// Copyright (c) 2016 The vulkano developers // Licensed under the Apache License, Version 2.0 // or the MIT // license , // at your option. All files in the project carrying such // notice may not be copied, modified, or distributed except // according to those terms. use png; use std::io::Cursor; use std::sync::Arc; use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer}; use vulkano::command_buffer::{ AutoCommandBufferBuilder, CommandBufferUsage, DynamicState, SubpassContents, }; use vulkano::descriptor_set::PersistentDescriptorSet; use vulkano::device::physical::{PhysicalDevice, PhysicalDeviceType}; use vulkano::device::{Device, DeviceExtensions, Features}; use vulkano::format::Format; use vulkano::image::{ view::ImageView, ImageDimensions, ImageUsage, ImmutableImage, MipmapsCount, SwapchainImage, }; use vulkano::instance::Instance; use vulkano::pipeline::viewport::Viewport; use vulkano::pipeline::GraphicsPipeline; use vulkano::pipeline::GraphicsPipelineAbstract; use vulkano::render_pass::{Framebuffer, FramebufferAbstract, RenderPass, Subpass}; use vulkano::sampler::{Filter, MipmapMode, Sampler, SamplerAddressMode}; use vulkano::swapchain; use vulkano::swapchain::{AcquireError, Swapchain, SwapchainCreationError}; use vulkano::sync; use vulkano::sync::{FlushError, GpuFuture}; use vulkano::Version; use vulkano_win::VkSurfaceBuild; use winit::event::{Event, WindowEvent}; use winit::event_loop::{ControlFlow, EventLoop}; use winit::window::{Window, WindowBuilder}; fn main() { // The start of this example is exactly the same as `triangle`. You should read the // `triangle` example if you haven't done so yet. let required_extensions = vulkano_win::required_extensions(); let instance = Instance::new(None, Version::V1_1, &required_extensions, None).unwrap(); let event_loop = EventLoop::new(); let surface = WindowBuilder::new() .build_vk_surface(&event_loop, instance.clone()) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (physical_device, queue_family) = PhysicalDevice::enumerate(&instance) .filter(|&p| p.supported_extensions().intersection(&device_extensions) == device_extensions) .filter_map(|p| { p.queue_families() .find(|&q| q.supports_graphics() && surface.is_supported(q).unwrap_or(false)) .map(|q| (p, q)) }) .min_by_key(|(p, _)| match p.properties().device_type.unwrap() { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name.as_ref().unwrap(), physical_device.properties().device_type.unwrap(), ); let (device, mut queues) = Device::new( physical_device, &Features::none(), &physical_device .required_extensions() .union(&device_extensions), [(queue_family, 0.5)].iter().cloned(), ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, images) = { let caps = surface.capabilities(physical_device).unwrap(); let composite_alpha = caps.supported_composite_alpha.iter().next().unwrap(); let format = caps.supported_formats[0].0; let dimensions: [u32; 2] = surface.window().inner_size().into(); Swapchain::start(device.clone(), surface.clone()) .num_images(caps.min_image_count) .format(format) .dimensions(dimensions) .usage(ImageUsage::color_attachment()) .sharing_mode(&queue) .composite_alpha(composite_alpha) .build() .unwrap() }; #[derive(Default, Debug, Clone)] struct Vertex { position: [f32; 2], } vulkano::impl_vertex!(Vertex, position); let vertex_buffer = CpuAccessibleBuffer::<[Vertex]>::from_iter( device.clone(), BufferUsage::all(), false, [ Vertex { position: [-0.5, -0.5], }, Vertex { position: [-0.5, 0.5], }, Vertex { position: [0.5, -0.5], }, Vertex { position: [0.5, 0.5], }, ] .iter() .cloned(), ) .unwrap(); let vs = vs::Shader::load(device.clone()).unwrap(); let fs = fs::Shader::load(device.clone()).unwrap(); let render_pass = Arc::new( vulkano::single_pass_renderpass!(device.clone(), attachments: { color: { load: Clear, store: Store, format: swapchain.format(), samples: 1, } }, pass: { color: [color], depth_stencil: {} } ) .unwrap(), ); let (texture, tex_future) = { let png_bytes = include_bytes!