// Some relevant documentation: // // - Tessellation overview https://www.khronos.org/opengl/wiki/Tessellation // - Tessellation Control Shader https://www.khronos.org/opengl/wiki/Tessellation_Control_Shader // - Tessellation Evaluation Shader https://www.khronos.org/opengl/wiki/Tessellation_Evaluation_Shader // - Tessellation real-world usage 1 http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html // - Tessellation real-world usage 2 https://prideout.net/blog/?p=48 // Notable elements of this example: // // - Usage of a tessellation control shader and a tessellation evaluation shader. // - `tessellation_shaders` and `tessellation_state` are called on the pipeline builder. // - The use of `PrimitiveTopology::PatchList`. use std::{error::Error, sync::Arc}; use vulkano::{ buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Features, QueueCreateInfo, QueueFlags, }, image::{view::ImageView, Image, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, input_assembly::{InputAssemblyState, PrimitiveTopology}, multisample::MultisampleState, rasterization::{PolygonMode, RasterizationState}, tessellation::TessellationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ event::{Event, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::WindowBuilder, }; mod vs { vulkano_shaders::shader! { ty: "vertex", src: r" #version 450 layout(location = 0) in vec2 position; void main() { gl_Position = vec4(position, 0.0, 1.0); } ", } } mod tcs { vulkano_shaders::shader! { ty: "tess_ctrl", src: r" #version 450 // A value of 3 means a patch consists of a single triangle. layout(vertices = 3) out; void main(void) { // Save the position of the patch, so the TES can access it. We could define our // own output variables for this, but `gl_out` is handily provided. gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position; // Many triangles are generated in the center. gl_TessLevelInner[0] = 10; // No triangles are generated for this edge. gl_TessLevelOuter[0] = 1; // Many triangles are generated for this edge. gl_TessLevelOuter[1] = 10; // Many triangles are generated for this edge. gl_TessLevelOuter[2] = 10; // These are only used when TES uses `layout(quads)`. // gl_TessLevelInner[1] = ...; // gl_TessLevelOuter[3] = ...; } ", } } // There is a stage in between TCS and TES called Primitive Generation (PG). Shaders cannot be // defined for it. It takes `gl_TessLevelInner` and `gl_TessLevelOuter` and uses them to generate // positions within the patch and pass them to TES via `gl_TessCoord`. // // When TES uses `layout(triangles)` then `gl_TessCoord` is in Barycentric coordinates. If // `layout(quads)` is used then `gl_TessCoord` is in Cartesian coordinates. Barycentric coordinates // are of the form (x, y, z) where x + y + z = 1 and the values x, y and z represent the distance // from a vertex of the triangle. // https://mathworld.wolfram.com/BarycentricCoordinates.html mod tes { vulkano_shaders::shader! { ty: "tess_eval", src: r" #version 450 layout(triangles, equal_spacing, cw) in; void main(void) { // Retrieve the vertex positions set by the TCS. vec4 vert_x = gl_in[0].gl_Position; vec4 vert_y = gl_in[1].gl_Position; vec4 vert_z = gl_in[2].gl_Position; // Convert `gl_TessCoord` from Barycentric coordinates to Cartesian coordinates. gl_Position = vec4( gl_TessCoord.x * vert_x.x + gl_TessCoord.y * vert_y.x + gl_TessCoord.z * vert_z.x, gl_TessCoord.x * vert_x.y + gl_TessCoord.y * vert_y.y + gl_TessCoord.z * vert_z.y, gl_TessCoord.x * vert_x.z + gl_TessCoord.y * vert_y.z + gl_TessCoord.z * vert_z.z, 1.0 ); } ", } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: r" #version 450 layout(location = 0) out vec4 f_color; void main() { f_color = vec4(1.0, 1.0, 1.0, 1.0); } ", } } fn main() -> Result<(), impl Error> { let event_loop = EventLoop::new().unwrap(); let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(&event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let features = Features { tessellation_shader: true, fill_mode_non_solid: true, ..Features::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter(|p| p.supported_features().contains(&features)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], enabled_extensions: device_extensions, enabled_features: features, ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; Swapchain::new( device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); #[derive(BufferContents, Vertex)] #[repr(C)] struct Vertex { #[format(R32G32_SFLOAT)] position: [f32; 2], } let vertices = [ Vertex { position: [-0.5, -0.25], }, Vertex { position: [0.0, 0.5], }, Vertex { position: [0.25, -0.1], }, Vertex { position: [0.9, 0.9], }, Vertex { position: [0.9, 0.8], }, Vertex { position: [0.8, 0.8], }, Vertex { position: [-0.9, 0.9], }, Vertex { position: [-0.7, 0.6], }, Vertex { position: [-0.5, 0.9], }, ]; let vertex_buffer = Buffer::from_iter( memory_allocator, BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, vertices, ) .unwrap(); let render_pass = vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, }, pass: { color: [color], depth_stencil: {}, }, ) .unwrap(); let pipeline = { let vs = vs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let tcs = tcs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let tes = tes::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let vertex_input_state = Vertex::per_vertex() .definition(&vs.info().input_interface) .unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(tcs), PipelineShaderStageCreateInfo::new(tes), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState { topology: PrimitiveTopology::PatchList, ..Default::default() }), tessellation_state: Some(TessellationState { // Use a patch_control_points of 3, because we want to convert one *triangle* // into lots of little ones. // A value of 4 would convert a *rectangle* into lots of little triangles. patch_control_points: 3, ..Default::default() }), viewport_state: Some(ViewportState::default()), rasterization_state: Some(RasterizationState { polygon_mode: PolygonMode::Line, ..Default::default() }), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), dynamic_state: [DynamicState::Viewport].into_iter().collect(), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); let mut viewport = Viewport { offset: [0.0, 0.0], extent: [0.0, 0.0], depth_range: 0.0..=1.0, }; let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); event_loop.run(move |event, elwt| { elwt.set_control_flow(ControlFlow::Poll); match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { elwt.exit(); } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::WindowEvent { event: WindowEvent::RedrawRequested, .. } => { let image_extent: [u32; 2] = window.inner_size().into(); if image_extent.contains(&0) { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = swapchain .recreate(SwapchainCreateInfo { image_extent, ..swapchain.create_info() }) .expect("failed to recreate swapchain"); swapchain = new_swapchain; framebuffers = window_size_dependent_setup( &new_images, render_pass.clone(), &mut viewport, ); recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( command_buffer_allocator.clone(), queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 0.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .set_viewport(0, [viewport.clone()].into_iter().collect()) .unwrap() .bind_pipeline_graphics(pipeline.clone()) .unwrap() .bind_vertex_buffers(0, vertex_buffer.clone()) .unwrap() .draw(vertex_buffer.len() as u32, 1, 0, 0) .unwrap() .end_render_pass(Default::default()) .unwrap(); let command_buffer = builder.build().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } Event::AboutToWait => window.request_redraw(), _ => (), } }) } /// This function is called once during initialization, then again whenever the window is resized. fn window_size_dependent_setup( images: &[Arc], render_pass: Arc, viewport: &mut Viewport, ) -> Vec> { let extent = images[0].extent(); viewport.extent = [extent[0] as f32, extent[1] as f32]; images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view], ..Default::default() }, ) .unwrap() }) .collect::>() }