
Vulkan 1.0.36 - A Specification i

Vulkan 1.0.36 - A Specification

Vulkan 1.0.36 - A Specification iii

Contents

1 Introduction 1

1.1 What is the Vulkan Graphics System? . 1

1.1.1 The Programmer’s View of Vulkan . 1

1.1.2 The Implementor’s View of Vulkan . 2

1.1.3 Our View of Vulkan . 2

1.2 Filing Bug Reports . 2

1.3 Terminology . 2

1.4 Normative References . 3

2 Fundamentals 5

2.1 Architecture Model . 5

2.2 Execution Model . 6

2.2.1 Queue Operation . 6

2.3 Object Model . 8

2.3.1 Object Lifetime . 8

2.4 Command Syntax and Duration . 10

2.4.1 Lifetime of Retrieved Results . 11

2.5 Threading Behavior . 11

2.6 Errors . 17

2.6.1 Valid Usage . 18

2.6.2 Implicit Valid Usage . 18

2.6.2.1 Valid Usage for Object Handles . 18

2.6.2.2 Valid Usage for Pointers . 19

2.6.2.3 Valid Usage for Enumerated Types . 19

2.6.2.4 Valid Usage for Flags . 19

2.6.2.5 Valid Usage for Structure Types . 19

2.6.2.6 Valid Usage for Structure Pointer Chains . 20

2.6.2.7 Valid Usage for Nested Structures . 20

2.6.3 Return Codes . 20

2.7 Numeric Representation and Computation . 22

2.7.1 Floating-Point Computation . 22

2.7.2 16-Bit Floating-Point Numbers . 22

2.7.3 Unsigned 11-Bit Floating-Point Numbers . 23

2.7.4 Unsigned 10-Bit Floating-Point Numbers . 23

2.7.5 General Requirements . 23

2.8 Fixed-Point Data Conversions . 23

2.8.1 Conversion from Normalized Fixed-Point to Floating-Point . 24

2.8.2 Conversion from Floating-Point to Normalized Fixed-Point . 24

2.9 API Version Numbers and Semantics . 25

2.10 Common Object Types . 25

2.10.1 Offsets . 25

2.10.2 Extents . 26

2.10.3 Rectangles . 26

3 Initialization 27

3.1 Command Function Pointers . 27

3.2 Instances . 29

4 Devices and Queues 35

4.1 Physical Devices . 35

4.2 Devices . 40

4.2.1 Device Creation . 41

4.2.2 Device Use . 43

4.2.3 Lost Device . 44

4.2.4 Device Destruction . 44

4.3 Queues . 46

4.3.1 Queue Family Properties . 46

4.3.2 Queue Creation . 46

4.3.3 Queue Family Index . 48

4.3.4 Queue Priority . 48

4.3.5 Queue Submission . 49

4.3.5.1 Sparse Memory Binding . 49

4.3.6 Queue Destruction . 49

Vulkan 1.0.36 - A Specification v

5 Command Buffers 51

5.1 Command Pools . 52

5.2 Command Buffer Allocation and Management . 56

5.3 Command Buffer Recording . 61

5.4 Command Buffer Submission . 66

5.5 Queue Forward Progress . 71

5.6 Secondary Command Buffer Execution . 71

6 Synchronization and Cache Control 75

6.1 Execution and Memory Dependencies . 75

6.1.1 Image Layout Transitions . 77

6.1.2 Pipeline Stages . 78

6.1.3 Access Types . 82

6.1.4 Framebuffer Region Dependencies . 85

6.2 Fences . 86

6.3 Semaphores . 93

6.3.1 Semaphore Signaling . 96

6.3.2 Semaphore Waiting & Unsignaling . 96

6.4 Events . 96

6.5 Pipeline Barriers . 109

6.5.1 Subpass Self-dependency . 112

6.6 Memory Barriers . 113

6.6.1 Global Memory Barriers . 113

6.6.2 Buffer Memory Barriers . 114

6.6.3 Image Memory Barriers . 115

6.6.4 Queue Family Ownership Transfer . 118

6.7 Wait Idle Operations . 119

6.8 Host Write Ordering Guarantees . 121

7 Render Pass 123

7.1 Render Pass Creation . 124

7.2 Render Pass Compatibility . 138

7.3 Framebuffers . 139

7.4 Render Pass Commands . 142

8 Shaders 151

8.1 Shader Modules . 151

8.2 Shader Execution . 154

8.3 Shader Memory Access Ordering . 155

8.4 Shader Inputs and Outputs . 156

8.5 Vertex Shaders . 156

8.5.1 Vertex Shader Execution . 156

8.6 Tessellation Control Shaders . 157

8.6.1 Tessellation Control Shader Execution . 157

8.7 Tessellation Evaluation Shaders . 157

8.7.1 Tessellation Evaluation Shader Execution . 157

8.8 Geometry Shaders . 157

8.8.1 Geometry Shader Execution . 158

8.9 Fragment Shaders . 158

8.9.1 Fragment Shader Execution . 158

8.9.2 Early Fragment Tests . 158

8.10 Compute Shaders . 158

8.11 Interpolation Decorations . 159

8.12 Static Use . 159

8.13 Invocation and Derivative Groups . 160

9 Pipelines 161

9.1 Compute Pipelines . 163

9.2 Graphics Pipelines . 168

9.2.1 Valid Combinations of Stages for Graphics Pipelines . 176

9.3 Pipeline destruction . 177

9.4 Multiple Pipeline Creation . 178

9.5 Pipeline Derivatives . 179

9.6 Pipeline Cache . 179

9.7 Specialization Constants . 186

9.8 Pipeline Binding . 189

10 Memory Allocation 193

10.1 Host Memory . 193

10.2 Device Memory . 199

10.2.1 Host Access to Device Memory Objects . 206

10.2.2 Lazily Allocated Memory . 212

Vulkan 1.0.36 - A Specification vii

11 Resource Creation 215

11.1 Buffers . 215

11.2 Buffer Views . 220

11.3 Images . 223

11.4 Image Layouts . 236

11.5 Image Views . 238

11.6 Resource Memory Association . 248

11.7 Resource Sharing Mode . 254

11.8 Memory Aliasing . 255

12 Samplers 257

13 Resource Descriptors 265

13.1 Descriptor Types . 266

13.1.1 Storage Image . 266

13.1.2 Sampler . 267

13.1.3 Sampled Image . 268

13.1.4 Combined Image Sampler . 268

13.1.5 Uniform Texel Buffer . 269

13.1.6 Storage Texel Buffer . 269

13.1.7 Uniform Buffer . 270

13.1.8 Storage Buffer . 271

13.1.9 Dynamic Uniform Buffer . 271

13.1.10 Dynamic Storage Buffer . 272

13.1.11 Input Attachment . 272

13.2 Descriptor Sets . 272

13.2.1 Descriptor Set Layout . 272

