// Modified triangle example to show `SubbufferAllocator`. use std::{ error::Error, sync::Arc, time::{SystemTime, UNIX_EPOCH}, }; use vulkano::{ buffer::{ allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo}, BufferContents, BufferUsage, }, command_buffer::{ allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel, CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo, QueueFlags, }, image::{view::ImageView, Image, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, input_assembly::InputAssemblyState, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ event::{Event, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::WindowBuilder, }; fn main() -> Result<(), impl Error> { let event_loop = EventLoop::new().unwrap(); let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(&event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.presentation_support(i as u32, &event_loop).unwrap() }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); let (mut swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; Swapchain::new( device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); #[derive(Clone, Copy, BufferContents, Vertex)] #[repr(C)] struct Vertex { #[format(R32G32_SFLOAT)] position: [f32; 2], } // Using a buffer allocator allows multiple buffers to be "in-flight" simultaneously and is // suited to highly dynamic data like vertex, index and uniform buffers. let buffer_allocator = SubbufferAllocator::new( memory_allocator, SubbufferAllocatorCreateInfo { // We want to use the allocated subbuffers as vertex buffers. buffer_usage: BufferUsage::VERTEX_BUFFER, memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, ); mod vs { vulkano_shaders::shader! { ty: "vertex", src: r" #version 450 layout(location = 0) in vec2 position; void main() { gl_Position = vec4(position, 0.0, 1.0); } ", } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: r" #version 450 layout(location = 0) out vec4 f_color; void main() { f_color = vec4(1.0, 0.0, 0.0, 1.0); } ", } } let render_pass = vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, }, pass: { color: [color], depth_stencil: {}, }, ) .unwrap(); let pipeline = { let vs = vs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let vertex_input_state = Vertex::per_vertex().definition(&vs).unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState::default()), viewport_state: Some(ViewportState::default()), rasterization_state: Some(RasterizationState::default()), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), dynamic_state: [DynamicState::Viewport].into_iter().collect(), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let mut viewport = Viewport { offset: [0.0, 0.0], extent: [0.0, 0.0], depth_range: 0.0..=1.0, }; let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport); let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); event_loop.run(move |event, elwt| { elwt.set_control_flow(ControlFlow::Poll); match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { elwt.exit(); } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::WindowEvent { event: WindowEvent::RedrawRequested, .. } => { let image_extent: [u32; 2] = window.inner_size().into(); if image_extent.contains(&0) { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = swapchain .recreate(SwapchainCreateInfo { image_extent, ..swapchain.create_info() }) .expect("failed to recreate swapchain"); swapchain = new_swapchain; framebuffers = window_size_dependent_setup( &new_images, render_pass.clone(), &mut viewport, ); recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { recreate_swapchain = true; } // Rotate once (PI*2) every 5 seconds let elapsed = SystemTime::now() .duration_since(UNIX_EPOCH) .unwrap() .as_secs_f64(); const DURATION: f64 = 5.0; let remainder = elapsed.rem_euclid(DURATION); let delta = (remainder / DURATION) as f32; let angle = delta * std::f32::consts::PI * 2.0; const RADIUS: f32 = 0.5; // 120Degree offset in radians const ANGLE_OFFSET: f32 = (std::f32::consts::PI * 2.0) / 3.0; // Calculate vertices let data = [ Vertex { position: [angle.cos() * RADIUS, angle.sin() * RADIUS], }, Vertex { position: [ (angle + ANGLE_OFFSET).cos() * RADIUS, (angle + ANGLE_OFFSET).sin() * RADIUS, ], }, Vertex { position: [ (angle - ANGLE_OFFSET).cos() * RADIUS, (angle - ANGLE_OFFSET).sin() * RADIUS, ], }, ]; let num_vertices = data.len() as u32; // Allocate a new subbuffer using the buffer allocator. let buffer = buffer_allocator.allocate_slice(data.len() as _).unwrap(); buffer.write().unwrap().copy_from_slice(&data); let mut builder = RecordingCommandBuffer::new( command_buffer_allocator.clone(), queue.queue_family_index(), CommandBufferLevel::Primary, CommandBufferBeginInfo { usage: CommandBufferUsage::OneTimeSubmit, ..Default::default() }, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .set_viewport(0, [viewport.clone()].into_iter().collect()) .unwrap() // Draw our buffer .bind_pipeline_graphics(pipeline.clone()) .unwrap() .bind_vertex_buffers(0, buffer) .unwrap(); unsafe { builder.draw(num_vertices, 1, 0, 0).unwrap(); } builder.end_render_pass(Default::default()).unwrap(); let command_buffer = builder.end().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { previous_frame_end = Some(Box::new(future) as Box<_>); } Err(VulkanError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box<_>); } Err(e) => { println!("failed to flush future: {e}"); previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box<_>); } } } Event::AboutToWait => window.request_redraw(), _ => (), } }) } /// This function is called once during initialization, then again whenever the window is resized. fn window_size_dependent_setup( images: &[Arc], render_pass: Arc, viewport: &mut Viewport, ) -> Vec> { let extent = images[0].extent(); viewport.extent = [extent[0] as f32, extent[1] as f32]; images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view], ..Default::default() }, ) .unwrap() }) .collect::>() }