessed by pipeline shaders for reading or writing image data. Instead, image views
representing contiguous ranges of the image subresources and containing additional metadata are used for that purpose.
Views must be created on images of compatible types, and must represent a valid subset of image subresources.

The types of image views that can be created are:

typedef enum VkImageViewType {
VK_IMAGE_VIEW_TYPE_1D =
VK_IMAGE_VIEW_TYPE_2D =
VK_IMAGE_VIEW_TYPE_3D ,
VK_IMAGE_VIEW_TYPE_CUBE = 3,
VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,

} VkImageViewType;

4

I4

N P O

The exact image view type is partially implicit, based on the image’s type and sample count, as well as the view creation
parameters as described in the table below. This table also shows which SPIR-V OpTypelmage Dim and Arrayed
parameters correspond to each image view type.

To create an image view, call:

VkResult vkCreateImageView (

VkDevice device,
const VkImageViewCreateInfox pCreatelnfo,
const VkAllocationCallbacksx* pAllocator,
VkImageViewx pView) ;

* device is the logical device that creates the image view.

Vulkan 1.0 - A Specification 215/615

* pCreateInfo is a pointer to an instance of the VkImageViewCreateInfo structure containing parameters to be
used to create the image view.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.
* pView points to a Vk ImageView handle in which the resulting image view object is returned.

Some of the image creation parameters are inherited by the view. The remaining parameters are contained in the
pCreatelInfo.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkImageViewCreateInfo structure
e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pView must be a pointer to a Vk ImageView handle

Return Codes

Success
* VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageViewCreateInfo structure is defined as:

typedef struct VkImageViewCreateInfo {

VkStructureType sType;

const voidx pNext;
VkImageViewCreateFlags flags;

VkImage image;
VkImageViewType viewType;
VkFormat format;
VkComponentMapping components;
VkImageSubresourceRange subresourceRange;

} VkImageViewCreatelInfo;

* sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

flags is reserved for future use.

image is a VkImage on which the view will be created.

viewType is the type of the image view.

format is a VkFormat describing the format and type used to interpret data elements in the image.

component s specifies a remapping of color components (or of depth or stencil components after they have been
converted into color components). See VkComponentMapping.

subresourceRange selects the set of mipmap levels and array layers to be accessible to the view.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO

* pNext must be NULL

e flags mustbe 0

e image must be a valid Vk Image handle

e viewType must be a valid VkImageViewType value

* format must be a valid VkFormat value

e components must be a valid VkComponentMapping structure

e subresourceRange must be a valid Vk ImageSubresourceRange structure

e If image was not created with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT then viewType must not be
VK_IMAGE_VIEW_TYPE_CUBRE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

* If the image cubemap arrays feature is not enabled, viewType must not be VK_IMAGE_VIEW_TYPE_CUBE_
ARRAY

* If the ETC2 texture compression feature is not enabled, format must not be VK_FORMAT_ETC2_R8G8B8__
UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM__
BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT__
EAC_R11_SNORM_BLOCK, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, or VK_FORMAT_EAC_R11G11_
SNORM_BLOCK

* If the ASTC LDR texture compression feature is not enabled, format must not be VK_FORMAT_ASTC_4x4__
UNORM_BLOCK, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK__
FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC__
5x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_ASTC_
8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_

Vulkan 1.0 - A Specification 217 /615

8x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_SRGB_
BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK__
FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_ASTC__
10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x10_
UNORM_BLOCK, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
or VK_FORMAT_ASTC_12x12_SRGB_BLOCK

* If the BC texture compression feature is not enabled, format must not be VK_FORMAT_BC1_RGB_UNORM__
BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_
BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK__
FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BILOCK,
VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_SNORM__
BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_
UNORM_BLOCK, or VK_FORMAT_BC7_SRGB_BLOCK

* If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
SAMPLED_BIT, format must be supported for sampled images, as specified by the VK_FORMAT_FEATURE_
SAMPLED_IMAGE_BIT flagin VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
STORAGE_BIT, format must be supported for storage images, as specified by the VK_FORMAT_FEATURE_
STORAGE_IMAGE_BIT flagin VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT, format must be supported for color attachments, as specified by the VK__
FORMAT_FEATURE_COLOR_ATTACHMENT_BITﬂagin
VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
DEPTH_STENCIL_ATTACHMENT_BIT, format must be supported for depth/stencil attachments, as specified
bytheVK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BITﬂagin
VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
SAMPLED_BIT, format must be supported for sampled images, as specified by the VK_FORMAT_FEATURE_
SAMPLED_IMAGE_BIT flagin VkFormatProperties:ioptimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
STORAGE_BIT, format must be supported for storage images, as specified by the VK_FORMAT_FEATURE_
STORAGE_IMAGE_BIT flagin VkFormatProperties:ioptimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT, format must be supported for color attachments, as specified by the VK__
FORMAT_FEATURE_COLOR_ATTACHMENT_BIT1kgin
VkFormatProperties:optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
DEPTH_STENCIL_ATTACHMENT_BIT, format must be supported for depth/stencil attachments, as specified

by the VK_FORMAT_FEATURE_DEPTH_STENCIIL_ATTACHMENT_BIT flagin
VkFormatProperties:ioptimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

* subresourceRange must be a valid subresource range for image (see Section 11.5)

* If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format must be
compatible with the format used to create image, as defined in Format Compatibility Classes

* If image was not created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format must be

identical to the format used to create image

* subResourceRange and viewType must be compatible with the image, as described in the table below

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BRIT flag, format can be different from the
image’s format, but if they are not equal they must be compatible. Image format compatibility is defined in the Format

Compatibility Classes section.

Table 11.1: Image and image view parameter compatibility requirements

Dim, Arrayed, MS

Image parameters

View parameters

1D, 0,0

imageType = IMAGE_TYPE_1D
width >=1

viewType = VIEW_TYPE_1D
baseArrayLayer >= 0

width >= 1
height >=1
depth =1
arrayLayers >= 1
samples = 1

height = 1 arrayLayers = 1
depth =1
arrayLayers >= 1
samples = 1
1D, 1,0 imageType = IMAGE_TYPE_1D viewType = VIEW_TYPE_1D_ARRAY
width >=1 baseArrayLayer >= 0
height = 1 arrayLayers >= 1
depth =1
arrayLayers >= 1
samples = 1
2D, 0,0 imageType = IMAGE_TYPE_2D viewType = VIEW_TYPE_2D
width >= 1 baseArrayLayer >= 0
height >=1 arrayLayers = 1
depth =1
arrayLayers >= 1
samples = 1
2D, 1,0 imageType = IMAGE_TYPE_2D viewType = VIEW_TYPE_2D_ARRAY

baseArrayLayer >= 0
arrayLayers >= 1

Vulkan 1.0 - A Specification

219/615

Table 11.1: (continued)

Dim, Arrayed, MS Image parameters View parameters
2D, 0,1 imageType = IMAGE_TYPE_2D viewType = VIEW_TYPE_2D
width >=1 baseArrayLayer >= 0
height >=1 arrayLayers = 1
depth =1
arrayLayers >= 1
samples > 1
2D, 1,1 imageType = IMAGE_TYPE_2D viewType = VIEW_TYPE_2D_ARRAY
width >=1 baseArrayLayer >= 0
height >=1 arrayLayers >= 1
depth =1
arrayLayers >= 1
samples > 1
CUBE, 0,0 imageType = IMAGE_TYPE_2D viewType = VIEW_TYPE_CUBE
width >= 1 baseArrayLayer >= 0
height = width arrayLayers = 6
depth =1
arrayLayers >= 6
samples = 1
flags include VK_IMAGE_CREATE_
CUBE_COMPATIBLE_BIT
CUBE, 1,0 imageType = IMAGE_TYPE_2D viewType = VIEW_TYPE_CUBE_ARRAY
width >=1 baseArrayLayer >= 0
height = width arrayLayers = 6xXN
depth=1
arrayLayers >= 6 xN
samples = 1
flags include VK_IMAGE_CREATE_
CUBE_COMPATIBLE_BIT
3D, 0,0 imageType = IMAGE_TYPE_3D viewType = VIEW_TYPE_3D
width >= 1 baseArrayLayer = 0
height >=1 arrayLayers = 1
depth >=1
arrayLayers = 1
samples = 1

The subresourceRange member is of type VkImageSubresourceRange and is defined as:

typedef struct VkImageSubresourceRange {

VkImageAspectFlags aspectMask;
uint32_t baseMipLevel;
uint32_t levelCount;
uint32_t baseArraylayer;
uint32_t layerCount;

} VkImageSubresourceRange;

* aspectMask is a bitmask indicating which aspect(s) of the image are included in the view. See
VkImageAspectFlagBits.

* baseMipLevel is the first mipmap level accessible to the view.
* levelCount is the number of mipmap levels (starting from baseMipLevel) accessible to the view.
* baseArrayLayer is the first array layer accessible to the view.

* layerCount is the number of array layers (starting from baseArrayLayer) accessible to the view.

Valid Usage

e aspectMask must be a valid combination of VkImageAspectFlagBits values
e aspectMask must not be 0

* (baseMipLevel + levelCount) must be less than or equal to the mipLevels specified in VkImageCreateInfo
when the image was created

o (baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in
VkImageCreateInfo when the image was created

The number of mip-map levels and array layers must be a subset of the subresources in the image. If an application
wants to use all mip-levels or layers in an image after the baseMipLevel or baseArrayLayer, it can set levelCount
and layerCount to the special values VK_REMAINING_MIP_LEVELS and VK_REMAINING_ARRAY_LAYERS
without knowing the exact number of mip-levels or layers.

For cube and cube array image views, the layers of the image view starting at baseArrayLayer correspond to faces in
the order +X, -X, +Y, -Y, +Z, -Z. For cube arrays, each set of six sequential layers is a single cube, so the number of cube
maps in a cube map array view is layerCount /6, and image array layer baseArrayLayer + i is face index i mod 6 of
cube i /6. If the number of layers in the view, whether set explicitly in IayerCount or implied by VK_REMAINING_
ARRAY_LAYERS, is not a multiple of 6, behavior when indexing the last cube is undefined.

aspectMask is a bitmask indicating the format being used. Bits which may be set include:

typedef enum VkImageAspectFlagBits {
VK_IMAGE_ASPECT_COLOR_BIT = 0x00000001,
VK_IMAGE_ASPECT_DEPTH BIT = 0x00000002,
VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004,
VK_IMAGE_ASPECT_METADATA_BIT = 0x00000008,
} VkImageAspectFlagBits;

The mask must be only VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_
ASPECT_STENCIL_BIT if format is a color, depth-only or stencil-only format, respectively. If using a depth/stencil
format with both depth and stencil components, aspectMask must include at least one of VK_IMAGE_ASPECT_
DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT, and can include both.

When using an imageView of a depth/stencil image to populate a descriptor set (e.g. for sampling in the shader, or for
use as an input attachment), the aspectMask must only include one bit and selects whether the imageView is used for
depth reads (i.e. using a floating-point sampler or input attachment in the shader) or stencil reads (i.e. using an unsigned
integer sampler or input attachment in the shader). When an imageView of a depth/stencil image is used as a
depth/stencil framebuffer attachment, the aspectMask is ignored and both depth and stencil subresources are used.

The components member is defined as follows:

Vulkan 1.0 - A Specification 221/615

typedef struct VkComponentMapping {

VkComponentSwizzle T
VkComponentSwizzle g;
VkComponentSwizzle o}
VkComponentSwizzle aj

} VkComponentMapping;

and describes a remapping from components of the image to components of the vector returned by shader image
instructions. This remapping must be identity for storage image descriptors, input attachment descriptors, and
framebuffer attachments. The r, g, b, and a members of component s are the values placed in the corresponding
components of the output vector:

typedef enum VkComponentSwizzle {
VK_COMPONENT_SWIZZLE_IDENTITY = O,
VK_COMPONENT_SWIZZLE_ZERO = 1,
VK_COMPONENT_SWIZZLE_ONE 2,
VK_COMPONENT_SWIZZLE_R =
VK_COMPONENT_SWIZZLE_G
VK_COMPONENT_SWIZZLE_B
VK_COMPONENT_SWIZZLE_A =

} VkComponentSwizzle;

~

Il
o U Wl
S

~

~

* VK_COMPONENT_SWIZZLE_IDENTITY: the component is set to the identity swizzle.
e VK_COMPONENT_SWIZZLE_ZERO: the component is set to zero.

* VK_COMPONENT_SWIZZLE_ONE: the component is set to either 1 or 1.0 depending on whether the type of the
image view format is integer or floating-point respectively, as determined by the Format Definition section for each
VkFormat.

* VK_COMPONENT_SWIZZLE_R: the component is set to the value of the R component of the image.
* VK_COMPONENT_SWIZZLE_G: the component is set to the value of the G component of the image.
* VK_COMPONENT_SWIZZLE_B: the component is set to the value of the B component of the image.

* VK_COMPONENT_SWIZZLE_A: the component is set to the value of the A component of the image.

Valid Usage

* r must be a valid VkComponent Swizzle value
* g must be a valid VkComponentSwizzle value
* b must be a valid VkComponentSwizzle value

* amust be a valid VkComponentSwizzle value

Setting the identity swizzle on a component is equivalent to setting the identity mapping on that component. That is:

Table 11.2: Component Mappings Equivalent To VK_COMPONENT_SW
IZZLE_IDENTITY

Component Identity Mapping

components.r VK_COMPONENT_SWIZZLE_R
components.g VK_COMPONENT_SWIZZLE_G
components.b VK_COMPONENT_SWIZZLE_B
components.a VK_COMPONENT_SWIZZLE_A

To destroy an image view, call:

void vkDestroyImageView (

VkDevice device,
VkImageView imageView,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the image view.

* imageView is the image view to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

device must be a valid VkDevice handle

If imageView is not VK_NULL_HANDLE, imageView must be a valid Vk ImageView handle

If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
If imageView is a valid handle, it must have been created, allocated or retrieved from device

Each of device and imageView that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

All submitted commands that refer to imageView must have completed execution

If vkAllocationCallbacks were provided when imageView was created, a compatible set of callbacks
must be provided here

If no VkAllocationCallbacks were provided when imageView was created, pAllocator must be NULL

Vulkan 1.0 - A Specification 223 /615

Host Synchronization

* Host access to imageView must be externally synchronized

11.6 Resource Memory Association

Resources are initially created as virtual allocations with no backing memory. Device memory is allocated separately
(see Section 10.2) and then associated with the resource. This association is done differently for sparse and non-sparse
resources.

Resources created with any of the sparse creation flags are considered sparse resources. Resources created without these
flags are non-sparse. The details on resource memory association for sparse resources is described in Chapter 28.

Non-sparse resources must be bound completely and contiguously to a single VkDeviceMemory object before the
resource is passed as a parameter to any of the following operations:

* creating image or buffer views

* updating descriptor sets

* recording commands in a command buffer

Once bound, the memory binding is immutable for the lifetime of the resource.

To determine the memory requirements for a non-sparse buffer resource, call:

void vkGetBufferMemoryRequirements (

VkDevice device,
VkBuffer buffer,
VkMemoryRequirementsx* pMemoryRequirements) ;

* device is the logical device that owns the buffer.
* bufrfer is the buffer to query.

* pMemoryRequirements points to an instance of the VkMemoryRequirements structure in which the memory
requirements of the buffer object are returned.

Valid Usage

* device must be a valid VkDevice handle

* buffer must be a valid VkBuf fer handle

* pMemoryRequirements must be a pointer to a VkMemoryRequirements structure
e buffer must have been created, allocated or retrieved from device

e Each of device and buffer must have been created, allocated or retrieved from the same
VkPhysicalDevice

To determine the memory requirements for a non-sparse image resource, call:

void vkGetImageMemoryRequirements (

VkDevice device,
VkImage image,
VkMemoryRequirementsx* pMemoryRequirements) ;

* device is the logical device that owns the image.
* image is the image to query.

* pMemoryRequirements points to an instance of the VkMemoryRequirements structure in which the memory
requirements of the image object are returned.

Valid Usage

* device must be a valid VkDevice handle

e image must be a valid Vk Image handle

* pMemoryRequirements must be a pointer to a VkMemoryRequirements structure
e image must have been created, allocated or retrieved from device

* Each of device and image must have been created, allocated or retrieved from the same VkPhysicalDevice

The VkMemoryRequirements structure returned by vkGetBuf ferMemoryRequirements and
vkGet ImageMemoryRequirements is defined as follows:

typedef struct VkMemoryRequirements {

VkDeviceSize size;
VkDeviceSize alignment;
uint32_t memoryTypeBits;

—-—

VkMemoryRequirements;

* sizeis the size, in bytes, of the memory allocation required for the resource.
* alignment is the alignment, in bytes, of the offset within the allocation required for the resource.

* memoryTypeBits is a bitfield and contains one bit set for every supported memory type for the resource. Bit i is set
if and only if the memory type i in the VkPhysicalDeviceMemoryProperties structure for the physical
device is supported for the resource.

The implementation guarantees certain properties about the memory requirements returned by
vkGetBufferMemoryRequirements and vkGet ImageMemoryRequirements:

* The memoryTypeBits member always contains at least one bit set.

Vulkan 1.0 - A Specification 225/615

e If bufferisaVkBuffer, orif image is a Vk Image that was created with a VK_IMAGE_TILING_LINEAR value
in the ti1ing member of the VkImageCreateInfo structure passed to vkCreateImage, then the
memoryTypeBits member always contains at least one bit set corresponding to a VkMemoryType with a
propertyFlags that has both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit and the VK_MEMORY__
PROPERTY_HOST_COHERENT_BIT bit set. In other words, mappable coherent memory can always be attached to
these objects.

* The value of the memoryTypeBits member is identical for all VkBuf fer objects created with the same value for the
flags and usage members in the VkBuf ferCreateInfo structure passed to vkCreateBuffer. Further, if
usagel and usage2 of type VkBuf ferUsageFlags are such that usage2 contains a subset of the bits set in
usagel and they have the same value of flags, then the bits set in the value of memoryTypeBi ts returned for
usagel must be a subset of the bits set in the value of memoryTypeBits returned for usage2, for all values of
flags.

* The value of the a1ignment member is identical for all VkBuf fer objects created with the same combination of
values for the usage and f1ags members in the VkBuf ferCreateInfo structure passed to vkCreateBuffer.

* The value of the memoryTypeBits member is identical for all VkImage objects created with the same combination
of values for the ti11ing member and the VK_IMAGE_CREATE_SPARSE_BINDING_BRIT bit of the flags
member and the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in the
VkImageCreateInfo structure passed to vkCreateImage.

¢ The memoryTypeBits member must not refer to a VkMemoryType with a propertyFlags that has the VK_
MEMORY_PROPERTY_LAZILY_ALLOCATED_BITbﬂsmifmerImage(kwsnmﬂmveVK_IMAGE_USAGE_
TRANSIENT_ATTACHMENT_BIT bit set in the usage member of the Vk ImageCreateInfo structure passed to
vkCreateImage.

To attach memory to a buffer object, call:

VkResult vkBindBufferMemory (

VkDevice device,
VkBuffer buffer,
VkDeviceMemory memory,
VkDeviceSize memoryOffset) ;

* device is the logical device that owns the buffer and memory.
* buffer is the buffer.
* memory is a VkDeviceMemory object describing the device memory to attach.

* memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The number of bytes
returned in the VkMemoryRequirements::size member in memory, starting from memoryOffset bytes, will be
bound to the specified buffer.

Valid Usage

e device must be a valid VkDevice handle

e buffer must be a valid VkBuf fer handle

* memory must be a valid VkDeviceMemory handle
* buffer must have been created, allocated or retrieved from device
e memory must have been created, allocated or retrieved from device

e Each of device, buffer and memory must have been created, allocated or retrieved from the same
VkPhysicalDevice

* buffer must not already be backed by a memory object
* buffer must not have been created with any sparse memory binding flags
* memoryOffset must be less than the size of memory

e If buffer was created with the VK_BUFFER_USAGE_UNIFORM_TEXEIL_BUFFER_BIT or VK_BUFFER_
USAGE_STORAGE_TEXEL_BUFFER_BIT, memoryOffset must be a multiple of the value of
VkPhysicalDevicelLimits:minTexelBufferOffsetAlignment

e If bufrfer was created with the VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, memoryOffset must be a
multiple of the value of VkPhysicalDevicelLimits:minUniformBufferOffsetAlignment

e If burfer was created with the VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, memoryOffset must be a
multiple of the value of VkPhysicalDeviceLimits:minStorageBufferOffsetAlignment

* memory must have been allocated using one of the memory types allowed in the memoryTypeBits member of
the VkMemoryRequirements structure returned from a call to vkGet Buf ferMemoryRequirements
with buffer

* The sum of memoryOffset and the size of buffer must be less than or equal to the size of memory

* memoryOffset must be an integer multiple of the alignment member of the VkMemoryRequirements
structure returned from a call to vkGet Buf ferMemoryRequirements with buffer

Host Synchronization

* Host access to buffer must be externally synchronized

Return Codes

Success

¢ VK_SUCCESS

Vulkan 1.0 - A Specification 227 /615

Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

To attach memory to a image object, call:

VkResult vkBindImageMemory (

VkDevice device,
VkImage image,
VkDeviceMemory memory,
VkDeviceSize memoryOffset) ;

* device is the logical device that owns the image and memory.
* image is the image.
* memory is the a VkDeviceMemory object describing the device memory to attach.

* memoryOffset is the start offset of the region of memory which is to be bound to the image. The number of bytes
returned in the VkMemoryRequirements::isize member in memory, starting from memoryoffset bytes, will be
bound to the specified image.

Valid Usage

* device must be a valid VkDevice handle

e image must be a valid Vk Image handle

* memory must be a valid VkDeviceMemory handle

e image must have been created, allocated or retrieved from device

e memory must have been created, allocated or retrieved from device

e Each of device, image and memory must have been created, allocated or retrieved from the same
VkPhysicalDevice

* image must not already be backed by a memory object
* image must not have been created with any sparse memory binding flags
* memoryOffset must be less than the size of memory

* memory must have been allocated using one of the memory types allowed in the memoryTypeBits member of
the VkMemoryRequirements structure returned from a call to vkGet ImageMemoryRequirements with
image

* memoryOffset must be an integer multiple of the alignment member of the VkMemoryRequirements
structure returned from a call to vkGet ImageMemoryRequirements with image

* memory must have storage from memoryOffset onwards equal to or greater than the size member of the

VkMemoryRequirements structure returned from a call to vkGet ImageMemoryRequirements with
image

Host Synchronization

» Host access to image must be externally synchronized

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

Buffer-Image Granularity

There is an implementation-dependent limit, bufferImageGranularity, which specifies a page-like granularity at
which buffer, linear image and optimal image resources must be placed in adjacent memory locations for simultaneous
usage. Two resources which do not satisfy this granularity requirement are said to alias. Linear image resource are
images created with VK_IMAGE_TILING_LINEAR and optimal linear resources are those created with VK_IMAGE_
TILING_OPTIMAL. bufferImageGranularity is specified in bytes, and must be a power of two. Implementations
which do not require such an additional granularity may report a value of one.

Given resourceA at the lower memory offset and resourceB at the higher memory offset, where one of the resources is a
buffer and the other is an image, and the following:

resourceA.end = resourceA.memoryOffset + resourceA.size - 1
resourceA.endPage = resourceA.end & ~(bufferImageGranularity-1)
resourceB.start = resourceB.memoryOffset

resourceB.startPage = resourceB.start & ~(bufferImageGranularity-1)

The following property must hold:

resourceA.endPage < resourceB.startPage

Vulkan 1.0 - A Specification 229 /615

That is, the end of the first resource (A) and the beginning of the second resource (B) must be on separate “pages” of size
bufferImageGranularity. bufferImageGranularity may be different than the physical page size of the memory
heap. This restriction is only needed for adjacent image and buffer memory locations which will be used simultaneously.
Adjacent buffers’ or adjacent images’ memory ranges can be closer than bufferImageGranularity, provided they
meet the alignment requirement for the objects in question.

Sparse memory block sizes and sparse image and buffer memory alignments must all be multiples of the
bufferImageGranularity. Therefore, memory bound to sparse resources naturally satisfies the
bufferImageGranularity.

11.7 Resource Sharing Mode

Buffer and image objects are created with a sharing mode controlling how they can be accessed from queues. The
supported sharing modes are:

typedef enum VkSharingMode {
VK_SHARING_MODE_EXCLUSIVE = O,
VK_SHARING_MODE_CONCURRENT = 1,
} VkSharingMode;

* VK_SHARING_MODE_EXCLUSIVE specifies that access to any range or subresource of the object will be exclusive
to a single queue family at a time.

* VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or subresource of the object from
multiple queue families is supported.

Note

VK_SHARING_MODE_CONCURRENT may result in lower performance access to the buffer or image than VK__
SHARING_MODE_EXCLUSIVE.

Ranges of buffers and subresources of image objects created using VK_SHARING_MODE_EXCLUSIVE must only be
accessed by queues in the same queue family at any given time. In order for a different queue family to be able to
interpret the memory contents of a range or subresource, the application must transfer exclusive ownership of the range
or subresource between the source and destination queue families with the following sequence of operations:

1. Release exclusive ownership from the source queue family to the destination queue family.
2. Use semaphores to ensure proper execution control for the ownership transfer.

3. Acquire exclusive ownership for the destination queue family from the source queue family.

To release exclusive ownership of a range of a buffer or subresource of an image object, the application must execute a
buffer or image memory barrier, respectively (see VkBuf ferMemoryBarrier and VkImageMemoryBarrier) on
a queue from the source queue family. The srcQueueFamilyIndex parameter of the barrier must be set to the source
queue family index, and the dstQueueFamilyIndex parameter to the destination queue family index.

To acquire exclusive ownership, the application must execute the same buffer or image memory barrier on a queue from
the destination queue family.

Upon creation, resources using VK_SHARING_MODE_EXCLUSIVE are not owned by any queue family. A buffer or
image memory barrier is not required to acquire ownership when no queue family owns the resource - it is implicitly

acquired upon first use within a queue. However, images still require a layout transition from VK_IMAGE_LAYOUT_
UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED before being used on the first queue. This layout transition
can either be accomplished by an image memory barrier or by use in a render pass instance.

Once a queue family has used a range or subresource of an VK_SHARING_MODE_EXCLUSIVE resource, its contents
are undefined to other queue families unless ownership is transferred. The contents may also become undefined for other
reasons, e.g. as a result of writes to an image subresource that aliases the same memory. A queue family can take
ownership of a range or subresource without an ownership transfer in the same way as for a resource that was just
created, however doing so means any contents written by other queue families or via incompatible aliases are undefined.

11.8 Memory Aliasing

A range of a VkDeviceMemory allocation is aliased if it is bound to multiple resources simultaneously, via
vkBindImageMemory, vkBindBufferMemory, or via sparse memory bindings. A memory range aliased between
two images or two buffers is defined to be the intersection of the memory ranges bound to the two resources. A memory
range aliased between an image and a buffer is defined to be the intersection of the memory ranges bound to the two
resources, where each range is first bloated to be aligned to the bufferImageGranularity. Applications can alias
memory, but use of multiple aliases is subject to several constraints.

Note

Memory aliasing can be useful to reduce the total device memory footprint of an application, if some large
resources are used for disjoint periods of time.

When an opaque, non-VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image is bound to an aliased range, all
subresources of the image overlap the range. When a linear image is bound to an aliased range, the subresources that
(according to the image’s advertised layout) include bytes from the aliased range overlap the range. When a VK__
IMAGE_CREATE_SPARSE_RESIDENCY_BIT image has blocks bound to an aliased range, only subresources
including those blocks overlap the range, and when the memory bound to the image’s miptail overlaps an aliased range
all subresources in the miptail overlap the range.

Buffers, and linear image subresources in either the VK_IMAGE_LAYOUT_PREINITIALIZED or VK_IMAGE_
LAYOUT_GENERAL layouts, are host-accessible subresources. That is, the host has a well-defined addressing scheme to
interpret the contents, and thus the layout of the data in memory can be consistently interpreted across aliases if each of
those aliases is a host-accessible subresource. Opaque images and linear image subresources in other layouts are not
host-accessible.

If two aliases are both host-accessible, then they interpret the contents of the memory in consistent ways, and data
written to one alias can be read by the other alias.

If either of two aliases is not host-accessible, then the aliases interpret the contents of the memory differently, and writes
via one alias make the contents of memory partially or completely undefined to the other alias. If the first alias is a
host-accessible subresource, then the bytes affected are those written by the memory operations according to its
addressing scheme. If the first alias is not host-accessible, then the bytes affected are those overlapped by the image
subresources that were written. If the second alias is a host-accessible subresource, the affected bytes become undefined.
If the second alias is a not host-accessible, all sparse blocks (for sparse residency images) or all subresources (for
non-sparse residency images) that overlap the affected bytes become undefined.

If any subresources are made undefined due to writes to an alias, then each of those subresources must have its layout
transitioned from VK_IMAGE_LAYOUT_UNDEFINED to a valid layout before it is used, or from VK_IMAGE_
LAYOUT_PREINITIALIZED if the memory has been written by the host. If any blocks of a sparse image have been
made undefined, then only the subresources containing them must be transitioned.

Vulkan 1.0 - A Specification 231/615

Use of an overlapping range by two aliases must be separated by a memory dependency using the appropriate access
types if at least one of those uses performs writes, whether the aliases interpret memory consistently or not. If buffer or
image memory barriers are used, the scope of the barrier must contain the entire range and/or set of subresources that
overlap.

If two aliasing image views are used in the same framebuffer, then the render pass must declare the attachments using the
VK_ATTACHMENT _DESCRIPTION_MAY_ALIAS_BIT, and follow the other rules listed in that section.

Access to resources which alias memory from shaders using variables decorated with Coherent are not automatically
coherent with each other.

. Note
Memory recycled via an application suballocator (i.e. without freeing and reallocating the memory objects) is not
substantially different from memory aliasing. However, a suballocator usually waits on a fence before recycling
a region of memory, and signalling a fence involves enough implicit ordering that the above requirements are all
satisfied.

