fn main() -> Result<(), winit::error::EventLoopError> { #[cfg(target_os = "linux")] { linux::main() } #[cfg(not(target_os = "linux"))] { Ok(println!("Not Implemented")) } } // TODO: Can this be demonstrated for other platforms as well? #[cfg(target_os = "linux")] mod linux { use glium::glutin::{self, platform::unix::HeadlessContextExt}; use std::{ sync::{Arc, Barrier}, time::Instant, }; use vulkano::{ buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer}, command_buffer::{ allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel, CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo, SemaphoreSubmitInfo, SubmitInfo, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, Queue, QueueCreateInfo, QueueFlags, }, format::Format, image::{ sampler::{Filter, Sampler, SamplerAddressMode, SamplerCreateInfo}, sys::RawImage, view::ImageView, Image, ImageCreateFlags, ImageCreateInfo, ImageType, ImageUsage, }, instance::{ debug::{ DebugUtilsMessenger, DebugUtilsMessengerCallback, DebugUtilsMessengerCreateInfo, }, Instance, InstanceCreateFlags, InstanceCreateInfo, InstanceExtensions, }, memory::{ allocator::{ AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter, StandardMemoryAllocator, }, DedicatedAllocation, DeviceMemory, ExternalMemoryHandleType, ExternalMemoryHandleTypes, MemoryAllocateInfo, ResourceMemory, }, pipeline::{ graphics::{ color_blend::{AttachmentBlend, ColorBlendAttachmentState, ColorBlendState}, input_assembly::{InputAssemblyState, PrimitiveTopology}, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, DynamicState, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{ now, semaphore::{ ExternalSemaphoreHandleType, ExternalSemaphoreHandleTypes, Semaphore, SemaphoreCreateInfo, }, GpuFuture, }, Validated, VulkanError, VulkanLibrary, }; use winit::{ event::{Event, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; pub fn main() -> Result<(), winit::error::EventLoopError> { let event_loop_gl = winit_glium::event_loop::EventLoop::new(); // For some reason, this must be created before the vulkan window let hrb = glutin::ContextBuilder::new() .with_gl_debug_flag(true) .with_gl(glutin::GlRequest::Latest) .build_surfaceless(&event_loop_gl) .unwrap(); let hrb_vk = glutin::ContextBuilder::new() .with_gl_debug_flag(true) .with_gl(glutin::GlRequest::Latest) .build_surfaceless(&event_loop_gl) .unwrap(); // Used for checking device and driver UUIDs. let display = glium::HeadlessRenderer::with_debug( hrb_vk, glium::debug::DebugCallbackBehavior::PrintAll, ) .unwrap(); let event_loop = EventLoop::new().unwrap(); let ( device, _instance, mut swapchain, window, mut viewport, queue, render_pass, mut framebuffers, sampler, pipeline, memory_allocator, vertex_buffer, ) = vk_setup(display, &event_loop); let raw_image = RawImage::new( device.clone(), ImageCreateInfo { flags: ImageCreateFlags::MUTABLE_FORMAT, image_type: ImageType::Dim2d, format: Format::R16G16B16A16_UNORM, extent: [200, 200, 1], usage: ImageUsage::TRANSFER_SRC | ImageUsage::TRANSFER_DST | ImageUsage::SAMPLED, external_memory_handle_types: ExternalMemoryHandleTypes::OPAQUE_FD, ..Default::default() }, ) .unwrap(); let image_requirements = raw_image.memory_requirements()[0]; let image_memory = DeviceMemory::allocate( device.clone(), MemoryAllocateInfo { allocation_size: image_requirements.layout.size(), memory_type_index: memory_allocator .find_memory_type_index( image_requirements.memory_type_bits, MemoryTypeFilter::PREFER_DEVICE, ) .unwrap(), dedicated_allocation: Some(DedicatedAllocation::Image(&raw_image)), export_handle_types: ExternalMemoryHandleTypes::OPAQUE_FD, ..Default::default() }, ) .unwrap(); let allocation_size = image_memory.allocation_size(); let image_fd = image_memory .export_fd(ExternalMemoryHandleType::OpaqueFd) .unwrap(); // SAFETY: we just created this raw image and hasn't bound any memory to it. let image = Arc::new(unsafe { raw_image .bind_memory([ResourceMemory::new_dedicated(image_memory)]) .map_err(|(err, _, _)| err) .unwrap() }); let image_view = ImageView::new_default(image).unwrap(); let barrier = Arc::new(Barrier::new(2)); let barrier_2 = Arc::new(Barrier::new(2)); let acquire_sem = Arc::new( Semaphore::new( device.clone(), SemaphoreCreateInfo { export_handle_types: ExternalSemaphoreHandleTypes::OPAQUE_FD, ..Default::default() }, ) .unwrap(), ); let release_sem = Arc::new( Semaphore::new( device.clone(), SemaphoreCreateInfo { export_handle_types: ExternalSemaphoreHandleTypes::OPAQUE_FD, ..Default::default() }, ) .unwrap(), ); let