// This example demonstrates using the `VK_KHR_multiview` extension to render to multiple layers of // the framebuffer in one render pass. This can significantly improve performance in cases where // multiple perspectives or cameras are very similar like in virtual reality or other types of // stereoscopic rendering where the left and right eye only differ in a small position offset. use std::{fs::File, io::BufWriter, path::Path, sync::Arc}; use vulkano::{ buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer}, command_buffer::{ allocator::StandardCommandBufferAllocator, BufferImageCopy, CommandBufferUsage, CopyImageToBufferInfo, RecordingCommandBuffer, RenderPassBeginInfo, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures, QueueCreateInfo, QueueFlags, }, format::Format, image::{ view::ImageView, Image, ImageCreateInfo, ImageLayout, ImageSubresourceLayers, ImageType, ImageUsage, SampleCount, }, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo, InstanceExtensions}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, input_assembly::InputAssemblyState, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{ AttachmentDescription, AttachmentLoadOp, AttachmentReference, AttachmentStoreOp, Framebuffer, FramebufferCreateInfo, RenderPass, RenderPassCreateInfo, Subpass, SubpassDescription, }, sync::{self, GpuFuture}, VulkanLibrary, }; fn main() { let library = VulkanLibrary::new().unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: InstanceExtensions { // Required to get multiview limits. khr_get_physical_device_properties2: true, ..InstanceExtensions::empty() }, ..Default::default() }, ) .unwrap(); let device_extensions = DeviceExtensions { ..DeviceExtensions::empty() }; let features = DeviceFeatures { // enabling the `multiview` feature will use the `VK_KHR_multiview` extension on Vulkan 1.0 // and the device feature on Vulkan 1.1+. multiview: true, ..DeviceFeatures::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter(|p| p.supported_features().contains(&features)) .filter(|p| { // This example renders to two layers of the framebuffer using the multiview extension // so we check that at least two views are supported by the device. Not checking this // on a device that doesn't support two views will lead to a runtime error when // creating the `RenderPass`. The `max_multiview_view_count` function will return // `None` when the `VK_KHR_get_physical_device_properties2` instance extension has not // been enabled. p.properties().max_multiview_view_count.unwrap_or(0) >= 2 }) .filter_map(|p| { p.queue_family_properties() .iter() .position(|q| q.queue_flags.intersects(QueueFlags::GRAPHICS)) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) // A real application should probably fall back to rendering the framebuffer layers in // multiple passes when multiview isn't supported. .expect( "no device supports two multiview views or the \ `VK_KHR_get_physical_device_properties2` instance extension has not been loaded", ); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], enabled_extensions: device_extensions, enabled_features: features, ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let image = Image::new( memory_allocator.clone(), ImageCreateInfo { image_type: ImageType::Dim2d, format: Format::B8G8R8A8_SRGB, extent: [512, 512, 1], array_layers: 2, usage: ImageUsage::TRANSFER_SRC | ImageUsage::COLOR_ATTACHMENT, ..Default::default() }, AllocationCreateInfo::default(), ) .unwrap(); let image_view = ImageView::new_default(image.clone()).unwrap(); #[derive(BufferContents, Vertex)] #[repr(C)] struct Vertex { #[format(R32G32_SFLOAT)] position: [f32; 2], } let vertices = [ Vertex { position: [-0.5, -0.25], }, Vertex { position: [0.0, 0.5], }, Vertex { position: [0.25, -0.1], }, ]; let vertex_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, vertices, ) .unwrap(); // Note the `#extension GL_EXT_multiview : enable` that enables the multiview extension for the // shader and the use of `gl_ViewIndex` which contains a value based on which view the shader // is being invoked for. In this example `gl_ViewIndex` is used to toggle a hardcoded offset // for vertex positions but in a VR application you could easily use it as an index to a // uniform array that contains the transformation matrices for the left and right eye. mod vs { vulkano_shaders::shader! { ty: "vertex", src: r" #version 450 #extension GL_EXT_multiview : enable layout(location = 0) in vec2 position; void main() { gl_Position = vec4(position, 0.0, 1.0) + gl_ViewIndex * vec4(0.25, 0.25, 