Vulkan 1.0 - A Specification 233/615

Chapter 12

Samplers

VkSampler objects encapsulate the state of an image sampler which is used by the implementation to read image data
and apply filtering and other transformations for the shader.

To create a sampler object, call:

VkResult vkCreateSampler (

VkDevice device,
const VkSamplerCreateInfox pCreatelInfo,
const VkAllocationCallbacksx* pAllocator,
VkSamplerx pSampler) ;

* device is the logical device that creates the sampler.

* pCreateInfois a pointer to an instance of the VkSamplerCreateInfo structure specifying the state of the
sampler object.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pSampler points to a VkSampler handle in which the resulting sampler object is returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkSamplerCreateInfo structure
* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pSampler must be a pointer to a VkSampler handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY
¢ VK_ERROR_TOO_MANY_OBJECTS

The VkSamplerCreateInfo structure is defined as follows:

typedef struct VkSamplerCreateInfo {

VkStructureType sType;

const voidx pNext;
VkSamplerCreateFlags flags;

VkFilter magFilter;
VkFilter minFilter;
VkSamplerMipmapMode mipmapMode;
VkSamplerAddressMode addressModeU;
VkSamplerAddressMode addressModeV;
VkSamplerAddressMode addressModeW;
float mipLodBias;
VkBool32 anisotropyEnable;
float maxAnisotropy;
VkBool32 compareEnable;
VkCompareOp compareOp;

float minLod;

float maxLod;
VkBorderColor borderColor;
VkBool32 unnormalizedCoordinates;

} VkSamplerCreateInfo;

The members of VkSamplerCreateInfo are described as follows:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* flags is reserved for future use.

* magFilter is the magnification filter to apply to lookups, and is of type:

typedef enum VkFilter {
VK_FILTER_NEAREST = 0,
VK_FILTER_LINEAR = 1,

} VkFilter;

* minFilter is the minification filter to apply to lookups, and is of type VkFilter.

* mipmapMode is the mipmap filter to apply to lookups as described in the Texel Filtering section, and is of type:

Vulkan 1.0 - A Specification

typedef enum VkSamplerMipmapMode {
VK_SAMPLER_MIPMAP_MODE_NEAREST = O,
VK_SAMPLER MIPMAP_MODE_LINEAR = 1,
} VkSamplerMipmapMode;
addressModeU is the addressing mode for outside [0..1] range for U coordinate. See VkSamplerAddressMode.
addressModeV is the addressing mode for outside [0..1] range for V coordinate. See VkSamplerAddressMode.

addressModeli is the addressing mode for outside [0..1] range for W coordinate. See VkSamplerAddressMode.

mipLodBias is the bias to be added to mipmap LOD calculation and bias provided by image sampling functions in
SPIR-V, as described in the Level-of-Detail Operation section.

anisotropyEnable is VK_TRUE to enable anisotropic filtering, as described in the Anisotropic Texel Selection
section, or VK_FALSE otherwise.

maxAnisotropy is the anisotropy value clamp.

compareEnable is VK_TRUE to enable comparison against a reference value during lookups, or VK_FALSE
otherwise.

— Note: Some implementations will default to shader state if this member does not match.

compareOp is the comparison function to apply to fetched data before filtering as described in the Depth Compare
Operation section. See VkCompareOp.

minLod and maxLod are the values used to clamp the computed level-of-detail value, as described in the
Level-of-Detail Operation section. maxLod must be greater than or equal to minLod.

borderColor is the predefined border color to use, as described in the Texel Replacement section, and is of type:

typedef enum VkBorderColor {
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0,
VK_BORDER_COLOR_INT TRANSPARENT BLACK = 1,

VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2,
VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3,
VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE 4,

VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5,
} VkBorderColor;

unnormalizedCoordinates controls whether to use unnormalized or normalized texel coordinates to address texels
of the image. When set to VK_TRUE, the range of the image coordinates used to lookup the texel is in the range of
zero to the image dimensions for x, y and z. When set to VK_FALSE the range of image coordinates is zero to one.
When unnormalizedCoordinates is VK_TRUE, samplers have the following requirements:

minFilter and magFilter must be equal.
— mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST.

— minLod and maxLod must be zero.

235/615

— addressModeU and addressModeV must each be either VK_SAMPLER_ADDRESS_ MODE_CLAMP_TO_EDGE or

VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER.
— anisotropyEnable must be VK_FALSE.
— compareEnable must be VK_FALSE.

* When unnormalizedCoordinates is VK_TRUE, images the sampler is used with in the shader have the following
requirements:

— The viewType must be either VK_IMAGE_VIEW_TYPE_1D or VK_IMAGE_VIEW_TYPE_2D.

— The image view must have a single layer and a single mip level.

* When unnormalizedCoordinates is VK_TRUE, image built-in functions in the shader that use the sampler have the
following requirements:

— The functions must not use projection.

— The functions must not use offsets.

Mapping of OpenGL to Vulkan filter modes

magFilter values of VK_FILTER_NEAREST and VK_FILTER_LINEAR directly correspond to GL_NEA
REST and GL_LINEAR magnification filters. minFilter and mipmapMode combine to correspond to the
similarly named OpenGL minification filter of GL_minFilter MIPMAP_mipmapMode (e.g. minFilter Of
VK_FILTER_LINEAR and mipmapMode of VK_SAMPLER_MIPMAP_MODE_NEAREST correspond to GL__
LINEAR MIPMAP_NEAREST).

There are no Vulkan filter modes that directly correspond to OpenGL minification filters of GL_ LINEAR or GL__
NEAREST, but they can be emulated using VK_SAMPLER_MIPMAP_MODE_NEAREST, minLod = 0, and
maxLod = 0.25, and using minFilter = VK_FILTER_LINEAR or minFilter = VK_FILTER_NEAREST,
respectively.

Note that using a maxZLod of zero would cause magnification to always be performed, and the magFilter to
always be used. This is valid, just not an exact match for OpenGL behavior. Clamping the maximum lod to 0.25
allows the A value to be non-zero and minification to be performed, while still always rounding down to the base
level. If the minFilter and magFilter are equal, then using a maxLod of zero also works.

Valid Usage

¢ sType must be VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO
e pNext must be NULL

e flags mustbe 0

* magFilter mustbe a valid VkFilter value

* minFilter must be a valid VkFilter value

* mipmapMode must be a valid VkSamplerMipmapMode value

e addressModeU must be a valid VkSamplerAddressMode value

* addressModeV must be a valid VkSamplerAddressMode value

* addressModel must be a valid VkSamplerAddressMode value

* The absolute value of mipLodBias must be less than or equal to
VkPhysicalDevicelLimits:maxSamplerLodBias

Vulkan 1.0 - A Specification 237 /615

* If the anisotropic sampling feature is not enabled, anisotropyEnable must be VK_FALSE

e If anisotropyEnable is VK_TRUE, the value of maxAnisotropy must be between 1.0 and
VkPhysicalDeviceLimits:imaxSamplerAnisotropy, inclusive

* If unnormalizedCoordinates is VK_TRUE, minFilter and magFilter must be equal

e If unnormalizedCoordinates is VK_TRUE, mipmapMode must be VK_SAMPLER_MIPMAP_MODE_
NEAREST

e If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero

e If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be either VK__
SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

e If unnormalizedCoordinates is VK_TRUE, anisotropyEnable must be VK_FALSE
e If unnormalizedCoordinates is VK_TRUE, compareEnable must be VK_FALSE

o If any of addressModeU, addressModeV or addressModeW are VK_SAMPLER_ADDRESS_ MODE_CLAMP__
TO_BORDER, borderColor must be a valid VkBorderColor value

e If compareEnableis VK_TRUE, compareOp must be a valid VkCompareOp value

addressModeU, addressModeV, and addressModeiW must each have one of the following values:

typedef enum VkSamplerAddressMode {
VK_SAMPLER_ADDRESS_MODE_REPEAT = 0,
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT = 1,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE = 2,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER = 3,
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE = 4,
} VkSamplerAddressMode;

These values control the behavior of sampling with coordinates outside the range [0,1] for the respective u, v, or w
coordinate as defined in the Wrapping Operation section.

* VK_SAMPLER_ADDRESS_MODE_REPEAT indicates that the repeat wrap mode will be used.

* VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT indicates that the mirrored repeat wrap mode will be used.
e VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE indicates that the clamp to edge wrap mode will be used.

* VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER indicates that the clamp to border wrap mode will be used.

* VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE indicates that the mirror clamp to edge wrap mode
will be used.

The maximum number of sampler objects which can be simultaneously created on a device is implementation-dependent
and specified by the maxSamplerAllocationCount member of the VkPhysicalDeviceLimits structure. If
maxSamplerAllocationCount is exceeded, vkCreateSampler will return VK_ERROR_TOO_MANY_OBJECTS.

Since VkSampler is a non-dispatchable handle type, implementations may return the same handle for sampler state
vectors that are identical. In such cases, all such objects would only count once against the
maxSamplerAllocationCount limit.

To destroy a sampler, call:

void vkDestroySampler (

VkDevice device,
VkSampler sampler,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the sampler.
* sampler is the sampler to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If sampleris not VK_NULL_HANDLE, sampler must be a valid VkSampler handle

e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If sampler is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and sampler that are valid handles must have been created, allocated or retrieved from the same
VkPhysicalDevice

* All submitted commands that refer to sampler must have completed execution

e If VkAllocationCallbacks were provided when sampler was created, a compatible set of callbacks must
be provided here

e If no VkAllocationCallbacks were provided when sampler was created, pAllocator must be NULL

Host Synchronization

* Host access to sampler must be externally synchronized

Vulkan 1.0 - A Specification 239/615

Chapter 13

Resource Descriptors

Shaders access buffer and image resources by using special shader variables which are indirectly bound to buffer and
image views via the API. These variables are organized into sets, where each set of bindings is represented by a
descriptor set object in the API and a descriptor set is bound all at once. A descriptor is an opaque data structure
representing a shader resource such as a buffer view, image view, sampler, or combined image sampler. The content of
each set is determined by its descriptor set layout and the sequence of set layouts that can be used by resource variables
in shaders within a pipeline is specified in a pipeline layout.

Each shader can use up to maxBoundDescriptorSets (see Limits) descriptor sets, and each descriptor set can include
bindings for descriptors of all descriptor types. Each shader resource variable is assigned a tuple of (set number, binding
number, array element) that defines its location within a descriptor set layout. In GLSL, the set number and binding
number are assigned via layout qualifiers, and the array element is implicitly assigned consecutively starting with index
equal to zero for the first element of an array (and array element is zero for non-array variables):

GLSL example

// Assign set number = M, binding number = N, array element = 0
layout (set=m, binding=n) uniform sampler2D variableName;

// Assign set number = M, binding number = N for all array elements, and

// array element = i for the i’th member of the array.
layout (set=m, binding=n) uniform sampler2D variableNameArray[L];

SPIR-V example

// Assign set number = M, binding number = N, array element = 0

OpExtInstImport "GLSL.std.450"

o
=
Il

OpName %10 "variableName"
OpDecorate %10 DescriptorSet m
OpDecorate %10 Binding n

$2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeImage %6 2D 0 0 O 1 Unknown

%8 = OpTypeSampledImage %7

%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant

// Assign set number = M, binding number = N for all array elements, and
// array element = i for the i’th member of the array.

OpExtInstImport "GLSL.std.450"

o
-
I

OpName %13 "variableNameArray"
OpDecorate %13 DescriptorSet m
OpDecorate %13 Binding n

%2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypeInt 32 0

%10 = OpConstant %9 L

%11 = OpTypeArray %8 %10

%12 = OpTypePointer UniformConstant %11
%13 = OpVariable %12 UniformConstant

13.1 Descriptor Types

The following sections outline the various descriptor types supported by Vulkan. Each section defines a descriptor type,
and each descriptor type has a manifestation in the shading language and SPIR-V as well as in descriptor sets. There is
mostly a one-to-one correspondence between descriptor types and classes of opaque types in the shading language,
where the opaque types in the shading language must refer to a descriptor in the pipeline layout of the corresponding
descriptor type. But there is an exception to this rule as described in Combined Image Sampler.

13.1.1 Storage Image

A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type that is used for load, store, and
atomic operations on image memory from within shaders bound to pipelines.

Loads from storage images do not use samplers and are unfiltered and do not support coordinate wrapping or clamping.
Loads are supported in all shader stages for image formats which report support for the VK_FORMAT_FEATURE_
STORAGE_IMAGE_BIT feature bit via vkGetPhysicalDeviceFormatProperties.

Stores to storage images are supported in compute shaders for image formats which report support for the VK_FORMAT__
FEATURE_STORAGE_IMAGE_BIT feature.

Storage images also support atomic operations in compute shaders for image formats which report support for the VK _
FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT feature.

Load and store operations on storage images can only be done on images in VK_IMAGE_LAYOUT_GENERAL layout.

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also supported for storage
images in fragment shaders with the same set of image formats as supported in compute shaders. When the
vertexPipelineStoresAndAtomics feature is enabled, stores and atomic operations are also supported in vertex,
tessellation, and geometry shaders with the same set of image formats as supported in compute shaders.

Storage image declarations must specify the image format in the shader if the variable is used for atomic operations.

If the shaderStoragelmageReadWithoutFormat feature is not enabled, storage image declarations must specify the image
format in the shader if the variable is used for load operations.

Vulkan 1.0 - A Specification 241 /615

If the shaderStorageImageWriteWithoutFormat feature is not enabled, storage image declarations must specify the image
format in the shader if the variable is used for store operations.

Storage images are declared in GLSL shader source using uniform “image” variables of the appropriate dimensionality
as well as a format layout qualifier (if necessary):

GLSL example

layout (set=m, binding=n, r32f) uniform image2D myStoragelmage;
SPIR-V example

1 = OpExtInstImport "GLSL.std.450"

o°

OpName %9 "myStorageImage"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n

$2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypelImage %6 2D 0 0 0O 2 R32f

%8 = OpTypePointer UniformConstant %7

%9 = OpVariable %8 UniformConstant

13.1.2 Sampler

A sampler (VK_DESCRIPTOR_TYPE_SAMPLER) represents a set of parameters which control address calculations,
filtering behavior, and other properties, that can be used to perform filtered loads from sampled images (see Sampled
Image).

Samplers are declared in GLSL shader source using uniform “sampler” variables, where the sampler type has no
associated texture dimensionality:

GLSL Example

layout (set=m, binding=n) uniform sampler mySampler;
SPIR-V Example

1 = OpExtInstImport "GLSL.std.450"

o\

OpName %8 "mySampler"
OpDecorate %8 DescriptorSet m
OpDecorate %8 Binding n
= OpTypeVoid
= OpTypeFunction %2
OpTypeSampler
= OpTypePointer UniformConstant %6
= OpVariable %7 UniformConstant

00 o0 o o oo
w J o WwWN
Il

13.1.3 Sampled Image

A sampled image (VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) can be used (usually in conjunction with a sampler)
to retrieve sampled image data. Shaders use a sampled image handle and a sampler handle to sample data, where the
image handle generally defines the shape and format of the memory and the sampler generally defines how coordinate
addressing is performed. The same sampler can be used to sample from multiple images, and it is possible to sample
from the same sampled image with multiple samplers, each containing a different set of sampling parameters.

Sampled images are declared in GLSL shader source using uniform “texture” variables of the appropriate dimensionality:
GLSL example

layout (set=m, binding=n) uniform texture2D mySampledImage;

SPIR-V example

OpExtInstImport "GLSL.std.450"

o
-
Il

OpName %9 "mySampledImage"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n

$2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeImage %6 2D 0 0 O 1 Unknown

%$8 = OpTypePointer UniformConstant %7

%9 = OpVariable %8 UniformConstant

13.1.4 Combined Image Sampler

A combined image sampler (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) represents a sampled image
along with a set of sampling parameters. It is logically considered a sampled image and a sampler bound together.

Note

On some implementations, it may be more efficient to sample from an image using a combination of sampler
and sampled image that are stored together in the descriptor set in a combined descriptor.

Combined image samplers are declared in GLSL shader source using uniform “sampler” variables of the appropriate
dimensionality:

GLSL example

layout (set=m, binding=n) uniform sampler2D myCombinedImageSampler;
SPIR-V example

%1 = OpExtInstImport "GLSL.std.450"

OpName %10 "myCombinedImageSampler"
OpDecorate %10 DescriptorSet m

Vulkan 1.0 - A Specification 243 /615

OpDecorate %10 Binding n

%2 = OpTypeVoid

$3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7

%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor set entries can also be accessed via separate
sampler and sampled image shader variables. Such variables refer exclusively to the corresponding half of the descriptor,
and can be combined in the shader with samplers or sampled images that can come from the same descriptor or from
other combined or separate descriptor types. There are no additional restrictions on how a separate sampler or sampled
image variable is used due to it originating from a combined descriptor.

13.1.5 Uniform Texel Buffer

A uniform texel buffer (VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) represents a tightly packed array of
homogeneous formatted data that is stored in a buffer and is made accessible to shaders. Uniform texel buffers are
read-only.

Uniform texel buffers are declared in GLSL shader source using uniform “samplerBuffer” variables:
GLSL example

layout (set=m, binding=n) uniform samplerBuffer myUniformTexelBuffer;

SPIR-V example

o°
—
Il

OpExtInstImport "GLSL.std.450"

OpName %10 "myUniformTexelBuffer"
OpDecorate %10 DescriptorSet m
OpDecorate %10 Binding n
%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 Buffer 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant

13.1.6 Storage Texel Buffer

A storage texel buffer (VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) represents a tightly packed array of
homogeneous formatted data that is stored in a buffer and is made accessible to shaders. Storage texel buffers differ from
uniform texel buffers in that they support stores and atomic operations in shaders, may support a different maximum
length, and may have different performance characteristics.

Storage texel buffers are declared in GLSL shader source using uniform “imageBuffer” variables:

GLSL example

layout (set=m, binding=n, r32f) uniform imageBuffer myStorageTexelBuffer;

SPIR-V example

OpExtInstImport "GLSL.std.450"

oe
—
Il

OpName %9 "myStorageTexelBuffer"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n

%2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeImage %6 Buffer 0 0 0 2 R32f

%8 = OpTypePointer UniformConstant %7

%9 = OpVariable %8 UniformConstant

13.1.7 Uniform Buffer

A uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) is a region of structured storage that is made
accessible for read-only access to shaders. It is typically used to store medium sized arrays of constants such as shader
parameters, matrices and other related data.

Uniform buffers are declared in GLSL shader source using the uniform storage qualifier and block syntax:

GLSL example

layout (set=m, binding=n) uniform myUniformBuffer
{

vecd4 myElement [32];
bi

SPIR-V example

%1 = OpExtInstImport "GLSL.std.450"

OpName %11 "myUniformBuffer"
OpMemberName %11 0 "myElement"
OpName %13 ""
OpDecorate %10 ArrayStride 16
OpMemberDecorate %11 0 Offset 0
OpDecorate %11 Block
OpDecorate %13 DescriptorSet m
OpDecorate %13 Binding n

%2 = OpTypeVoid

3 = OpTypeFunction %2

%$6 = OpTypeFloat 32

%7 = OpTypeVector %6 4

%8 = OpTypeInt 32 0

%9 = OpConstant %8 32

%10 = OpTypeArray %7 %9

%11 = OpTypeStruct %10

%12 = OpTypePointer Uniform %11

Vulkan 1.0 - A Specification 245 /615

%13 = OpVariable %12 Uniform

13.1.8 Storage Buffer

A storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) is a region of structured storage that supports both
read and write access for shaders. In addition to general read and write operations, some members of storage buffers can
be used as the target of atomic operations. In general, atomic operations are only supported on members that have
unsigned integer formats.

Storage buffers are declared in GLSL shader source using buffer storage qualifier and block syntax:
GLSL example

layout (set=m, binding=n) buffer myStorageBuffer
{

vecd4 myElement [];
bi

SPIR-V example

%1 = OpExtInstImport "GLSL.std.450"

OpName %9 "myStorageBuffer"
OpMemberName %9 0 "myElement"
OpName %11 ""
OpDecorate %8 ArrayStride 16
OpMemberDecorate %9 0 Offset 0
OpDecorate %9 BufferBlock
OpDecorate %11 DescriptorSet m
OpDecorate %11 Binding n

$2 = OpTypeVoid

%3 = OpTypeFunction %2

%6 = OpTypeFloat 32

%7 = OpTypeVector %6 4

%8 = OpTypeRuntimeArray %7

%9 = OpTypeStruct %8
%10 = OpTypePointer Uniform %9
%11 = OpVariable %10 Uniform

13.1.9 Dynamic Uniform Buffer

A dynamic uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) differs from a uniform buffer
only in how its address and length are specified. Uniform buffers bind a buffer address and length that is specified in the
descriptor set update by a buffer handle, offset and range (see Descriptor Set Updates). With dynamic uniform buffers
the buffer handle, offset and range specified in the descriptor set define the base address and length. The dynamic offset
which is relative to this base address is taken from the pDynamicOf fsets parameter to
vkCmdBindDescriptorSets (see Descriptor Set Binding). The address used for a dynamic uniform buffer is the
sum of the buffer base address and the relative offset. The length is unmodified and remains the range as specified in the
descriptor update. The shader syntax is identical for uniform buffers and dynamic uniform buffers.

13.1.10 Dynamic Storage Buffer

A dynamic storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) differs from a storage buffer
only in how its address and length are specified. The difference is identical to the difference between uniform buffers and
dynamic uniform buffers (see Dynamic Uniform Buffer). The shader syntax is identical for storage buffers and dynamic
storage buffers.

13.1.11 Input Attachment

An input attachment (VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) is an image view that can be used for pixel
local load operations from within fragment shaders bound to pipelines. Loads from input attachments are unfiltered. All
image formats that are supported for color attachments (VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) or
depth/stencil attachments (VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) for a given image tiling
mode are also supported for input attachments.

In the shader, input attachments must be decorated with their input attachment index in addition to descriptor set and
binding numbers.

GLSL example

layout (input_attachment_index=i, set=m, binding=n) uniform subpass myInputAttachment;

SPIR-V example

oe
—
I

OpExtInstImport "GLSL.std.450"

OpName %9 "myInputAttachment"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n
= OpTypeVoid
= OpTypeFunction %2
OpTypeFloat 32
= OpTypelmage %6 SubpassData 0 0 0 2 Unknown
= OpTypePointer UniformConstant %7
= OpVariable %8 UniformConstant

oo

o\

oe

o\

o
O W ~J o WN
Il

o°

13.2 Descriptor Sets

Descriptors are grouped together into descriptor set objects. A descriptor set object is an opaque object that contains
storage for a set of descriptors, where the types and number of descriptors is defined by a descriptor set layout. The
layout object may be used to define the association of each descriptor binding with memory or other hardware resources.
The layout is used both for determining the resources that need to be associated with the descriptor set, and determining
the interface between shader stages and shader resources.

13.2.1 Descriptor Set Layout

A descriptor set layout object is defined by an array of zero or more descriptor bindings. Each individual descriptor
binding is specified by a descriptor type, a count (array size) of the number of descriptors in the binding, a set of shader
stages that can access the binding, and (if using immutable samplers) an array of sampler descriptors.

Descriptor set layouts are represented by VkDescriptorSetLayout objects which are created by calling:

Vulkan 1.0 - A Specification 247 /615

VkResult vkCreateDescriptorSetLayout (

VkDevice device,
const VkDescriptorSetLayoutCreateInfox pCreatelInfo,
const VkAllocationCallbacksx pAllocator,
VkDescriptorSetLayout % pSetLayout) ;

* device is the logical device that creates the descriptor set layout.

* pCreateInfois a pointer to an instance of the VkDescriptorSetLayoutCreateInfo structure specifying the
state of the descriptor set layout object.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pSetLayout points to a VkDescriptorSetLayout handle in which the resulting descriptor set layout object is
returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkDescriptorSetLayoutCreateInfo structure
e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pSetLayout must be a pointer to a VkDescriptorSetLayout handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the descriptor set layout is passed in an instance of the VkDescriptorSetLayoutCreateInfo
structure:

typedef struct VkDescriptorSetLayoutCreateInfo ({
VkStructureType sType;
const void= pNext;

VkDescriptorSetLayoutCreateFlags flags;

uint32_t bindingCount;

const VkDescriptorSetLayoutBindingx pBindings;
VkDescriptorSetLayoutCreateInfo;

—-—

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.
* flags is reserved for future use.

e bindingCount is the number of elements in pBindings.

* pBindings is a pointer to an array of VkDescriptorSetLayoutBinding structures.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO
e pNext must be NULL
e flags mustbe 0

* If bindingCount is not 0, pBindings must be a pointer to an array of bindingCount valid
VkDescriptorSetLayoutBinding structures

The definition of the VkDescriptorSetLayoutBinding structure is:

typedef struct VkDescriptorSetLayoutBinding {

uint32_t binding;
VkDescriptorType descriptorType;
uint32_t descriptorCount;
VkShaderStageFlags stageFlags;

const VkSamplerx pImmutableSamplers;

—

VkDescriptorSetLayoutBinding;

* binding is the binding number of this entry and corresponds to a resource of the same binding number in the shader
stages.

* descriptorTypeis an VkDescriptorType specifying which type of resource descriptors are used for this
binding.

* descriptorCount is the number of descriptors contained in the binding, accessed in a shader as an array. If
descriptorCount is zero this binding entry is reserved and the resource must not be accessed from any stage via this
binding within any pipeline using the set layout.

* stageFlags member is a bitfield of VkShaderStageFlagBits specifying which pipeline shader stages can
access a resource for this binding. VK_SHADER_STAGE_ALL is a shorthand specifying that all defined shader stages,
including any additional stages defined by extensions, can access the resource.

Vulkan 1.0 - A Specification 249 /615

If a shader stage is not included in stageFlags, then a resource must not be accessed from that stage via this binding
within any pipeline using the set layout. There are no limitations on what combinations of stages can be used by a
descriptor binding, and in particular a binding can be used by both graphics stages and the compute stage.

* pImmutableSamplers affects initialization of samplers. If descriptorType specifies a VK_DESCRIPTOR_
TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
pImmutableSamplers can be used to initialize a set of immutable samplers. Immutable samplers are permanently
bound into the set layout; later binding a sampler into an immutable sampler slot in a descriptor set is not allowed. If
pImmutableSamplers is not NULL, then it is considered to be a pointer to an array of sampler handles that will be
consumed by the set layout and used for the corresponding binding. If pImmutableSamplers is NULL, then the
sampler slots are dynamic and sampler handles must be bound into descriptor sets using this layout. If
descriptorType is not one of these descriptor types, then pImmutableSamplers is ignored.

The above layout definition allows the descriptor bindings to be specified sparsely such that not all binding numbers
between 0 and the maximum binding number need to be specified in the pBindings array. However, all binding
numbers between 0 and the maximum binding number may consume memory in the descriptor set layout even if not all
descriptor bindings are used, though it should not consume additional memory from the descriptor pool.

Note

The maximum binding number specified should be as compact as possible to avoid wasted memory.

Valid Usage

e descriptorType must be a valid VkDescriptorType value

e If descriptorTypeis VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, and descriptorCount is not 0 and pImmutableSamplers is not NULL,
pImmutableSamplers must be a pointer to an array of descriptorCount valid VkSampler handles

e If descriptorCount is not 0, stageFlags must be a valid combination of VkShaderStageFlagBits
values

The following examples show a shader snippet using two descriptor sets, and application code that creates corresponding
descriptor set layouts.

GLSL example

//

// binding to a single sampled image descriptor in set 0

//

layout (set=0, binding=0) uniform texture2D mySampledImage;
//

// binding to an array of sampled image descriptors in set 0
//

layout (set=0, binding=1) uniform texture2D myArrayOfSampledImages[1l2];

//

// binding to a single uniform buffer descriptor in set

//
layout
{

bi

SPIR-V example

(set=1,

binding=0) uniform myUniformBuffer

vecd4d myElement [32];

%1

API example

OpExtInstImport "GLSL.std.450"

OpName %9 "mySampledImage"
OpName %14 "myArrayOfSampledImages"
OpName %18 "myUniformBuffer"
OpMemberName %18 0 "myElement"
OpName %20 ""

OpDecorate %9 DescriptorSet 0
OpDecorate %9 Binding 0
OpDecorate %14 DescriptorSet 0
OpDecorate %14 Binding 1
OpDecorate %17 ArrayStride 16
OpMemberDecorate %18 0 Offset 0
OpDecorate %18 Block

OpDecorate %20 DescriptorSet 1
OpDecorate %20 Binding O

= OpTypeVoid

OpTypeFunction %2

OpTypeFloat 32

OpTypeImage %$6 2D 0 0 0 1 Unknown
OpTypePointer UniformConstant %7
OpVariable %8 UniformConstant
OpTypeInt 32 0

OpConstant %10 12

OpTypeArray %7 %11

OpTypePointer UniformConstant %12
OpVariable %13 UniformConstant
OpTypeVector %6 4

OpConstant %10 32

OpTypeArray %15 %16

OpTypeStruct %17

OpTypePointer Uniform %18

= OpVariable %19 Uniform

VkResult myResult;

const VkDescriptorSetLayoutBinding myDescriptorSetLayoutBinding|]

{

// binding to a single image descriptor

{

0,

VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,

// binding
// descriptorType

Vulkan 1.0 - A Specification

251/615

i, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers

by

// binding to an array of image descriptors

1, // binding
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType

12, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags

NULL // pImmutableSamplers

by

// binding to a single uniform buffer descriptor

0, // binding
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType

i, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags

NULL // pImmutableSamplers

bi

const VkDescriptorSetLayoutCreateInfo myDescriptorSetLayoutCreateInfol[] =
{
// Create info for first descriptor set with two descriptor bindings

{

VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType

NULL, // pNext

0, // flags

2, // bindingCount
smyDescriptorSetLayoutBinding[0] // pBindings

by

// Create info for second descriptor set with one descriptor binding

{

VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType

NULL, // pNext

0, // flags

1, // bindingCount
smyDescriptorSetLayoutBinding[2] // pBindings

bi
VkDescriptorSetLayout myDescriptorSetLayout[2];

//

// Create first descriptor set layout

//

myResult = vkCreateDescriptorSetLayout (
myDevice,
&myDescriptorSetLayoutCreateInfo[0],
&myDescriptorSetLayout [0]) ;

//

// Create second descriptor set layout

//

myResult = vkCreateDescriptorSetLayout (
myDevice,
&myDescriptorSetLayoutCreateInfo[l],
&myDescriptorSetLayout[1]);

To destroy a descriptor set layout, call:

void vkDestroyDescriptorSetLayout (

VkDevice device,
VkDescriptorSetLayout descriptorSetLayout,
const VkAllocationCallbacksx pAllocator);

* device is the logical device that destroys the descriptor set layout.
* descriptorSetLayout is the descriptor set layout to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If descriptorSetLayout is not VK_NULIL_HANDLE, descriptorSetLayout must be a valid
VkDescriptorSetLayout handle

e If descriptorSetLayout is a valid handle, it must have been created, allocated or retrieved from device
e Each of device and descriptorSetLayout that are valid handles must have been created, allocated or
retrieved from the same VkPhysicalDevice

callbacks must be provided here

must be NULL

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* [f VkAllocationCallbacks were provided when descriptorSetLayout was created, a compatible set of

e Ifno VkAllocationCallbacks were provided when descriptorSetLayout was created, pAllocator

Host Synchronization

* Host access to descriptorSetLayout must be externally synchronized

Vulkan 1.0 - A Specification 253 /615

13.2.2 Pipeline Layouts

Access to descriptor sets from a pipeline is accomplished through a pipeline layout. Zero or more descriptor set layouts
and zero or more push constant ranges are combined to form a pipeline layout object which describes the complete set of
resources that can be accessed by a pipeline. The pipeline layout represents a sequence of descriptor sets with each
having a specific layout. This sequence of layouts is used to determine the interface between shader stages and shader
resources. Each pipeline is created using a pipeline layout.

