// Copyright (c) 2016 The vulkano developers // Licensed under the Apache License, Version 2.0 // or the MIT // license , // at your option. All files in the project carrying such // notice may not be copied, modified, or distributed except // according to those terms. // Welcome to the triangle example! // // This is the only example that is entirely detailed. All the other examples avoid code // duplication by using helper functions. // // This example assumes that you are already more or less familiar with graphics programming and // that you want to learn Vulkan. This means that for example it won't go into details about what a // vertex or a shader is. use std::{collections::HashMap, sync::Arc}; use vulkano::{ buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage}, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo, QueueFlags, }, image::{view::ImageView, Image, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, input_assembly::InputAssemblyState, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ event::{ElementState, Event, KeyboardInput, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; /// A struct to contain resources related to a window. struct WindowSurface { window: Arc, swapchain: Arc, framebuffers: Vec>, recreate_swapchain: bool, previous_frame_end: Option>, } fn main() { let event_loop = EventLoop::new(); let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(&event_loop); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); // A hashmap that contains all of our created windows and their resources. let mut window_surfaces = HashMap::new(); // Use the window's id as a means to access it from the hashmap. let window_id = window.id(); // Find the device and a queue. // TODO: it is assumed the device, queue, and surface surface_capabilities are the same for all // windows. let (device, queue, surface_caps) = { let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); (device, queues.next().unwrap(), surface_capabilities) }; // The swapchain and framebuffer images for this particular window. let (swapchain, images) = { let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; let window = surface.object().unwrap().downcast_ref::().unwrap(); Swapchain::new( device.clone(), surface.clone(), SwapchainCreateInfo { min_image_count: surface_caps.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_caps .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); #[derive(BufferContents, Vertex)] #[repr(C)] struct Vertex { #[format(R32G32_SFLOAT)] position: [f32; 2], } let vertices = [ Vertex { position: [-0.5, -0.25], }, Vertex { position: [0.0, 0.5], }, Vertex { position: [0.25, -0.1], }, ]; let vertex_buffer = Buffer::from_iter( memory_allocator, BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, vertices, ) .unwrap(); mod vs { vulkano_shaders::shader! { ty: "vertex", src: r" #version 450 layout(location = 0) in vec2 position; void main() { gl_Position = vec4(position, 0.0, 1.0); } ", } } mod fs { vulkano_shaders::shader! { ty: "fragment", src: r" #version 450 layout(location = 0) out vec4 f_color; void main() { f_color = vec4(1.0, 0.0, 0.0, 1.0); } ", } } let render_pass = vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, }, pass: { color: [color], depth_stencil: {}, }, ) .unwrap(); let pipeline = { let vs = vs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let vertex_input_state = Vertex::per_vertex() .definition(&vs.info().input_interface) .unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState::default()), viewport_state: Some(ViewportState::default()), rasterization_state: Some(RasterizationState::default()), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), dynamic_state: [DynamicState::Viewport].into_iter().collect(), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; let mut viewport = Viewport { offset: [0.0, 0.0], extent: [0.0, 0.0], depth_range: 0.0..=1.0, }; let command_buffer_allocator = StandardCommandBufferAllocator::new(device.clone(), Default::default()); window_surfaces.insert( window_id, WindowSurface { window, swapchain, recreate_swapchain: false, framebuffers: window_size_dependent_setup(&images, render_pass.clone(), &mut viewport), previous_frame_end: Some(sync::now(device.clone()).boxed()), }, ); event_loop.run(move |event, event_loop, control_flow| match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; } Event::WindowEvent { window_id, event: WindowEvent::Resized(_), .. } => { window_surfaces .get_mut(&window_id) .unwrap() .recreate_swapchain = true; } Event::WindowEvent { event: WindowEvent::KeyboardInput { input: KeyboardInput { state: ElementState::Pressed, .. }, .. }, .. } => { let window = Arc::new(WindowBuilder::new().build(event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); let window_id = window.id(); let (swapchain, images) = { let composite_alpha = surface_caps .supported_composite_alpha .into_iter() .next() .unwrap(); let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; Swapchain::new( device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_caps.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha, ..Default::default() }, ) .unwrap() }; window_surfaces.insert( window_id, WindowSurface { window, swapchain, recreate_swapchain: false, framebuffers: window_size_dependent_setup( &images, render_pass.clone(), &mut viewport, ), previous_frame_end: Some(sync::now(device.clone()).boxed()), }, ); } Event::RedrawEventsCleared => { window_surfaces .values() .for_each(|s| s.window.request_redraw()); } Event::RedrawRequested(window_id) => { let WindowSurface { window, swapchain, recreate_swapchain, framebuffers, previous_frame_end, } = window_surfaces.get_mut(&window_id).unwrap(); let image_extent: [u32; 2] = window.inner_size().into(); if image_extent.contains(&0) { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if *recreate_swapchain { let (new_swapchain, new_images) = swapchain .recreate(SwapchainCreateInfo { image_extent, ..swapchain.create_info() }) .expect("failed to recreate swapchain"); *swapchain = new_swapchain; *framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut viewport); *recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { *recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { *recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( &command_buffer_allocator, queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .set_viewport(0, [viewport.clone()].into_iter().collect()) .unwrap() .bind_pipeline_graphics(pipeline.clone()) .unwrap() .bind_vertex_buffers(0, vertex_buffer.clone()) .unwrap() .draw(vertex_buffer.len() as u32, 1, 0, 0) .unwrap() .end_render_pass(Default::default()) .unwrap(); let command_buffer = builder.build().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { *previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { *recreate_swapchain = true; *previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); *previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } _ => (), }); } fn window_size_dependent_setup( images: &[Arc], render_pass: Arc, viewport: &mut Viewport, ) -> Vec> { let extent = images[0].extent(); viewport.extent = [extent[0] as f32, extent[1] as f32]; images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view], ..Default::default() }, ) .unwrap() }) .collect::>() }