13.2.2 Pipeline Layouts . 279

13.2.2.1 Pipeline Layout Compatibility . 284

13.2.3 Allocation of Descriptor Sets . 286

13.2.4 Descriptor Set Updates . 295

13.2.5 Descriptor Set Binding . 302

13.2.6 Push Constant Updates . 305

14 Shader Interfaces 309

14.1 Shader Input and Output Interfaces . 309

14.1.1 Built-in Interface Block . 309

14.1.2 User-defined Variable Interface . 310

14.1.3 Interface Matching . 310

14.1.4 Location Assignment . 311

14.1.5 Component Assignment . 312

14.2 Vertex Input Interface . 312

14.3 Fragment Output Interface . 312

14.4 Fragment Input Attachment Interface . 313

14.5 Shader Resource Interface . 314

14.5.1 Push Constant Interface . 314

14.5.2 Descriptor Set Interface . 314

14.5.3 DescriptorSet and Binding Assignment . 316

14.5.4 Offset and Stride Assignment . 317

14.6 Built-In Variables . 318

15 Image Operations 329

15.1 Image Operations Overview . 329

15.1.1 Texel Coordinate Systems . 330

15.2 Conversion Formulas . 332

15.2.1 RGB to Shared Exponent Conversion . 332

15.2.2 Shared Exponent to RGB . 334

15.3 Texel Input Operations . 334

15.3.1 Texel Input Validation Operations . 334

15.3.1.1 Instruction/Sampler/Image Validation . 335

15.3.1.2 Integer Texel Coordinate Validation . 336

15.3.1.3 Cube Map Edge Handling . 337

15.3.1.4 Sparse Validation . 337

15.3.2 Format Conversion . 337

15.3.3 Texel Replacement . 338

15.3.4 Depth Compare Operation . 339

15.3.5 Conversion to RGBA . 339

15.3.6 Component Swizzle . 340

15.3.7 Sparse Residency . 340

15.4 Texel Output Operations . 341

Vulkan 1.0.36 - A Specification ix

15.4.1 Texel Output Validation Operations . 341

15.4.1.1 Texel Format Validation . 341

15.4.2 Integer Texel Coordinate Validation . 341

15.4.3 Sparse Texel Operation . 341

15.4.4 Texel Output Format Conversion . 341

15.5 Derivative Operations . 342

15.6 Normalized Texel Coordinate Operations . 343

15.6.1 Projection Operation . 343

15.6.2 Derivative Image Operations . 343

15.6.3 Cube Map Face Selection and Transformations . 344

15.6.4 Cube Map Face Selection . 344

15.6.5 Cube Map Coordinate Transformation . 345

15.6.6 Cube Map Derivative Transformation . 345

15.6.7 Scale Factor Operation, Level-of-Detail Operation and Image Level(s) Selection 345

15.6.7.1 Scale Factor Operation . 345

15.6.7.2 Level-of-Detail Operation . 347

15.6.7.3 Image Level(s) Selection . 348

15.6.8 (s,t,r,q,a) to (u,v,w,a) Transformation . 348

15.7 Unnormalized Texel Coordinate Operations . 349

15.7.1 (u,v,w,a) to (i,j,k,l,n) Transformation And Array Layer Selection 349

15.8 Image Sample Operations . 350

15.8.1 Wrapping Operation . 350

15.8.2 Texel Gathering . 350

15.8.3 Texel Filtering . 351

15.8.4 Texel Anisotropic Filtering . 351

15.9 Image Operation Steps . 352

16 Queries 353

16.1 Query Pools . 353

16.2 Query Operation . 356

16.3 Occlusion Queries . 367

16.4 Pipeline Statistics Queries . 368

16.5 Timestamp Queries . 370

17 Clear Commands 373

17.1 Clearing Images Outside A Render Pass Instance . 373

17.2 Clearing Images Inside A Render Pass Instance . 377

17.3 Clear Values . 380

17.4 Filling Buffers . 381

17.5 Updating Buffers . 383

18 Copy Commands 387

18.1 Common Operation . 387

18.2 Copying Data Between Buffers . 388

18.3 Copying Data Between Images . 390

18.4 Copying Data Between Buffers and Images . 396

18.5 Image Copies with Scaling . 403

18.6 Resolving Multisample Images . 409

19 Drawing Commands 415

19.1 Primitive Topologies . 416

19.1.1 Points . 417

19.1.2 Separate Lines . 417

19.1.3 Line Strips . 417

19.1.4 Triangle Strips . 417

19.1.5 Triangle Fans . 418

19.1.6 Separate Triangles . 418

19.1.7 Lines With Adjacency . 418

19.1.8 Line Strips With Adjacency . 419

19.1.9 Triangle List With Adjacency . 419

19.1.10 Triangle Strips With Adjacency . 420

19.1.11 Separate Patches . 422

19.1.12 General Considerations For Polygon Primitives . 422

19.2 Programmable Primitive Shading . 422

20 Fixed-Function Vertex Processing 439

20.1 Vertex Attributes . 439

20.1.1 Attribute Location and Component Assignment . 440

20.2 Vertex Input Description . 443

20.3 Example . 448

Vulkan 1.0.36 - A Specification xi

21 Tessellation 451

21.1 Tessellator . 451

21.2 Tessellator Patch Discard . 453

21.3 Tessellator Spacing . 453

21.4 Triangle Tessellation . 454

21.5 Quad Tessellation . 456

21.6 Isoline Tessellation . 458

21.7 Tessellation Pipeline State . 458

22 Geometry Shading 461

22.1 Geometry Shader Input Primitives . 461

22.2 Geometry Shader Output Primitives . 462

22.3 Multiple Invocations of Geometry Shaders . 462

22.4 Geometry Shader Primitive Ordering . 463

23 Fixed-Function Vertex Post-Processing 465

23.1 Flat Shading . 465

23.2 Primitive Clipping . 466

23.3 Clipping Shader Outputs . 468

23.4 Coordinate Transformations . 468

23.5 Controlling the Viewport . 468

24 Rasterization 475

24.1 Discarding Primitives Before Rasterization . 478

24.2 Rasterization Order . 478

24.3 Multisampling . 479

24.4 Sample Shading . 480

24.5 Points . 480

24.5.1 Basic Point Rasterization . 481

24.6 Line Segments . 481

24.6.1 Basic Line Segment Rasterization . 483

24.7 Polygons . 484