A pipeline layout is created by calling:

VkResult vkCreatePipelineLayout (

VkDevice device,

const VkPipelinelLayoutCreateInfox pCreatelInfo,
const VkAllocationCallbacksx pAllocator,
VkPipelineLayoutx pPipelinelLayout) ;

* device is the logical device that creates the pipeline layout.

* pCreateInfois a pointer to an instance of the VkPipelineLayoutCreateInfo structure specifying the state of
the pipeline layout object.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pPipelineLayout points to a VkPipelineLayout handle in which the resulting pipeline layout object is
returned.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkPipelineLayoutCreateInfo structure
* If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pPipelineLayout must be a pointer to a VkPipelineLayout handle

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_ DEVICE_MEMORY

The definition of the VkPipelineLayoutCreateInfo structure is:

typedef struct VkPipelinelayoutCreateInfo {

VkStructureType sType;

const voidx pNext;
VkPipelinelLayoutCreateFlags flags;

uint32_t setLayoutCount;

const VkDescriptorSetLayoutx* pSetLayouts;

uint32_t pushConstantRangeCount;
const VkPushConstantRangex pPushConstantRanges;

—

VkPipelineLayoutCreateInfo;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

* flags is reserved for future use.

* setLayoutCount is the number of descriptor sets included in the pipeline layout.

* pSetLayouts is a pointer to an array of VkDescriptorSetLayout objects.

* pushConstantRangeCount is the number of push constant ranges included in the pipeline layout.

* pPushConstantRanges is a pointer to an array of VkPushConstantRange structures defining a set of push
constant ranges for use in a single pipeline layout. In addition to descriptor set layouts, a pipeline layout also describes
how many push constants can be accessed by each stage of the pipeline.

Note

Push constants represent a high speed path to modify constant data in pipelines that is expected to outperform
memory-backed resource updates.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO
e pNext must be NULL
e flags mustbe 0

» If setLayoutCount is not 0, pSetLayouts must be a pointer to an array of setLayoutCount valid
VkDescriptorSetLayout handles

* If pushConstantRangeCount is not 0, pPushConstantRanges must be a pointer to an array of
pushConstantRangeCount valid VkPushConstantRange structures

* setLayoutCount must be less than or equal to VkPhysicalDeviceLimits::imaxBoundDescriptorSets

Vulkan 1.0 - A Specification 255/615

* The total number of descriptors of the type VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR__
TYPE_COMBINED_IMAGE_SAMPLER accessible to any given shader stage across all elements of
pSetLayouts must be less than or equal to the value of
VkPhysicalDevicelLimits:maxPerStageDescriptorSamplers

* The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_
DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible to any given shader stage across all elements
of pSetLayouts must be less than or equal to the value of
VkPhysicalDevicelLimits:imaxPerStageDescriptorUniformBuffers

* The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and VK_
DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible to any given shader stage across all elements
of pSetLayouts must be less than or equal to the value of
VkPhysicalDevicelimits:maxPerStageDescriptorStorageBuffers

* The total number of descriptors of the type VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_
DESCRIPTOR_TYPE_SAMPLED_IMAGE, and VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
accessible to any given shader stage across all elements of pSetLayout s must be less than or equal to the value
of VkPhysicalDevicelLimits:maxPerStageDescriptorSampledImages

-ThctomlnunﬂmrofdmwﬂpunsofﬂwtypeVK_DESCRIPTOR_TYPE_STORAGE_IMAGE,andVK_
DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible to any given shader stage across all elements of
pSetLayouts must be less than or equal to the value of
VkPhysicalDevicelLimits:maxPerStageDescriptorStorageImages

The definition of VkPushConstantRange is:

typedef struct VkPushConstantRange {

VkShaderStageFlags stageFlags;
uint32_t offset;
uint32_t size;

—

VkPushConstantRange;

* stageFlags is a set of stage flags describing the shader stages that will access a range of push constants. If a
particular stage is not included in the range, then accessing members of that range of push constants from the
corresponding shader stage will result in undefined data being read.

* offset and size are the start offset and size, respectively, consumed by the range. Both offset and size are in
units of bytes and must be a multiple of 4. The layout of the push constant variables is specified in the shader.

Valid Usage

* stageFlags must be a valid combination of VkShaderStageFlagBits values
* stageFlags must not be 0

* The sum of offset and size must be less than or equal to the value of
VkPhysicalDevicelLimits:imaxPushConstantsSize

* The value of size must be greater than 0

* The value of size must be a multiple of 4

Once created, pipeline layouts are used as part of pipeline creation (see Pipelines), as part of binding descriptor sets (see
Descriptor Set Binding), and as part of setting push constants (see Push Constant Updates). Pipeline creation accepts a
pipeline layout as input, and the layout may be used to map (set, binding, arrayElement) tuples to hardware resources or
memory locations within a descriptor set. The assignment of hardware resources depends only on the bindings defined in
the descriptor sets that comprise the pipeline layout, and not on any shader source.

All resource variables statically used in all shaders in a pipeline must be declared with a (set,binding,arrayElement) that
exists in the corresponding descriptor set layout and is of an appropriate descriptor type and includes the set of shader
stages it is used by in stageFlags. The pipeline layout can include entries that are not used by a particular pipeline, or
that are dead-code eliminated from any of the shaders. The pipeline layout allows the application to provide a consistent
set of bindings across multiple pipeline compiles, which enables those pipelines to be compiled in a way that the
implementation may cheaply switch pipelines without reprogramming the bindings.

Similarly, the push constant block declared in each shader (if present) must only place variables at offsets that are each
included in a push constant range with stageFlags including the bit corresponding to the shader stage that uses it. The
pipeline layout can include ranges or portions of ranges that are not used by a particular pipeline, or for which the
variables have been dead-code eliminated from any of the shaders.

There is a limit on the total number of resources of each type that can be included in bindings in all descriptor set layouts
in a pipeline layout as shown in Pipeline Layout Resource Limits. The “Total Resources Available” column gives the
limit on the number of each type of resource that can be included in bindings in all descriptor sets in the pipeline layout.
Some resource types count against multiple limits. Additionally, there are limits on the total number of each type of
resource that can be used in any pipeline stage as described in Shader Resource Limits.

Table 13.1: Pipeline Layout Resource Limits

Total Resources Available Resource Types

sampler

combined image sampler
sampled image
maxDescriptorSetSampledImages combined image sampler
uniform texel buffer
storage image

storage texel buffer
uniform buffer

uniform buffer dynamic
maxDescriptorSetUniformBuffersDynamic uniform buffer dynamic
storage buffer

storage buffer dynamic
maxDescriptorSetStorageBuffersDynamic storage buffer dynamic
maxDescriptorSetInputAttachments input attachment

maxDescriptorSetSamplers

maxDescriptorSetStoragelmages

maxDescriptorSetUniformBuffers

maxDescriptorSetStorageBuffers

To destroy a pipeline layout, call:

Vulkan 1.0 - A Specification 257 /615

void vkDestroyPipelinelLayout (

VkDevice device,
VkPipelinelayout pipelinelayout,
const VkAllocationCallbacks=* pAllocator);

* device is the logical device that destroys the pipeline layout.
* pipelineLayout is the pipeline layout to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

e device must be a valid VkDevice handle

e If pipelineLayout is not VK_NULL_HANDLE, pipelineLayout must be a valid VkPipelineLayout
handle

e If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If pipelineLayout is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and pipelineLayout that are valid handles must have been created, allocated or retrieved from
the same VkPhysicalDevice

e If VkAllocationCallbacks were provided when pipelineLayout was created, a compatible set of
callbacks must be provided here

* If no VkAllocationCallbacks were provided when pipelineLayout was created, pAllocator must be
NULL

Host Synchronization

» Host access to pipelineLayout must be externally synchronized

13.2.2.1 Pipeline Layout Compatibility

Two pipeline layouts are defined to be “compatible for push constants” if they were created with identical push constant
ranges. Two pipeline layouts are defined to be “compatible for set N” if they were created with matching (the same, or
identically defined) descriptor set layouts for sets zero through N, and if they were created with identical push constant
ranges.

When binding a descriptor set (see Descriptor Set Binding) to set number N, if the previously bound descriptor sets for
sets zero through N-1 were all bound using compatible pipeline layouts, then performing this binding does not disturb
any of the lower numbered sets. If, additionally, the previous bound descriptor set for set N was bound using a pipeline
layout compatible for set N, then the bindings in sets numbered greater than N are also not disturbed.

Similarly, when binding a pipeline, the pipeline can correctly access any previously bound descriptor sets which were
bound with compatible pipeline layouts, as long as all lower numbered sets were also bound with compatible layouts.

Layout compatibility means that descriptor sets can be bound to a command buffer for use by any pipeline created with a
compatible pipeline layout, and without having bound a particular pipeline first. It also means that descriptor sets can
remain valid across a pipeline change, and the same resources will be accessible to the newly bound pipeline.

Implementor’s Note

A consequence of layout compatibility is that when the implementation compiles a pipeline layout and assigns
hardware units to resources, the mechanism to assign hardware units for set N should only be a function of sets
[0..N].

Note

Place the least frequently changing descriptor sets near the start of the pipeline layout, and place the descriptor
sets representing the most frequently changing resources near the end. When pipelines are switched, only the
descriptor set bindings that have been invalidated will need to be updated and the remainder of the descriptor
set bindings will remain in place.

The maximum number of descriptor sets that can be bound to a pipeline layout is queried from physical device properties
(see maxBoundDescriptorSets in Limits).

API example
const VkDescriptorSetLayout layouts = { layoutl, layout2 };
const VkPushConstantRange ranges|[] =

{
{

VK_PIPELINE_STAGE_VERTEX_ SHADER_BIT, // stageFlags
0, // offset
4 // size

by

VK_PIPELINE_STAGE_FRAGMENT_SHADER_ BIT, // stageFlags
4, // offset
4 // size
}I
bi

const VkPipelinelLayoutCreateInfo createlInfo =
{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_ _CREATE_INFO, // sType
NULL, // pNext
2, // setLayoutCount

Vulkan 1.0 - A Specification 259 /615

layouts, // pSetLayouts
2, // pushConstantRangeCount
ranges // pPushConstantRanges

}i

VkPipelinelayout myPipelinelayout;
myResult = vkCreatePipelineLayout (
myDevice,
&createlInfo,
&myPipelineLayout) ;

13.2.3 Allocation of Descriptor Sets

Descriptor sets are allocated from descriptor pool objects. A descriptor pool maintains a pool of descriptors, from which
sets are allocated. Descriptor pools are externally synchronized, meaning that the application must not allocate and/or
free descriptor sets from the same pool in multiple threads simultaneously.

To create a descriptor pool object, call:

VkResult vkCreateDescriptorPool (

VkDevice device,

const VkDescriptorPoolCreateInfox pCreatelInfo,
const VkAllocationCallbacksx pAllocator,
VkDescriptorPoolx* pDescriptorPool) ;

* device is the logical device that creates the descriptor pool.

* pCreateInfo is a pointer to an instance of the VkDescriptorPoolCreateInfo structure specifying the state of
the descriptor pool object.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.
* pDescriptorPool points to a VkDescriptorPool handle in which the resulting descriptor pool object is

returned.

pAllocator controls host memory allocation as described in the Memory Allocation chapter.

The created descriptor pool is returned in pDescriptorPool.

Valid Usage

* device must be a valid VkDevice handle
* pCreateInfo must be a pointer to a valid VkDescriptorPoolCreateInfo structure
e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pDescriptorPool must be a pointer to a VkDescriptorPool handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

Additional information about the pool is passed in an instance of the VkDescriptorPoolCreateInfo structure:

typedef struct VkDescriptorPoolCreatelInfo {

—

VkStructureType sType;

const void= pNext;
VkDescriptorPoolCreateFlags flags;
uint32_t maxSets;
uint32_t poolSizeCount;
const VkDescriptorPoolSizex pPoolSizes;

VkDescriptorPoolCreateInfo;

sType is the type of this structure.

pNext is NULL or a pointer to an extension-specific structure.

flags specifies certain supported operations on the pool, with possible values defined below.
maxSets is the maximum number of descriptor sets that can be allocated from the pool.
poolSizeCount is the number of elements in pPoolSizes.

pPoolSizes is apointer to an array of VkDescriptorPoolSize structures, each containing a descriptor type and
number of descriptors of that type to be allocated in the pool.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO

e pNext must be NULL

e flags must be a valid combination of VkDescriptorPoolCreateFlagBits values

* pPoolSizes must be a pointer to an array of poolSizeCount valid VkDescriptorPoolSize structures
* The value of poolSizeCount must be greater than 0

* The value of maxSet s must be greater than 0

Vulkan 1.0 - A Specification 261/615

If multiple VkDescriptorPoolSize structures appear in the pPoolSizes array then the pool will be created with
enough storage for the total number of descriptors of each type.

Fragmentation of a descriptor pool is possible and may lead to descriptor set allocation failures. A failure due to
fragmentation is defined as failing a descriptor set allocation despite the sum of all outstanding descriptor set allocations
from the pool plus the requested allocation requiring no more than the total number of descriptors requested at pool
creation. Implementations provide certain guarantees of when fragmentation must not cause allocation failure, as
described below.

If a descriptor pool has not had any descriptor sets freed since it was created or most recently reset then fragmentation
must not cause an allocation failure (note that this is always the case for a pool created without the VK_DESCRIPTOR_
POOL_CREATE_FREE_DESCRIPTOR_SET_BIT bit set). Additionally, if all sets allocated from the pool since it was
created or most recently reset use the same number of descriptors (of each type) and the requested allocation also uses
that same number of descriptors (of each type), then fragmentation must not cause an allocation failure.

If an allocation failure occurs due to fragmentation, an application can create an additional descriptor pool to perform
further descriptor set allocations.

The f1ags member of VkDescriptorPoolCreateInfo can include the following values:

typedef enum VkDescriptorPoolCreateFlagBits {
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT = 0x00000001,
} VkDescriptorPoolCreateFlagBits;

If f1ags includes VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, then descriptor sets can
return their individual allocations to the pool, i.e. all of vkAllocateDescriptorSets,
vkFreeDescriptorSets, and vkResetDescriptorPool are allowed. Otherwise, descriptor sets allocated
from the pool must not be individually freed back to the pool, i.e. only vkAllocateDescriptorSets and
vkResetDescriptorPool are allowed.

The definition of the VkDescriptorPoolSize structure is:

typedef struct VkDescriptorPoolSize {
VkDescriptorType type;
uint32_t descriptorCount;
} VkDescriptorPoolSize;

* type is the type of descriptor.

* descriptorCount is the number of descriptors of that type to allocate.

Valid Usage

* type must be a valid VkDescriptorType value

* The value of descriptorCount must be greater than 0

To destroy a descriptor pool, call:

void vkDestroyDescriptorPool (

VkDevice device,
VkDescriptorPool descriptorPool,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the descriptor pool.
* descriptorPool is the descriptor pool to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

¢ device must be a valid VkDevice handle

e If descriptorPool is not VK_NULL_HANDLE, descriptorPool must be a valid VkDescriptorPool
handle

e If pAllocatoris not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If descriptorPool is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and descriptorPool that are valid handles must have been created, allocated or retrieved from
the same VkPhysicalDevice

* All submitted commands that refer to descriptorPool (via any allocated descriptor sets) must have completed
execution

* If VkAllocationCallbacks were provided when descriptorPool was created, a compatible set of
callbacks must be provided here

e Ifno VkAllocationCallbacks were provided when descriptorPool was created, pAllocator must be
NULL

Host Synchronization

* Host access to descriptorPool must be externally synchronized

When a pool is destroyed, all descriptor sets allocated from the pool are implicitly freed and become invalid. Descriptor
sets allocated from a given pool do not need to be freed before destroying that descriptor pool.

Descriptor sets are allocated from a descriptor pool by calling:

Vulkan 1.0 - A Specification 263 /615

VkResult vkAllocateDescriptorSets (

VkDevice device,
const VkDescriptorSetAllocateInfox pAllocateInfo,
VkDescriptorSetx pDescriptorSets);

* device is the logical device that owns the descriptor pool.

* pAllocateInfo is a pointer to an instance of the VkDescriptorSetAllocateInfo structure describing
parameters of the allocation.

* pDescriptorSets is a pointer to an array of VkDescriptorSet handles in which the resulting descriptor set
objects are returned. The array must be at least the length specified by the descriptorSetCount member of
pAllocateInfo.

Valid Usage

* device must be a valid VkDevice handle
* pAllocateInfo must be a pointer to a valid VkDescriptorSetAllocateInfo structure

* pDescriptorSets must be a pointer to an array of pAllocateInfo—descriptorSetCount
VkDescriptorSet handles

Host Synchronization

* Host access to pAllocateInfo—+descriptorPool must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_ DEVICE_MEMORY

The VkDescriptorSetAllocateInfo structure is defined as:

typedef struct VkDescriptorSetAllocateInfo {

VkStructureType sType;

const voidx pNext;
VkDescriptorPool descriptorPool;
uint32_t descriptorSetCount;
const VkDescriptorSetLayoutx* pSetLayouts;

—

VkDescriptorSetAllocatelInfo;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

* descriptorPool is the pool which the sets will be allocated from.

* descriptorSetCount determines the number descriptor sets to be allocated from the pool.

* pSetLayouts is an array of descriptor set layouts, with each member specifying how the corresponding descriptor set

is allocated.

The allocated descriptor sets are returned in pDescriptorSets.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO
e pNext must be NULL
e descriptorPool must be a valid VkDescriptorPool handle

* pSetLayouts must be a pointer to an array of descriptorSetCount valid VkDescriptorSetLayout
handles

* The value of descriptorSetCount must be greater than O

e Each of descriptorPool and the elements of pSetLayouts must have been created, allocated or retrieved
from the same VkDevice

* The value of descriptorSetCount must not be greater than the number of sets that are currently available for
allocation in descriptorPool

When a descriptor set is allocated, the initial state is largely uninitialized and all descriptors are undefined. However, the
descriptor set can be bound in a command buffer without causing errors or exceptions. Entries must be populated before
they are accessed by a pipeline, but leaving uninitialized entries that are not accessed by a pipeline will produce
well-defined results. This means applications need not populate unused entries with dummy descriptors.

Allocated descriptor sets are freed by calling:

Vulkan 1.0 - A Specification 265/615

VkResult vkFreeDescriptorSets (

VkDevice device,
VkDescriptorPool descriptorPool,
uint32_t descriptorSetCount,
const VkDescriptorSetx pDescriptorSets);

device is the logical device that owns the descriptor pool.
descriptorPool is the descriptor pool from which the descriptor sets were allocated.
descriptorSetCount is the number of elements in the pDescriptorSets array.

pDescriptorSets is an array of handles to VkDescriptorSet objects. All elements of ppescriptorSets must
have been allocated from descriptorpPool.

In order to free individual descriptor sets, descriptorPool must have been created with the VK_DESCRIPTOR_
POOL_CREATE_FREE_DESCRIPTOR_SET_BIT ﬂag.

Valid Usage

device must be a valid VkDevice handle

descriptorPool must be a valid VkDescriptorPool handle

The value of descriptorSetCount must be greater than 0
descriptorPool must have been created, allocated or retrieved from device

Each element of ppescriptorSets that is a valid handle must have been created, allocated or retrieved from
descriptorPool

Each of device, descriptorPool and the elements of pDescriptorsSets that are valid handles must have
been created, allocated or retrieved from the same VkPhysicalDevice

All submitted commands that refer to any element of ppesciptorSets must have completed execution

pDescriptorSets must be a pointer to an array of descriptorSetCount VkDescriptorSet handles, each
element of which must either be a valid handle or VK_NULL_HANDLE

descriptorPool must have been created with the VK_DESCRIPTOR_POOL_CREATE_FREE_
DESCRIPTOR_SET_BIT ﬂag

Host Synchronization

* Host access to descriptorPool must be externally synchronized

* Host access to each member of pDescriptorSets must be externally synchronized

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

After a successful call to vkFreeDescriptorSets, all descriptor sets in pDescriptorSets are invalid.

Rather than freeing individual descriptor sets, all descriptor sets allocated from a given pool can be returned to the pool
by calling:

VkResult vkResetDescriptorPool (

VkDevice device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags);

* device is the logical device that owns the descriptor pool.
* descriptorPool is the descriptor pool to be reset.

* flags is currently unused and must be zero.

Valid Usage

* device must be a valid VkDevice handle

* descriptorPool must be a valid VkDescriptorPool handle

* flags mustbe 0

e descriptorPool must have been created, allocated or retrieved from device

e Each of device and descriptorPool must have been created, allocated or retrieved from the same
VkPhysicalDevice

* All uses of descriptorPool (via any allocated descriptor sets) must have completed execution

Vulkan 1.0 - A Specification 267 /615

Host Synchronization

* Host access to descriptorPool must be externally synchronized

* Host access to any VkDescriptorSet objects allocated from descriptorPool must be externally
synchronized

Return Codes

Success
* VK_SUCCESS
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY

Resetting a descriptor pool recycles all of the resources from all of the descriptor sets allocated from the descriptor pool
back to the descriptor pool, and the descriptor sets are implicitly freed.

13.2.4 Descriptor Set Updates

Once allocated, descriptor sets can be updated with a combination of write and copy operations. To update descriptor
sets, call:

void vkUpdateDescriptorSets (

VkDevice device,

uint32_t descriptorWriteCount,
const VkWriteDescriptorSetx pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet« pDescriptorCopies) ;

* device is the logical device that updates the descriptor sets.
* descriptorWriteCount is the number of elements in the pDescriptoriirites array.

* pDescriptorliritesis a pointer to an array of VkWriteDescriptorSet structures describing the descriptor
sets to write to.

* descriptorCopyCount is the number of elements in the pDescriptorCopies array.

* pDescriptorCopies is a pointer to an array of VkCopyDescriptorSet structures describing the descriptor sets
to copy between.

Valid Usage

e device must be a valid VkDevice handle

* If descriptoriiriteCount isnot O, pDescriptorirites must be a pointer to an array of
descriptorliriteCount valid VkWriteDescriptorSet structures

* If descriptorCopyCount is not 0, pDescriptorCopies must be a pointer to an array of
descriptorCopyCount valid VkCopyDescriptorSet structures

Host Synchronization

* Host access to pDescriptoriirites|].dstSet must be externally synchronized

* Host access to pDescriptorCopies|].dstSet must be externally synchronized

Each element in the pDescriptoriirites array describes an operation updating the descriptor set using descriptors for
resources specified in the structure.

The definition of VkWriteDescriptorSet is:

typedef struct VkWriteDescriptorSet {

VkStructureType sType;

const voidx pNext;
VkDescriptorSet dstsSet;

uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;
VkDescriptorType descriptorType;
const VkDescriptorImageInfox pImageInfo;

const VkDescriptorBufferInfox pBufferInfo;
const VkBufferViewx pTexelBufferView;

} VkWriteDescriptorSet;

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.
* dstSet is the destination descriptor set to update.

* dstBinding is the descriptor binding within that set.

* dstArrayElement is the starting element in that array.

Vulkan 1.0 - A Specification 269 /615

* descriptorCount is the number of descriptors to update (the number of elements in pImageInfo, pBufferInfo,
or pTexelBufferView).

* descriptorType is the type of each descriptor in pImageInfo, pBufferInfo, Or pTexelBufferView, and must
be the same type as what was specified in VkDescriptorSetLayoutBinding for dstSet at dstBinding. The
type of the descriptor also controls which array the descriptors are taken from. descriptorType can take on values
including:

typedef enum VkDescriptorType {
VK_DESCRIPTOR_TYPE_SAMPLER = 0,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8§,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,

} VkDescriptorType;

Il
S
~

* pImageInfo points to an array of VkDescriptorImageInfo structures or is ignored, as described below.
* pBufferInfo points to an array of VkDescriptorBufferInfo structures or is ignored, as described below.

* pTexelBufferView points to an array of VkBuf ferView handles or is ignored, as described below.

Valid Usage

e sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET
e pNext must be NULL

e dstSet must be a valid VkDescriptorSet handle

e descriptorType must be a valid VkDescriptorType value

* The value of descriptorCount must be greater than 0

e Each of dstSet and the elements of pTexelBufferView that are valid handles must have been created,
allocated or retrieved from the same VkDevice

* dstBinding must be a valid binding point within dstSet
* descriptorType must match the type of dstBinding within dstSet

* The sum of dstArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding specified by dstBinding, and all applicable consecutive bindings, as
described by consecutive binding updates

If descriptorTypeis VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_
IMAGE or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pImageInfo must be a pointer to an array of
descriptorCount valid VkDescriptorImageInfo structures

If descriptorTypeis VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR__
TYPE_STORAGE_TEXEL_BUFFER, pTexelBufferView must be a pointer to an array of descriptorCount
valid VkBuf ferView handles

If descriptorTypeis VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC or VK_DESCRIPTOR__
TYPE_STORAGE_BUFFER_DYNAMIC, pBufferInfo must be a pointer to an array of descriptorCount
valid VkDescriptorBufferInfo structures

If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, and dstSet was not created with a layout that included immutable samplers for
dstBinding with descriptorType, the sampler member of any given element of pTmage Info must be a
valid VkSampler object

If descriptorTypeis VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_
TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or VK_DESCRIPTOR_TYPE__
INPUT_ATTACHMENT, the imageView and imageLayout members of any given element of pImageInfo
must be a valid VkImageView and VkImageLayout, respectively

If descriptorType is VK_DESCRIPTOR_TYPE UNIFORM BUFFER or VK_DESCRIPTOR_TYPE
UNIFORM_BUFFER_DYNAMIC, the offset member of any given element of pBufferInfo must be a multiple
of the value of VkPhysicalDeviceLimits:iminUniformBufferOffsetAlignment

If descriptorTypeis VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER_DYNAMIC, the of fset member of any given element of pBufferInfo must be a multiple
of the value of VkPhysicalDeviceLimits:minStorageBufferOffsetAlignment

If descriptorTypeis VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_
UNIFORM_BUFFER_DYNAMIC, the buffer member of any given element of pBufferInfo must have been
created with VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT set

If descriptorType i8S VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE__
STORAGE_BUFFER_DYNAMIC, the buf fer member of any given element of pBufferInfo must have been
created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set

If descriptorType iSs VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE _
UNIFORM_BUFFER_DYNAMIC, the range member of any given element of pBufferInfo must be less than or
equal to the value of VkPhysicalDevicelLimits:imaxUniformBufferRange

If descriptorType is VK_DESCRIPTOR_TYPE STORAGE_BUFFER or VK_DESCRIPTOR_TYPE
STORAGE_BUFFER_DYNAMIC, the range member of any given element of pBufferInfo must be less than or
equal to the value of VkPhysicalDevicelLimits:maxStorageBufferRange

If descriptorTypeis VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, the VkBuf fer that
pTexelBufferView was created from must have been created with VK_BUFFER_USAGE_UNIFORM_TEXEL_
BUFFER_BIT set

If descriptorTypeis VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, the VkBuf fer that
pTexelBufferView was created from must have been created with VK_BUFFER_USAGE_STORAGE_TEXEL_
BUFFER_BIT set

Vulkan 1.0 - A Specification 271 /615

o If descriptorType iSs VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or VK_DESCRIPTOR_TYPE INPUT_
ATTACHMENT, the imageView must have been created with identity swizzle

Only one of pImageInfo, pBufferInfo, or pTexelBufferView members is used according to the descriptor type
specified in the descriptorType member of the containing VkWriteDescriptorSet structure, as specified below.

If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_
BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_
BUFFER_DYNAMIC, the pBufferInfo array will be used to update the descriptors, and other arrays will be ignored.
Each entry is of type VkDescriptorBufferInfo and is defined as:

typedef struct VkDescriptorBufferInfo {

VkBuffer buffer;
VkDeviceSize offset;
VkDeviceSize range;

—

VkDescriptorBufferInfo;

e buffer is the buffer resource.

* offset is the offset in bytes from the start of burfer. Access to buffer memory via this descriptor uses addressing
that is relative to this starting offset.

* range is the size in bytes that is used for this descriptor update, or VK_WHOLE_SIZE to use the range from offset
to the end of the bulffer.

Valid Usage

e buffer must be a valid VkBuf fer handle

* If range is not equal to VK_WHOLE_SIZE, the sum of of fset and range must be less than or equal to the size
of buffer

For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and VK_DESCRIPTOR_TYPE_STORAGE_
BUFFER_DYNAMIC descriptor types, of fset is the base offset from which the dynamic offset is applied and range is
the static size used for all dynamic offsets.