("image_img.png").to_vec(); let cursor = Cursor::new(png_bytes); let decoder = png::Decoder::new(cursor); let (info, mut reader) = decoder.read_info().unwrap(); let dimensions = ImageDimensions::Dim2d { width: info.width, height: info.height, array_layers: 1, }; let mut image_data = Vec::new(); image_data.resize((info.width * info.height * 4) as usize, 0); reader.next_frame(&mut image_data).unwrap(); let (image, future) = ImmutableImage::from_iter( image_data.iter().cloned(), dimensions, MipmapsCount::One, Format::R8G8B8A8Srgb, queue.clone(), ) .unwrap(); (ImageView::new(image).unwrap(), future) }; let sampler = Sampler::new( device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0, ) .unwrap(); let pipeline = Arc::new( GraphicsPipeline::start() .vertex_input_single_buffer::() .vertex_shader(vs.main_entry_point(), ()) .triangle_strip() .viewports_dynamic_scissors_irrelevant(1) .fragment_shader(fs.main_entry_point(), ()) .blend_alpha_blending() .render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .build(device.clone()) .unwrap(), ); let layout = pipeline.layout().descriptor_set_layout(0).unwrap(); let set = Arc::new( PersistentDescriptorSet::start(layout.clone()) .add_sampled_image(texture.clone(), sampler.clone()) .unwrap() .build() .unwrap(), ); let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None, compare_mask: None, write_mask: None, reference: None, }; let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state); let mut recreate_swapchain = false; let mut previous_frame_end = Some(tex_future.boxed()); event_loop.run(move |event, _, control_flow| match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::RedrawEventsCleared => { previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let dimensions: [u32; 2] = surface.window().inner_size().into(); let (new_swapchain, new_images) = match swapchain.recreate().dimensions(dimensions).build() { Ok(r) => r, Err(SwapchainCreationError::UnsupportedDimensions) => return, Err(e) => panic!("Failed to recreate swapchain: {:?}", e), }; swapchain = new_swapchain; framebuffers = window_size_dependent_setup( &new_images, render_pass.clone(), &mut dynamic_state, ); recreate_swapchain = false; } let (image_num, suboptimal, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("Failed to acquire next image: {:?}", e), }; if suboptimal { recreate_swapchain = true; } let clear_values = vec![[0.0, 0.0, 1.0, 1.0].into()]; let mut builder = AutoCommandBufferBuilder::primary( device.clone(), queue.family(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( framebuffers[image_num].clone(), SubpassContents::Inline, clear_values, ) .unwrap() .draw( pipeline.clone(), &dynamic_state, vertex_buffer.clone(), set.clone(), (), vec![], ) .unwrap() .end_render_pass() .unwrap(); let command_buffer = builder.build().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present(queue.clone(), swapchain.clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(FlushError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("Failed to flush future: {:?}", e); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } _ => (), }); } /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup( images: &[Arc>], render_pass: Arc, dynamic_state: &mut DynamicState, ) -> Vec> { let dimensions = images[0].dimensions(); let viewport = Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0..1.0, }; dynamic_state.viewports = Some(vec![viewport]); images .iter() .map(|image| { let view = ImageView::new(image.clone()).unwrap(); Arc::new( Framebuffer::start(render_pass.clone()) .add(view) .unwrap() .build() .unwrap(), ) as Arc }) .collect::>() } mod vs { vulkano_shaders::shader! { ty: "vertex", src: " #version 450 layout(location = 0) in vec2 position; layout(location = 0) out vec2 tex_coords; void main() { gl_Position = vec4(position, 0.0, 1.0); tex_coords = position + vec2(0.5); }" } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: " #version 450 layout(location = 0) in vec2 tex_coords; layout(location = 0) out vec4 f_color; layout(set = 0, binding = 0) uniform sampler2D tex; void main() { f_color = texture(tex, tex_coords); }" } }