24.7.1 Basic Polygon Rasterization . 484

24.7.2 Polygon Mode . 486

24.7.3 Depth Bias . 486

25 Fragment Operations 489

25.1 Early Per-Fragment Tests . 489

25.2 Scissor Test . 489

25.3 Sample Mask . 491

25.4 Early Fragment Test Mode . 491

25.5 Late Per-Fragment Tests . 492

25.6 Multisample Coverage . 492

25.7 Depth and Stencil Operations . 493

25.8 Depth Bounds Test . 494

25.9 Stencil Test . 496

25.10Depth Test . 502

25.11Sample Counting . 503

26 The Framebuffer 505

26.1 Blending . 505

26.1.1 Blend Factors . 508

26.1.2 Dual-Source Blending . 510

26.1.3 Blend Operations . 511

26.2 Logical Operations . 513

27 Dispatching Commands 515

28 Sparse Resources 521

28.1 Sparse Resource Features . 521

28.2 Sparse Buffers and Fully-Resident Images . 522

28.2.1 Sparse Buffer and Fully-Resident Image Block Size . 523

28.3 Sparse Partially-Resident Buffers . 523

28.4 Sparse Partially-Resident Images . 523

28.4.1 Accessing Unbound Regions . 523

28.4.2 Mip Tail Regions . 524

28.4.3 Standard Sparse Image Block Shapes . 528

28.4.4 Custom Sparse Image Block Shapes . 530

28.4.5 Multiple Aspects . 531

28.4.5.1 Metadata . 531

28.5 Sparse Memory Aliasing . 532

28.6 Sparse Resource Implementation Guidelines . 532

28.7 Sparse Resource API . 534

Vulkan 1.0.36 - A Specification xiii

28.7.1 Physical Device Features . 534

28.7.1.1 Sparse Physical Device Features . 534

28.7.2 Physical Device Sparse Properties . 535

28.7.3 Sparse Image Format Properties . 536

28.7.3.1 Sparse Image Format Properties API . 536

28.7.4 Sparse Resource Creation . 538

28.7.5 Sparse Resource Memory Requirements . 538

28.7.5.1 Buffer and Fully-Resident Images . 538

28.7.5.2 Partially Resident Images . 538

28.7.5.3 Sparse Image Memory Requirements . 539

28.7.6 Binding Resource Memory . 540

28.7.6.1 Sparse Memory Binding Functions . 541

28.8 Examples . 550

28.8.1 Basic Sparse Resources . 550

28.8.2 Advanced Sparse Resources . 551

29 Extended Functionality 557

29.1 Layers . 557

29.1.1 Device Layer Deprecation . 559

29.2 Extensions . 561

29.2.1 Instance Extensions and Device Extensions . 564

30 Features, Limits, and Formats 565

30.1 Features . 565

30.1.1 Feature Requirements . 575

30.2 Limits . 575

30.2.1 Limit Requirements . 585

30.3 Formats . 592

30.3.1 Format Definition . 592

30.3.1.1 Packed Formats . 608

30.3.1.2 Identification of Formats . 609

30.3.1.3 Representation . 610

30.3.1.4 Depth/Stencil Formats . 612

30.3.1.5 Format Compatibility Classes . 612

30.3.2 Format Properties . 617

30.3.3 Required Format Support . 619

30.4 Additional Image Capabilities . 631

30.4.1 Supported Sample Counts . 633

30.4.2 Allowed Extent Values Based On Image Type . 634

31 Debugging 635

32 Glossary 637

33 Common Abbreviations 651

34 Prefixes 653

A Vulkan Environment for SPIR-V 655

A.1 Required Versions and Formats . 655

A.2 Capabilities . 655

A.3 Validation Rules within a Module . 656

A.4 Precision and Operation of SPIR-V Instructions . 657

B Compressed Image Formats 661

B.1 Block-Compressed Image Formats . 662

B.2 ETC Compressed Image Formats . 663

B.3 ASTC Compressed Image Formats . 664

C Layers & Extensions 665

C.1 VK_KHR_sampler_mirror_clamp_to_edge . 665

C.1.1 New Enum Constants . 666

C.1.2 Example . 666

C.1.3 Version History . 666

D API Boilerplate 667

D.1 Structure Types . 667

D.2 Flag Types . 668

D.3 Macro Definitions in vulkan.h . 671

D.3.1 Vulkan Version Number Macros . 671

D.3.2 Vulkan Header File Version Number . 671

D.3.3 Vulkan Handle Macros . 672

D.4 Platform-Specific Macro Definitions in vk_platform.h . 672

D.4.1 Platform-Specific Calling Conventions . 673

D.4.2 Platform-Specific Header Control . 673

D.4.3 Window System-Specific Header Control . 673

Vulkan 1.0.36 - A Specification xv

E Invariance 675

E.1 Repeatability . 675

E.2 Multi-pass Algorithms . 675

E.3 Invariance Rules . 676

E.4 Tessellation Invariance . 677

F Credits 679

Vulkan 1.0.36 - A Specification xvii

Revision History
Revision 1.0.36 Fri, 02 Dec 2016 11:37:45 +0000
from git branch: 1.0 commit: 7cba8f5d9953986da27010b7cbc6fbcc9f96f880

Copyright © 2014-2016 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Khronos Group. You may use this specification for
implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the
specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or
distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy
and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of the API is used whenever possible.
Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as such product includes significant
independent work developed by the seller. A link to the current version of this specification on the Khronos Group
web-site should be included whenever possible with specification distributions.

This specification has been created under the Khronos Intellectual Property Rights Policy, which is Attachment A of the
Khronos Group Membership Agreement available at www.khronos.org/files/member_agreement.pdf. This specification
contains substantially unmodified functionality from, and is a successor to, Khronos specifications including OpenGL,
OpenGL ES and OpenCL.