If descriptorType iSs VK_DESCRIPTOR_TYPE_UNIFORM TEXEL_BUFFER or VK_DESCRIPTOR_TYPE _
STORAGE_TEXEL_BUFFER, the pTexelBufferView array will be used to update the descriptors, and other arrays
will be ignored.

If descriptorTypeis VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_
SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK__
DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the members in pImageInfo array will be used to update the
descriptors, and other arrays will be ignored. imageInfois of type VkDescriptorImageInfo and is defined as:

typedef struct VkDescriptorImageInfo {

VkSampler sampler;
VkImageView imageView;
VkImageLayout imageLayout;

—

VkDescriptorImageInfo;

* sampler is a sampler handle, and is used in descriptor updates for types VK_DESCRIPTOR_TYPE_SAMPLER and
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the binding being updated does not use immutable
samplers.

* imageView is an image view handle, and is used in descriptor updates for types VK_DESCRIPTOR_TYPE_
SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

* imageLayout is the layout that the image will be in at the time this descriptor is accessed. imageLayout is used in
descriptor updates for types VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_
IMAGE, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_
ATTACHMENT.

Valid Usage

e Each of sampler and imageView that are valid handles must have been created, allocated or retrieved from the
same VkDevice

Members of VkDescriptorImageInfo that are not used in an update (as described above) are ignored.

If the dstBinding has fewer than descriptorCount array elements remaining starting from dstArrayElement,
then the remainder will be used to update the subsequent binding - dstBinding+1 starting at array element zero. This
behavior applies recursively, with the update affecting consecutive bindings as needed to update all descriptorCount
descriptors. All consecutive bindings updated via a single VkWriteDescriptorSet structure must have identical
descriptorType and stageFlags, and must all either use immutable samplers or must all not use immutable
samplers.

Each element in the pDescriptorCopies array in a VkCopyDescriptorSet structure describing an operation
copying descriptors between sets. The definition of VkCopyDescriptorSet is:

typedef struct VkCopyDescriptorSet {

VkStructureType sType;

const voidx pNext;
VkDescriptorSet srcSet;

uint32_t srcBinding;
uint32_t srcArrayElement;
VkDescriptorSet dstSet;

uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;

} VkCopyDescriptorSet;

Vulkan 1.0 - A Specification 273 /615

* sType is the type of this structure.

* pNext is NULL or a pointer to an extension-specific structure.

* srcSet, srcBinding, and srcArrayElement are the source set, binding, and array element, respectively.

* dstSet, dstBinding, and dstArrayElement are the destination set, binding, and array element, respectively.

* descriptorCount is the number of descriptors to copy from the source to destination. If descriptorCount is
greater than the number of remaining array elements in the source or destination binding, those affect consecutive
bindings in a manner similar to VkWriteDescriptorSet above.

Valid Usage

¢ sType must be VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET

e pNext must be NULL

* srcSet must be a valid VkDescriptorSet handle

* dstSet must be a valid VkDescriptorSet handle

e Each of srcset and dstSet must have been created, allocated or retrieved from the same VkDevice
* srcBinding must be a valid binding within srcsSet

* The sum of srcArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding specified by srcBinding, and all applicable consecutive bindings, as
described by consecutive binding updates

* dstBinding must be a valid binding within dstSet

* The sum of dstArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding specified by dstBinding, and all applicable consecutive bindings, as
described by consecutive binding updates

13.2.5 Descriptor Set Binding

Once descriptor sets have been allocated, one or more descriptor sets can be bound to the command buffer by calling:

void vkCmdBindDescriptorSets (

VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout layout,

uint32_t firstSet,

uint32_t descriptorSetCount,
const VkDescriptorSetx pDescriptorSets,
uint32_t dynamicOffsetCount,

const ulnt32_t«* pDynamicOffsets) ;

* commandbuf fer is the command buffer that the descriptor sets will be bound to.

* pipelineBindPoint isaVkPipelineBindPoint indicating whether the descriptors will be used by graphics
pipelines or compute pipelines. There is a separate set of bind points for each of graphics and compute, so binding one
does not disturb the other.

* layoutisaVkPipelineLayout object used to program the bindings.
* firstSet is the set number of the first descriptor set to be bound.
* descriptorSetCount is the number of elements in the pDescriptorSets array.

* pDescriptorSets is a pointer to an array of VkDescriptorSet structures describing the descriptor sets to write
to.

* dynamicOffsetCount is the number of dynamic offsets in the pDynamicOffset s array.

* pDynamicOffsets is a pointer to an array of uint 32_t values specifying dynamic offsets.

If any of the sets being bound include dynamic uniform or storage buffers, then pDynamicoOffsets includes one
element for each array element in each dynamic descriptor type binding in each set. Values are taken from

vkCmdBindDescriptorSets causes the sets numbered [firstSet.. firstSet+descriptorSetCount-1] to use
the bindings stored in pDescriptorSets[0..descriptorSetCount-1] for subsequent rendering commands (either
compute or graphics, according to the pipelineBindPoint). Any bindings that were previously applied via these sets
are no longer valid.

Once bound, a descriptor set affects rendering of subsequent graphics or compute commands in the command buffer until
a different set is bound to the same set number, or else until the set is disturbed as described in Pipeline Layout
Compatibility.

A compatible descriptor set must be bound for all set numbers that any shaders in a pipeline access, at the time that a
draw or dispatch command is recorded to execute using that pipeline. However, if none of the shaders in a pipeline
statically use any bindings with a particular set number, then no descriptor set need be bound for that set number, even if
the pipeline layout includes a non-trivial descriptor set layout for that set number.

If any of the sets being bound include dynamic uniform or storage buffers, then pDynamicOffsets includes one
element for each array element in each dynamic descriptor type binding in each set. Values are taken from
pDynamicOffsets in an order such that all entries for set N come before set N+1; within a set, entries are ordered by
the binding numbers in the decriptor set layouts; and within a binding array, elements are in order.
dynamicOffsetCount must equal the total number of dynamic descriptors in the sets being bound.

The effective offset used for dynamic uniform and storage buffer bindings is the sum of the relative offset taken from
pDynamicOffsets, and the base address of the buffer plus base offset in the descriptor set. The length of the dynamic
uniform and storage buffer bindings is the buffer range as specified in the descriptor set.

Each of the ppescriptorSets must be compatible with the pipeline layout specified by 1ayout. The layout used to
program the bindings must also be compatible with the pipeline used in subsequent graphics or compute commands, as
defined in the Pipeline Layout Compatibility section.

The descriptor set contents bound by a call to vkCmdBindDescriptorSets may be consumed during host execution
of the command, or during shader execution of the resulting draws, or any time in between. Thus, the contents must not
be altered (overwritten by an update command, or freed) between when the command is recorded and when the command
completes executing on the queue. The contents of pDynamicOffsets are consumed immediately during execution of
vkCmdBindDescriptorSets. Once all pending uses have completed, it is legal to update and reuse a descriptor set.

Vulkan 1.0 - A Specification 275/615

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

e pipelineBindPoint must be a valid VkPipelineBindPoint value

e Jlayout must be a valid VkPipelineLayout handle

* pDescriptorSets must be a pointer to an array of descriptorSetCount valid VkDescriptorSet handles

* If dynamicOffsetCount is not 0, pDynamicOffsets must be a pointer to an array of dynamicOffsetCount
uint32_t values

* commandBuffer must be in the recording state
* The VkCommandPool that commandBuf fer was allocated from must support graphics or compute operations
* The value of descriptorSetCount must be greater than 0

e Each of commandBuffer, layout and the elements of pDescriptorSets must have been created, allocated or
retrieved from the same VkDevice

* Any given element of pDescriptorSets must have been created with a VkDescriptorSetLayout that
matches the VkDescriptorSetLayout atsetnin 1ayout, where n is the sum of the index into
pDescriptorSets and firstSet

* dynamicOffsetCount must be equal to the total number of dynamic descriptors in pDescriptorSets
* pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue family

* Any given element of pDynamicOffsets must satisfy the required alignment for the corresponding descriptor
binding’s descriptor type

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

13.2.6 Push Constant Updates

As described above in section Pipeline Layouts, the pipeline layout defines shader push constants which are updated via
Vulkan commands rather than via writes to memory or copy commands.

Note

Push constants represent a high speed path to modify constant data in pipelines that is expected to outperform
memory-backed resource updates.

The contents of the push constants are undefined at the start of a command buffer. Push constants are updated by calling:

void vkCmdPushConstants (

VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,

const voidx pValues) ;

* commandbuf fer is the command buffer in which the push constant update will be recorded.
* layout is the pipeline layout used to program the push constant updates.

* stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the push
constants in the updated range.

* offset is the start offset of the push constant range to update, in units of bytes.
* sizeis the size of the push constant range to update, in units of bytes.

* pValues is an array of size bytes containing the new push constant values.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* layout must be a valid VkPipelineLayout handle

* stageFlags must be a valid combination of VkShaderStageFlagBits values

* stageFlags must not be 0

* pValues must be a pointer to an array of size bytes

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations

* The value of size must be greater than 0

Vulkan 1.0 - A Specification

277 /615

e Each of commandBuffer and l1ayout must have been created, allocated or retrieved from the same VkDevice
* stageFlags must match exactly the shader stages used in Iayout for the range specified by offset and size
* offset must be a multiple of 4

* size must be a multiple of 4

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

Vulkan 1.0 - A Specification 279/615

Chapter 14

Shader Interfaces

When a pipeline is created, the set of shaders specified in the corresponding VkxPipelineCreateInfo structure are
implicitly linked at a number of different interfaces.

* Shader Input and Output Interface

* Vertex Input Interface

* Fragment Output Interface

» Fragment Input Attachment Interface

¢ Shader Resource Interface

14.1 Shader Input and Output Interfaces

When multiple stages are present in a pipeline, the outputs of one stage form an interface with the inputs of the next
stage. When such an interface involves a shader, shader outputs are matched against the inputs of the next stage, and
shader inputs are matched against the outputs of the previous stage.

There are two classes of variables that can be matched between shader stages, built-in variables and user-defined
variables. Each class has a different set of matching criteria. Generally, when non-shader stages are between shader
stages, the user-defined variables, and most built-in variables, form an interface between the shader stages.

The variables forming the input or output interfaces are listed as operands to the OpEnt ryPoint instruction and are
declared with the Input or Output storage classes, respectively, in the SPIR-V module.

14.1.1 Built-in Interface Block
Shader built-in variables meeting the following requirements define the built-in interface block. They must be:

* explicitly declared (there are no implicit built-ins),
* identified with a BuiltIn decoration,
 form object types as described in the Built-in Variables section, and

* declared in a block whose top-level members are the built-ins.

Built-ins only participate in interface matching if they are declared in such a block. They must not have any Location
or Component decorations.

There must be no more than one built-in interface block per shader per interface.

14.1.2 User-defined Variable Interface

The remaining variables listed by OpEnt ryPoint with the Input or Output storage class form the user-defined
variable interface. These variables must be identified with a Location decoration and can also be identified with a
Component decoration.

14.1.3 Interface Matching

A user-defined output variable is considered to match an input variable in the subsequent stage if the two variables are
declared with the same Location and Component decoration and match in type and decoration, except that
interpolation decorations are not required to match. For the purposes of interface matching, variables declared without a
Component decoration are considered to have a Component decoration of zero.

Variables or block members declared as structures are considered to match in type if and only if the structure members
match in type, decoration, number, and declaration order. Variables or block members declared as arrays are considered
to match in type only if both declarations specify the same element type and size.

Tessellation control shader per-vertex output variables and blocks, and tessellation control, tessellation evaluation, and
geometry shader per-vertex input variables and blocks are required to be declared as arrays, with each element
representing input or output values for a single vertex of a multi-vertex primitive. For the purposes of interface matching,
the outermost array dimension of such variables and blocks is ignored.

At an interface between two non-fragment shader stages, the built-in interface block must match exactly, as described
above. At an interface involving the fragment shader inputs, the presence or absence of any built-in output does not affect
the interface matching.

Any input value to a shader stage is well-defined as long as the preceeding stages writes to a matching output, as
described above.

Additionally, scalar and vector inputs are well-defined if there is a corresponding output satisfying all of the following
conditions:

* the input and output match exactly in decoration,

* the output is a vector with the same basic type and has at least as many components as the input, and

* the common component type of the input and output is 32-bit integer or floating-point (64-bit component types are

excluded).

In this case, the components of the input will be taken from the first components of the output, and any extra components
of the output will be ignored.

14.1.4 Location Assignment

This section describes how many locations are consumed by a given type. As mentioned above, geometry shader inputs,
tessellation control shader inputs and outputs, and tessellation evaluation inputs all have an additional level of arrayness

relative to other shader inputs and outputs. This outer array level is removed from the type before considering how many
locations the type consumes.

Vulkan 1.0 - A Specification 281/615

The Location value specifies an interface slot comprised of a 32-bit four-component vector conveyed between stages.
The Component specifies components within these vector locations. Only types with widths of 32 or 64 are supported
in shader interfaces.

Inputs and outputs of the following types consume a single interface location:

* 32-bit scalar and vector types, and

* 64-bit scalar and 2-component vector types.

64-bit three- and four-component vectors consume two consecutive locations.

If a declared input or output is an array of size n and each element takes m locations, it will be assigned m x n
consecutive locations starting with the location specified.

If the declared input or output is an n X m 32- or 64-bit matrix, it will be assigned multiple locations starting with the
location specified. The number of locations assigned for each matrix will be the same as for an n-element array of
m-component vectors.

The layout of a structure type used as an Input or Output depends on whether it is also a Block (i.e. has a Block
decoration).

If it is a not a Block, then the structure type must have a Location decoration. Its members are assigned consecutive
locations in their declaration order, with the first member assigned to the location specified for the structure type. The
members, and their nested types, must not themselves have Locat ion decorations.

If the structure type is a Block but without a Location, then each of its members must have a Locat ion decoration.
If it is a Block with a Location decoration, then its first member is assigned to the location specified for the Block,
any member with its own Location decoration is assigned that location, and otherwise each subsequent member is
assigned consecutive locations in declaration order.

The locations consumed by block and structure members are determined by applying the rules above in a depth-first
traversal of the instantiated members as though the structure or block member were declared as in input or output
variable of the same type.

Any two inputs listed as operands on the same OpEnt ryPoint must not be assigned the same location, either
explicitly or implicitly. Any two outputs listed as operands on the same OpEnt ryPoint must not be assigned the same
location, either explicitly or implicitly.

The number of input and output locations available for a shader input or output interface are limited, and dependent on
the shader stage as described in Table 14.1.

Table 14.1: Shader Input and Output Locations

Shader Interface

Locations Available

vertex input

maxVertexInputAttributes

vertex output

maxVertexOutputComponents /4

tessellation control input

maxTessellationControlPerVertexInputComponents /4

tessellation control output

maxTessellationControlPerVertexOutputComponents/4

tessellation evaluation input

maxTessellationEvaluationInputComponents/4

tessellation evaluation output

maxTessellationEvaluationOutputComponents /4

geometry input

maxGeometryInputComponents /4

geometry output

maxGeomet ryOutputComponents /4

fragment input

maxFragment InputComponents /4

fragment output

maxFragmentOutputAttachments

14.1.5 Component Assignment

The Component decoration allows the Location to be more finely specified for scalars and vectors, down to the
individual components within a location that are consumed. The components within a location are 0, 1, 2, and 3. A
variable or block member starting at component N will consume components N, N+1, N+2, ... up through its size. For
single precision types, it is invalid if this sequence of components gets larger than 3. A scalar 64-bit type will consume
two of these components in sequence, and a two-component 64-bit vector type will consume all four components
available within a location. A three- or four-component 64-bit vector type must not specify a Component decoration. A
three-component 64-bit vector type will consume all four components of the first location and components 0 and 1 of the
second location. This leaves components 2 and 3 available for other component-qualified declarations.

A scalar or two-component 64-bit data type must not specify a Component decoration of 1 or 3. A Component
decoration must not be specified any type that is not a scalar or vector.

14.2 Vertex Input Interface

When the vertex stage is present in a pipeline, the vertex shader input variables form an interface with the vertex input
attributes. The vertex shader input variables are matched by the Location and Component decorations to the vertex
input attributes specified in the pVertexInputState member of the VkGraphicsPipelineCreateInfo
structure.

The vertex shader input variables listed by OpEnt ryPoint with the Input storage class form the vertex input
interface. These variables must be identified with a Location decoration and can also be identified with a
Component decoration.

For the purposes of interface matching: variables declared without a Component decoration are considered to have a
Component decoration of zero. The number of available vertex input locations is given by the
maxVertexInputAttributes member of the VkPhysicalDeviceLimits structure.

See Section 20.1.1 for details.

All vertex shader inputs declared as above must have a corresponding attribute and binding in the pipeline.

14.3 Fragment Output Interface

When the fragment stage is present in a pipeline, the fragment shader outputs form an interface with the output
attachments of the current subpass. The fragment shader output variables are matched by the Location and
Component decorations to the color attachments specified in the pColorAttachments array of the
VkSubpassDescription structure that describes the subpass that the fragment shader is executed in.

The fragment shader output variables listed by OpEnt ryPoint with the Output storage class form the fragment
output interface. These variables must be identified with a Location decoration. They can also be identified with a
Component decoration and/or an Index decoration. For the purposes of interface matching: variables declared
without a Component decoration are considered to have a Component decoration of zero, and variables declared
without an Index decoration are considered to have an Index decoration of zero.

A fragment shader output variable identified with a Location decoration of i is directed to the color attachment
indicated by pColorattachments[i], after passing through the blending unit as described in Section 26.1, if enabled.
Locations are consumed as described in Location Assignment. The number of available fragment output locations is
given by the maxFragmentOutputAttachments member of the VkPhysicalDeviceLimits structure.

Vulkan 1.0 - A Specification 283/615

Components of the output variables are assigned as described in Component Assignment. Output components identified
as 0, 1, 2, and 3 will be directed to the R, G, B, and A inputs to the blending unit, respectively, or to the output
attachment if blending is disabled. If two variables are placed within the same location, they must have the same
underlying type (floating-point or integer).

Fragment outputs identified with an Index of zero are directed to the first input of the blending unit associated with the
corresponding Location. Outputs identified with an Index of one are directed to the second input of the
corresponding blending unit.

No component aliasing of output variables is allowed, that is there must not be two output variables which have the same
location, component, and index, either explicitly declared or implied.

Output values written by a fragment shader must be declared with either OpTypeFloat or OpTypeInt, and a Width
of 32. Composites of these types are also permitted. If the color attachment has a signed or unsigned normalized
fixed-point format, color values are assumed to be floating-point and are converted to fixed-point as described in
Section 2.7.1; otherwise no type conversion is applied. If the type of the values written by the fragment shader do not
match the format of the corresponding color attachment, the result is undefined for those components.

14.4 Fragment Input Attachment Interface

When a fragment stage is present in a pipeline, the fragment shader subpass inputs form an interface with the input
attachments of the current subpass. The fragment shader subpass input variables are matched by
InputAttachmentIndex decorations to the input attachments specified in the pTnputAttachments array of the
VkSubpassDescription structure that describes the subpass that the fragment shader is executed in.

The fragment shader input variables listed by OpEnt ryPoint with the Input storage class and a decoration of
InputAttachment Index form the fragment input attachment interface. These variables must be declared with a
type of OpImageType and a Dim operand of SubpassData.

A fragment shader input variable identified with a InputAttachment Index decoration of i reads from the input
attachment indicated by pInputAttachment s[i]. If the input variable is declared as an array of size N, it consumes N
consecutive input attachments, starting with the index specified. There must not be more than one input variable with the
same InputAttachment Index whether explicitly declared or implied by an array declaration. The number of
available input attachment indices is given by the maxPerStageDescriptorInputAttachments member of the
VkPhysicalDeviceLimits structure.

Variables identified with the InputAttachment Index must only be used by a fragment stage. The basic data type
(floating-point, integer, unsigned integer) of the subpass input must match the basic format of the corresponding input
attachment, or the values of subpass loads from these variables are undefined.

See Section 13.1.11 for more details.

14.5 Shader Resource Interface

When a shader stage accesses buffer or image resources, as described in the Resource Descriptors section, the shader
resource variables must be matched with the pipeline layout that is provided at pipeline creation time.

The set of shader resources that form the shader resource interface for a stage are the variables statically used by
OpEntryPoint with the storage classes of Uniform, UniformConstant, and PushConstant. For the
fragment shader, the variables identified by operands to OpEnt ryPoint with a storage class of Input and a
decoration of InputAttachmentIndex are also included in this interface.

The shader resource interface can be further broken down into two sub-interfaces: the push constant interface and the
descriptor set interface.

14.5.1 Push Constant Interface

The shader variables defined with a storage class of PushConstant that are statically used by the shader entry points
for the pipeline define the push constant interface. They must be:

* typed as OpTypeStruct,
* identified with a Block decoration, and

* laid out explicitly using the Of £set, ArrayStride, and MatrixStride decorations as specified in Offset and
Stride Assignment.

There must be no more than one push constant block statically used per shader entry point.

Each variable in a push constant block must be placed at an Of £set such that the entire constant value is entirely
contained within the VkPushConstantRange for each OpEntryPoint that uses it, and the stageFlags for that
range must specify the appropriate VkShaderStageFlagBits for that stage. The Of £set decoration for any
variable in a push constant block must not cause the space required for that variable to extend outside the range

[0, maxPushConstantsSize).

Any variable in a push constant block that is declared as an array must only be accessed with dynamically uniform
indices.

14.5.2 Descriptor Set Interface

The descriptor set interface is comprised of the shader variables with the storage classes of Uniform,
UniformConstant, and the variables in the fragment input attachment interface, that are statically used by the shader
entry points for the pipeline.

These variables must have DescriptorSet and Binding decorations specified, which are assigned and matched
with the VkDescriptorSetLayout objects in the pipeline layout as described in DescriptorSet and Binding
Assignment.

Variables identified with the UniformConstant storage class are used only as handles to refer to opaque resources.
Such variables must be typed as OpTypeImage, OpTypeSampler, OpTypeSampledImage, or arrays of only these
types. Variables of type OpTypeImage must have a Sampled operand of 1 (sampled image) or 2 (storage image).

Any array of these types must only be indexed with constant integral expressions, except under the following conditions:

* For arrays of OpTypeImage variables with Sampled operand of 2, if the
shaderStorageImageArrayDynamicIndexing feature is enabled and the shader module declares the
StorageImageArrayDynamicIndexing capability, the array must only be indexed by dynamically uniform
expressions.

* For arrays of OpTypeSampler, OpTypeSampledImage variables, or OpTypeImage variables with Sampled
operand of 1, if the shaderSampledImageArrayDynamicIndexing feature is enabled and the shader module
declares the SampledImageArrayDynamicIndexing capability, the array must only be indexed by dynamically
uniform expressions.

The Sampled Type of an OpTypeImage declaration must match the same basic data type as the corresponding
resource, or the values obtained by reading or sampling from this image are undefined.

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used for
OpImageRead or OpImageWrite operations, except under the following conditions:

Vulkan 1.0 - A Specification 285/615

* For OpImageWrite, if the shaderStorageImageWriteWithoutFormat feature is enabled and the shader module
declares the StorageImageWriteWithoutFormat capability.

* For OpImageRead, if the shaderStorageImageReadiiithoutFormat feature is enabled and the shader module
declares the StorageImageReadWithoutFormat capability.

Variables identified with the Uniform storage class are used to access transparent buffer backed resources. Such
variables must be:

* typed as OpTypeStruct, or arrays of only this type,
* identified with a Block or BufferBlock decoration, and

* laid out explicitly using the Of £set, ArrayStride, and MatrixStride decorations as specified in Offset and
Stride Assignment.

Any array of these types must only be indexed with constant integral expressions, except under the following conditions.

* For arrays of Block variables, if the shaderUni formBufferArrayDynamicIndexing feature is enabled and the
shader module declares the UniformBuf ferArrayDynamicIndexing capability, the array must only be
indexed by dynamically uniform expressions.

* For arrays of Buf ferBlock variables, if the shaderStorageBufferArrayDynamicIndexing feature is enabled
and the shader module declares the StorageBufferArrayDynamicIndexing capability, the array must only be
indexed by dynamically uniform expressions.

The Of £set decoration for any variable in a Block must not cause the space required for that variable to extend
outside the range [0, maxUniformBufferRange). The Of £set decoration for any variable in a Buf ferBlock must not
cause the space required for that variable to extend outside the range [0, maxStorageBufferRange).

Variables identified with a storage class of Input and a decoration of InputAttachment Index must be declared as
described above.

Each shader variable declaration must refer to the same type of resource as is indicated by the descriptorType. See
Shader Resource and Descriptor Type Correspondence for the relationship between shader declarations and descriptor

types.

Table 14.2: Shader Resource and Descriptor Type Correspondence

Resource type Descriptor Type

sampler VK_DESCRIPTOR_TYPE_SAMPLER

sampled image VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE

storage image VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

combined image sampler VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER

uniform texel buffer VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

storage texel buffer VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER

uniform buffer VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC

storage buffer VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

input attachment VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT

Table 14.3: Shader Resource and Storage Class Correspondence

Resource type Storage Class Type Decoration(s)!
sampler UniformConstant | OpTypeSampler
sampled image UniformConstant | OpTypelImage
(Sampled=1)
storage image UniformConstant OpTypelImage
(Sampled=2)
combined image UniformConstant | OpTypeSampledImage
sampler
uniform texel buffer UniformConstant | OpTypeImage
(Dim=Buffer,
Sampled=1)
storage texel buffer UniformConstant | OpTypelImage
(Dim=Buffer,
Sampled=2)
uniform buffer Uniform OpTypeStruct Block, Offset,
(ArrayStride),
(MatrixStride)
storage buffer Uniform OpTypeStruct BufferBlock, Offset,
(ArrayStride),
(MatrixStride)
input attachment Input OpTypelmage InputAttachmentIndex
(Dim=SubpassData)

in addition to DescriptorSet and Binding

14.5.3 DescriptorSet and Binding Assighment

A variable identified with a DescriptorSet decoration of s and a Binding decoration of b indicates that this
variable is associated with the VkDescriptorSetLayoutBinding that has a binding equal to b in
pSetLayout s[s] that was specified in VkPipelineLayoutCreateInfo.

The range of descriptor sets is between zero and maxBoundDescriptorSets minus one, inclusive. If a descriptor set
value is statically used by an entry point there must be an associated pSetLayout in the corresponding pipeline layout
as described in Pipeline Layouts consistency.

If the Binding decoration is used with an array, the entire array is identified with that binding value. The size of the
array declaration must be no larger than the descriptorCount of that VkDescriptorSetLayoutBinding. The
index of each element of the array is referred to as the arrayElement. For the purposes of interface matching and
descriptor set operations, if a resource variable is not an array, it is treated as if it has an arrayElement of zero.

The binding can be any 32-bit unsigned integer value, as described in Section 13.2.1. Each descriptor set has its own
binding name space.

There is a limit on the number of resources of each type that can be accessed by a pipeline stage as shown in Shader
Resource Limits. The “Resources Per Stage” column gives the limit on the number each type of resource that can be
statically used for an entry point in any given stage in a pipeline. The “Resource Types” column lists which resource
types are counted against the limit. Some resource types count against multiple limits.

Vulkan 1.0 - A Specification 287 /615

If multiple entry points in the same pipeline refer to the same set and binding, all variable definitions with that
DescriptorSet and Binding must have the same basic type.

Not all descriptor sets and bindings specified in a pipeline layout need to be used in a particular shader stage or pipeline,

but if a DescriptorSet and Binding decoration is specified for a variable that is statically used in that shader there
must be a pipeline layout entry identified with that descriptor set and binding and the corresponding stageFlags must
specify the appropriate VkShaderStageFlagBits for that stage.

Table 14.4: Shader Resource Limits

Resources per Stage Resource Types

sampler

combined image sampler
sampled image
maxPerStageDescriptorSampledImages combined image sampler
uniform texel buffer
storage image

storage texel buffer
uniform buffer

uniform buffer dynamic
storage buffer

storage buffer dynamic
maxPerStageDescriptorInputAttachments input attachment!

maxPerStageDescriptorSamplers

maxPerStageDescriptorStoragelmages

maxPerStageDescriptorUniformBuffers

maxPerStageDescriptorStorageBuffers

Input attachments can only be used in the fragment shader stage

14.5.4 Offset and Stride Assignment

All variables with a storage class of PushConstant or Uniform must be explicitly laid out using the Offset,
ArrayStride, and MatrixStride decorations. There are two different layouts requirements depending on the
specific resources.

Standard Uniform Buffer Layout

Member variables of an OpTypeStructure with storage class of Uniform and a decoration of Block (uniform
buffers) must be laid out according to the following rules.

* The Off£set Decoration must be a multiple of its base alignment, computed recursively as follows:

— ascalar of size N has a base alignment of N

— atwo-component vector, with components of size N, has a base alignment of 2N

— athree- or four-component vector, with components of size N, has a base alignment of 4N

— an array has a base alignment equal to the base alignment of its element type, rounded up to a multiple of 16

— a structure has a base alignment equal to the largest base alignment of any of its members, rounded up to a multiple
of 16

— arow-major matrix of C columns has a base alignment equal to the base alignment of vector of C matrix components

— acolumn-major matrix has a base alignment equal to the base alignment of the matrix column type

* Any ArrayStride or MatrixStride decoration must equal the base alignment of the array or matrix from above.

Note

The std140 layout in GLSL satisfies these rules.

Standard Storage Buffer Layout

Member variables of an OpTypeStructure with a storage class of PushConstant (push constants), or a storage
class of Uniform with a decoration of Buf ferBlock (storage buffers) must be laid out as above, except for array and
structure base alignment which do not need to be rounded up to a multiple of 16.

Note

The std430 layout in GLSL satisfies these rules.

14.6 Built-In Variables

Built-in variables are accessed in shaders by declaring a variable decorated using a BuiltIn decoration. The meaning
of each Built In decoration is as follows. In the remainder of this section, the name of a built-in is used
interchangeably with a term equivalent to a variable decorated with that particular built-in. Built-ins that represent
integer values can be declared as either signed or unsigned 32-bit integers.

