// Welcome to the mesh shader example! // // This is a simple, modified version of the `instancing.rs` example that demonstrates how to use // mesh shaders to generate geometry, that looks identical to the instancing example. We expect you // to be familiar with both instancing and compute shaders before approaching mesh shaders, due to // their high complexity. // // This example is intentionally kept simple and does not follow the recommended pattern by which // one should emit vertices and indices. This pattern should best match what the hardware likes, // and thus is unique to each vendor. // // See these presentation slides for an overview of mesh shaders and best practices: // https://vulkan.org/user/pages/09.events/vulkanised-2023/vulkanised_mesh_best_practices_2023.02.09-1.pdf // Presentation: https://www.youtube.com/watch?v=g9FoZcEQlbA use std::{error::Error, sync::Arc}; use vulkano::{ buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer}, command_buffer::{ allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel, CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures, Queue, QueueCreateInfo, QueueFlags, }, image::{view::ImageView, Image, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, padded::Padded, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, multisample::MultisampleState, rasterization::RasterizationState, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, single_pass_renderpass, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, DeviceSize, Validated, VulkanError, VulkanLibrary, }; use winit::{ application::ApplicationHandler, event::WindowEvent, event_loop::{ActiveEventLoop, EventLoop}, window::{Window, WindowId}, }; fn main() -> Result<(), impl Error> { let event_loop = EventLoop::new().unwrap(); let mut app = App::new(&event_loop); event_loop.run_app(&mut app) } struct App { instance: Arc, device: Arc, queue: Arc, vertex_buffer: Subbuffer<[TriangleVertex]>, instance_buffer: Subbuffer, rows: u32, cols: u32, descriptor_set_allocator: Arc, command_buffer_allocator: Arc, rcx: Option, } struct RenderContext { window: Arc, swapchain: Arc, render_pass: Arc, framebuffers: Vec>, pipeline: Arc, viewport: Viewport, descriptor_set: Arc, recreate_swapchain: bool, previous_frame_end: Option>, } impl App { fn new(event_loop: &EventLoop<()>) -> Self { let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ext_mesh_shader: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.presentation_support(i as u32, event_loop).unwrap() }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, enabled_features: DeviceFeatures { mesh_shader: true, ..DeviceFeatures::default() }, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new( device.clone(), Default::default(), )); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); // We now create a buffer that will store the shape of our triangle. This triangle is // identical to the one in the `triangle.rs` example. let vertices = [ TriangleVertex { position: [-0.5, -0.25], }, TriangleVertex { position: [0.0, 0.5], }, TriangleVertex { position: [0.25, -0.1], }, ]; let vertex_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::STORAGE_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, vertices, ) .unwrap(); // Now we create another buffer that will store the unique data per instance. For this // example, we'll have the instances form a 10x10 grid that slowly gets larger. let rows = 10; let cols = 10; let instances = { let n_instances = rows * cols; let mut data = Vec::new(); for c in 0..cols { for r in 0..rows { let half_cell_w = 0.5 / cols as f32; let half_cell_h = 0.5 / rows as f32; let x = half_cell_w + (c as f32 / cols as f32) * 2.0 - 1.0; let y = half_cell_h + (r as f32 / rows as f32) * 2.0 - 1.0; let position_offset = [x, y]; let scale = (2.0 / rows as f32) * (c * rows + r) as f32 / n_instances as f32; data.push(InstanceData { position_offset, scale, }); } } data }; let instance_buffer = Buffer::new_unsized::( memory_allocator, BufferCreateInfo { usage: BufferUsage::STORAGE_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, instances.len() as DeviceSize, ) .unwrap(); { let mut guard = instance_buffer.write().unwrap(); for (i, instance) in instances.iter().enumerate() { guard.instance[i] = Padded(*instance); } } App { instance, device, queue, vertex_buffer, instance_buffer, rows, cols, descriptor_set_allocator, command_buffer_allocator, rcx: None, } } } impl ApplicationHandler for App { fn resumed(&mut self, event_loop: &ActiveEventLoop) { let window = Arc::new( event_loop .create_window(Window::default_attributes()) .unwrap(), ); let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap(); let window_size = window.inner_size(); let (swapchain, images) = { let surface_capabilities = self .device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let (image_format, _) = self .device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0]; Swapchain::new( self.device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window_size.into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let render_pass = single_pass_renderpass!