Some parts of this Specification are purely informative and do not define requirements necessary for compliance and so
are outside the Scope of this Specification. These parts of the Specification are marked by the “Note” icon or designated
“Informative”.

Where this Specification uses terms, defined in the Glossary or otherwise, that refer to enabling technologies that are not
expressly set forth as being required for compliance, those enabling technologies are outside the Scope of this
Specification.

Where this Specification uses the terms “may”, or “optional”, such features or behaviors do not define requirements
necessary for compliance and so are outside the Scope of this Specification.

Where this Specification uses the terms “not required”, such features or behaviors may be omitted from certain
implementations, but when they are included, they define requirements necessary for compliance and so are INCLUDED
in the Scope of this Specification.

Where this Specification includes normative references to external documents, the specifically identified sections and
functionality of those external documents are in Scope. Requirements defined by external documents not created by
Khronos may contain contributions from non-members of Khronos not covered by the Khronos Intellectual Property
Rights Policy.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this
specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties,
express or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their respective
partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct, indirect,
special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos and Vulkan are trademarks of The Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL is a
registered trademark of Silicon Graphics International, both used under license by Khronos.

Vulkan 1.0.36 - A Specification 1 / 683

Chapter 1

Introduction

This chapter is Informative except for the sections on Terminology and Normative References.

This document, referred to as the “Vulkan Specification” or just the “Specification” hereafter, describes the Vulkan
graphics system: what it is, how it acts, and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the essentials of computer graphics
algorithms and terminology as well as with modern GPUs (Graphic Processing Units).

The canonical version of the Specification is available in the official Vulkan Registry, located at URL

http://www.khronos.org/registry/vulkan/

1.1 What is the Vulkan Graphics System?

Vulkan is an API (Application Programming Interface) for graphics and compute hardware. The API consists of many
commands that allow a programmer to specify shader programs, compute kernels, objects, and operations involved in
producing high-quality graphical images, specifically color images of three-dimensional objects.

1.1.1 The Programmer’s View of Vulkan

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders, kernels,
data used by kernels or shaders, and state controlling aspects of Vulkan outside of shader execution. Typically, the data
represents geometry in two or three dimensions and texture images, while the shaders and kernels control the processing
of the data, rasterization of the geometry, and the lighting and shading of fragments generated by rasterization, resulting
in the rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display device
onto which the program will draw. Then, calls are made to open queues to which command buffers are submitted. The
command buffers contain lists of commands which will be executed by the underlying hardware. The application can
also allocate device memory, associate resources with memory and refer to these resources from within command
buffers. Drawing commands cause application-defined shader programs to be invoked, which can then consume the data
in the resources and use them to produce graphical images. To display the resulting images, further platform-specific
commands are made to transfer the resulting image to a display device or window.

http://www.khronos.org/registry/vulkan/

1.1.2 The Implementor’s View of Vulkan

To the implementor, Vulkan is a set of commands that allow the construction and submission of command buffers to a
device. Modern devices accelerate virtually all Vulkan operations, storing data and framebuffer images in high-speed
memory and executing shaders in dedicated GPU processing resources.

The implementor’s task is to provide a software library on the host which implements the Vulkan API, while mapping
the work for each Vulkan command to the graphics hardware as appropriate for the capabilities of the device.

1.1.3 Our View of Vulkan

We view Vulkan as a pipeline having some programmable stages and some state-driven fixed-function stages that are
invoked by a set of specific drawing operations. We expect this model to result in a specification that satisfies the needs
of both programmers and implementors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the specified methods, but may carry out
particular computations in ways that are more efficient than the one specified.

1.2 Filing Bug Reports

Issues with and bug reports on the Vulkan Specification and the API Registry can be filed in the Khronos Vulkan GitHub
repository, located at URL

http://github.com/KhronosGroup/Vulkan-Docs

Please tag issues with appropriate labels, such as “Specification”, “Ref Pages” or “Registry”, to help us triage and assign
them appropriately. Unfortunately, GitHub does not currently let users who do not have write access to the repository set
GitHub labels on issues. In the meantime, they can be added to the title line of the issue set in brackets, e.g.
’[Specification]’.

1.3 Terminology

The key words must, required, shall should, recommend, may, and optional in this document are to be interpreted as
described in RFC 2119:

http://www.ietf.org/rfc/rfc2119.txt

must
When used alone, this word, or the term required, means that the definition is an absolute requirement of the
specification. When followed by not (“must not”), the phrase means that the definition is an absolute prohibition
of the specification.

should
When used alone, this word, or the adjective recommended, means that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications must be understood and carefully weighed
before choosing a different course. When followed by not (“should not”), the phrase means that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior described
with this label.

http://github.com/KhronosGroup/Vulkan-Docs
http://www.ietf.org/rfc/rfc2119.txt

Vulkan 1.0.36 - A Specification 3 / 683

may
This word, or the adjective optional, means that an item is truly optional. One vendor may choose to include the
item because a particular marketplace requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item. An implementation which does not include a particular option must be
prepared to interoperate with another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation which does include a particular option must be prepared to
interoperate with another implementation which does not include the option (except, of course, for the feature the
option provides).

The additional terms can and cannot are to be interpreted as follows:

can
This word means that the particular behavior described is a valid choice for an application, and is never used to
refer to implementation behavior.

cannot
This word means that the particular behavior described is not achievable by an application. For example, an entry
point does not exist, or shader code is not capable of expressing an operation.

Note
There is an important distinction between cannot and must not, as used in this Specification. Cannot means
something the application literally is unable to express or accomplish through the API, while must not means
something that the application is capable of expressing through the API, but that the consequences of doing so
are undefined and potentially unrecoverable for the implementation.

1.4 Normative References

Normative references are references to external documents or resources to which implementers of Vulkan must comply.

IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, http://dx.doi.org/10.1109/IEEESTD.2008.4610935,
August, 2008.

A. Garrard, Khronos Data Format Specification, version 1.1,
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html, June, 2016.

J. Kessenich, SPIR-V Extended Instructions for GLSL, Version 1.00, https://www.khronos.org/registry/spir-v/, February
10, 2016.

J. Kessenich and B. Ouriel, The Khronos SPIR-V Specification, Version 1.00, https://www.khronos.org/registry/spir-v/,
February 10, 2016.