ClipDistance
Variables decorated with the C1ipDistance decoration provide the mechanism for controlling user clipping.
Declared as an array, the i element of the variable decorated as ClipDistance specifies a clip distance for
plane i. A clip distance of 0 means the vertex is on the plane, a positive distance means the vertex is inside the clip
half-space, and a negative distance means the point is outside the clip half-space.

The ClipDistance array is explicitly sized by the shader.

The ClipDistance decoration can be applied to array inputs in tessellation control, tessellation evaluation and
geometry shader stages which will contain the values written by the previous stage. It can be applied to outputs in
vertex, tessellation evaluation and geometry shaders. In the last vertex processing stage, these values will be
linearly interpolated across the primitive and the portion of the primitive with interpolated distances less than 0
will be considered outside the clip volume.

In the fragment shader, the ClipDistance decoration can be applied to an array of floating-point input
variables and contains the linearly interpolated values described above.

ClipDistance must not be used in compute shaders.
ClipDistance must be declared as an array of 32-bit floating-point values.
CullDistance
A variable decorated as CullDistance provides a mechanism for a vertex processing stage to reject an entire

primitive. CullDistance can be applied to an array variable. If any member of this array is assigned a negative
value for all vertices belonging to a primitive, then the primitive is discarded before rasterization.

Vulkan 1.0 - A Specification 289/615

CullDistance can be applied to an output variable in the last vertex processing stage (vertex, tessellation
evaluation or geometry shader).

If applied to an input variable, that variable will contain the value of the corresponding output in the previous
shader stage. CullDistance must not be applied to an input in the vertex shader or to an output in the fragment
shader, and must not be used in compute shaders.

In fragment shaders, the values of the CullDistance array are linearly interpolated across each primitive.

CullDistance must be declared as an array of 32-bit floating-point values.

FragCoord
This variable contains the framebuffer coordinate (x,y,z, %) of the fragment being processed. The (x,y) coordinate
(0,0) is the upper left corner of the upper left pixel in the framebuffer. The values of the x and y components of
FragCoord reflect the location of the center of the pixel (i.e. fractional values of (0.5,0.5)) when sample shading
is not enabled, and the location of the sample corresponding to the shader invocation when using sample shading.

The z component of FragCoord is the interpolated depth value of the primitive, and the w components is the
interpolated %

The FragCoord decoration is only supported in fragment shaders. The Centroid interpolation decoration is
ignored on FragCoord.

FragCoord must be declared as a four-component vector of 32-bit floating-point values.

FragDepth
Writing to an output variable decorated with FragDepth from the fragment shader establishes a new depth value
for all samples covered by the fragment. This value will be used for depth testing and, if the depth test passes, any
subsequent write to the depth/stencil attachment. To write to FragDepth, a shader must declare the
DepthReplacing execution mode. If a shader declares the DepthReplacing execution mode and there is an
execution path through the shader that does not set FragDepth, then the fragment’s depth value is undefined for
executions of the shader that take that path. That is, if the fragment shader enables depth replacing, then it must
always write it.

The FragDepth decoration is only supported in fragment shaders.
FragDepth must be declared as a scalar 32-bit floating-point value.
FrontFacing
The FrontFacing decoration can be applied to an input variable in the fragment shader. The value of this

variable is non-zero if the current fragment is considered to be part of a front-facing primitive and is zero if the
fragment is considered to be part of a back-facing primitive.

The FrontFacing decoration is not available to shader stages other than fragment.

FrontFacing must be declared as a scalar 32-bit integer.

Note

In GLSL, gl_FrontFacing is declared as a bool. To achieve similar semantics in SPIR-V, a variable
of OpTypeBool can be declared and initialized as the result of the OpINotEqual operation with the
operands of the FrontFacing variable and an appropriately typed constant zero.

GlobalInvocationID
An input variable decorated with GlobalInvocationID will contain the location of the current compute
shader invocation within the global workgroup. The value in this variable is equal to the index of the local
workgroup multiplied by the size of the local workgroup plus the value of LocalInvocationID.

The GlobalInvocationID decoration is only supported in compute shaders.

GlobalInvocationID must be declared as a three-component vector of 32-bit integers.

HelperInvocation
This variable is non-zero if the fragment being shaded is a helper invocation and zero otherwise. A helper
invocation is an invocation of the shader that is produced to satisfy internal requirements such as the generation of
derivatives.

The HelperInvocation decoration is only supported in fragment shaders.

HelperInvocation must be declared as a scalar 32-bit integer.

Note
It is very likely that a helper invocation will have a value of SampleMask fragment shader input value
that is zero.

J Note
In GLSL, HelperInvocation is declared as a bool. To achieve similar semantics in SPIR-V, a
variable of OpTypeBool can be declared and initialized as the result of the OpINotEqual operation
with the operands of the HelperInvocation variable and an appropriately typed constant zero.

InvocationID
In a geometry shader, an input variable decorated with the InvocationID decoration contains the index of the
current shader invocation, which ranges from zero to the number of instances declared in the shader. If the instance
count of the geometry shader is one or is not specified, then InvocationID will be zero.

In tessellation control shaders, and input variable decorated with the InvocationID decoration contains the
index of the output patch vertex assigned to the tessellation control shader invocation.

The InvocationID decoration must not be used in vertex, tessellation evaluation, fragment, or compute
shaders.

InvocationID must be declared as a scalar 32-bit integer.

InstanceIndex
The InstanceIndex decoration can be applied to a vertex shader input which will be filled with the index of
the instance that is being processed by the current vertex shader invocation. The value of InstanceIndex
begins at the value of the £firstInstance parameter to vkCmdDraw or vkCmdDrawIndexed or at the value
of the firstInstance member of a structure consumed by vkCmdDrawIndirect or
vkCmdDrawIndexedIndirect.

The InstanceIndex decoration must not be used in any shader stage other than vertex.

InstanceIndex must be declared as a scalar 32-bit integer.

Layer
The Layer decoration can be applied to an output variable in the geometry shader that is written with the
framebuffer layer index to which the primitive produced by the geometry shader will be directed. If a geometry
shader entry point’s interface does not include an output variable decorated with Layer, then the first layer is
used. If a geometry shader entry point’s interface includes an output variable decorated with Layer, it must write
the same value to Layer for all output vertices of a given primitive. When used in a fragment shader, an input
variable decorated with Layer contains the layer index of the primitive that the fragment invocation belongs to.

The Layer decoration is only supported in geometry and fragment shaders.

Layer must be declared as a scalar 32-bit integer.

Vulkan 1.0 - A Specification 291/615

LocalInvocationID
This variable contains the location of the current compute shader invocation within the local workgroup. The range
of possible values for each component of LocallnvocationID range from zero through the size of the workgroup (as
defined by LocalSize) in that dimension minus one. If the size of the workgroup in a particular dimension is
one, then the value of LocallnvocationID in that dimension will be zero. That is, if the workgroup is effectively
two-dimensional, then LocalInvocationID.z will be zero, and if the workgroup is one-dimensional, then the
values of both LocalInvocationID.y and LocalInvocationID. z will be zero.

The LocalInvocationID decoration is only supported in compute shaders.
LocalInvocationID must be declared as a three-component vector of 32-bit integers.
NumWorkGroups
The NumWorkGroups decoration can be applied to a uvec3 input variable in a compute shader, in which case it
will contain the number of local workgroups that are part of the dispatch that the invocation belongs to. It reflects

the values passed to a call to vkCmdD1i spatch or through the structure consumed by the execution of
vkCmdDispatchIndirect.

The NumWorkGroups decoration is only supported in compute shaders.
NumWorkGroups must be declared as a three-component vector of 32-bit integers.
PatchVertices
An input variable decorated with PatchVertices in the tessellation control or evaluation shader is an integer
specifying the number of vertices in the input patch being processed by the shader. A single tessellation control or

evaluation shader can read patches of differing sizes, so the value of the PatchVertices variable may differ
between patches.

The PatchVertices decoration is only supported in tessellation control and evaluation shaders.
PatchVertices must be declared as scalar 32-bit integer.

PointCoord
During point rasterization, a variable decorated with PointCoord contains the coordinate of the current
fragment within the point being rasterized, normalized to the size of the point with origin in the upper left corner

of the point, as described in Basic Point Rasterization. If the primitive the fragment shader invocation belongs to is
not a point then the value of PointCoord is undefined.

The PointCoord decoration is only supported in fragment shaders.

PointCoord must be declared as two-component vector of 32-bit floating-point values.

Note

Depending on how the point is rasterized, PointCoord may never reach (0,0) or (1,1).

PointSize
The PointSize built-in decoration is used to pass the size of point primitives between shader stages. It can be
applied to inputs to tessellation control and geometry shaders. It can be applied to output variables in vertex,
tessellation evaluation and geometry shaders. The value written to the variable decorated as PointSize by the
last vertex processing stage in the pipeline is used as the framebuffer space size of points produced by rasterization.
As an input, it reflects the value written to the output decorated with PointSize in the previous shader stage.

The PointSize decoration must not be applied to inputs in the vertex shader and must not be used in fragment
or compute shaders.

PointSize must be declared as a scalar 32-bit floating-point value.

Position
The Position built-in decoration can be used on variables declared as input to tessellation control, tessellation
evaluation and geometry shaders. It can be used on variables declared as outputs in the vertex, tessellation control,
tessellation evaluation and geometry shaders. As an input, it contains the data written to the output variable
decorated as Position in the previous shader stage. As an output, the data written to a variable decorated as
Position is passed to the next shader stage. In the last vertex processing stage, the output position is used in
subsequent primitive assembly, clipping and rasterization operations.

Variables decorated as Position must not be used as inputs in vertex shaders and are must not be used in
fragment or compute shaders.

Position must be declared as a four-component vector of 32-bit floating-point values.

PrimitiveID
When the PrimitiveID decoration is applied to an input variable in the tessellation control or tessellation
evaluation shader, it will be filled with the index of the patch within the current set of rendering primitives that
corresponds to the shader invocation.

When the PrimitiveID decoration is applied to an input variable in the geometry shader, it will be filled with
the number of primitives presented as input to the geometry shader since the current set of rendering primitives
was started. When PrimitiveID is applied to an output in the geometry shader, the resulting value is seen as an
input to the fragment shader.

When PrimitiveID is applied to an input in the fragment shader, it will be filled with the primitive index
written by the geometry shader if a geometry shader is present, or with the value that would have been presented as
input to the geometry shader had it been present. If a geometry shader is present and the fragment shader reads
from an input variable decorated with PrimitiveID, then the geometry shader must write to an output variable
decorated with PrimitiwveID in all execution paths, otherwise the value of the PrimitiveID input in the
fragment shader is undefined.

The PrimitiveID decoration must not be used in vertex or compute shaders. PrimitiveID must not be used
on output variables in tessellation control, tessellation evaluation, or fragment shaders.

PrimitiveID must be declared as scalar 32-bit integer.

SamplelID
The SampleID decoration can be applied to an integer input variable in the fragment shader. This variable will
contain the zero-based index of the sample the invocation corresponds to. The value of SampleID ranges from
zero to the number of samples in the framebuffer minus one. If a fragment shader entry point’s interface includes
an input variable decorated with SampleID, per-sample shading is enabled for draws that use that fragment
shader.

SampleID is not available in shader stages other than fragment.

SampleID must be declared as a scalar 32-bit integer.

SampleMask
A fragment input variable decorated with SampleMask will contain a bitmask of the set of samples covered by
the primitive generating the fragment during rasterization. It has a sample bit set if and only if the sample is
considered covered for this fragment shader invocation. SampleMask([] is an array of integers. Bits are mapped
to samples in a manner where bit B of mask M (SampleMask [M]) corresponds to sample 32 x M + B.

When state specifies multiple fragment shader invocations for a given fragment, the sample mask for any single
fragment shader invocation specifies the subset of the covered samples for the fragment that correspond to the
invocation. In this case, the bit corresponding to each covered sample will be set in exactly one fragment shader
invocation.

A fragment output variable decorated with SampleMask is an array of integers forming a bit array in a manner
similar an input variable decorated with SampleMask, but where each bit represents coverage as computed by
the shader. Modifying the sample mask by writing zero to a bit of SampleMask causes the sample to be

Vulkan 1.0 - A Specification 293/615

considered uncovered. However, setting sample mask bits to one will never enable samples not covered by the
original primitive. If the fragment shader is being evaluated at any frequency other than per-fragment, bits of the
sample mask not corresponding to the current fragment shader invocation are ignored. This array must be sized in
the fragment shader either implicitly or explicitly, to be no larger than the implementation-dependent maximum
sample-mask (as an array of 32-bit elements), determined by the maximum number of samples. If a fragment
shader entry point’s interface includes an output variable decorated with SampleMask, the sample mask will be
undefined for any array elements of any fragment shader invocations that fail to assign a value. If a fragment
shader entry point’s interface does not include an output variable decorated with SampleMask, the sample mask
has no effect on the processing of a fragment.

The SampleMask decoration is only supported in fragment shaders.

SampleMask must be declared as an array of 32-bit integers.

SamplePosition
This variable contains the sub-pixel position of the sample being shaded. The top left of the pixel is considered to
be at coordinate (0,0) and the bottom right of the pixel is considered to be at coordinate (1,1). If a fragment shader
entry point’s interface includes an input variable decorated with SamplePosition, per-sample shading is
enabled for draws that use that fragment shader.

The SamplePosition decoration is only supported in fragment shaders.

SamplePosition must be declared as a two-component vector of floating-point values.

TessellationCoord
The TessellationCoord is applied to an input variable in tessellation evaluation shaders and specifies the
three-dimensional (u,v,w) barycentric coordinate of the tessellated vertex within the patch. The values of u, v, and
w are in the range [0, 1] and vary linearly across the primitive being subdivided. For the tessellation modes of
Quads or IsoLines, the third component is always zero.

The TessellationCoord decoration is only available to tessellation evaluation shaders.

TessellationCoord must be declared as three-component vector of 32-bit floating-point values.

TessellationLevelOuter
The TessellationLevelOuter decoration is used in tessellation control shaders to decorate an output
variable to contain the outer tessellation factor for the resulting patch. This value is used by the tessellator to
control primitive tessellation and can be read by tessellation evaluation shaders. When applied to an input variable
in a tessellation evaluation shader, the shader can read the value written by the tessellation control shader.

The TessellationLevelOuter decoration is not available outside tessellation control and evaluation
shaders.

TessellationLevelOuter must be declared as an array of size two, containing 32-bit floating-point values.

TessellationLevellnner
The TessellationLevelInner decoration is used in tessellation control shaders to decorate an output
variable to contain the inner tessellation factor for the resulting patch. This value is used by the tessellator to
control primitive tessellation and can be read by tessellation evaluation shaders. When applied to an input variable
in a tessellation evaluation shader, the shader can read the value written by the tessellation control shader.

The TessellationLevelInner decoration is not available outside tessellation control and evaluation
shaders.

TessellationLevelInner must be declared as an array of size four, containing 32-bit floating-point values.

VertexIndex
The VertexIndex decoration can be applied to a vertex shader input which will be filled with the index of the
vertex that is being processed by the current vertex shader invocation. For non-indexed draws, the value of this
variable begins at the value of the firstVertex parameter to vkCmdDraw or the firstVertex member of a
structure consumed by vkCmdDrawIndirect and increments by one for each vertex in the draw. For indexed

draws, its value is the content of the index buffer for the vertex plus the value of the vertexoffset parameter to
vkCmdDrawIndexed or the vertexOffset member of the structure consumed by
vkCmdDrawIndexedIndirect.

The value of VertexIndex starts at the same starting value for each instance.
The VertexIndex decoration must not be used in any shader stage other than vertex.

VertexIndex must be declared as a 32-bit integer.

ViewportIndex
The ViewportIndex decoration can be applied to an output variable in the geometry shader that is written with
the viewport index to which the primitive produced by the geometry shader will be directed. The selected viewport
index is used to select the viewport transform and scissor rectangle. If a geometry shader entry point’s interface
does not include an output variable decorated with ViewportIndex, then the first viewport is used. If a
geometry shader entry point’s interface includes an output variable decorated with ViewportIndex, it must
write the same value to ViewportIndex for all output vertices of a given primitive. When used in a fragment
shader, an input variable decorated with ViewportIndex contains the viewport index of the primitive that the
fragment invocation belongs to.

The ViewportIndex decoration is only supported in geometry and fragment shaders.
ViewportIndex must be declared as a 32-bit integer.
WorkgroupID
The WorkgroupID built-in decoration can be applied to an input variable in the compute shader. It will contain a
three dimensional integer index of the global workgroup that the current invocation is a member of. Each

component ranges from zero to the values of the parameters passed into vkCmdDispatch or read from the
VkDispatchIndirectCommand structure read through a call to vkCmdDispatchIndirect.

The WorkGroupID decoration is only supported in compute shaders.

WorkGroupID must be declared as a three-component vector of 32-bit integers.

Vulkan 1.0 - A Specification 295/615

Chapter 15

Image Operations

15.1 Image Operations Overview

Image Operations are steps performed by SPIR-V image instructions, where those instructions which take an
OpTypeImage (representing a VkImageView) or OpTypeImageSampler (representing a (VkImageView,
VkSampler) pair) and texel coordinates as operands, and return a value based on one or more neighboring texture
elements (fexels) in the image.

@ Note

Texel is a term which is a combination of the words texture and element. Early interactive computer graphics
supported texture operations on textures, a small subset of the image operations on images described here.
The discrete samples remain essentially equivalent, however, so we retain the historical term texel to refer to
them.

SPIR-V Image Instructions include the following functionality:

* OpImageSample* and OpImageSparseSample* read one or more neighboring texels of the image, and filter the
texel values based on the state of the sampler.

— Instructions with ImplicitLod in the name determine the level of detail used in the sampling operation based on
the coordinates used in neighboring fragments.

— Instructions with ExplicitLod in the name determine the level of detail used in the sampling operation based on
additional coordinates.

— Instructions with Pro3j in the name apply homogeneous projection to the coordinates.

* OpImageFetch and OpImageSparseFetch returns a single texel of the image. No sampler is used.

* OpImage*Gather and OpImageSparse*Gather read neighboring texels and returns a single component of
each.

* OpImageRead (and OpImageSparseRead) and OpImageWrite read and write, respectively, a texel in the
image. No sampler is used.

* Instructions with Dref£ in the name apply depth comparison on the texel values.

* Instructions with Sparse in the name additionally return a sparse residency code.

15.1.1 Texel Coordinate Systems
Images are addressed by fexel coordinates. There are three texel coordinate systems:

* normalized texel coordinates (coordinates ranging from O to 1 span the image),
» unnormalized texel coordinates (floating point coordinates ranging from 0 to width/height/depth span the image), and

* integer texel coordinates (integer coordinates ranging from 0 to width-1/height-1/depth-1 address the texels within the
image).

SPIR-V OpImageFetch, OpImageSparseFetch, OpImageRead, OpImageSparseRead, and
OpImageWrite instructions use integer texel coordinates. Other image instructions can use either normalized or
unnormalized texel coordinates (selected by the unnormalizedCoordinates state of the sampler used in the
instruction), but there are limitations on what operations, image state, and sampler state is supported. Normalized
coordinates are logically converted to unnormalized as part of image operations, and certain steps are only performed on
normalized coordinates. The array layer coordinate is always treated as unnormalized even when other coordinates are
normalized.

Normalized texel coordinates are referred to as (s,7,r,q,a), with the coordinates having the following meanings:

* s: Coordinate in the first dimension of an image.
* t: Coordinate in the second dimension of an image.
* r: Coordinate in the third dimension of an image.
— (s,t,r) are interpreted as a direction vector for Cube images.

* q: Fourth coordinate, for homogeneous (projective) coordinates.

* a: Coordinate for array layer.

The coordinates are extracted from the SPIR-V operand based on the dimensionality of the image variable and type of
instruction. For Pro3j instructions, the components are in order (s, [t,] [r,] q) with t and r being conditionally present
based on the Dim of the image. For non-Pro3j instructions, the coordinates are (s [,t] [,r] [,a]), with t and r being
conditionally present based on the Dim of the image and a being conditionally present based on the Arrayed property
of the image. Projective image instructions are not supported on Arrayed images.

Unnormalized texel coordinates are referred to as (u, v, w,a), with the coordinates having the following meanings:

* u: Coordinate in the first dimension of an image.
* v: Coordinate in the second dimension of an image.
* w: Coordinate in the third dimension of an image.

* a: Coordinate for array layer.

Only the u and v coordinates are directly extracted from the SPIR-V operand, because only 1D and 2D (non-Arrayed)
dimensionalities support unnormalized coordinates. The components are in order (u [,v]), with v being conditionally
present when the dimensionality is 2D. When normalized coordinates are converted to unnormalized coordinates, all four
coordinates are used.

Integer texel coordinates are referred to as (i, j, k,,n), and the first four in that order have the same meanings as
unnormalized texel coordinates. They are extracted from the SPIR-V operand in order (i, [,j], [,k], [,1]), with j and k
conditionally present based on the Dim of the image, and 1 conditionally present based on the Arrayed property of the
image. n is the sample index and is taken from the Sample image operand.

For all coordinate types, unused coordinates are assigned a value of zero.

Vulkan 1.0 - A Specification 297 /615

<
i
o ° ° ° ° ° ° ° ° ° ! — \—I|
B o
i0j0___i1j0 o
° ° . ° . . =) o ° ° - O
v (u-0.5,v-0.5)
(8, 4) o _j\
° . “ o 3 . . (Lo" % . ° -
iojo’ i1j0" i0j1 11
— > ~
° . ° (] . . o . . ° — N
ioj1' 11’
° .] . . . [} [o ° - o
_ . o
—
° ° ° ° ° ° ° ° ° ° — <
Q
LN
S
0.0 1.0
u
-1.0 9.0

The Texel Coordinate Systems - For the example shown of an 8x4 texel two dimensional image.

¢ Normalized texel coordinates:

— The s coordinate goes from 0.0 to 1.0, left to right.
— The t coordinate goes from 0.0 to 1.0, top to bottom.

¢ Unnormalized texel coordinates:

— The u coordinate goes from -1.0 to 9.0, left to right. The u coordinate within the range 0.0 to 8.0 is within the image,
otherwise it is within the border.

— The v coordinate goes from -1.0 to 5.0, top to bottom. The v coordinate within the range 0.0 to 4.0 is within the
image, otherwise it is within the border.

* Integer texel coordinates:

— The i coordinate goes from -1 to 8, left to right. The i coordinate within the range 0 to 7 addresses texels within the
image, otherwise it addresses a border texel.

— The j coordinate goes from -1 to 5, top to bottom. The j coordinate within the range O to 3 addresses texels within
the image, otherwise it addresses a border texel.

* Also shown for linear filtering:

— Given the unnormalized coordinates (u,v), the four texels selected are 1050, 11j0, 10j1 and i1j1.
— The weights o and 3.
— Given the offset A; and A, the four texels selected by the offset are 10j0°, 11j0°, i0j1” and i1j1°.

-1.0

o ° [} ° ° ° ° ° ° o —
Q 1
o
° o ° . ° - O
e
° o o ° o o ° /o ° o =
. (A;/ A,‘) +— > -
. . . . Uo‘ - N
° . (] . . . [} [[} ° - o
o
—i
° o ° ° ° ° ° ° ° ° — <
o
L
S
0.0 1.0
u
-1.0 9.0

The Texel Coordinate Systems - For the example shown of an 8x4 texel two dimensional image.

* Texel coordinates as above. Also shown for nearest filtering:

— Given the unnormalized coordinates (u,v), the texel selected is ij.
— Given the offset A; and A, the texel selected by the offset is ij’.

15.2 Conversion Formulas

15.2.1 RGB to Shared Exponent Conversion

An RGB color (red, green,blue) is transformed to a shared exponent color (redpareq, §reenghared, blushared, €XPshared) s
follows:

First, the components (red,green, blue) are clamped to (redciamped,&reenciamped, Plueciamped) as:
red;jampeq = max (0, min(sharedexpyqax, red))
green iamped = max(0, min(sharedexppqy, green))

blue ciampea = max (0, min(sharedexp ., blue))

Where:
N=9 number of mantissa bits per component
B=15 exponent bias
Epax =31 maximum possible biased exponent value
2N —1
sharedexpmax = (7) x 2(Emax—B)

N

Vulkan 1.0 - A Specification 299 /615

Note

NaN, if supported, is handled as in IEEE 754-2008 minNum() and maxNum(). That is the result is a NaN is
mapped to zero.

The largest clamped component, maxcjampea is determined:
Maxciamped = Max(redciamped, 8r€€Nciamped > PlUe iamped)
A preliminary shared exponent exp’ is computed:
exp' = max(—B—1, Llogz (maxciampeda +1+ B)J)
The shared exponent expgpgyeq 1S computed:

| MAXclamped l
MaXshared = 2<expliBiN))

exp/ for 0 < maxguarea < 2V
€XPshared =
share. exp/ +1 for maxggreq = 2V

Finally, three integer values in the range 0 to 2" are computed:

T edclamped 1

red =04
shared 2(expshamd 7B*N) 2

reen - 8reenciamped 4 l
8 shared 2(€xPshared —B—N) 2
blue iamped 1

blue = | — el 4
shared Z(EXPshared —B—N) 2

15.2.2 Shared Exponent to RGB

A shared exponent color (redspared, §reeNsnared s blueshared €XPshared) 18 transformed to an RGB color (red, green,blue) as
follows:

red = VEdshared X Z(exl’shared*B*N)
green = greeNghareqd X 2(exl7shared*B*N)

blue = blueshamd X Z(expshared*B*N)

Where:

N=9 number of mantissa bits per component

B=15 exponent bias

15.3 Texel Input Operations

Texel input instructions are SPIR-V image instructions that read from an image. Texel input operations are a set of steps
that are performed on state, coordinates, and texel values while processing a texel input instruction, and which are
common to some or all texel input instructions. They include the following steps, which are performed in the listed order:

* Validation operations

— Instruction/Sampler/Image validation
— Coordinate validation

— Sparse validation
» Format conversion
* Texel replacement
* Depth comparison
* Conversion to RGBA

* Component swizzle

For texel input instructions involving multiple texels (for sampling or gathering), these steps are applied for each texel
that is used in the instruction. Depending on the type of image instruction, other steps are conditionally performed
between these steps or involving multiple coordinate or texel values.

15.3.1 Texel Input Validation Operations

Texel input validation operations inspect instruction/image/sampler state or coordinates, and in certain circumstances
cause the texel value to be replaced or become undefined. There are a series of validations that the texel undergoes.

15.3.1.1 Instruction/Sampler/Image Validation

There are a number of cases where a SPIR-V instruction can mismatch with the sampler, the image, or both. There are a
number of cases where the sampler can mismatch with the image. In such cases the value of the texel returned is
undefined.

These cases include:

» The sampler bordercolor is an integer type and the image format is not one of the VkFormat integer types or a
stencil aspect of a depth/stencil format.

* The sampler borderColor is a float type and the image format is not one of the VkFormat float types or a depth
aspect of a depth/stencil format.

* The sampler borderColor is one of the opaque black colors (VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK or
VK_BORDER_COLOR_INT_OPAQUE_BLACK) and the image VkComponentSwizzle for any of the
VkComponentMapping components is not VK_COMPONENT_SWIZZLE_IDENTITY

* If the instruction is OpImageRead or OpImageSparseRead and the
shaderStorageImageReadWithoutFormat feature is not enabled, or the instruction is OpImageWrite and the
shaderStorageImageliriteWithoutFormat feature is not enabled, then the SPIR-V Image Format must be
compatible with the image view’s format.

* The sampler unnormalizedCoordinates is VK_TRUE and any of the limitations of unnormalized coordinates are
violated.

* The SPIR-V instruction is one of the OpImage*Dref* instructions and the sampler compareEnable is VK_FALSE

* The SPIR-V instruction is not one of the OpImage*Dref* instructions and the sampler compareEnable is VK_
TRUE

Vulkan 1.0 - A Specification

301/615

* The SPIR-V instruction is one of the OpImage*Dref* instructions and the image format is not one of the

depth/stencil formats with a depth component, or the image aspect is not VK_IMAGE_ASPECT_DEPTH_BIT.

* The SPIR-V instruction’s image variable’s properties are not compatible with the image view:

— Rules for viewType:

* VK_IMAGE_VIEW_TYPE_1D must have Dim= 1D, Arrayed =0, MS =0.

* VK_IMAGE_VIEW_TYPE_2D must have Dim = 2D, Arrayed = 0.

* VK_IMAGE_VIEW_TYPE_3D must have Dim = 3D, Arrayed =0, MS =0.

% VK_IMAGE_VIEW_TYPE_CUBE must have Dim = Cube, Arrayed =0, MS = 0.

% VK_IMAGE_VIEW_TYPE_1D_ARRAY must have Dim = 1D, Arrayed =1,MS =0.
#* VK_IMAGE_VIEW_TYPE_2D_ARRAY must have Dim = 2D, Arrayed = 1.

* VK_IMAGE_VIEW_TYPE_CUBE_ARRAY must have Dim = Cube, Arrayed =1, MS =0.
— If the image’s samples is not equal to VK_SAMPLE_COUNT_1_BIT, the instruction must have MS = 1.

15.3.1.2 Integer Texel Coordinate Validation

Integer texel coordinates are validated against the size of the image level, and the number of layers and number of
samples in the image. For SPIR-V instructions that use integer texel coordinates, this is performed directly on the integer
coordinates. For instructions that use normalized or unnormalized texel coordinates, this is performed on the coordinates

that result after conversion to integer texel coordinates.

If the integer texel coordinates satifies any of the conditions

where:

layers

samples

then the texel fails integer texel coordinate validation.

There are four cases to consider:

¢ Valid Texel Coordinates

i<0
j<o0
k<0
<0
n<0

1> wy
J = hs
k> dy
1 > layers

n > samples

= width of the image level
= height of the image level
= depth of the image level

= number of layers in the image

= number of samples per texel in the image

— If the texel coordinates pass validation (that is, the coordinates lie within the image),

then the texel value comes from the value in image memory.