0.0, 0.0); } ", } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: r" #version 450 layout(location = 0) out vec4 f_color; void main() { f_color = vec4(1.0, 0.0, 0.0, 1.0); } ", } } let render_pass_description = RenderPassCreateInfo { attachments: vec![AttachmentDescription { format: image.format(), samples: SampleCount::Sample1, load_op: AttachmentLoadOp::Clear, store_op: AttachmentStoreOp::Store, initial_layout: ImageLayout::ColorAttachmentOptimal, final_layout: ImageLayout::ColorAttachmentOptimal, ..Default::default() }], subpasses: vec![SubpassDescription { // The view mask indicates which layers of the framebuffer should be rendered for each // subpass. view_mask: 0b11, color_attachments: vec![Some(AttachmentReference { attachment: 0, layout: ImageLayout::ColorAttachmentOptimal, ..Default::default() })], ..Default::default() }], // The correlated view masks indicate sets of views that may be more efficient to render // concurrently. correlated_view_masks: vec![0b11], ..Default::default() }; let render_pass = RenderPass::new(device.clone(), render_pass_description).unwrap(); let framebuffer = Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![image_view], ..Default::default() }, ) .unwrap(); let pipeline = { let vs = vs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let vertex_input_state = Vertex::per_vertex().definition(&vs).unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass, 0).unwrap(); GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState::default()), viewport_state: Some(ViewportState { viewports: [Viewport { offset: [0.0, 0.0], extent: [image.extent()[0] as f32, image.extent()[1] as f32], depth_range: 0.0..=1.0, }] .into_iter() .collect(), ..Default::default() }), rasterization_state: Some(RasterizationState::default()), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); let create_buffer = || { Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::TRANSFER_DST, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_HOST | MemoryTypeFilter::HOST_RANDOM_ACCESS, ..Default::default() }, (0..image.extent()[0] * image.extent()[1] * 4).map(|_| 0u8), ) .unwrap() }; let buffer1 = create_buffer(); let buffer2 = create_buffer(); let mut builder = RecordingCommandBuffer::primary( command_buffer_allocator, queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer(framebuffer) }, Default::default(), ) .unwrap() .bind_pipeline_graphics(pipeline) .unwrap() .bind_vertex_buffers(0, vertex_buffer.clone()) .unwrap(); unsafe { // Drawing commands are broadcast to each view in the view mask of the active renderpass // which means only a single draw call is needed to draw to multiple layers of the // framebuffer. builder.draw(vertex_buffer.len() as u32, 1, 0, 0).unwrap(); } builder.end_render_pass(Default::default()).unwrap(); // Copy the image layers to different buffers to save them as individual images to disk. builder .copy_image_to_buffer(CopyImageToBufferInfo { regions: [BufferImageCopy { image_subresource: ImageSubresourceLayers { array_layers: 0..1, ..image.subresource_layers() }, image_extent: image.extent(), ..Default::default() }] .into(), ..CopyImageToBufferInfo::image_buffer(image.clone(), buffer1.clone()) }) .unwrap() .copy_image_to_buffer(CopyImageToBufferInfo { regions: [BufferImageCopy { image_subresource: ImageSubresourceLayers { array_layers: 1..2, ..image.subresource_layers() }, image_extent: image.extent(), ..Default::default() }] .into(), ..CopyImageToBufferInfo::image_buffer(image.clone(), buffer2.clone()) }) .unwrap(); let command_buffer = builder.end().unwrap(); let future = sync::now(device) .then_execute(queue, command_buffer) .unwrap() .then_signal_fence_and_flush() .unwrap(); future.wait(None).unwrap(); // Write each layer to its own file. write_image_buffer_to_file( buffer1, "multiview1.png", image.extent()[0], image.extent()[1], ); write_image_buffer_to_file( buffer2, "multiview2.png", image.extent()[0], image.extent()[1], ); } fn write_image_buffer_to_file(buffer: Subbuffer<[u8]>, path: &str, width: u32, height: u32) { let buffer_content = buffer.read().unwrap(); let path = Path::new(env!("CARGO_MANIFEST_DIR")).join(path); let file = File::create(&path).unwrap(); let w = &mut BufWriter::new(file); let mut encoder = png::Encoder::new(w, width, height); encoder.set_color(png::ColorType::Rgba); encoder.set_depth(png::BitDepth::Eight); let mut writer = encoder.write_header().unwrap(); writer.write_image_data(&buffer_content).unwrap(); if let Ok(path) = path.canonicalize() { println!("Saved to {}", path.display()); } }