J. Leech and T. Hector, Vulkan Documentation and Extensions: Procedures and Conventions,
https://www.khronos.org/registry/vulkan/, July 11, 2016

Vulkan Loader Specification and Architecture Overview, https://github.com/KhronosGroup/Vulkan-
LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md, August,
2016.

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/vulkan/
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md

Vulkan 1.0.36 - A Specification 5 / 683

Chapter 2

Fundamentals

This chapter introduces fundamental concepts including the Vulkan architecture and execution model, API syntax,
queues, pipeline configurations, numeric representation, state and state queries, and the different types of objects and
shaders. It provides a framework for interpreting more specific descriptions of commands and behavior in the remainder
of the Specification.

2.1 Architecture Model

Vulkan is designed for, and the API is written for, CPU, GPU, and other hardware accelerator architectures with the
following properties:

• Runtime support for 8, 16, 32 and 64-bit signed and unsigned twos-complement integers, all addressable at the
granularity of their size in bytes.

• Runtime support for 32- and 64-bit floating-point types satisfying the range and precision constraints in the Floating
Point Computation section.

• The representation and endianness of these types must be identical for the host and the physical devices.

Note
Since a variety of data types and structures in Vulkan may be mapped back and forth between host and physical
device memory, host and device architectures must both be able to access such data efficiently in order to write
portable and performant applications.

Where the Specification leaves choices open that would affect Application Binary Interface compatibility on a given
platform supporting Vulkan, those choices are usually made to be compliant to the preferred ABI defined by the platform
vendor. Some choices, such as function calling conventions, may be made in platform-specific portions of the vk_
platform.h header file.

Note
For example, the Android ABI is defined by Google, and the Linux ABI is defined by a combination of gcc defaults,
distribution vendor choices, and external standards such as the Linux Standard Base.

2.2 Execution Model

This section outlines the execution model of a Vulkan system.

Vulkan exposes one or more devices, each of which exposes one or more queues which may process work
asynchronously to one another. The set of queues supported by a device is partitioned into families. Each family supports
one or more types of functionality and may contain multiple queues with similar characteristics. Queues within a single
family are considered compatible with one another, and work produced for a family of queues can be executed on any
queue within that family. This specification defines four types of functionality that queues may support: graphics,
compute, transfer, and sparse memory management.

Note
A single device may report multiple similar queue families rather than, or as well as, reporting multiple members
of one or more of those families. This indicates that while members of those families have similar capabilities,
they are not directly compatible with one another.

Device memory is explicitly managed by the application. Each device may advertise one or more heaps, representing
different areas of memory. Memory heaps are either device local or host local, but are always visible to the device.
Further detail about memory heaps is exposed via memory types available on that heap. Examples of memory areas that
may be available on an implementation include:

• device local is memory that is physically connected to the device.

• device local, host visible is device local memory that is visible to the host.

• host local, host visible is memory that is local to the host and visible to the device and host.

On other architectures, there may only be a single heap that can be used for any purpose.

A Vulkan application controls a set of devices through the submission of command buffers which have recorded device
commands issued via Vulkan library calls. The content of command buffers is specific to the underlying hardware and is
opaque to the application. Once constructed, a command buffer can be submitted once or many times to a queue for
execution. Multiple command buffers can be built in parallel by employing multiple threads within the application.

Command buffers submitted to different queues may execute in parallel or even out of order with respect to one another.
Command buffers submitted to a single queue respect the submission order, as described further in Queue Operation.
Command buffer execution by the device is also asynchronous to host execution. Once a command buffer is submitted to
a queue, control may return to the application immediately. Synchronization between the device and host, and between
different queues is the responsibility of the application.

2.2.1 Queue Operation

Vulkan queues provide an interface to the execution engines of a device. Commands for these execution engines are
recorded into command buffers ahead of execution time. These command buffers are then submitted to queues with a
queue submission command for execution in a number of batches. Once submitted to a queue, these commands will
begin and complete execution without further application intervention, though the order of this execution is dependent on
a number of implicit and explicit ordering constraints.

Work is submitted to queues using queue submission commands that typically take the form vkQueue* (e.g.
vkQueueSubmit, vkQueueBindSparse), and optionally take a list of semaphores upon which to wait before work
begins and a list of semaphores to signal once work has completed. The work itself, as well as signaling and waiting on
the semaphores are all queue operations.

Vulkan 1.0.36 - A Specification 7 / 683

Queue operations on different queues have no implicit ordering constraints, and may execute in any order. Explicit
ordering constraints between queues can be expressed with semaphores and fences.

Command buffer submissions to a single queue must always adhere to command order and API order, but otherwise may
overlap or execute out of order. Other types of batches and queue submissions against a single queue (e.g. sparse
memory binding) have no implicit ordering constraints with any other queue submission or batch. Additional explicit
ordering constraints between queue submissions and individual batches can be expressed with semaphores and fences.

Before a fence or semaphore is signaled, it is guaranteed that any previously submitted queue operations have completed
execution, and that memory writes from those queue operations are available to future queue operations. Waiting on a
signaled semaphore or fence guarantees that previous writes that are available are also visible to subsequent commands.

Command buffer boundaries, both between primary command buffers of the same or different batches or submissions as
well as between primary and secondary command buffers, do not introduce any implicit ordering constraints. In other
words, submitting the set of command buffers (which can include executing secondary command buffers) between any
semaphore or fence operations execute the recorded commands as if they had all been recorded into a single primary
command buffer, except that the current state is reset on each boundary. Explicit ordering constraints can be expressed
with events and pipeline barriers.

There are a few implicit ordering constraints between commands within a command buffer, but only covering a subset of
execution. Additional explicit ordering constraints can be expressed with events, pipeline barriers and subpass
dependencies.

Note
Implementations have significant freedom to overlap execution of work submitted to a queue, and this is common
due to deep pipelining and parallelism in Vulkan devices.

Commands recorded in command buffers either perform actions (draw, dispatch, clear, copy, query/timestamp
operations, begin/end subpass operations), set state (bind pipelines, descriptor sets, and buffers, set dynamic state, push
constants, set render pass/subpass state), or perform synchronization (set/wait events, pipeline barrier, render
pass/subpass dependencies). Some commands perform more than one of these tasks. State setting commands update the
current state of the command buffer. Some commands that perform actions (e.g. draw/dispatch) do so based on the
current state set cumulatively since the start of the command buffer. The work involved in performing action commands
is often allowed to overlap or to be reordered, but doing so must not alter the state to be used by each action command. In
general, action commands are those commands that alter framebuffer attachments, read/write buffer or image memory, or
write to query pools.