¢ Border Texel

— If the texel coordinates fail validation, and

— If the read is the result of an image sample instruction or image gather instruction, and

— If the image is not a cube image,
then the texel is a border texel and texel replacement is performed.

¢ Invalid Texel

— If the texel coordinates fail validation, and

— If the read is the result of an image fetch instruction, image read instruction, or atomic instruction,
then the texel is an invalid texel and texel replacement is performed.

* Cube Map Edge or Corner

— Otherwise the texel coordinates lie on the borders along the edges and corners of a cube map image, and Cube map
edge handling is performed.

15.3.1.3 Cube Map Edge Handling

If the texel coordinates lie on the borders along the edges and corners of a cube map image, the following steps are
performed. Note that this only occurs when using VK_FILTER_LINEAR filtering within a miplevel, since VK_
FILTER_NEAREST is treated as using VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

* Cube Map Edge Texel

— If the texel lies along the border in either only i or only j

then the texel lies along an edge, so the coordinates (i, j) and the array layer / are transformed to select the adjacent
texel from the appropriate neighboring face.

* Cube Map Corner Texel

— If the texel lies along the border in both i and j

then the texel lies at the corner and there is no unique neighboring face from which to read that texel. The texel
should be replaced by the average of the three values of the adjacent texels in each incident face. However,
implementations may replace the cube map corner texel by other methods, subject to the constraint that if the three
available samples have the same value, the replacement texel also has that value.

15.3.1.4 Sparse Validation

If the texel reads from an unbound region of a sparse image, the texel is a sparse unbound texel, and processing continues
with texel replacement.

15.3.2 Format Conversion

Texels undergo a format conversion from the VkFormat of the image view to a vector of either floating point or signed
or unsigned integer components, with the number of components based on the number of components present in the
format.

* Color formats have one, two, three, or four components, according to the format.

* Depth/stencil formats are one component. The depth or stencil component is selected by the aspectMask of the
image view.

Vulkan 1.0 - A Specification 303/615

Each component is converted based on its type and size (as defined in the Format Definition section for each
VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers, Unsigned 11-Bit Floating-Point
Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-Point Data Conversion, and Shared Exponent to RGB.

If the image format is SRGB, the color components are first converted as if they are UNORM, and then sRGB to linear
conversion is applied to the R, G, and B components as described in the " KHR_DF_TRANSFER_SRGB™" section of the
Khronos Data Format Specification. The A component, if present, is unchanged.

If the image view format is block-compressed, then the texel value is first decoded, then converted based on the type and
number of components defined by the compressed format.

15.3.3 Texel Replacement
A texel is replaced if it is one (and only one) of:

e aborder texel, or
e an invalid texel, or

* a sparse unbound texel.

Border texels are replaced with a value based on the image format and the bordercColor of the sampler. The border
color is:

Table 15.1: Border Color B

Sampler borderColor
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK

Corresponding Border Color
B =(0.0,0.0,0.0,0.0)

VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK B=(0.0,0.0,0.0,1.0)
VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE B=(1.0,1.0,1.0,1.0)
VK_BORDER_COLOR_INT_TRANSPARENT_ BLACK B =(0,0,0,0)
VK_BORDER_COLOR_INT_OPAQUE_BLACK B=(0,0,0,1)
VK_BORDER_COLOR_INT_OPAQUE_WHITE B=(1,1,1,1)

This is substituted for the texel value by replacing the number of components in the image format

Table 15.2: Border Texel Components After Replacement

Texel Aspect or Format

Component Assignment

Depth aspect D= (B,)
Stencil aspect S=(B,)

One component color format C.=(By)
Two component color format Crg = (B, By)

Three component color format

Crgb - (BﬁBngb)

Four component color format

Crgba = (BraBgbeyBa)

If the read operation is from a buffer resource, and the robustBufferAccess feature is enabled, an invalid texel is
replaced as described here.

If the robustBufferAccess feature is not enabled, the value of an invalid texel is undefined.

If the VkPhysicalDeviceSparseProperties property residencyNonResidentStrict is true, a sparse
unbound texel is replaced with zero values in the same fashion as described for reads from buffer resources above.

If residencyNonResidentStrict is false, the read must be safe, but the value of the sparse unbound texel is
undefined.

15.3.4 Depth Compare Operation

If the image view’s format is depth and the operation is a Dref instruction, a depth comparison is performed. The initial
value of the result r is 0.0, which is replaced with 1.0 if the result of the compare operation is frue. The compare
operation is selected by the compareop member of the sampler.

r=20.0 initial value
Doy <D; for LEQUAL

Dy > D; for GEQUAL

D,y < D; for LESS

Doy > D; for GREATER

r=1.0
D,y =D, for EQUAL
Dy # D; for NOTEQUAL
true for ALWAYS
false for NEVER
where:
Dyor = shaderOp.Dy,¢ (from optional SPIR-V operand)
Dy texel depth value

15.3.5 Conversion to RGBA

The texel is expanded from one, two, or three to four components based on the image base color:

Table 15.3: Border Texel Components After Replacement

Texel Aspect or Format RGBA Color

Depth aspect Cropa = (D,0,0,0ne)
Stencil aspect Cropa = (S,0,0,0ne)
One component color format Cropa = (Cr,0,0,0ne)
Two component color format Croba = (Crg,0,0ne)
Three component color format Croba = (Crop,0ne)
Four component color format Crgba = Crgba

where one = 1.0f for floating-point formats and depth aspects, and one = 1 for integer formats and stencil aspects.

Vulkan 1.0 - A Specification 305/615

15.3.6 Component Swizzle

All texel input instructions apply a swizzle based on the VkComponent Swizzle enums in the components member
of the VkImageViewCreateInfo structure for the image being read. The swizzle can rearrange the components of
the texel, or substitute zero and one for any components. It is defined as follows for the R component, and operates
similarly for the other components.

Crepa|R] for RED swizzle
Creba[G] for GREEN swizzle
Crepa[B] for BLUE swizzle
C;gba [R] = { CrepalA] for ALPHA swizzle
0 for ZERO swizzle
one for ONE swizzle

Crepa[R] for IDENTITY swizzle
where:

Chpa[R]is the RED component
Cba|Glis the GREEN component
Crba|Blis the BLUE component
Cirgba|Alis the ALPHA component
one = 1.0f for floating point components
one =1 for integer components
For each component this is applied to, the VK_COMPONENT_SWIZZLE_IDENTITY swizzle selects the corresponding
component from Cjgp,.

If the border color is one of the VK_BORDER_COLOR_*_OPAQUE_BLACK enums and the VkComponentSwizzle
is not VK_COMPONENT_SWIZZLE_IDENTITY for all components (or the equivalent identity mapping), the value of
the texel after swizzle is undefined.

15.3.7 Sparse Residency

OpImageSparse* instructions return a struct which includes a residency code indicating whether any texels accessed
by the instruction are sparse unbound texels. This code can be interpreted by the
OpImageSparseTexelsResident instruction which converts the residency code to a boolean value.

15.4 Texel Output Operations

Texel output instructions are SPIR-V image instructions that write to an image. Texel output operations are a set of steps
that are performed on state, coordinates, and texel values while processing a texel output instruction, and which are
common to some or all texel ouitput instructions. They include the following steps, which are performed in the listed
order:

* Validation operations

— Format validation
— Coordinate validation

— Sparse validation

* Texel output format conversion

15.4.1 Texel Output Validation Operations

Texel output validation operations inspect instruction/image state or coordinates, and in certain circumstances cause the
write to have no effect. There are a series of validations that the texel undergoes.

15.4.1.1 Texel Format Validation

If the image format of the OpType Image is not compatible with the Vk ImageView’s format, the effect of the write on
the image view’s memory is undefined, but the write must not access memory outside of the image view.

15.4.2 Integer Texel Coordinate Validation

The integer texel coordinates are validated according to the same rules as for texel input coordinate validation.

If the texel fails integer texel coordinate validation, then the write has no effect.

15.4.3 Sparse Texel Operation

If the texel attempts to write to an unbound region of a sparse image, the texel is a sparse unbound texel. In such a case, if
the VkPhysicalDeviceSparseProperties property residencyNonResidentStrict is VK_TRUE, the sparse
unbound texel write has no effect. If residencyNonResidentStrict is VK_FALSE, the effect of the write is
undefined but must be safe. In addition, the write may have a side effect that is visible to other image instructions, but
must not be written to any device memory allocation.

15.4.4 Texel Output Format Conversion

Texels undergo a format conversion from the floating point, signed, or unsigned integer type of the texel data to the
VkFormat of the image view. Any unused components are ignored.

Each component is converted based on its type and size (as defined in the Format Definition section for each
VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers and Fixed-Point Data Conversion.

15.5 Derivative Operations

SPIR-V derivative instructions include OpDPdx, OpDPdy, OpDPdxFine, OpDPdyFine, OpDPdxCoarse, and
OpDPdyCoarse. Derivative instructions are only available in a fragment shader.

Vulkan 1.0 - A Specification 307 /615

dPdx,

dPdy,
dPdy,
t

dPdx,

Derivatives are computed as if there is a 2x2 neighborhood of fragments for each fragment shader invocation. These
neighboring fragments are used to compute derivatives with the assumption that the values of P in the neighborhood are
piecewise linear. It is further assumed that the values of P in the neighborhood are locally continuous, therefore
derivatives in non-uniform control flow are undefined.

dexil N dex,-O,jO =Py jo — Pi.jo
dex,‘hjl :dexl-O,jl =L _Pi(),jl
dPdy, j, = dPdy;, j, = Pig.j1 = Py jo
dPdy;, j, = dPdy;, j, =Py =Py jo

The Fine derivative instructions must return the values above, for a group of fragments in a 2x2 neighborhood. Coarse
derivatives may return only two values. In this case, the values should be:

dPdx = {dP dx;, j, preferred
dPdy = {dey i0J0 preferred

OpDPdx and OpDPdy must return: the same result as either OpDPdxF ine or OpDPdxCoarse and either
OpDPdyFine or OpDPdyCoarse, respectively. Implementations must make the same choice of either coarse or fine
for both OpDPdx and OpDPdy, and implementations should make the choice that is more efficient to compute.

15.6 Normalized Texel Coordinate Operations

If the image sampler instruction provides normalized texel coordinates, some of the following operations are performed.

15.6.1 Projection Operation

For Pro3j image operations, the normalized texel coordinates (s,7,7,¢g,a) and (if present) the D, coordinate are
transformed as follows:

s= -, for 1D, 2D, or 3D image
q
t .
t= -, for 2D or 3D image
q
r .
r=-, for 3D image
q
D
Dy = Tf if provided

15.6.2 Derivative Image Operations
Derivatives are used for level-of-detail selection. These derivatives are either implicit (in an ImplicitLod image
instruction in a fragment shader) or explicit (provided explicitly by shader to the image instruction in any shader).

For implicit derivatives image instructions, the derivatives of texel coordinates are calculated in the same manner as
derivative operations above. That is:

ds/dx = dPdx(s), ds/dy = dPdy(s), for 1D, 2D, Cube, or 3D image
dt/dx = dPdx(t), dt/dy = dPdy(t), for 2D, Cube, or 3D image
du/dx = dPdx(u), du/dy = dPdy(u), for Cube or 3D image

Partial derivatives not defined above for certain image dimensionalities are set to zero.

For explicit level-of-detail image instructions, if the optional SPIR-V operand Grad is provided, then the operand values
are used for the derivatives. The number of components present in each derivative for a given image dimensionality
matches the number of partial derivatives computed above.

If the optional SPIR-V operand Lod is provided, then derivatives are set to zero, the cube map derivative transformation
is skipped, and the scale factor operation is skipped. Instead, the floating point scalar coordinate is directly assigned to
Apase as described in Level-of-Detail Operation.

15.6.3 Cube Map Face Selection and Transformations

For cube map image instructions, the (s,#,7) coordinates are treated as a direction vector (r, ry, 7). The direction vector
is used to select a cube map face. The direction vector is transformed to a per-face texel coordinate system (S face,?face)-
The direction vector is also used to transform the derivatives to per-face derivatives.

15.6.4 Cube Map Face Selection

The direction vector selects one of the cube maps face’s layers based on the largest magnitude coordinate direction (the
major axis direction). Since two or more coordinates can have identical magnitude, the implementation must have rules
to disambiguate this situation.

Vulkan 1.0 - A Specification 309/615

The rules should have as the first rule that r, wins over ry and ry, and the second rule that r, wins over r,. An
implementation may choose other rules, but the rules must be deterministic and depend only on (ry,ry,r;).

The layer number (corresponding to a cube map face), the coordinate selections for s, t., ., and the selection of
derivatives, are determined by the major axis direction as specified in the following two tables.

Table 15.4: Cube map face and coordinate selection

Major Layer Cube Map | s, te re
Axis Number Face

Direction

+ry 0 PositiveX —r; —Ty Iy
—Ty 1 NegativeX | +r; —Ty Ty
+ry 2 PositiveY +ry +r; Iy
—ry 3 NegativeY | +ry —r; ry
+r; 4 PositiveZ +7y —ry r;
—r; 5 NegativeZ | —ry —Ty r,

Table 15.5: Cube map derivative selection

Major dsc/dx ds./dy dt./dx dt./dy dre/0x dr./dy
Axis Di-

rection

+ry —dr./dx | —dr;/dy | —dry/dx | —dry/dy | +dry/dx | +Ir,/dy
—ry +dr;/dx | +9dr;/dy | —dry/dx | —dry/dy | —dry/dx | —dr./dy
+ry +dr/dx | +dry/dy | +9dr./dx | +dr./dy | +dr,/dx | +dr,/dy
—ry +dr./dx | +dr/dy | —dr./dx | —dr./dy | —dr,/dx | —dry/dy
+r, +dry/dx | +9dry/dy | —dry/dx | —dr,/dy | +dr./dx | +dr;/dy
—r, —dry/dx | —dry/dy | —dry/dx | —dry/dy | —dr;/dx | —dr./dy

15.6.5 Cube Map Coordinate Transformation

Ky :lxi_’_l
face =3 "] T2
tfllcezlxi+l

2 rel 2

15.6.6 Cube Map Derivative Transformation

ISface O (1 L Se +1)
ox Ox Irel
5 _w(sc)
dx 2 dx \rel

ISface |7c] xz?sc/&x—schrC/ax
dx 2 (re)

Osface 1 <|rL X 9s¢/dy — 5 % arc/8y>
=2

dy (re)
M_ 1 |re| x dt./dx — t¢x8r6/8x
ox 2~ (re)
atface 1 |rc‘ x&tc/ay—tCXQrc/ay
Plface _ - o .
9y 2 (rc)

15.6.7 Scale Factor Operation, Level-of-Detail Operation and Image Level(s) Selection

Level-of-detail selection can be either explicit (provided explicitly by the image instruction) or implicit (determined from
a scale factor calculated from the derivatives).

15.6.7.1 Scale Factor Operation

The magnitude of the derivatives are calculated by:

My = \8s/8x| X Whase
My = |0t /9x| X hpgse
My = \8r/8x| X dpase

Myy = |05/9Y| X Wpgse
myy = [0t /Y| X hpage
My = |01/ Y| X dpase

where:

dt/dx=0t/dy=0 (for 1D image)
dr/dx=2dr/dy=0 (for 1D, 2D or Cube image)

Whase = Image.w
hpase = image.h
dpase = image.d
of the baseMipLevel (from image descriptor)

Vulkan 1.0 - A Specification 311/615

The scale factors (py, py) should be calculated by:

Px = \/ m%x + m%x + m%vx
— /2 2 2
Py - muy + mvy + mwy

The ideal functions p, and p, may be approximated with functions f; and f,, subject to the following constraints:

fx 1s continuous and monotonically increasing in each of m,,,, m,,, and m,,

fy is continuous and monotonically increasing in each of m,y,m,y, and m,,

max (|my|, (M| s M) <fo < e+ 0] 4 [y

My} <y < [y + [y [y |

max (|myy |, |my|,

The minimum and maximum scale factors (Opmin, Pmax) are determined by:

Pmax = maX(vapy)
Pmin = min(vapy)

N = min < ’meax—‘ ,maxAniw>
Pmin

sampler.maxapiso = maxAnisotropy (from sampler descriptor)

The sampling rate is determined by:

where:

limits.maxay,is, = maxSamplerAnisotropy (from physical device limits)

MaXApiso = Min (sampler.maxapiso, limits.maxapiso)

If Pimax = Pmin = 0, then all the partial derivatives are zero, the fragment’s footprint in texel space is a point, and N should
be treated as 1. If p,;,qx # 0 and p,,;, = O then all partial derivatives along one axis are zero, the fragment’s footprint in
texel space is a line segment, and N should be treated as maxa,;s,. However, anytime the footprint is small in texel space
the implementation may use a smaller value of N, even when p,,;;, is zero or close to zero.

An implementation may round N up to the nearest supported sampling rate.

If N =1, sampling is isotropic. If N > 1, sampling is anistropic.
15.6.7.2 Level-of-Detail Operation

The level-of-detail parameter A is computed as follows:

shaderOp.Lod (from optional SPIR-V operand)
log, (Paes) otherwise

/’Lbase(xay) = {

A'(x,¥) = Apase + clamp(sampler.bias + shaderOp.bias)

lodmax, A > lodpax
2= ;V7 lodmin < A< lodyax
lodyin, A< lod,yin

undefined, lodyin > lodpgy

where:

sampler.bias = mipLodBias (from sampler descriptor)

Bias (from optional SPIR-V operand)

shaderOp.bias = .
0 otherwise
sampler.lod,;, = minLod (from sampler descriptor)

MinLod (from optional SPIR-V operand)

haderOp.lody, =
Suaaertp-Lodmn {0 otherwise

lod iy = max(sampler.lody;,, shaderOp.lod,y,,)
lodyae = maxLod (from sampler descriptor)

15.6.7.3 Image Level(s) Selection

The image level(s) d,dy;, and d;, which texels are read from are selected based on the level-of-detail parameter, as
follows. If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_NEAREST, then level d is used:

levelpgse, A< %
d = | nearest(L), A > %,levelbaseJrl < q+%
q, l>%,levelbase+l>q+%

where:

{levelb,m +A+ ﬂ —1, preferred
|levelpase + A+ 5 |, alternative

nearest(L) = {

and where q is the IevelCount from the subresourceRange of the image view.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_LINEAR, two neighboring levels are selected:

dh' _ q, levelbase + A > q
' |levelpase + A, otherwise
4 = q, levelpase + A > q
lo = dpi+ 1, otherwise

0 is the fractional value used for linear filtering between levels.

6 = frac(1)

Vulkan 1.0 - A Specification 313/615

15.6.8 (s,i,r,q,a) to (u,v,w,a) Transformation

The normalized texel coordinates are scaled by the image level dimensions and the array layer is selected. This
transformation is performed once for each level (d or dj; and d},) used in filtering.

S(x7 y) X Widthlevel

0 for 1D images
t(x,y) X heightje,.; otherwise

(x,y) =
v(x,y) =
0 for 2D or Cube images

wix,y) =

r(x,y) X depthje,.; otherwise

(x,) a(x,y) for array images
a(x,y) = .
Y 0 otherwise

Operations then proceed to Unnormalized Texel Coordinate Operations.

15.7 Unnormalized Texel Coordinate Operations

15.7.1 (u,v,w,a) to (i,j,k,I,n) Transformation And Array Layer Selection

The unnormalized texel coordinates are transformed to integer texel coordinates relative to the selected mipmap level.

The layer index 1 is computed as:
I = clamp(RNE(a),0,layerCount — 1) + baseArrayLayer

where layerCount is the number of layers in the subresource range of the image view, baseArrayLayer is the first
layer from the subresource range, and where:

roundTiesToEven(a) preferred, from IEEE Std 754-2008 Floating-Point Arithmetic
la+ 3] alternative

RNE(a) = {

The sample index n is assigned the value zero.

Nearest filtering (VK_FILTER_NEAREST) computes the integer texel coordinates that the unnormalized coordinates lie
within:

i=|u
j=1
k=|w]

Linear filtering (VK_FILTER_LINEAR) computes a set of neighboring coordinates which bound the unnormalized

coordinates. The integer texel coordinates are combinations of iy or iy, jo or ji,ko or ki, as well as weights o, B, and?y.

ip = u—;J i1=1ip+1
. 1 .

Jo= V—ZJ Ji=Jjo+1
ko = W;J ki =ko+1

1
B = frac (v— 2)
1
vy = frac (w 2)

If the image instruction includes a ConstOf fset operand, the constant offsets (A;,A;,Ay) are added to (i, j,k)
components of the integer texel coordinates.

15.8 Image Sample Operations

15.8.1 Wrapping Operation

Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a
miplevel then VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used
within a miplevel then sampling at the edges is performed as described earlier in the Cube map edge handling section.

The first integer texel coordinate i is transformed based on the addressModeU parameter of the sampler.

imodsize for repeat

(size — 1) — mirror((imod(2 X size)) — size)
clamp(i,0,size — 1)

clamp(i, —1, size)

clamp(mirror(i),0, size — 1)

for mirrored repeat

for clamp to edge

for clamp to border

for mirror clamp to edge

where:

n forn>0

—(1+n) otherwise

mirror(n) = {

Jj (for 2D and Cube image) and & (for 3D image) are similarly transformed based on the addressModeV and
addressModew parameters of the sampler, respectively.

15.8.2 Texel Gathering

SPIR-V instructions with Gather in the name return a vector derived from a 2x2 block of texels in the base level of the
image view. The rules for the LINEAR minification filter are applied to identify the four selected texels. Each texel is
then converted to an RGBA value according to conversion to RGBA and then swizzled. A four-component vector is then

Vulkan 1.0 - A Specification 315/615

assembled by taking the component indicated by the Component value in the instruction from the swizzled color value
of the four texels:

T[R] = Tioj1 [levelpage|[comp]
T[G] = Ti1 1 [levelpase|[comp]
T[B] = Ti1 jo|levelpase|[comp]
T[A] = Tiojo[levelpage|[comp]

where:

t[levelpyse][R], for comp =0

G|, forcomp =1

ellevelyasellcomp] = { i for comi =2
t[levelpgse][A], for comp =3

comp from SPIR-V operand Component

15.8.3 Texel Filtering

If A is less than or equal to zero, the texture is said to be magnified, and the filter mode within a mip level is selected by
the magrilter in the sampler. If A is greater than zero, the texture is said to be minified, and the filter mode within a
mip level is selected by the minFilter in the sampler.

Within a miplevel, NEAREST filtering selects a single value using the (i, j, k) texel coordinates, with all texels taken from
layer 1.

Tiji[level], for 3D image
t[level] = < 7;;[level], for 2D or Cube image
T;[level], for 1D image

Within a miplevel, LINEAR filtering computes a weighted average of 8 (for 3D), 4 (for 2D or ube), or 2 (for 1D) texel
values, using the weights computed earlier:

wpllevel] = (1 —a)(1—B)(1 —7)Tiojoko[level]
(e)(1=B) (1= 7)Tijoko[Level]
(1=a)(B)(1 = 7)Tiojixo[level]
(e)(B)(1—7)Tin ko [level]
(1—a)(1 = B)(7)Tiojox1 [level]
(@)(1 = B)(7)Ti1jo1 [Level]
(I—a)(B)(7)Tiojixi [Level]

(

(X)(ﬁ)()Tlljlkl [level]

++ + + + + +

Top[level] = (1 —a)(1 — B)Tiojo[level]
+(a)(1—B)Titjollevel]
+ (1 —a)(B)Tioj1[level]
+ (a)(B)Titj1[level]

Tip[level] = (1 —) Typ[level]
+ ()71 [level]

Tpllevel], for 3D image
t[level] = { Typllevel], for 2D or Cube image
Tip[level], for 1D image

Finally, mipmap filtering either selects a value from one miplevel or computes a weighted average between neighboring
miplevels:

e 7(d], for mipmode BASE or NEAREST
| (1= 8)t[dy] + 81[dy,), for mipmode LINEAR

15.8.4 Texel Anisotropic Filtering

Anisotropic filtering is enabled by the anisotropyEnable in the sampler. When enabled, the image filtering scheme
accounts for a degree of anisotropy.

The particular scheme for anisotropic texture filtering is implementation dependent. Implementations should consider the
magFilter, minFilter and mipmapMode of the sampler to control the specifics of the anisotropic filtering scheme
used. In addition, implementations should consider minLod and maxLod of the sampler.

The following describes one particular approach to implementing anisotropic filtering for the 2D Image case,
implementations may choose other methods:

Given a magFilter, minFilter of LINEAR and a mipmapMode of NEAREST,

Instead of a single isotropic sample, N isotropic samples are be sampled within the image footprint of the image level d
to approximate an anisotropic filter. The sum Topgpiso 1S defined using the single isotropic Tp(u,v) at level d.

1 1 i 1 i
TDaniso = Z 72D <M (JC— 5 + N+1’y)) (V (X— 5 + NJrl) 7Y>>7 when p, > p,
i=1
1 i 1 i

1 N
T Daniso = N Z (2))) <M <X,y— 5 + M) ; (V <x7y_ E + M)))a when Py > Px
i=1

15.9 Image Operation Steps

Each step described in this chapter is performed by a subset of the image instructions:

* Texel Input Validation Operations, Format Conversion, Texel Replacement, Conversion to RGBA, and Component
Swizzle: Performed by all instructions except OpImageWrite.

* Depth Comparison: Performed by OpImage*Dref instructions.
* All Texel output operations: Performed by OpImageWrite.
* Projection: Performed by all OpImage*Proj instructions.

* Derivative Image Operations, Cube Map Operations, Scale Factor Operation, Level-of-Detail Operation and Image
Level(s) Selection, and Texel Anisotropic Filtering: Performed by all OpImageSample* and
OpImageSparseSample* instructions.

* (s,t,1,q,a) to (u,v,w,a) Transformation, Wrapping, and (u,v,w,a) to (i,j,k,1,n) Transformation And Array Layer Selection:
Performed by all OpImageSample, OpImageSparseSample, and OpImage*Gather instructions.

» Texel Gathering: Performed by OpImage*Gather instructions.
* Texel Filtering: Performed by all OpImageSample* and OpImageSparseSample* instructions.

* Sparse Residency: Performed by all OpImageSparse* instructions.

Vulkan 1.0 - A Specification 317 /615

Chapter 16

Queries

Queries provide a mechanism to return information about the processing of a sequence of Vulkan commands. Query
operations are asynchronous, and as such, their results are not returned immediately. Instead, their results, and their
availability status, are stored in a Query Pool. The state of these queries can be read back on the host, or copied to a
buffer object on the device.

The supported query types are Occlusion Queries, Pipeline Statistics Queries, and Timestamp Queries.

16.1 Query Pools

Queries are managed using query pool objects. Each query pool is a collection of a specific number of queries of a
particular type.

To create a query pool, call:

VkResult vkCreateQueryPool (

VkDevice device,
const VkQueryPoolCreateInfox pCreatelnfo,
const VkAllocationCallbacksx* pAllocator,
VkQueryPoolx* pQueryPool) ;

* device is the logical device that creates the query pool.

* pCreateInfois a pointer to an instance of the VkQueryPoolCreateInfo structure containing the number and
type of queries to be managed by the pool.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

* pQueryPool is a pointer to a VkQueryPool handle in which the resulting query pool object is returned.

Valid Usage

e device must be a valid VkDevice handle

* pCreateInfo must be a pointer to a valid VkQueryPoolCreateInfo structure
* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

* pQueryPool must be a pointer to a VkQueryPool handle

Return Codes

Success
e VK_SUCCESS
Failure

¢ VK_ERROR_OUT_OF_HOST_MEMORY
¢ VK_ERROR_OUT_OF_DEVICE_MEMORY

The definition of VkQueryPoolCreateInfo is:

typedef struct VkQueryPoolCreateInfo ({

VkStructureType sType;

const voidx pNext;
VkQueryPoolCreateFlags flags;

VkQueryType queryType;

uint32_t queryCount;
VkQueryPipelineStatisticFlags pipelineStatistics;

} VkQueryPoolCreateInfo;
The members of VkQueryPoolCreateInfo have the following meanings:

* sType is the type of this structure.
* pNext is NULL or a pointer to an extension-specific structure.
* flags is reserved for future use.

* gqueryType is the type of queries managed by the pool, and must be one of the values

typedef enum VkQueryType {
VK_QUERY_TYPE_OCCLUSION = O,
VK_QUERY_TYPE_PIPELINE_STATISTICS = 1,
VK_QUERY_TYPE_TIMESTAMP = 2,

} VkQueryType;

* gueryCount is the number of queries managed by the pool.

Vulkan 1.0 - A Specification 319/615

* pipelineStatistics is a bitmask indicating which counters will be returned in queries on the new pool, as
described below in Section 16.4. pipelineStatistics isignored if queryType is not VK_QUERY_TYPE__
PIPELINE_STATISTICS.

Valid Usage

* sType must be VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO
e pNext must be NULL

e flags mustbe 0

* queryType must be a valid VkQueryType value

* If the pipeline statistics queries feature is not enabled, queryType must not be VK_QUERY_TYPE_PIPELINE_
STATISTICS

o If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics mustbe a valid
combination of VkQueryPipelineStatisticFlagBits values

To destroy a query pool, call:

void vkDestroyQueryPool (

VkDevice device,
VkQueryPool queryPool,
const VkAllocationCallbacksx* pAllocator);

* device is the logical device that destroys the query pool.
* gueryPool is the query pool to destroy.

* pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

* device must be a valid VkDevice handle

e If queryPool is not VK_NULL_HANDLE, queryPool must be a valid VkQueryPool handle

* If pAllocatorisnot NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure
e If queryPool is a valid handle, it must have been created, allocated or retrieved from device

e Each of device and queryPool that are valid handles must have been created, allocated or retrieved from the
same VkPhysicalDevice

* All submitted commands that refer to queryPool must have completed execution

* If VkAllocationCallbacks were provided when queryPool was created, a compatible set of callbacks
must be provided here

e Ifno VkAllocationCallbacks were provided when queryPool was created, pAllocator must be NULL

Host Synchronization

* Host access to queryPool must be externally synchronized

16.2 Query Operation

The operation of queries is controlled by the commands vkCmdBeginQuery, vkCmdEndQuery,
vkCmdResetQueryPool, vkCmdCopyQueryPoolResults, and vkCmdWriteTimestamp.

