// This example demonstrates how to use dynamic uniform buffers. // // Dynamic uniform and storage buffers store buffer data for different calls in one large buffer. // Each draw or dispatch call can specify an offset into the buffer to read object data from, // without having to rebind descriptor sets. use std::{iter::repeat, mem::size_of, sync::Arc}; use vulkano::{ buffer::{Buffer, BufferCreateInfo, BufferUsage}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, layout::DescriptorType, DescriptorBufferInfo, DescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo, QueueFlags, }, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ compute::ComputePipelineCreateInfo, layout::PipelineDescriptorSetLayoutCreateInfo, ComputePipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo, }, sync::{self, GpuFuture}, DeviceSize, VulkanLibrary, }; fn main() { let library = VulkanLibrary::new().unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, ..Default::default() }, ) .unwrap(); let device_extensions = DeviceExtensions { khr_storage_buffer_storage_class: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .position(|q| q.queue_flags.intersects(QueueFlags::COMPUTE)) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); mod cs { vulkano_shaders::shader! { ty: "compute", src: r" #version 450 layout(local_size_x = 12) in; // Uniform buffer. layout(set = 0, binding = 0) uniform InData { uint index; } ub; // Output buffer. layout(set = 0, binding = 1) buffer OutData { uint data[]; }; // Toy shader that only runs for the index specified in `ub`. void main() { uint index = gl_GlobalInvocationID.x; if (index == ub.index) { data[index] = index; } } ", } } let pipeline = { let cs = cs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let stage = PipelineShaderStageCreateInfo::new(cs); let layout = { let mut layout_create_info = PipelineDescriptorSetLayoutCreateInfo::from_stages([&stage]); layout_create_info.set_layouts[0] .bindings .get_mut(&0) .unwrap() .descriptor_type = DescriptorType::UniformBufferDynamic; PipelineLayout::new( device.clone(), layout_create_info .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap() }; ComputePipeline::new( device.clone(), None, ComputePipelineCreateInfo::stage_layout(stage, layout), ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new( device.clone(), Default::default(), )); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); // Create the input buffer. Data in a dynamic buffer **MUST** be aligned to // `min_uniform_buffer_offset_align` or `min_storage_buffer_offset_align`, depending on the // type of buffer. let data: Vec = vec![3, 11, 7]; let min_dynamic_align = device .physical_device() .properties() .min_uniform_buffer_offset_alignment .as_devicesize() as usize; println!("Minimum uniform buffer offset alignment: {min_dynamic_align}"); println!("Input: {data:?}"); // Round size up to the next multiple of align. let align = (size_of::() + min_dynamic_align - 1) & !(min_dynamic_align - 1); let aligned_data = { let mut aligned_data = Vec::with_capacity(align * data.len()); for elem in data { let bytes = elem.to_ne_bytes(); // Fill up the buffer with data. aligned_data.extend(bytes); // Zero out any padding needed for alignment. aligned_data.extend(repeat(0).take(align - bytes.len())); } aligned_data }; let input_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::UNIFORM_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, aligned_data, ) .unwrap(); let output_buffer = Buffer::from_iter( memory_allocator, BufferCreateInfo { usage: BufferUsage::STORAGE_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_RANDOM_ACCESS, ..Default::default() }, (0..12).map(|_| 0u32), ) .unwrap(); let layout = &pipeline.layout().set_layouts()[0]; let set = DescriptorSet::new( descriptor_set_allocator, layout.clone(), [ // When writing to the dynamic buffer binding, the range of the buffer that the shader // will access must also be provided. We specify the size of the `InData` struct here. // When dynamic offsets are provided later, they get added to the start and end of // this range. WriteDescriptorSet::buffer_with_range( 0, DescriptorBufferInfo { buffer: input_buffer, range: 0..size_of::() as DeviceSize, }, ), WriteDescriptorSet::buffer(1, output_buffer.clone()), ], [], ) .unwrap(); // Build the command buffer, using different offsets for each call. let mut builder = AutoCommandBufferBuilder::primary( command_buffer_allocator, queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder.bind_pipeline_compute(pipeline.clone()).unwrap(); for index in 0..3 { builder .bind_descriptor_sets( PipelineBindPoint::Compute, pipeline.layout().clone(), 0, set.clone().offsets([index * align as u32]), ) .unwrap(); unsafe { builder.dispatch([12, 1, 1]) }.unwrap(); } let command_buffer = builder.build().unwrap(); let future = sync::now(device) .then_execute(queue, command_buffer) .unwrap() .then_signal_fence_and_flush() .unwrap(); future.wait(None).unwrap(); let output_content = output_buffer.read().unwrap(); println!("Output: {:?}", &*output_content); }