// Copyright (c) 2016 The vulkano developers // Licensed under the Apache License, Version 2.0 // or the MIT // license , // at your option. All files in the project carrying such // notice may not be copied, modified, or distributed except // according to those terms. use cgmath::{Matrix3, Matrix4, Point3, Rad, Vector3}; use examples::{Normal, Vertex, INDICES, NORMALS, VERTICES}; use std::{sync::Arc, time::Instant}; use vulkano::{ buffer::{BufferUsage, CpuAccessibleBuffer, CpuBufferPool, TypedBufferAccess}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, SubpassContents, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo, }, format::Format, image::{view::ImageView, AttachmentImage, ImageAccess, ImageUsage, SwapchainImage}, instance::{Instance, InstanceCreateInfo}, pipeline::{ graphics::{ depth_stencil::DepthStencilState, input_assembly::InputAssemblyState, vertex_input::BuffersDefinition, viewport::{Viewport, ViewportState}, }, GraphicsPipeline, Pipeline, PipelineBindPoint, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, shader::ShaderModule, swapchain::{ acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError, SwapchainPresentInfo, }, sync::{self, FlushError, GpuFuture}, VulkanLibrary, }; use vulkano_win::VkSurfaceBuild; use winit::{ event::{Event, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; fn main() { // The start of this example is exactly the same as `triangle`. You should read the // `triangle` example if you haven't done so yet. let library = VulkanLibrary::new().unwrap(); let required_extensions = vulkano_win::required_extensions(&library); let instance = Instance::new( library, InstanceCreateInfo { enabled_extensions: required_extensions, // Enable enumerating devices that use non-conformant vulkan implementations. (ex. MoltenVK) enumerate_portability: true, ..Default::default() }, ) .unwrap(); let event_loop = EventLoop::new(); let surface = WindowBuilder::new() .build_vk_surface(&event_loop, instance.clone()) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.graphics && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = Some( device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0, ); let window = surface.object().unwrap().downcast_ref::().unwrap(); Swapchain::new( device.clone(), surface.clone(), SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count, image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage { color_attachment: true, ..ImageUsage::empty() }, composite_alpha: surface_capabilities .supported_composite_alpha .iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let vertex_buffer = CpuAccessibleBuffer::from_iter( device.clone(), BufferUsage { vertex_buffer: true, ..BufferUsage::empty() }, false, VERTICES, ) .unwrap(); let normals_buffer = CpuAccessibleBuffer::from_iter( device.clone(), BufferUsage { vertex_buffer: true, ..BufferUsage::empty() }, false, NORMALS, ) .unwrap(); let index_buffer = CpuAccessibleBuffer::from_iter( device.clone(), BufferUsage { index_buffer: true, ..BufferUsage::empty() }, false, INDICES, ) .unwrap(); let uniform_buffer = CpuBufferPool::::new( device.clone(), BufferUsage { uniform_buffer: true, ..BufferUsage::empty() }, ); let vs = vs::load(device.clone()).unwrap(); let fs = fs::load(device.clone()).unwrap(); let render_pass = vulkano::single_pass_renderpass!(device.clone(), attachments: { color: { load: Clear, store: Store, format: swapchain.image_format(), samples: 1, }, depth: { load: Clear, store: DontCare, format: Format::D16_UNORM, samples: 1, } }, pass: { color: [color], depth_stencil: {depth} } ) .unwrap(); let (mut pipeline, mut framebuffers) = window_size_dependent_setup(device.clone(), &vs, &fs, &images, render_pass.clone()); let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); let rotation_start = Instant::now(); let descriptor_set_allocator = StandardDescriptorSetAllocator::new(device.clone()); let command_buffer_allocator = StandardCommandBufferAllocator::new(device.clone()); event_loop.run(move |event, _, control_flow| { match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::RedrawEventsCleared => { let window = surface.object().unwrap().downcast_ref::().unwrap(); let dimensions = window.inner_size(); if dimensions.width == 0 || dimensions.height == 0 { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = match swapchain.recreate(SwapchainCreateInfo { image_extent: dimensions.into(), ..swapchain.create_info() }) { Ok(r) => r, Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return, Err(e) => panic!