In order for a VkCommandBuf fer to record query management commands, the queue family for which its
VkCommandPool was created must support the appropriate type of operations (graphics, compute) suitable for the
query type of a given query pool.

Each query in a query pool has a status that is either unavailable or available, and also has state to store the numerical
results of a query operation of the type requested when the query pool was created. Resetting a query via
vkCmdResetQueryPool sets the status to unavailable and makes the numerical results undefined. Performing a
query operation with vkCmdBeginQuery and vkCmdEndQuery changes the status to available when the query
finishes, and updates the numerical results. Both the availability status and numerical results are retrieved by calling
either vkGetQueryPoolResults or vkCmdCopyQueryPoolResults.

All query commands execute in order and are guaranteed to see the effects of each other’s memory accesses, with one
significant exception: vkCmdCopyQueryPoolResults may execute before the results of vkCmdEndQuery are
available. However, if VK_QUERY_RESULT_WAIT_BIT is used, then vkCmdCopyQueryPoolResults must
reflect the result of any previously executed queries. Other sequences of commands, such as vkCmdResetQueryPool
followed by vkCmdBeginQuery, must make the effects of the first command visible to the second command.

After query pool creation, each query is in an undefined state and must be reset prior to use. Queries must also be reset
between uses. Using a query that has not been reset will result in undefined behavior.

To reset a range of queries in a query pool, call:

void vkCmdResetQueryPool (

VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount) ;

e commandBuffer is the command buffer into which this command will be recorded.

Vulkan 1.0 - A Specification

* gueryPool is the handle of the query pool managing the queries being reset.

* firstQuery is the initial query index to reset.

* gueryCount is the number of queries to reset.

When executed on a queue, this command sets the status of query indices firstQuery, firstQuery + queryCount — 1 to

unavailable.

Valid Usage

VkDevice

e commandBuffer must be a valid VkCommandBuf fer handle
* gqueryPool must be a valid VkQueryPool handle

* commandBuffer must be in the recording state

* This command must only be called outside of a render pass instance

* firstQuery must be less than the number of queries in queryPool

* The VkCommandPool that commandBuf fer was allocated from must support graphics or compute operations

e Each of commandBuffer and queryPool must have been created, allocated or retrieved from the same

* The sum of firstQuery and queryCount must be less than or equal to the number of queries in gueryPool

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary COMPUTE

Once queries are reset and ready for use, query commands can be issued to a command buffer. Occlusion queries and
pipeline statistics queries count events - drawn samples and pipeline stage invocations, respectively - resulting from
commands that are recorded between a vkCmdBeginQuery command and a vkCmdEndQuery command within a
specified command buffer, effectively scoping a set of drawing and/or compute commands. Timestamp queries write
timestamps to a query pool.

A query must begin and end in the same command buffer, although if it is a primary command buffer, and the inherited
queries feature is enabled, it can execute secondary command buffers during the query operation. For a secondary
command buffer to be executed while a query is active, it must set the occlusionQueryEnable, queryFlags, and/or
pipelineStatistics members of VkCommandBufferBeginInfo to conservative values, as described in the
Command Buffer Recording section. A query must either begin and end inside the same subpass of a render pass
instance, or must both begin and end outside of a render pass instance (i.e. contain entire render pass instances).

Begin a query by calling:

void vkCmdBeginQuery (

VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query,
VkQueryControlFlags flags);

* commandBuffer is the command buffer into which this command will be recorded.

* gqueryPool is the query pool that will manage the results of the query.

* guery is the query index within the query pool that will contain the results.

* flags is a bitmask indicating constraints on the types of queries that can be performed. Valid bits in f1ags include:
typedef enum VkQueryControlFlagBits {

VK_QUERY_CONTROL_PRECISE_BIT = 0x00000001,
} VkQueryControlFlagBits;

If the queryType of the pool is VK_QUERY_TYPE_OCCLUSION and flags contains VK_QUERY_CONTROL_
PRECISE_BIT, an implementation must return a result that matches the actual number of samples passed. This is
described in more detail in Occlusion Queries.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* gqueryPool must be a valid VkQueryPool handle

* flags must be a valid combination of VkQueryControlFlagBits values

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support graphics or compute operations

e Each of commandBuffer and queryPool must have been created, allocated or retrieved from the same
VkDevice

Vulkan 1.0 - A Specification 323/615

* The query identified by queryPool and query must currently not be active
* The query identified by queryPool and query must be unavailable

* If the precise occlusion queries feature is not enabled, or the queryType used to create queryPool was not VK_
QUERY_TYPE_OCCLUSION, flags mustnot contain VK_QUERY_CONTROL_PRECISE_BIT

* gueryPool must have been created with a queryType that differs from that of any other queries that have been
made active, and are currently still active within commandBuffer

* guery must be less than the number of queries in queryPool

e If the queryType used to create queryPool was VK_QUERY_TYPE_OCCLUSION, the VkCommandPool that
commandBuf fer was created from must support graphics operations

* If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any of
the pipelineStatistics indicate graphics operations, the VkCommandPool that commandBuffer was
created from must support graphics operations

* If the queryType used to create gueryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any of
the pipelineStatistics indicate compute operations, the VkCommandPool that commandBuffer was
created from must support compute operations

Host Synchronization

* Host access to commandBuf fer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

After beginning a query, that query is considered active within the command buffer it was called in until that same query

is ended. Queries active in a primary command buffer when secondary command buffers are executed are considered
active for those secondary command buffers.

After the set of desired draw or dispatch commands, end a query by calling:

void vkCmdEndQuery (
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query) ;

e commandBuffer is the command buffer into which this command will be recorded.
* gueryPool is the query pool that is managing the results of the query.

* guery is the query index within the query pool where the result is stored.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

e queryPool must be a valid VkQueryPool handle

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations

e Each of commandBuffer and queryPool must have been created, allocated or retrieved from the same
VkDevice

* The query identified by queryPool and query must currently be active

* guery must be less than the number of queries in queryPool

Host Synchronization

* Host access to commandBuf fer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

As queries operate asynchronously, ending a query does not immediately set the query’s status to available. A query is
considered finished when the final results of the query are ready to be retrieved by vkGetQueryPoolResults and
vkCmdCopyQueryPoolResults, and this is when the query’s status is set to available.

Vulkan 1.0 - A Specification 325/615

Once a query is ended the query must finish in finite time, unless the state of the query is changed using other commands,
e.g. by issuing a reset of the query.

An application can retrieve results either by requesting they be written into application-provided memory, or by
requesting they be copied into a VkBuf fer. In either case, the layout in memory is defined as follows:

* The first query’s result is written starting at the first byte requested by the command, and each subsequent query’s
result begins st ride bytes later.

» Each query’s result is a tightly packed array of unsigned integers, either 32- or 64-bits as requested by the command,
storing the numerical results and, if requested, the availability status.

e [f VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is used, the final element of each query’s result is an integer
indicating whether the query’s result is available, with any non-zero value indicating that it is available.

* Occlusion queries write one integer value - the number of samples passed. Pipeline statistics queries write one integer
value for each bit that is enabled in the pipelineStatistics when the pool is created, and the statistics values are
written in bit order starting from the least significant bit. Timestamps write one integer value.

* If more than one query is retrieved and st ride is not at least as large as the size of the array of integers corresponding
to a single query, the values written to memory are undefined.

To retrieve status and results for a set of queries, call:

VkResult vkGetQueryPoolResults (

VkDevice device,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
size_t dataSize,
voidx pData,
VkDeviceSize stride,
VkQueryResultFlags flags);

* device is the logical device that owns the query pool.

* gueryPool is the query pool managing the queries containing the desired results.

* firstQuery is the initial query index.

* gueryCount is the number of queries. firstQuery and queryCount together define a range of queries.
* dataSize is the size in bytes of the buffer pointed to by ppata.

* pData is a pointer to a user-allocated buffer where the results will be written

* strideis the stride in bytes between results for individual queries within pData.

* flagsis a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

Valid bits in f1ags include:

typedef enum VkQueryResultFlagBits {
VK_QUERY_RESULT_64_BIT = 0x00000001,
VK_QUERY_RESULT_WAIT_BIT = 0x00000002,
VK_QUERY_RESULT_WITH_AVAILABILITY_BIT = 0x00000004,
VK_QUERY_RESULT_PARTIAL_BIT = 0x00000008,

} VkQueryResultFlagBits;

These bits have the following meanings:

* VK_QUERY_RESULT_64_BIT indicates the results will be written as an array of 64-bit unsigned integer values. If
this bit is not set, the results will be written as an array of 32-bit unsigned integer values.

* VK_QUERY_RESULT_WAIT_BIT indicates that Vulkan will wait for each query’s status to become available before
retrieving its results.

* VK_QUERY_RESULT_WITH_AVAILABILITY_BIT indicates that the availability status accompanies the results.

* VK_QUERY_RESULT_PARTIAL_BIT indicates that returning partial results is acceptable.

If no bits are set in flags, and all requested queries are in the available state, results are written as an array of 32-bit
unsigned integer values. The behavior when not all queries are available, is described below.

If VK_QUERY_RESULT_64_BIT is not set and the result overflows a 32-bit value, the value may either wrap or
saturate. Similarly, if VK_QUERY_RESULT_64_BIT is set and the result overflows a 64-bit value, the value may either
wrap or saturate.

If VK_QUERY_RESULT_WAIT_BIT is set, Vulkan will wait for each query to be in the available state before retrieving
the numerical results for that query. In this case, vkGetQueryPoolResults is guaranteed to succeed and return VK__
SUCCESS if the queries become available in a finite time (i.e. if they have been issued and not reset). If queries will
never finish (e.g. due to being reset but not issued), then vkGetQueryPoolResults may not return in finite time.

If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are both not set then no result values
are written to pData for queries that are in the unavailable state at the time of the call, and
vkGetQueryPoolResults returns VK_NOT_READY. However, availability state is still written to pData for those
queries if VK_QUERY_RESULT_WITH_AVAILABILITY_BITis set.

Note

Applications must take care to ensure that use of the VK_QUERY_RESULT_WAIT_BIT bit has the desired

effect.

For example, if a query has been used previously and a command buffer records the commands vkCmdRes
etQueryPool, vkCmdBeginQuery, and vkCmdEndQuery for that query, then the query will remain in
H the available state until the vkCmdResetQueryPool command executes on a queue. Applications can use

fences or events to ensure that an query has already been reset before checking for its results or availability

status. Otherwise, a stale value could be returned from a previous use of the query.

The above also applies when VK_QUERY_RESULT_WAIT_BIT is used in combination with VK_QUERY__

RESULT_WITH_AVAILABILITY_BIT. In this case, the returned availability status may reflect the result of

a previous use of the query unless the vkCmdResetQueryPool command has been executed since the last

use of the query.

Note

Applications can double-buffer query pool usage, with a pool per frame, and reset queries at the end of the frame
in which they are read.

If VK_QUERY_RESULT_PARTIAL_BIT isset, VK_QUERY_RESULT_WAIT_BIT is not set, and the query’s status is
unavailable, an intermediate result value between zero and the final result value is written to pData for that query.

VK_QUERY_RESULT_PARTIAL_BIT mustnot be used if the pool’s queryType is VK_QUERY_TYPE_TIMESTAMP.

Vulkan 1.0 - A Specification 327 /615

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, the final integer value written for each query is non-zero
if the query’s status was available or zero if the status was unavailable. When VK_QUERY_RESULT_WITH_
AVAILABILITY_BIT is used, implementations must guarantee that if they return a non-zero availability value then the
numerical results must be valid, assuming the results are not reset by a subsequent command.

Note
Satisfying this guarantee may require careful ordering by the application, e.g. to read the availability status
before reading the results.

Valid Usage

* device must be a valid VkDevice handle

* gueryPool must be a valid VkQueryPool handle

* pData must be a pointer to an array of dataSize bytes

* flags must be a valid combination of VkQueryResultFlagBits values
* The value of datasSize must be greater than 0

* gueryPool must have been created, allocated or retrieved from device

* Each of device and queryPool must have been created, allocated or retrieved from the same
VkPhysicalDevice

* firstQuery must be less than the number of queries in queryPool

e If VK_QUERY_RESULT_64_BIT is notsetin flags then pData and stride must be multiples of 4

e [f VK_QUERY_RESULT_64_BIT issetin flags then pData and stride must be multiples of 8

e The sum of firstQuery and queryCount must be less than or equal to the number of queries in gueryPool
* dataSize must be large enough to contain the result of each query, as described here

* If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not contain
VK_QUERY_RESULT_PARTIAL_BIT

Return Codes

Success

¢ VK_SUCCESS

e VK_NOT_READY
Failure

e VK_ERROR_OUT_OF_HOST_MEMORY
e VK_ERROR_OUT_OF_DEVICE_MEMORY
e VK_ERROR_DEVICE_LOST

To copy query statuses and numerical results directly to buffer memory, call:

void vkCmdCopyQueryPoolResults (

VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize stride,
VkQueryResultFlags flags);

* commandBuf fer is the command buffer into which this command will be recorded.

* gueryPool is the query pool managing the queries containing the desired results.

* firstQuery is the initial query index.

* gueryCount is the number of queries. firstQuery and queryCount together define a range of queries.
* dstBuffer is a VkBuf fer object that will receive the results of the copy command.

* dstOffset is an offset into dstBuffer.

* strideis the stride in bytes between results for individual queries within dst Buffer. The required size of the
backing memory for dstBuffer is determined as described above for vkGetQueryPoolResults.

* flagsis abitmask of VkQueryResultFlagBits specifying how and when results are returned.

vkCmdCopyQueryPoolResults is guaranteed to see the effect of previous uses of vkCmdResetQueryPool in
the same queue, without any additional synchronization. Thus, the results will always reflect the most recent use of the

query.

flags has the same possible values described above for the param:flags parameter of vkGet QueryPoolResults,
but the different style of execution causes some subtle behavioral differences. Because
vkCmdCopyQueryPoolResults executes in order with respect to other query commands, there is less ambiguity
about which use of a query is being requested.

If no bits are set in flags, results for all requested queries in the available state are written as 32-bit unsigned integer
values, and nothing is written for queries in the unavailable state.

If VK_QUERY_RESULT_64_BIT is set, the results are written as an array of 64-bit unsigned integer values as
described for vkGetQueryPoolResults.

If VK_QUERY_RESULT_WAIT_BIT is set, the implementation will wait for each query’s status to be in the available
state before retrieving the numerical results for that query. This is guaranteed to reflect the most recent use of the query

Vulkan 1.0 - A Specification 329 /615

on the same queue, assuming that the query is not being simultaneously used by other queues. If the query does not
become available in a finite amount of time (e.g. due to not issuing a query since the last reset), a VK_ERROR__
DEVICE_LOST error may occur.

Similarly, if VK_QUERY_RESULT_WITH_ AVAILABILITY_BIT issetand VK_QUERY_RESULT_WAIT_BIT isnot
set, the availability is guaranteed to reflect the most recent use of the query on the same queue, assuming that the query is
not being simultaneously used by other queues. As with vkGetQueryPoolResults, implementations must
guarantee that if they return a non-zero availability value, then the numerical results are valid.

If VK_QUERY_RESULT_PARTIAL_BIT isset, VK_QUERY_RESULT_WAIT_BIT is not set, and the query’s status is
unavailable, an intermediate result value between zero and the final result value is written for that query.

VK_QUERY_RESULT_PARTIAL_BIT mustnot be used if the pool’s queryType is VK_QUERY_TYPE_TIMESTAMP.

vkCmdCopyQueryPoolResults is considered to be a transfer operation, and its writes to buffer memory must be
synchronized using VK_PIPELINE_STAGE_TRANSFER_BIT and VK_ACCESS_TRANSFER_WRITE_BIT before
using the results.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

e queryPool must be a valid VkQueryPool handle

* dstBuffer must be a valid VkBuf fer handle

e flags must be a valid combination of VkQueryResultFlagBits values

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations
* This command must only be called outside of a render pass instance

¢ Each of commandBuffer, queryPool and dstBuffer must have been created, allocated or retrieved from the
same VkDevice

* firstQuery must be less than the number of queries in queryPool

* The sum of firstQuery and queryCount must be less than or equal to the number of queries in queryPool
* If VK_QUERY_RESULT_64_BIT is notsetin flags then dstoffset and stride must be multiples of 4

* [f VK_QUERY_RESULT_64_BIT issetin flags then dstOffset and stride must be multiples of 8

* dstBuffer must have enough storage, from dstOffset, to contain the result of each query, as described here

e If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not contain
VK_QUERY_RESULT_PARTIAL BIT

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary COMPUTE

Rendering operations such as clears, MSAA resolves, attachment load/store operations, and blits may or may not count
towards the results of queries. This behavior is implementation-dependent and may vary depending on the path used
within an implementation. For example, some implementations have several types of clears, some of which may include
vertices and some not.

16.3 Occlusion Queries

Occlusion queries track the number of samples that pass the per-fragment tests for a set of drawing commands. As such,
occlusion queries are only available on queue families supporting graphics operations. The application can then use these
results to inform future rendering decisions. An occlusion query is begun and ended by calling vkCmdBeginQuery
and vkCmdEndQuery, respectively. When an occlusion query begins, the count of passing samples always starts at
zero. For each drawing command, the count is incremented as described in Sample Counting. If £1ags does not contain
VK_QUERY_CONTROL_PRECISE_BIT an implementation may generate any non-zero result value for the query if the
count of passing samples is non-zero.

Note

Not setting VK_QUERY_CONTROL_PRECISE_BIT mode may be more efficient on some implementations,
and should be used where it is sufficient to know a boolean result on whether any samples passed the per-
fragment tests. In this case, some implementations may only return zero or one, indifferent of the actual number
of samples passing the per-fragment tests.

When an occlusion query finishes, the result for that query is marked as available. The application can then either copy
the result to a buffer (via vkCmdCopyQueryPoolResults) or request it be put into host memory (via
vkGetQueryPoolResults).

Note

If occluding geometry is not drawn first, samples can pass the depth test, but still not be visible in a final image.

Vulkan 1.0 - A Specification 331/615

16.4 Pipeline Statistics Queries

Pipeline statistics queries allow the application to sample a specified set of VkPipeline counters. These counters are
accumulated by Vulkan for a set of either draw or dispatch commands while a pipeline statistics query is active. As such,
pipeline statistics queries are available on queue families supporting either graphics or compute operations. Further, the
availability of pipeline statistics queries is indicated by the pipelineStatisticsQuery member of the
VkPhysicalDeviceFeatures object (see vkGetPhysicalDeviceFeatures and vkCreateDevice for
detecting and requesting this query type on a VkDevice).

A pipeline statistics query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery, respectively.
When a pipeline statistics query begins, all statistics counters are set to zero. While the query is active, the pipeline type
determines which set of statistics are available, but these must be configured on the query pool when it is created. If a
statistic counter is issued on a command buffer that does not support the corresponding operation, the value of that
counter is undefined after the query has finished. At least one statistic counter relevant to the operations supported on the
recording command buffer must be enabled.

pipelineStatisticsQuery is a bitmask indicating different possible pipeline statistics.
Valid bits in flags include:

typedef enum VkQueryPipelineStatisticFlagBits {
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_ VERTICES_BIT = 0x00000001,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_ PRIMITIVES_BIT 0x00000002,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_ SHADER_INVOCATIONS_BIT 0x00000004,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_ INVOCATIONS_BIT = 0x00000008,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT = 0x00000010,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT = 0x00000020,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT = 0x00000040,
VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT = 0x00000080,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT = 0x00000100,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT = 0 ¢

x00000200,

VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT = 0x00000400,

} VkQueryPipelineStatisticFlagBits;

These bits have the following meanings:

e [f VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT is set, queries managed by the
pool will count the number of vertices processed by the input assembly stage. Vertices corresponding to incomplete
primitives may or may not contribute to the count.

e [f VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT is set, queries managed by the
pool will count the number of primitives processed by the input assembly stage. If primitive restart is enabled,
restarting the primitive topology has no effect on the count. Incomplete primitives may or may not be counted.

e [f VK_QUERY_PIPELINE_STATISTIC_VERTEX_ SHADER_INVOCATIONS_BIT is set, queries managed by the
pool will count the number of vertex shader invocations. This counter’s value is incremented each time a vertex shader
is invoked.

e If VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT is set, queries managed by
the pool will count the number of geometry shader invocations. This counter’s value is incremented each time a
geometry shader is invoked. In case of of instanced geometry shaders, the geometry shader invocations count is
incremented for each separate instanced invocation.

* If VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER PRIMITIVES_BIT is set, queries managed by
the pool will count the number of primitives generated by geometry shader invocations. The counter’s value is

incremented each time the geometry shader emits a primitive. Restarting primitive topology using the SPIR-V
instructions OpEndPrimitive or OpEndStreamPrimitive has no effect on the geometry shader output
primitives count.

* If VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT is set, queries managed by the pool
will count the number of primitives processed by the Primitive Clipping stage of the pipeline. The counter’s value is
incremented each time a primitive reaches the primitive clipping stage.

e [f VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT is set, queries managed by the pool will
count the number of primitives output by the Primitive Clipping stage of the pipeline. The counter’s value is
incremented each time a primitive passes the primitive clipping stage. The actual number of primitives output by the
primitive clipping stage for a particular input primitive is implementation-dependent but must satisfy the following
conditions:

— If at least one vertex of the input primitive lies inside the clipping volume, the counter is incremented by one or
more.

— Otherwise, the counter is incremented by zero or more.

e If VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_ INVOCATIONS_BIT is set, queries managed by
the pool will count the number of fragment shader invocations. The counter’s value is incremented each time the
fragment shader is invoked.

e [f VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT is set, queries
managed by the pool will count the number of patches processed by the tessellation control shader. The counter’s value
is incremented once for each patch for which a tessellation control shader is invoked.

e [f VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT is
set, queries managed by the pool will count the number of invocations of the tessellation evaluation shader. The
counter’s value is incremented each time the tessellation evaluation shader is invoked.

e If VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT is set, queries managed by
the pool will count the number of compute shader invocations. The counter’s value is incremented every time the
compute shader is invoked. Implementations may skip the execution of certain compute shader invocations or execute
additional compute shader invocations for implementation-dependent reasons as long as the results of rendering
otherwise remain unchanged.

These values are intended to measure relative statistics on one implementation. Various device architectures will count
these values differently. Any or all counters may be affected by the issues described in Query Operation.

Note
For example, tile-based rendering devices may need to replay the scene multiple times, affecting some of the
counts.

If a pipeline has rasterizerDiscardEnable enabled, implementations may discard primitives after the final vertex
processing stage. As aresult, if rasterizerDiscardEnable is enabled, the clipping input and output primitives
counters may not be incremented.

When a pipeline statistics query finishes, the result for that query is marked as available. The application can copy the
result to a buffer (via vkCmdCopyQueryPoolResults), or request it be put into host memory (via
vkGetQueryPoolResults).

Vulkan 1.0 - A Specification 333/615

16.5 Timestamp Queries

Timestamps provide applications with a mechanism for timing the execution of commands. A timestamp is an integer
value generated by the VkPhysicalDevice. Unlike other queries, timestamps do not operate over a range, and so do
not use vkCmdBeginQuery or vkCmdEndQuery. The mechanism is built around a set of commands that allow the
application to tell the VkPhysicalDevice to write timestamp values to a query pool and then either read timestamp
values on the host (using vkGetQueryPoolResults) or copy timestamp values to a VkBuf fer (using
vkCmdCopyQueryPoolResults). The application can then compute differences between timestamps to determine
execution time.

The number of valid bits in a timestamp value is determined by the
VkQueueFamilyProperties::timestampValidBits property of the queue on which the timestamp is written.
Timestamps are supported on any queue which reports a non-zero value for t imestampValidBits via
vkGetPhysicalDeviceQueueFamilyProperties. If the timestampComputeAndGraphics limit is VK_TRUE,
timestamps are supported by every queue family that supports either graphics or compute operations (see
VkQueueFamilyProperties).

The number of nanoseconds it takes for a timestamp value to be incremented by 1 can be obtained from
VkPhysicalDevicelimits::timestampPeriod after a call to vkGetPhysicalDeviceProperties.

A timestamp is requested by calling:

void vkCmdWriteTimestamp (

VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool,
uint32_t query) ;

* commandBuf fer is the command buffer into which the command will be recorded.
* pipelineStageisone of the VkPipelineStageFlagBits, specifying a stage of the pipeline.
* gueryPool is the query pool that will manage the timestamp.

* guery is the query within the query pool that will contain the timestamp.

vkCmdWriteTimestamp latches the value of the timer when all previous commands have completed executing as far
as the specified pipeline stage, and writes the timestamp value to memory. When the timestamp value is written, the
availability status of the query is set to available.

Note

If an implementation is unable to detect completion and latch the timer at any specific stage of the pipeline, it
may instead do so at any logically later stage.

vkCmdCopyQueryPoolResults can then be called to copy the timestamp value from the query pool into buffer
memory, with ordering and synchronization behavior equivalent to how other queries operate. Timestamp values can also
be retrieved from the query pool using vkGetQueryPoolResults. As with other queries, the query must be reset
using vkCmdResetQueryPool before requesting the timestamp value be written to it.

While vkCmdWriteTimestamp can be called inside or outside of a render pass instance,
vkCmdCopyQueryPoolResults must only be called outside of a render pass instance.

Valid Usage

commandBuffer must be a valid VkCommandBuf fer handle

pipelineStage must be a valid VkPipelineStageFlagBits value

queryPool must be a valid VkQueryPool handle

commandBuf fer must be in the recording state

The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations

Each of commandBuffer and queryPool must have been created, allocated or retrieved from the same

VkDevice

The query identified by queryPool and query must be unavailable

The command pool’s queue family must support a non-zero value of timestampValidBits

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Both GRAPHICS
Secondary COMPUTE

Vulkan 1.0 - A Specification 335/615

Chapter 17

Clear Commands

17.1 Clearing Images Outside A Render Pass Instance

Color and depth/stencil images can be cleared outside a render pass instance using vkCmdClearColorImage or
vkCmdClearDepthStencilImage, respectively. These commands are only allowed outside of a render pass
instance.

To clear one or more subranges of a color image, call:

void vkCmdClearColorImage (

VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imagelayout,
const VkClearColorValuex pColor,
uint32_t rangeCount,
const VkImageSubresourceRangex pRanges) ;

e commandBuffer is the command buffer into which the command will be recorded.
* image is the image to be cleared.

* imageLayout specifies the current layout of the image subresource ranges to be cleared, and must be VK_IMAGE_
LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

* pColor is apointer to a VkClearColorValue structure that contains the values the image subresource ranges will
be cleared to (see Section 17.3 below).

* rangeCount is the number of subresource range structures in pRanges.

* pRanges points to an array of VkImageSubresourceRange structures that describe a range of mipmap levels,
array layers, and aspects to be cleared, as described in Image Views. The aspectMask of all subresource ranges must
only include VK_IMAGE_ASPECT_COLOR_BIT.

Each specified range in pRanges is cleared to the value specified by pColor.

Valid Usage

commandBuffer must be a valid VkCommandBuf fer handle

image must be a valid Vk Image handle

imageLayout must be a valid VkImageLayout value

pColor must be a pointer to a valid VkClearColorValue union

pRanges must be a pointer to an array of rangeCount valid VkImageSubresourceRange structures
commandBuf fer must be in the recording state

The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations
This command must only be called outside of a render pass instance

The value of rangeCount must be greater than 0

Each of commandBuffer and image must have been created, allocated or retrieved from the same VkDevice
image must have been created with VK_IMAGE _USAGE_TRANSFER_DST_BIT usage flag

imageLayout must specify the layout of the subresource ranges of image specified in pRanges at the time this
command is executed on a VkDevice

imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

The image range of any given element of pRanges must be a subresource range that is contained within image

Host Synchronization

Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary COMPUTE

To clear one or more subranges of a depth/stencil image, call:

Vulkan 1.0 - A Specification 337/615

void vkCmdClearDepthStencilImage (

VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imageLayout,
const VkClearDepthStencilValuex pDepthStencil,
uint32_t rangeCount,
const VkImageSubresourceRangex pRanges) ;

e commandBuffer is the command buffer into which the command will be recorded.
* image is the image to be cleared.

* imageLayout specifies the current layout of the image subresource ranges to be cleared, and must be VK_IMAGE__
LAYOUT_GENERAL or VK_TIMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

* pDepthStencil is a pointer to a VkClearDepthStencilValue structure that contains the values the depth and
stencil image subresource ranges will be cleared to (see Section 17.3 below).

* rangeCount is the number of subresource range structures in pRanges.

* pRanges points to an array of VkImageSubresourceRange structures that describe a range of mipmap levels,
array layers, and aspects to be cleared, as described in Image Views. The aspectMask of each subresource range in
pRanges can include VK_IMAGE_ASPECT_DEPTH_BIT if the image format has a depth component, and VK__
IMAGE_ASPECT_STENCIL_BIT if the image format has a stencil component. pDepthStencil is a pointer to a
VkClearDepthStencilValue structure that contains the values the image subresource ranges will be cleared to
(see Section 17.3 below).

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* image must be a valid Vk Image handle

* imageLayout must be a valid VkImageLayout value

* pDepthStencil must be a pointer to a valid VkClearDepthStencilValue structure

* pRanges must be a pointer to an array of rangeCount valid VkImageSubresourceRange structures

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support graphics operations

* This command must only be called outside of a render pass instance

* The value of rangeCount must be greater than 0

e Each of commandBuffer and image must have been created, allocated or retrieved from the same VkDevice

* image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

* imageLayout must specify the layout of the subresource ranges of image specified in pranges at the time this
command is executed on a VkDevice

* imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

* The image range of any given element of pRanges must be a subresource range that is contained within image

Host Synchronization

» Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary

Clears outside render pass instances are treated as transfer operations for the purposes of memory barriers.