Synchronization commands introduce explicit execution and memory dependencies between two sets of action
commands, where the second set of commands depends on the first set of commands. These dependencies enforce that
both the execution of certain pipeline stages in the later set occur after the execution of certain stages in the source set,
and that the effects of memory accesses performed by certain pipeline stages occur in order and are visible to each other.
When not enforced by an explicit dependency or otherwise forbidden by the specification, action commands may overlap
execution or execute out of order, and may not see the side effects of each other’s memory accesses.

The execution order of an action command with respect to any synchronization commands that affect that action
command must match the recording and submission order, within submissions to a single queue.

API order sorts primitives:

• First, by the action command that generates them.

• Second, by the order they are processed by primitive assembly.

Within this order, implementations also sort primitives:

• Third, by an implementation-dependent ordering of new primitives generated by tessellation, if a tessellation shader is
active.

• Fourth, by the order new primitives are generated by geometry shading, if geometry shading is active.

• Fifth, by an implementation-dependent ordering of primitives generated due to the polygon mode.

The device executes queue operations asynchronously with respect to the host. Control is returned to an application
immediately following command buffer submission to a queue. The application must synchronize work between the host
and device as needed.

2.3 Object Model

The devices, queues, and other entities in Vulkan are represented by Vulkan objects. At the API level, all objects are
referred to by handles. There are two classes of handles, dispatchable and non-dispatchable. Dispatchable handle types
are a pointer to an opaque type. This pointer may be used by layers as part of intercepting API commands, and thus each
API command takes a dispatchable type as its first parameter. Each object of a dispatchable type must have a unique
handle value during its lifetime.

Non-dispatchable handle types are a 64-bit integer type whose meaning is implementation-dependent, and may encode
object information directly in the handle rather than pointing to a software structure. Objects of a non-dispatchable type
may not have unique handle values within a type or across types. If handle values are not unique, then destroying one
such handle must not cause identical handles of other types to become invalid, and must not cause identical handles of
the same type to become invalid if that handle value has been created more times than it has been destroyed.

All objects created or allocated from a VkDevice (i.e. with a VkDevice as the first parameter) are private to that
device, and must not be used on other devices.

2.3.1 Object Lifetime

Objects are created or allocated by vkCreate* and vkAllocate* commands, respectively. Once an object is created
or allocated, its “structure” is considered to be immutable, though the contents of certain object types is still free to
change. Objects are destroyed or freed by vkDestroy* and vkFree* commands, respectively.

Objects that are allocated (rather than created) take resources from an existing pool object or memory heap, and when
freed return resources to that pool or heap. While object creation and destruction are generally expected to be
low-frequency occurrences during runtime, allocating and freeing objects can occur at high frequency. Pool objects help
accommodate improved performance of the allocations and frees.

It is an application’s responsibility to track the lifetime of Vulkan objects, and not to destroy them while they are still in
use.

Application-owned memory is immediately consumed by any Vulkan command it is passed into. The application can
alter or free this memory as soon as the commands that consume it have returned.

The following object types are consumed when they are passed into a Vulkan command and not further accessed by the
objects they are used to create. They must not be destroyed in the duration of any API command they are passed into:

• VkShaderModule

• VkPipelineCache

Vulkan 1.0.36 - A Specification 9 / 683

A VkPipelineLayout object must not be destroyed while any command buffer that uses it is in the recording state.

VkDescriptorSetLayout objects may be accessed by commands that operate on descriptor sets allocated using that
layout, and those descriptor sets must not be updated with vkUpdateDescriptorSets after the descriptor set layout
has been destroyed. Otherwise, descriptor set layouts can be destroyed any time they are not in use by an API command.

The application must not destroy any other type of Vulkan object until all uses of that object by the device (such as via
command buffer execution) have completed.

The following Vulkan objects must not be destroyed while any command buffers using the object are recording or
pending execution:

• VkEvent

• VkQueryPool

• VkBuffer

• VkBufferView

• VkImage

• VkImageView

• VkPipeline

• VkSampler

• VkDescriptorPool

• VkFramebuffer

• VkRenderPass

• VkCommandPool

• VkDeviceMemory

• VkDescriptorSet

The following Vulkan objects must not be destroyed while any queue is executing commands that use the object:

• VkFence

• VkSemaphore

• VkCommandBuffer

• VkCommandPool

In general, objects can be destroyed or freed in any order, even if the object being freed is involved in the use of another
object (e.g. use of a resource in a view, use of a view in a descriptor set, use of an object in a command buffer, binding of
a memory allocation to a resource), as long as any object that uses the freed object is not further used in any way except
to be destroyed or to be reset in such a way that it no longer uses the other object (such as resetting a command buffer). If
the object has been reset, then it can be used as if it never used the freed object. An exception to this is when there is a
parent/child relationship between objects. In this case, the application must not destroy a parent object before its
children, except when the parent is explicitly defined to free its children when it is destroyed (e.g. for pool objects, as
defined below).

VkCommandPool objects are parents of VkCommandBuffer objects. VkDescriptorPool objects are parents of
VkDescriptorSet objects. VkDevice objects are parents of many object types (all that take a VkDevice as a
parameter to their creation).

The following Vulkan objects have specific restrictions for when they can be destroyed:

• VkQueue objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the VkDevice object
they are retrieved from is destroyed.

• Destroying a pool object implicitly frees all objects allocated from that pool. Specifically, destroying
VkCommandPool frees all VkCommandBuffer objects that were allocated from it, and destroying
VkDescriptorPool frees all VkDescriptorSet objects that were allocated from it.

• VkDevice objects can be destroyed when all VkQueue objects retrieved from them are idle, and all objects created
from them have been destroyed. This includes the following objects:

– VkFence

– VkSemaphore

– VkEvent

– VkQueryPool

– VkBuffer

– VkBufferView

– VkImage

– VkImageView

– VkShaderModule

– VkPipelineCache

– VkPipeline

– VkPipelineLayout

– VkSampler

– VkDescriptorSetLayout

– VkDescriptorPool

– VkFramebuffer

– VkRenderPass

– VkCommandPool

– VkCommandBuffer

– VkDeviceMemory

• VkPhysicalDevice objects cannot be explicitly destroyed. Instead, they are implicitly destroyed when the
VkInstance object they are retrieved from is destroyed.