( self.device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, }, pass: { color: [color], depth_stencil: {}, }, ) .unwrap(); let framebuffers = window_size_dependent_setup(&images, &render_pass); let pipeline = { let mesh = mesh::load(self.device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(self.device.clone()) .unwrap() .entry_point("main") .unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(mesh), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( self.device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(self.device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( self.device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), viewport_state: Some(ViewportState::default()), rasterization_state: Some(RasterizationState::default()), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), dynamic_state: [DynamicState::Viewport].into_iter().collect(), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let viewport = Viewport { offset: [0.0, 0.0], extent: window_size.into(), depth_range: 0.0..=1.0, }; let descriptor_set = DescriptorSet::new( self.descriptor_set_allocator.clone(), pipeline.layout().set_layouts()[0].clone(), [ WriteDescriptorSet::buffer(0, self.vertex_buffer.clone()), WriteDescriptorSet::buffer(1, self.instance_buffer.clone()), ], [], ) .unwrap(); let previous_frame_end = Some(sync::now(self.device.clone()).boxed()); self.rcx = Some(RenderContext { window, swapchain, render_pass, framebuffers, pipeline, viewport, descriptor_set, recreate_swapchain: false, previous_frame_end, }); } fn window_event( &mut self, event_loop: &ActiveEventLoop, _window_id: WindowId, event: WindowEvent, ) { let rcx = self.rcx.as_mut().unwrap(); match event { WindowEvent::CloseRequested => { event_loop.exit(); } WindowEvent::Resized(_) => { rcx.recreate_swapchain = true; } WindowEvent::RedrawRequested => { let window_size = rcx.window.inner_size(); if window_size.width == 0 || window_size.height == 0 { return; } rcx.previous_frame_end.as_mut().unwrap().cleanup_finished(); if rcx.recreate_swapchain { let (new_swapchain, new_images) = rcx .swapchain .recreate(SwapchainCreateInfo { image_extent: window_size.into(), ..rcx.swapchain.create_info() }) .expect("failed to recreate swapchain"); rcx.swapchain = new_swapchain; rcx.framebuffers = window_size_dependent_setup(&new_images, &rcx.render_pass); rcx.viewport.extent = window_size.into(); rcx.recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image( rcx.swapchain.clone(), None, ) .map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { rcx.recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { rcx.recreate_swapchain = true; } let mut builder = RecordingCommandBuffer::new( self.command_buffer_allocator.clone(), self.queue.queue_family_index(), CommandBufferLevel::Primary, CommandBufferBeginInfo { usage: CommandBufferUsage::OneTimeSubmit, ..Default::default() }, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer( rcx.framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .set_viewport(0, [rcx.viewport.clone()].into_iter().collect()) .unwrap() .bind_pipeline_graphics(rcx.pipeline.clone()) .unwrap() // Instead of binding vertex attributes, bind buffers as descriptor sets .bind_descriptor_sets( PipelineBindPoint::Graphics, rcx.pipeline.layout().clone(), 0, rcx.descriptor_set.clone(), ) .unwrap(); unsafe { builder.draw_mesh_tasks([self.cols, self.rows, 1]).unwrap(); } builder.end_render_pass(Default::default()).unwrap(); let command_buffer = builder.end().unwrap(); let future = rcx .previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(self.queue.clone(), command_buffer) .unwrap() .then_swapchain_present( self.queue.clone(), SwapchainPresentInfo::swapchain_image_index( rcx.swapchain.clone(), image_index, ), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { rcx.previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { rcx.recreate_swapchain = true; rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed()); } } } _ => {} } } fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) { let rcx = self.rcx.as_mut().unwrap(); rcx.window.request_redraw(); } } /// The vertex type that we will be used to describe the triangle's geometry. #[derive(BufferContents)] #[repr(C)] struct TriangleVertex { position: [f32; 2], } /// The vertex type that describes the unique data per instance. type InstanceData = mesh::Instance; /// This function is called once during initialization, then again whenever the window is resized. fn window_size_dependent_setup( images: &[Arc], render_pass: &Arc, ) -> Vec> { images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view], ..Default::default() }, ) .unwrap() }) .collect::>() } mod mesh { vulkano_shaders::shader! { ty: "mesh", path: "mesh.glsl", vulkan_version: "1.2", } } mod fs { vulkano_shaders::shader! { ty: "fragment", path: "frag.glsl", } }