17.2 Clearing Images Inside A Render Pass Instance

To clear one or more regions of color and depth/stencil attachments inside a render pass instance, call:

void vkCmdClearAttachments (

VkCommandBuffer commandBuffer,
uint32_t attachmentCount,
const VkClearAttachment* pAttachments,
uint32_t rectCount,

const VkClearRectx pRects) ;

e commandBuffer is the command buffer into which the command will be recorded.
* attachmentCount is the number of entries in the pAttachments array.

* pAttachments is a pointer to an array of VkClearAttachment structures defining the attachments to clear and
the clear values to use.

Vulkan 1.0 - A Specification 339/615

* rectCount is the number of entries in the pRect s array.

* pRects points to an array of VkClearRect structures defining regions within each selected attachment to clear.
describe these regions.

vkCmdClearAttachments can clear multiple regions of each attachment used in the current subpass of a render pass

instance. This command must be called only inside a render pass instance, and implicitly selects the images to clear
based on the current framebuffer attachments and the command parameters.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* pAttachments must be a pointer to an array of at tachmentCount valid VkClearAttachment structures
* pRects must be a pointer to an array of rectCount VkClearRect structures

* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics operations

* This command must only be called inside of a render pass instance

* The value of attachmentCount must be greater than 0

* The value of rectCount must be greater than 0

* If the aspectMask member of any given element of pAttachments contains VK_IMAGE_ASPECT_COLOR_
BIT, the colorAttachment member of those elements must refer to a valid color attachment in the current
subpass

* The rectangular region specified by a given element of pRect s must be contained within the render area of the
current render pass instance

* The layers specified by a given element of pRects must be contained within every attachment that
pAttachments refers to

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Inside GRAPHICS
Secondary

The VkClearRect struct is defined as follows:

typedef struct VkClearRect ({

VkRect2D rect;
uint32_t baseArraylayer;
uint32_t layerCount;

} VkClearRect;

* rect is the two-dimensional region to be cleared.
* baseArrayLayer is the first layer to be cleared.
* layerCount is the number of layers to clear.

The layers [baseArrayLayer,baseArrayLayer + layerCount) counting from the base layer of the attachment image view
are cleared.

The VkClearAttachment struct is defined as follows:

typedef struct VkClearAttachment {

VkImageAspectFlags aspectMask;
uint32_t colorAttachment;
VkClearValue clearValue;

} VkClearAttachment;

* aspectMask is a mask selecting the color, depth and/or stencil aspects of the attachment to be cleared. aspectMask
can include VK_IMAGE_ASPECT_COLOR_BIT for color attachments, VK_IMAGE_ASPECT_DEPTH_BIT for
depth/stencil attachments with a depth component, and VK_IMAGE_ASPECT_STENCIL_BIT for depth/stencil
attachments with a stencil component.

* colorAttachment is only meaningful if VK_IMAGE_ASPECT_COLOR_BIT is set in aspectMask, in which case it
is an index to the pColorAttachments array in the VkSubpassDescription structure of the current subpass
which selects the color attachment to clear.

* clearValue is the color or depth/stencil value to clear the attachment to, as described in Clear Values below.

No memory barriers are needed between vkCmdClearAttachments and preceding or subsequent draw or
attachment clear commands in the same subpass.

The vkCmdClearAttachments commands is not affected by the bound pipeline state.

Attachments can also be cleared at the beginning of a render pass instance by setting 1o0adOp (or stencilLoadOp) of
VkAttachmentDescription to VK_ATTACHMENT_LOAD_OP_CLEAR, as described for
vkCreateRenderPass.

Vulkan 1.0 - A Specification 341/615

Valid Usage

e aspectMask must be a valid combination of VkImageAspectFlagBits values
e aspectMask must not be 0

o If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, it must not include VK_IMAGE_ASPECT_
DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

¢ aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

17.3 Clear Values

The definition of VkClearColorValue is as follows:

typedef union VkClearColorValue {

float float32[4];
int32_t int32[4];
uint32_t uint32([47;

} VkClearColorValue;

Color clear values are taken from the VkClearColorValue union based on the format of the image or attachment.
Floating point, unorm, snorm, uscaled, packed float, and SRGB images use the £1oat32 member, unsigned integer
formats use the uint 32 member, and signed integer formats use the int 32 member. Floating point values are
automatically converted to the format of the image, with the clear value being treated as linear if the image is SRGB.

Unsigned integer values are converted to the format of the image by casting to the integer type with fewer bits. Signed
integer values are converted to the format of the image by casting to the smaller type (with negative 32-bit values
mapping to negative values in the smaller type). If the integer clear value is not representable in the target type (e.g.
would overflow in conversion to that type), the clear value is undefined.

The four array elements of the clear color map to R, G, B, and A components of image formats, in order.

If the image has more than one sample, the same value is written to all samples for any pixels being cleared. The
vkClear*Image commands do not support compressed image formats.

The definition of VkClearDepthStencilValue is as follows:

typedef struct VkClearDepthStencilValue {
float depth;
uint32_t stencil;

} VkClearDepthStencilValue;

* depth is the clear value for the depth aspect of the depth/stencil attachment. It is a floating-point value which is
automatically converted to the attachment’s format.

* stencil is the clear value for the stencil aspect of the depth/stencil attachment. It is a 32-bit integer value which is

converted to the attachment’s format by taking the appropriate number of LSBs.

Some parts of the API require either color or depth/stencil clear values, depending on the attachment. For this the
VkClearValue union is defined as follows:

typedef union VkClearValue {
VkClearColorValue color;
VkClearDepthStencilValue depthStencil;
} VkClearValue;

* color specifies the color image clear values to use when clearing a color image or attachment.

* depthStencil specifies the depth and stencil clear values to use when clearing a depth/stencil image or attachment.

This union is used to define the initial clear values in the VkRenderPassBeginInfo structure.

17.4 Filling Buffers

To clear buffer data, call:

void vkCmdFillBuffer (

VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize size,

uint32_t data);

e commandBuffer is the command buffer into which the command will be recorded.
* dstBuffer is the buffer to be filled.
* dstoffset is the byte offset into the buffer at which to start filling, and must be a multiple of 4.

* sizeis the number of bytes to fill, and must be either a multiple of 4, or VK_WHOLE_ SIZE to fill the range from
offset to the end of the buffer.

* data is the 4-byte word written repeatedly to the buffer to fill size bytes of data. The data word is written to memory
according to the host endianness.

vkCmdFillBuffer is treated as “transfer” operation for the purposes of synchronization barriers. The VK_BUFFER__
USAGE_TRANSFER_DST_BIT must be specified in usage of VkBuf ferCreateInfo in order for the buffer to be
compatible with vkCmdFillBuffer.

Valid Usage

e commandBuffer must be a valid VkCommandBuf fer handle
e dstBuffer must be a valid VkBuf fer handle
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support graphics or compute operations

Vulkan 1.0 - A Specification 343 /615

* This command must only be called outside of a render pass instance

¢ Each of commandBuffer and dstBuffer must have been created, allocated or retrieved from the same
VkDevice

* If sizeis notequal to VK_WHOLE_SIZE, the sum of dstOffset and size must be less than or equal to the size
of dstBuffer

* dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag
* dstOffset must be a multiple of 4

* If sizeisnotequal to VK_WHOLE_SIZE, size must be a multiple of 4

Host Synchronization

* Host access to commandBuf fer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside GRAPHICS
Secondary COMPUTE

17.5 Updating Buffers

To update buffer data inline in a command buffer, call:

void vkCmdUpdateBuffer (

VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const uint32_t«* pData) ;

e commandBuffer is the command buffer into which the command will be recorded.

* dstBuffer is a handle to the buffer to be updated.

* dstoffset is the byte offset into the buffer to start updating, and must be a multiple of 4.
* dataSize is the number of bytes to update, and must be a multiple of 4.

* pData is a pointer to the source data for the buffer update, and must be at least dataSize bytes in size.

datasSize must be less than or equal to 65536 bytes. For larger updates, applications can use buffer to buffer copies.
The source data is copied from the user pointer to the command buffer when the command is called.

vkCmdUpdateBuffer is only allowed outside of a render pass. This command is treated as “transfer” operation, for
the purposes of synchronization barriers. The VK_BUFFER_USAGE_TRANSFER_DST_BIT must be specified in
usage of VkBuf ferCreateInfo in order for the buffer to be compatible with vkCmdUpdateBuffer.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* dstBuffer must be a valid VkBuf fer handle

* pData must be a pointer to an array of dataSize/4 uint32_t values
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support transfer, graphics or compute
operations

* This command must only be called outside of a render pass instance

e Each of commandBuffer and dstBuffer must have been created, allocated or retrieved from the same
VkDevice

* The sum of dstOffset and dataSize must be less than or equal to the size of dstBuffer

* dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST BIT usage flag
* The value of dstoffset must be a multiple of 4

* The value of datasSize must be greater than 0

* The value of datasize must be less than 65536

* The value of datasSize must be a multiple of 4

Host Synchronization

» Host access to commandBuffer must be externally synchronized

Vulkan 1.0 - A Specification

345/615

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside TRANSFER
Secondary GRAPHICS

COMPUTE

Vulkan 1.0 - A Specification 347 /615

Chapter 18

Copy Commands

An application can copy buffer and image data using several methods depending on the type of data transfer. Data can be
copied between buffer objects with vkCmdCopyBuf fer and a portion of an image can be copied to another image with
vkCmdCopyImage. Image data can also be copied to and from buffer memory using vkCmdCopyImageToBuffer
and vkCmdCopyBuf ferToImage. Image data can be blitted (with or without scaling and filtering) with
vkCmdBlitImage. Multisampled images can be resolved to a non-multisampled image with
vkCmdResolveImage.

18.1 Common Operation

Some rules for valid operation are common to all copy commands:

* Copy commands must be recorded outside of a render pass instance.

* For non-sparse resources, the union of the source regions in a given buffer or image must not overlap the union of the
destination regions in the same buffer or image.

* For sparse resources, the set of bytes used by all the source regions must not intersect the set of bytes used by all the
destination regions.

* Copy regions must be non-empty.

» Regions must not extend outside the bounds of the buffer or image level, except that regions of compressed images can
extend as far as the dimension of the image level rounded up to a complete block.

* Source image subresources must be in either the VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_
TRANSFER_SRC_OPTIMAL layout. Destination image subresources must be in either the VK_TIMAGE_LAYOUT_
GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout. As a consequence, if an image subresource
is used as both source and destination of a copy, it must be in the VK_IMAGE_LAYOUT_GENERAL layout.

* Source images must have been created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit enabled and
destination images must have been created with the VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.

* Source buffers must have been created with the VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage bit enabled and
destination buffers must have been created with the VK_BUFFER_USAGE_TRANSFER_DST_BIT usage bit enabled.

All copy commands are treated as “transfer” operations for the purposes of synchronization barriers.

18.2 Copying Data Between Buffers

To copy data between buffer objects, call:

void vkCmdCopyBuffer (

VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferCopyx* pRegions) ;

* commandBuf fer is the command buffer into which the command will be recorded.

* srcBuffer is the source buffer.

* dstBuffer is the destination buffer.

* regionCount is the number of regions to copy.

* pRegions is a pointer to an array of VkBuf ferCopy structures specifying the regions to copy.

Each region in pRegions is copied from the source buffer to the same region of the destination buffer. srcBuffer and

dstBufrfer can be the same buffer or alias the same memory, but the result is undefined if the copy regions overlap in
memory.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* srcBuffer must be a valid VkBuf fer handle

* dstBuffer must be a valid VkBuf fer handle

* pRegions must be a pointer to an array of regionCount VkBufferCopy structures
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support transfer, graphics or compute
operations

* This command must only be called outside of a render pass instance
* The value of regionCount must be greater than 0

e Each of commandBuffer, srcBuffer and dstBuffer must have been created, allocated or retrieved from the
same VkDevice

* The sum of the srcoffset and copySize members of a given element of pRegions must be less than or equal
to the size of srcBuffer

* The sum of the dst0ffset and copySize members of a given element of pRegions must be less than or equal
to the size of dstBuffer

Vulkan 1.0 - A Specification

349 /615

* The union of the source regions, and the union of the destination regions, specified by the elements of pregions,

must not overlap in memory

* srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

* dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside TRANSFER
Secondary GRAPHICS

COMPUTE

Each element of pregions is a structure defined as:

typedef struct VkBufferCopy {

VkDeviceSize srcOffset;
VkDeviceSize dstOffset;
VkDeviceSize size;

} VkBufferCopy;

* srcOffset is the starting offset in bytes from the start of srcBuffer.

* dstOffset is the starting offset in bytes from the start of dstBuffer.

* sizeis the number of bytes to copy.

18.3 Copying Data Between Images

vkCmdCopyImage performs image copies in a similar manner to a host memcpy. It does not perform general-purpose
conversions such as scaling, resizing, blending, color-space conversion, or format conversions. Rather, it simply copies
raw image data. vkCmdCopyImage can copy between images with different formats, provided the formats are

compatible as defined below.

To copy data between image objects, call:

void vkCmdCopyImage (

VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImagelLayout,
VkImage dstImage,
VkImageLayout dstImagelLayout,
uint32_t regionCount,
const VkImageCopyx* pRegions) ;

* commandBuf fer is the command buffer into which the command will be recorded.

* srcImage is the source image.

* srcImageLayout is the current layout of the source image subresource.

* dstImage is the destination image.

* dstImageLayout is the current layout of the destination image subresource.

* regionCount is the number of regions to copy.

* pRegions is a pointer to an array of Vk ImageCopy structures specifying the regions to copy.

Each region in prRegions is copied from the source image to the same region of the destination image. srcImage and
dstImage can be the same image or alias the same memory.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* srcImage must be a valid Vk Image handle

* srcImageLayout mustbe a valid Vk ImageLayout value

* dstImage must be a valid Vk Image handle

* dstImageLayout mustbe a valid Vk ImageLayout value

* pRegions must be a pointer to an array of regionCount valid VkImageCopy structures
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support transfer, graphics or compute
operations

* This command must only be called outside of a render pass instance
* The value of regionCount must be greater than 0

e Each of commandBuffer, srcImage and dst Image must have been created, allocated or retrieved from the
same VkDevice

» The source region specified by a given element of pRegions must be a region that is contained within srcImage

Vulkan 1.0 - A Specification 351/615

* The destination region specified by a given element of pRegions must be a region that is contained within
dstImage

* The union of all source regions, and the union of all destination regions, specified by the elements of pregions,
must not overlap in memory

* srcImage must have been created with VK_TMAGE USAGE_TRANSFER_SRC_BIT usage flag

* srcImageLayout must specify the layout of the subresources of srcImage specified in pRegions at the time
this command is executed on a VkDevice

* srcImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

* dstImage must have been created with VK_IMAGE USAGE_TRANSFER_DST_BIT usage flag

* dstImageLayout must specify the layout of the subresources of dst Image specified in pRegions at the time
this command is executed on a VkDevice

* dstImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

* The VkFormat of each of srcImage and dst Image must be compatible, as defined below

* The sample count of srcImage and dst Image must match

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside TRANSFER
Secondary GRAPHICS

COMPUTE

Each element of pregions is a structure defined as:

typedef struct VkImageCopy {
VkImageSubresourcelayers srcSubresource;
VkOffset3D srcOffset;

—-—

VkImageSubresourcelayers dstSubresource;

VkOffset3D dstOffset;
VkExtent3D extent;
VkImageCopy;

srcSubresource and dstSubresource are VkImageSubresourcelLayers structures specifying the
subresources of the images used for the source and destination image data, respectively.

srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source and
destination image data.

extent is the size in texels of the source image to copy in width, height and depth. 1D images use only x and
width. 2D images use x, y, width and height. 3D images use x, y, z, width, height and depth.

Valid Usage

srcSubresource must be a valid VkImageSubresourcelayers structure
dstSubresource must be a valid VkImageSubresourcelayers structure
The aspectMask member of srcSubresource and dst Subresource must match
The layerCount member of srcSubresource and dstSubresource must match

If either of the calling command’s srcImage or dstImage parameters are of Vk ImageType VK_IMAGE_
TYPE_ 3D, the baseArrayLayer and layerCount members of both srcSubresource and dstSubresource
must be 0 and 1, respectively

The aspectMask member of srcSubresource must specify aspects present in the calling command’s
srcImage

The aspectMask member of dstSubresource must specify aspects present in the calling command’s
dstImage

srcOffset.x and (extent.width + srcOffset .x) must both be greater than or equal to 0 and less than or
equal to the source image subresource width

srcOffset.y and (extent.height + srcOffset.y) must both be greater than or equal to 0 and less than or
equal to the source image subresource height

srcOffset.zand (extent.depth+ srcOffset. z) must both be greater than or equal to 0 and less than or
equal to the source image subresource depth

dstOffset.x and (extent.width+ dstOffset.x) must both be greater than or equal to 0 and less than or
equal to the destination image subresource width

dstOffset.y and (extent.height + dstOffset.y) must both be greater than or equal to 0 and less than or
equal to the destination image subresource height

dstOffset.z and (extent.depth + dstOffset. z) must both be greater than or equal to 0 and less than or
equal to the destination image subresource depth

Vulkan 1.0 - A Specification 353/615

o If the calling command’s srcImage is a compressed format image:
¢ all members of srcOffset must be a multiple of the block size in the relevant dimensions

* extent.width must be a multiple of the block width or (extent.width + srcOffset.x) must equal the
source image subresource width

* extent.height must be a multiple of the block height or (extent.height + srcOffset.y) must equal the
source image subresource height

* extent.depth must be a multiple of the block depth or (extent.depth + srcOffset. z) must equal the
source image subresource depth

e If the calling command’s dst Image is a compressed format image:
* all members of dstOffset must be a multiple of the block size in the relevant dimensions

* extent.width must be a multiple of the block width or (extent.width + dstOffset.x) must equal the
destination image subresource width

* extent.height must be a multiple of the block height or (extent.height + dstOffset.y) must equal the
destination image subresource height

* extent.depth must be a multiple of the block depth or (extent.depth + dstOffset. z) must equal the
destination image subresource depth

* srcOffset, dstOffset, and extent must respect the image transfer granularity requirements of the queue
family that it will be submitted against, as described in Physical Device Enumeration

The VkImageSubresourcelayers structure is defined as:

typedef struct VkImageSubresourcelayers {

VkImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t baseArraylayer;
uint32_t layerCount;

} VkImageSubresourcelayers;

* aspectMask is a combination of VkImageAspectFlagBits, selecting the color, depth and/or stencil aspects to
be copied.

* mipLevel is the mipmap level to copy from.

* baseArrayLayer and layerCount are the starting layer and number of layers to copy.

Valid Usage

e aspectMask must be a valid combination of VkImageAspectFlagBits values

e aspectMask must not be 0

e If aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of VK_IMAGE_
ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

e aspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT
* mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created

* (baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in
VkImageCreateInfo when the image was created

Copies are done layer by layer starting with baseArrayLayer member of srcSubresource for the source and
dstSubresource for the destination. layercCount layers are copied to the destination image.

The formats of srcImage and dst Image must be compatible. Formats are considered compatible if their texel size in
bytes is the same between both formats. For example, VK_FORMAT_R8G8B8A8_UNORM is compatible with VK_
FORMAT_R32_UINT because because both texels are 4 bytes in size. Depth/stencil formats must match exactly.

vkCmdCopyImage allows copying between size-compatible compressed and uncompressed internal formats. Formats
are size-compatible if the texel size of the uncompressed format is equal to the block size in bytes of the compressed
format. Such a copy does not perform on-the-fly compression or decompression. When copying from an uncompressed
format to a compressed format, each texel of uncompressed data becomes a single block of compressed data. When
copying from a compressed format to an uncompressed format, a block of compressed data becomes a single texel of
uncompressed data. Thus, for example, it is legal to copy between a 128-bit uncompressed format and a compressed
format which uses 8-bit/texel 4x4 blocks, or between a 64-bit uncompressed format and a compressed format which uses
4-bit/texel 4x4 blocks.

When copying between compressed and uncompressed formats the extent members represent the texel dimensions of
the source image and not the destination. When copying from a compressed image to an uncompressed image the image
texel dimensions written to the uncompressed image will be source extent divided by the block size. When copying from
an uncompressed image to a compressed image the image texel dimensions written to the compressed image will be the
source extent multiplied by the block size. In both cases the number of bytes read and the number of bytes written will be
identical.

Copying to or from block-compressed images is typically done in multiples of the block. For this reason the extent
must be a multiple of the block dimension. There is one exception to this rule which is required to handle compressed
images created with dimensions that are not a multiple of the block dimensions. If the srcImage is compressed and if
extent.width is not a multiple of the block width then (extent.width + srcOffset . x) must equal the subresource
width, if extent.height is not a multiple of the block height then (extent . height + srcOffset.y) must equal the
subresource height and if extent . depth is not a multiple of the block depth then (extent.depth + srcoffset. z)
must equal the subresource depth. Similarily if the dst Image is compressed and if extent . width is not a multiple of
the block width then (extent.width + dstOffset.x) must equal the subresource width, if extent . height is not a
multiple of the block height then (extent.height + dstOffset.y) must equal the subresource height and if extent.
depth is not a multiple of the block depth then (extent.depth + dstOffset . z) must equal the subresource depth.
This allows the last block of the image in each non-multiple dimension to be included as a source or target of the copy.

vkCmdCopyImage can be used to copy image data between multisample images, but both images must have the same
number of samples.

18.4 Copying Data Between Buffers and Images

To copy data from a buffer object to an image object, call:

Vulkan 1.0 - A Specification 355/615

void vkCmdCopyBufferToImage (

VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage dstImage,
VkImageLayout dstImagelayout,
uint32_t regionCount,
const VkBufferImageCopyx* pRegions) ;

* commandBuf fer is the command buffer into which the command will be recorded.

* srcBuffer is the source buffer.

* dstImage is the destination image.

* dstImageLayout is the layout of the destination image subresources for the copy.

* regionCount is the number of regions to copy.

* pRegions is a pointer to an array of VkBuf ferImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the specified region of the source buffer to the specified region of the
destination image.

Valid Usage

e commandBuffer must be a valid VkCommandBuf fer handle

e srcBuffer must be a valid VkBuf fer handle

* dstImage must be a valid Vk Image handle

* dstImageLayout mustbe a valid VkImageLayout value

* pRegions must be a pointer to an array of regionCount valid VkBuf ferImageCopy structures
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuffer was allocated from must support transfer, graphics or compute
operations

* This command must only be called outside of a render pass instance
* The value of regionCount must be greater than 0

e Each of commandBuffer, srcBuffer and dst Image must have been created, allocated or retrieved from the
same VkDevice

* The buffer region specified by a given element of pRegions must be a region that is contained within srcBuffer
* The image region specified by a given element of pRegions must be a region that is contained within dstImage

* The union of all source regions, and the union of all destination regions, specified by the elements of pRegions,
must not overlap in memory

* srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

* dstImage must have been created with VK_TMAGE_USAGE_TRANSFER_DST_BIT usage flag

* dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

* dstImageLayout must specify the layout of the subresources of dst Image specified in pRegions at the time

this command is executed on a VkDevice

* dstImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_

LAYOUT_GENERAL

Host Synchronization

» Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside TRANSFER
Secondary GRAPHICS
COMPUTE
To copy data from an image object to a buffer object, call:
void vkCmdCopyImageToBuffer (
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImagelLayout,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferImageCopyx* pRegions) ;

e commandBuffer is the command buffer into which the command will be recorded.

* srcImage is the source image.

* srcImageLayout is the layout of the source image subresources for the copy.

e dstBuffer is the destination buffer.

Vulkan 1.0 - A Specification 357 /615

* regionCount is the number of regions to copy.

* pRegions is a pointer to an array of VkBuf fer ImageCopy structures specifying the regions to copy.

Each region in pregions is copied from the specified region of the source buffer to the specified region of the
destination image.

Valid Usage

* commandBuffer must be a valid VkCommandBuf fer handle

* srcImage must be a valid Vk Image handle

* srcImageLayout mustbe a valid VkImageLayout value

* dstBuffer must be a valid VkBuf fer handle

* pRegions must be a pointer to an array of regionCount valid VkBuf ferImageCopy structures
* commandBuffer must be in the recording state

* The VkCommandPool that commandBuf fer was allocated from must support transfer, graphics or compute
operations

* This command must only be called outside of a render pass instance
* The value of regionCount must be greater than 0

e Each of commandBuffer, srcImage and dstBuffer must have been created, allocated or retrieved from the
same VkDevice

» The image region specified by a given element of pRegions must be a region that is contained within srcImage
 The buffer region specified by a given element of pRegions must be a region that is contained within dstBuffer

* The union of all source regions, and the union of all destination regions, specified by the elements of pregions,
must not overlap in memory

* srcImage must have been created with VK_TMAGE_USAGE_TRANSFER_SRC_BIT usage flag
* srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

* srcImageLayout must specify the layout of the subresources of srcImage specified in pRegions at the time
this command is executed on a VkDevice

* srcImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

* dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

Host Synchronization

* Host access to commandBuffer must be externally synchronized

Command Properties

Command Buffer Levels Render Pass Scope Supported Queue Types
Primary Outside TRANSFER
Secondary GRAPHICS

COMPUTE

For both vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer, each element of pRegionsis a
structure defined as:

typedef struct VkBufferImageCopy {

VkDeviceSize bufferOffset;
uint32_t bufferRowLength;
uint32_t bufferImageHeight;
VkImageSubresourcelayers imageSubresource;
VkOffset3D imageOffset;
VkExtent3D imageExtent;

} VkBufferImageCopy;

* bufferOffset is the offset in bytes from the start of the buffer object where the image data is copied from or to.

* bufferRowLength and bufferImageHeight specify the data in buffer memory as a subregion of a larger two- or
three-dimensional image, and control the addressing calculations of data in buffer memory. If either of these values is
zero, that aspect of the buffer memory is considered to be tightly packed according to the imageExtent.

* imageSubresourceis an VkImageSubresourceLayers used to specify the specific subresources of the image
used for the source or destination image data.

* imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or destination image data.
* imageExtent is the size in texels of the image to copy in width, height and depth. 1D images use only x and

width. 2D images use x, y, width and height. 3D images use x, y, z, width, height and depth.

When copying to or from a depth or stencil aspect, the data in buffer memory uses a layout that is a (mostly) tightly
packed representation of the depth or stencil data. Specifically:

* data copied to or from the stencil aspect of any depth/stencil format is tightly packed with one VK_FORMAT_S8__
UINT value per texel.

* data copied to or from the depth aspect of a VK_FORMAT_D16_UNORM or VK_FORMAT_D16_UNORM_S8_UINT
format is tightly packed with one VK_FORMAT_D16_UNORM value per texel.

Vulkan 1.0 - A Specification 359 /615

* data copied to or from the depth aspect of a VK_FORMAT_D32_SFLOAT or VK_FORMAT_D32_SFLOAT_S8_
UINT format is tightly packed with one VK_FORMAT_D32_SFLOAT value per texel.

* data copied to or from the depth aspect of a VK_FORMAT_X8_D24_UNORM_PACK32 or VK_FORMAT_D24__
UNORM_S8_UINT format is packed with one 32-bit word per texel with the D24 value in the LSBs of the word, and
undefined values in the eight MSBs.

Note

To copy both the depth and stencil aspects of a depth/stencil format, two entries in pregions can be used,
where one specifies the depth aspect in imageSubresource, and the other specifies the stencil aspect.

Because depth or stencil aspect buffer to image copies may require format conversions on some implementations, they
are not supported on queues that do not support graphics.

Copies are done layer by layer starting with image layer baseArrayLayer member of imageSubresource.
layerCount layers are copied from the source image or to the destination image.

Valid Usage

* imageSubresource must be a valid VkImageSubresourcelayers structure

* bufferOffset must be a multiple of the calling command’s Vk Image parameter’s texel size

* bufferOffset must be a multiple of 4

* bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

* bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

* imageOffset.x and (imageExtent.width + imageOffset .x) must both be greater than or equal to 0 and
less than or equal to the image subresource width

* imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than or equal to 0 and less
than or equal to the image subresource height

* imageOffset. z and (imageExtent.depth + imageOffset . z) must both be greater than or equal to O and less
than or equal to the image subresource depth

* If the calling command’s Vk Image parameter is a compressed format image:

* bufferRowLength, bufferImageHeight and all members of imageOffset must be a multiple of the block
size in the relevant dimensions

* bufferOffset must be a multiple of the block size in bytes

* imageExtent.width must be a multiple of the block width or (imageExtent.width + imageOffset.x)
must equal the image subresource width

* imageExtent.height must be a multiple of the block height or (imageExtent.height + imageOffset.y)
must equal the image subresource height

* imageExtent.depth must be a multiple of the block depth or (imageExtent.depth+ imageOffset . z) must

equal the image subresource depth

e bufferOffset, bufferRowLength, bufferImageHeight and all members of imageOffset and
imageExtent must respect the image transfer granularity requirements of the queue family that it will be

submitted against, as described in Physical Device Enumeration

* The aspectMask member of srcSubresource must specify aspects present in the calling command’s

VkImage parameter

* The aspectMask member of pSubresource must only have a single bit set

e If the calling command’s Vk Image parameter is of Vk ImageType VK_IMAGE_TYPE_ 3D, the
baseArrayLayer and layerCount members of both srcSubresource and dstSubresource must be 0 and

1, respectively

Pseudocode for image/buffer addressing is:

rowLength = region->bufferRowLength;
if (rowLength == 0)
rowLength = region->imageExtent.width;

imageHeight = region->bufferImageHeight;
if (imageHeight == 0)

imageHeight = region->imageExtent.height;
texelSize = <texel size taken from the src/dstImage>;
address of (x,y,z) = region->bufferOffset + (((z *» imageHeight)

* texelSize;

+ y) * rowLength + x) <

where x,y,z range from (0,0,0) to region->imageExtent.{width,height, depth}.

Note that imageOffset does not affect addressing calculations for buffer memory. Instead, bufferoffset can be used

to select the starting address in buffer memory.

For block-compression formats, all parameters are still specified in texels rather than blocks, but the addressing math

operates on whole blocks. Pseudocode for compressed copy addressing is:

rowLength = region->bufferRowLength;
if (rowLength == 0)
rowLength = region->imag