• VkInstance objects can be destroyed once all VkDevice objects created from any of its VkPhysicalDevice
objects have been destroyed.

2.4 Command Syntax and Duration

The Specification describes Vulkan commands as functions or procedures using C99 syntax. Language bindings for
other languages such as C++ and JavaScript may allow for stricter parameter passing, or object-oriented interfaces.

Vulkan uses the standard C types for the base type of scalar parameters (e.g. types from stdint.h), with exceptions
described below, or elsewhere in the text when appropriate:

VkBool32 represents boolean True and False values, since C does not have a sufficiently portable built-in boolean
type:

Vulkan 1.0.36 - A Specification 11 / 683

typedef uint32_t VkBool32;

VK_TRUE represents a boolean True (integer 1) value, and VK_FALSE a boolean False (integer 0) value.

All values returned from a Vulkan implementation in a VkBool32 will be either VK_TRUE or VK_FALSE.

Applications must not pass any other values than VK_TRUE or VK_FALSE into a Vulkan implementation where a
VkBool32 is expected.

VkDeviceSize represents device memory size and offset values:

typedef uint64_t VkDeviceSize;

Commands that create Vulkan objects are of the form vkCreate* and take Vk*CreateInfo structures with the
parameters needed to create the object. These Vulkan objects are destroyed with commands of the form vkDestroy*.

The last in-parameter to each command that creates or destroys a Vulkan object is pAllocator. The pAllocator
parameter can be set to a non-NULL value such that allocations for the given object are delegated to an application
provided callback; refer to the Memory Allocation chapter for further details.

Commands that allocate Vulkan objects owned by pool objects are of the form vkAllocate*, and take
Vk*AllocateInfo structures. These Vulkan objects are freed with commands of the form vkFree*. These objects
do not take allocators; if host memory is needed, they will use the allocator that was specified when their parent pool was
created.

Commands are recorded into a command buffer by calling API commands of the form vkCmd*. Each such command
may have different restrictions on where it can be used: in a primary and/or secondary command buffer, inside and/or
outside a render pass, and in one or more of the supported queue types. These restrictions are documented together with
the definition of each such command.

The duration of a Vulkan command refers to the interval between calling the command and its return to the caller.

2.4.1 Lifetime of Retrieved Results

Information is retrieved from the implementation with commands of the form vkGet* and vkEnumerate*.

Unless otherwise specified for an individual command, the results are invariant; that is, they will remain unchanged
when retrieved again by calling the same command with the same parameters, so long as those parameters themselves all
remain valid.

2.5 Threading Behavior

Vulkan is intended to provide scalable performance when used on multiple host threads. All commands support being
called concurrently from multiple threads, but certain parameters, or components of parameters are defined to be
externally synchronized. This means that the caller must guarantee that no more than one thread is using such a
parameter at a given time.

More precisely, Vulkan commands use simple stores to update software structures representing Vulkan objects. A
parameter declared as externally synchronized may have its software structures updated at any time during the host
execution of the command. If two commands operate on the same object and at least one of the commands declares the
object to be externally synchronized, then the caller must guarantee not only that the commands do not execute
simultaneously, but also that the two commands are separated by an appropriate memory barrier (if needed).

Note
Memory barriers are particularly relevant on the ARM CPU architecture which is more weakly ordered than
many developers are accustomed to from x86/x64 programming. Fortunately, most higher-level synchronization
primitives (like the pthread library) perform memory barriers as a part of mutual exclusion, so mutexing Vulkan
objects via these primitives will have the desired effect.

Many object types are immutable, meaning the objects cannot change once they have been created. These types of objects
never need external synchronization, except that they must not be destroyed while they are in use on another thread. In
certain special cases, mutable object parameters are internally synchronized such that they do not require external
synchronization. One example of this is the use of a VkPipelineCache in vkCreateGraphicsPipelines and
vkCreateComputePipelines, where external synchronization around such a heavyweight command would be
impractical. The implementation must internally synchronize the cache in this example, and may be able to do so in the
form of a much finer-grained mutex around the command. Any command parameters that are not labeled as externally
synchronized are either not mutated by the command or are internally synchronized. Additionally, certain objects related
to a command’s parameters (e.g. command pools and descriptor pools) may be affected by a command, and must also be
externally synchronized. These implicit parameters are documented as described below.

Parameters of commands that are externally synchronized are listed below.