("Failed to recreate swapchain: {:?}", e), }; swapchain = new_swapchain; let (new_pipeline, new_framebuffers) = window_size_dependent_setup( device.clone(), &vs, &fs, &new_images, render_pass.clone(), ); pipeline = new_pipeline; framebuffers = new_framebuffers; recreate_swapchain = false; } let uniform_buffer_subbuffer = { let elapsed = rotation_start.elapsed(); let rotation = elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0; let rotation = Matrix3::from_angle_y(Rad(rotation as f32)); // note: this teapot was meant for OpenGL where the origin is at the lower left // instead the origin is at the upper left in Vulkan, so we reverse the Y axis let aspect_ratio = swapchain.image_extent()[0] as f32 / swapchain.image_extent()[1] as f32; let proj = cgmath::perspective( Rad(std::f32::consts::FRAC_PI_2), aspect_ratio, 0.01, 100.0, ); let view = Matrix4::look_at_rh( Point3::new(0.3, 0.3, 1.0), Point3::new(0.0, 0.0, 0.0), Vector3::new(0.0, -1.0, 0.0), ); let scale = Matrix4::from_scale(0.01); let uniform_data = vs::ty::Data { world: Matrix4::from(rotation).into(), view: (view * scale).into(), proj: proj.into(), }; uniform_buffer.from_data(uniform_data).unwrap() }; let layout = pipeline.layout().set_layouts().get(0).unwrap(); let set = PersistentDescriptorSet::new( &descriptor_set_allocator, layout.clone(), [WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)], ) .unwrap(); let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("Failed to acquire next image: {:?}", e), }; if suboptimal { recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( &command_buffer_allocator, queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![ Some([0.0, 0.0, 1.0, 1.0].into()), Some(1f32.into()), ], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, SubpassContents::Inline, ) .unwrap() .bind_pipeline_graphics(pipeline.clone()) .bind_descriptor_sets( PipelineBindPoint::Graphics, pipeline.layout().clone(), 0, set, ) .bind_vertex_buffers(0, (vertex_buffer.clone(), normals_buffer.clone())) .bind_index_buffer(index_buffer.clone()) .draw_indexed(index_buffer.len() as u32, 1, 0, 0, 0) .unwrap() .end_render_pass() .unwrap(); let command_buffer = builder.build().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(FlushError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("Failed to flush future: {:?}", e); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } _ => (), } }); } /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup( device: Arc, vs: &ShaderModule, fs: &ShaderModule, images: &[Arc], render_pass: Arc, ) -> (Arc, Vec>) { let dimensions = images[0].dimensions().width_height(); let depth_buffer = ImageView::new_default( AttachmentImage::transient(device.clone(), dimensions, Format::D16_UNORM).unwrap(), ) .unwrap(); let framebuffers = images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view, depth_buffer.clone()], ..Default::default() }, ) .unwrap() }) .collect::>(); // In the triangle example we use a dynamic viewport, as its a simple example. // However in the teapot example, we recreate the pipelines with a hardcoded viewport instead. // This allows the driver to optimize things, at the cost of slower window resizes. // https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport let pipeline = GraphicsPipeline::start() .vertex_input_state( BuffersDefinition::new() .vertex::() .vertex::(), ) .vertex_shader(vs.entry_point("main").unwrap(), ()) .input_assembly_state(InputAssemblyState::new()) .viewport_state(ViewportState::viewport_fixed_scissor_irrelevant([ Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0..1.0, }, ])) .fragment_shader(fs.entry_point("main").unwrap(), ()) .depth_stencil_state(DepthStencilState::simple_depth_test()) .render_pass(Subpass::from(render_pass, 0).unwrap()) .build(device) .unwrap(); (pipeline, framebuffers) } mod vs { vulkano_shaders::shader! { ty: "vertex", path: "src/bin/teapot/vert.glsl", types_meta: { use bytemuck::{Pod, Zeroable}; #[derive(Clone, Copy, Zeroable, Pod)] }, } } mod fs { vulkano_shaders::shader! { ty: "fragment", path: "src/bin/teapot/frag.glsl" } }