acquire_fd = unsafe { acquire_sem .export_fd(ExternalSemaphoreHandleType::OpaqueFd) .unwrap() }; let release_fd = unsafe { release_sem .export_fd(ExternalSemaphoreHandleType::OpaqueFd) .unwrap() }; let barrier_clone = barrier.clone(); let barrier_2_clone = barrier_2.clone(); build_display(hrb, move |gl_display| { let gl_tex = unsafe { glium::texture::Texture2d::new_from_fd( gl_display.as_ref(), glium::texture::UncompressedFloatFormat::U16U16U16U16, glium::texture::MipmapsOption::NoMipmap, glium::texture::Dimensions::Texture2d { width: 200, height: 200, }, glium::texture::ImportParameters { dedicated_memory: true, size: allocation_size, offset: 0, tiling: glium::texture::ExternalTilingMode::Optimal, }, image_fd, ) } .unwrap(); let gl_acquire_sem = unsafe { glium::semaphore::Semaphore::new_from_fd(gl_display.as_ref(), acquire_fd).unwrap() }; let gl_release_sem = unsafe { glium::semaphore::Semaphore::new_from_fd(gl_display.as_ref(), release_fd).unwrap() }; let rotation_start = Instant::now(); loop { barrier_clone.wait(); gl_acquire_sem .wait_textures(Some(&[(&gl_tex, glium::semaphore::TextureLayout::General)])); gl_display.get_context().flush(); let elapsed = rotation_start.elapsed(); let rotation = elapsed.as_nanos() as f64 / 2_000_000_000.0; use glium::Surface; { let mut fb = gl_tex.as_surface(); fb.clear_color( 0.0, (((rotation as f32).sin() + 1.) / 2.).powf(2.2), 0.0, 1.0, ); } gl_release_sem .signal_textures(Some(&[(&gl_tex, glium::semaphore::TextureLayout::General)])); barrier_2_clone.wait(); gl_display.get_context().finish(); gl_display.get_context().assert_no_error(Some("err")); } }); let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new( device.clone(), Default::default(), )); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); let layout = &pipeline.layout().set_layouts()[0]; let set = DescriptorSet::new( descriptor_set_allocator, layout.clone(), [ WriteDescriptorSet::sampler(0, sampler), WriteDescriptorSet::image_view(1, image_view), ], [], ) .unwrap(); let mut recreate_swapchain = false; let mut previous_frame_end: Option> = Some(Box::new(now(device.clone()))); event_loop.run(move |event, elwt| { elwt.set_control_flow(ControlFlow::Poll); match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { elwt.exit(); } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::WindowEvent { event: WindowEvent::RedrawRequested, .. } => { queue .with(|mut q| unsafe { q.submit( &[SubmitInfo { signal_semaphores: vec![SemaphoreSubmitInfo::new( acquire_sem.clone(), )], ..Default::default() }], None, ) }) .unwrap(); barrier.wait(); barrier_2.wait(); queue .with(|mut q| unsafe { q.submit( &[SubmitInfo { wait_semaphores: vec![SemaphoreSubmitInfo::new( release_sem.clone(), )], ..Default::default() }], None, ) }) .unwrap(); let image_extent: [u32; 2] = window.inner_size().into(); if image_extent.contains(&0) { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = swapchain .recreate(SwapchainCreateInfo { image_extent, ..swapchain.create_info() }) .expect("failed to recreate swapchain"); swapchain = new_swapchain; framebuffers = window_size_dependent_setup( &new_images, render_pass.clone(), &mut viewport, ); recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image( swapchain.clone(), None, ) .map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { recreate_swapchain = true; } let mut builder = RecordingCommandBuffer::new( command_buffer_allocator.clone(), queue.queue_family_index(), CommandBufferLevel::Primary, CommandBufferBeginInfo { usage: CommandBufferUsage::OneTimeSubmit, ..Default::default() }, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .set_viewport(0, [viewport.clone()].into_iter().collect()) .unwrap() .bind_pipeline_graphics(pipeline.clone()) .unwrap() .bind_descriptor_sets( PipelineBindPoint::Graphics, pipeline.layout().clone(), 0, set.clone(), ) .unwrap() .bind_vertex_buffers(0, vertex_buffer.clone()) .unwrap(); unsafe { builder.draw(vertex_buffer.len() as u32, 1, 0, 0).unwrap(); } builder.end_render_pass(Default::default()).unwrap(); let command_buffer = builder.end().unwrap(); let future = previous_frame_end.take().unwrap().join(acquire_future); let future = future .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index( swapchain.clone(), image_index, ), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { future.wait(None).unwrap(); previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(now(device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); previous_frame_end = Some(now(device.clone()).boxed()); } }; } Event::AboutToWait => window.request_redraw(), _ => (), }; }) } #[derive(BufferContents, Vertex)] #[repr(C)] struct MyVertex { #[format(R32G32_SFLOAT)] position: [f32; 2], } #[allow(clippy::type_complexity)] fn vk_setup( display: glium::HeadlessRenderer, event_loop: &EventLoop<()>, ) -> ( Arc, Arc, Arc, Arc, Viewport, Arc, Arc, Vec>, Arc, Arc, Arc, Subbuffer<[MyVertex]>, ) { let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(&event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: InstanceExtensions { khr_get_physical_device_properties2: true, khr_external_memory_capabilities: true, khr_external_semaphore_capabilities: true, khr_external_fence_capabilities: true, ext_debug_utils: true, ..required_extensions }, ..Default::default() }, ) .unwrap(); let _debug_callback = unsafe { DebugUtilsMessenger::new( instance.clone(), DebugUtilsMessengerCreateInfo::user_callback(DebugUtilsMessengerCallback::new( |message_severity, message_type, callback_data| { println!( "{} {:?} {:?}: {}", callback_data.message_id_name.unwrap_or("unknown"), message_type, message_severity, callback_data.message, ); }, )), ) .unwrap() }; let window = Arc::new(WindowBuilder::new().build(event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); let device_extensions = DeviceExtensions { khr_external_semaphore: true, khr_external_semaphore_fd: true, khr_external_memory: true, khr_external_memory_fd: true, khr_external_fence: true, khr_external_fence_fd: true, khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .filter(|(p, _)| p.properties().driver_uuid.unwrap() == display.driver_uuid().unwrap()) .filter(|(p, _)| { display .device_uuids() .unwrap() .contains(&p.properties().device_uuid.unwrap()) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; Swapchain::new( device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let vertices = [ MyVertex { position: [-0.5, -0.5], }, MyVertex { position: [-0.5, 0.5], }, MyVertex { position: [0.5, -0.5], }, MyVertex { position: [0.5, 0.5], }, ]; let vertex_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, vertices, ) .unwrap(); let render_pass = vulkano::single_pass_renderpass!(device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, }, pass: { color: [color], depth_stencil: {}, }, ) .unwrap(); let sampler = Sampler::new( device.clone(), SamplerCreateInfo { mag_filter: Filter::Linear, min_filter: Filter::Linear, address_mode: [SamplerAddressMode::Repeat; 3], ..Default::default() }, ) .unwrap(); let pipeline = { let vs = vs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState { topology: PrimitiveTopology::TriangleStrip, ..Default::default() }), viewport_state: Some(ViewportState::default()), rasterization_state: Some(RasterizationState::default()), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState { blend: Some(AttachmentBlend::alpha()), ..Default::default() }, )), dynamic_state: [DynamicState::Viewport].into_iter().collect(), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let mut viewport = Viewport { offset: [0.0, 0.0], extent: [0.0, 0.0], depth_range: 0.0..=1.0, }; let framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport); ( device, instance, swapchain, window, viewport, queue, render_pass, framebuffers, sampler, pipeline, memory_allocator, vertex_buffer, ) } fn build_display(ctx: glutin::Context, f: F) where F: FnOnce(Box), F: Send + 'static, { std::thread::spawn(move || { let display = Box::new( glium::HeadlessRenderer::with_debug( ctx, glium::debug::DebugCallbackBehavior::PrintAll, ) .unwrap(), ); f(display); }); } fn window_size_dependent_setup( images: &[Arc], render_pass: Arc, viewport: &mut Viewport, ) -> Vec> { let extent = images[0].extent(); viewport.extent = [extent[0] as f32, extent[1] as f32]; images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view], ..Default::default() }, ) .unwrap() }) .collect::>() } mod vs { vulkano_shaders::shader! { ty: "vertex", src: r" #version 450 layout(location = 0) in vec2 position; layout(location = 0) out vec2 tex_coords; void main() { gl_Position = vec4(position, 0.0, 1.0); tex_coords = position + vec2(0.5); } ", } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: r" #version 450 layout(location = 0) in vec2 tex_coords; layout(location = 0) out vec4 f_color; layout(set = 0, binding = 0) uniform sampler s; layout(set = 0, binding = 1) uniform texture2D tex; void main() { f_color = texture(sampler2D(tex, s), tex_coords); } ", } } }