Externally Synchronized Parameters

• The instance parameter in vkDestroyInstance

• The device parameter in vkDestroyDevice

• The queue parameter in vkQueueSubmit

• The fence parameter in vkQueueSubmit

• The memory parameter in vkFreeMemory

• The memory parameter in vkMapMemory

• The memory parameter in vkUnmapMemory

• The buffer parameter in vkBindBufferMemory

• The image parameter in vkBindImageMemory

• The queue parameter in vkQueueBindSparse

• The fence parameter in vkQueueBindSparse

• The fence parameter in vkDestroyFence

• The semaphore parameter in vkDestroySemaphore

• The event parameter in vkDestroyEvent

• The event parameter in vkSetEvent

• The event parameter in vkResetEvent

Vulkan 1.0.36 - A Specification 13 / 683

• The queryPool parameter in vkDestroyQueryPool

• The buffer parameter in vkDestroyBuffer

• The bufferView parameter in vkDestroyBufferView

• The image parameter in vkDestroyImage

• The imageView parameter in vkDestroyImageView

• The shaderModule parameter in vkDestroyShaderModule

• The pipelineCache parameter in vkDestroyPipelineCache

• The dstCache parameter in vkMergePipelineCaches

• The pipeline parameter in vkDestroyPipeline

• The pipelineLayout parameter in vkDestroyPipelineLayout

• The sampler parameter in vkDestroySampler

• The descriptorSetLayout parameter in vkDestroyDescriptorSetLayout

• The descriptorPool parameter in vkDestroyDescriptorPool

• The descriptorPool parameter in vkResetDescriptorPool

• The descriptorPool the pAllocateInfo parameter in vkAllocateDescriptorSets

• The descriptorPool parameter in vkFreeDescriptorSets

• The framebuffer parameter in vkDestroyFramebuffer

• The renderPass parameter in vkDestroyRenderPass

• The commandPool parameter in vkDestroyCommandPool

• The commandPool parameter in vkResetCommandPool

• The commandPool the pAllocateInfo parameter in vkAllocateCommandBuffers

• The commandPool parameter in vkFreeCommandBuffers

• The commandBuffer parameter in vkBeginCommandBuffer

• The commandBuffer parameter in vkEndCommandBuffer

• The commandBuffer parameter in vkResetCommandBuffer

• The commandBuffer parameter in vkCmdBindPipeline

• The commandBuffer parameter in vkCmdSetViewport

• The commandBuffer parameter in vkCmdSetScissor

• The commandBuffer parameter in vkCmdSetLineWidth

• The commandBuffer parameter in vkCmdSetDepthBias

• The commandBuffer parameter in vkCmdSetBlendConstants

• The commandBuffer parameter in vkCmdSetDepthBounds

• The commandBuffer parameter in vkCmdSetStencilCompareMask

• The commandBuffer parameter in vkCmdSetStencilWriteMask

• The commandBuffer parameter in vkCmdSetStencilReference

• The commandBuffer parameter in vkCmdBindDescriptorSets

• The commandBuffer parameter in vkCmdBindIndexBuffer

• The commandBuffer parameter in vkCmdBindVertexBuffers

• The commandBuffer parameter in vkCmdDraw

• The commandBuffer parameter in vkCmdDrawIndexed

• The commandBuffer parameter in vkCmdDrawIndirect

• The commandBuffer parameter in vkCmdDrawIndexedIndirect

• The commandBuffer parameter in vkCmdDispatch

• The commandBuffer parameter in vkCmdDispatchIndirect

• The commandBuffer parameter in vkCmdCopyBuffer

• The commandBuffer parameter in vkCmdCopyImage

• The commandBuffer parameter in vkCmdBlitImage

• The commandBuffer parameter in vkCmdCopyBufferToImage

• The commandBuffer parameter in vkCmdCopyImageToBuffer

• The commandBuffer parameter in vkCmdUpdateBuffer

• The commandBuffer parameter in vkCmdFillBuffer

• The commandBuffer parameter in vkCmdClearColorImage

• The commandBuffer parameter in vkCmdClearDepthStencilImage

• The commandBuffer parameter in vkCmdClearAttachments

• The commandBuffer parameter in vkCmdResolveImage

• The commandBuffer parameter in vkCmdSetEvent

• The commandBuffer parameter in vkCmdResetEvent

• The commandBuffer parameter in vkCmdWaitEvents

• The commandBuffer parameter in vkCmdPipelineBarrier

• The commandBuffer parameter in vkCmdBeginQuery

• The commandBuffer parameter in vkCmdEndQuery

• The commandBuffer parameter in vkCmdResetQueryPool

Vulkan 1.0.36 - A Specification 15 / 683

• The commandBuffer parameter in vkCmdWriteTimestamp

• The commandBuffer parameter in vkCmdCopyQueryPoolResults

• The commandBuffer parameter in vkCmdPushConstants

• The commandBuffer parameter in vkCmdBeginRenderPass

• The commandBuffer parameter in vkCmdNextSubpass

• The commandBuffer parameter in vkCmdEndRenderPass

• The commandBuffer parameter in vkCmdExecuteCommands

There are also a few instances where a command can take in a user allocated list whose contents are externally
synchronized parameters. In these cases, the caller must guarantee that at most one thread is using a given element within
the list at a given time. These parameters are listed below.

Externally Synchronized Parameter Lists

• Each element of the pWaitSemaphores member of each element of the pSubmits parameter in
vkQueueSubmit

• Each element of the pSignalSemaphores member of each element of the pSubmits parameter in
vkQueueSubmit

• Each element of the pWaitSemaphores member of each element of the pBindInfo parameter in
vkQueueBindSparse

• Each element of the pSignalSemaphores member of each element of the pBindInfo parameter in
vkQueueBindSparse

• The buffer member of each element of the pBufferBinds member of each element of the pBindInfo
parameter in vkQueueBindSparse

• The image member of each element of the pImageOpaqueBinds member of each element of the pBindInfo
parameter in vkQueueBindSparse

• The image member of each element of the pImageBinds member of each element of the pBindInfo parameter
in vkQueueBindSparse

• Each element of the pFences parameter in vkResetFences

• Each element of the pDescriptorSets parameter in vkFreeDescriptorSets

• The dstSet member of each element of the pDescriptorWrites parameter in vkUpdateDescriptorSets

• The dstSet member of each element of the pDescriptorCopies parameter in vkUpdateDescriptorSets

• Each element of the pCommandBuffers parameter in vkFreeCommandBuffers

In addition, there are some implicit parameters that need to be externally synchronized. For example, all
commandBuffer parameters that need to be externally synchronized imply that the commandPool that was passed in
when creating that command buffer also needs to be externally synchronized. The implicit parameters and their
associated object are listed below.

Implicit Externally Synchronized Parameters

• All VkQueue objects created from device in vkDeviceWaitIdle

• Any VkDescriptorSet objects allocated from descriptorPool in vkResetDescriptorPool

• The VkCommandPool that commandBuffer was allocated from in vkBeginCommandBuffer

• The VkCommandPool that commandBuffer was allocated from in vkEndCommandBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindPipeline

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetViewport

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetScissor

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetLineWidth

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBias

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetBlendConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetDepthBounds

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilCompareMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilWriteMask

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetStencilReference

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindDescriptorSets

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindIndexBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBindVertexBuffers

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDraw

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexed

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDrawIndexedIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatch

• The VkCommandPool that commandBuffer was allocated from, in vkCmdDispatchIndirect

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImage

Vulkan 1.0.36 - A Specification 17 / 683

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBlitImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyBufferToImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyImageToBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdUpdateBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdFillBuffer

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearColorImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearDepthStencilImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdClearAttachments

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResolveImage

• The VkCommandPool that commandBuffer was allocated from, in vkCmdSetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetEvent

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWaitEvents

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPipelineBarrier

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndQuery

• The VkCommandPool that commandBuffer was allocated from, in vkCmdResetQueryPool

• The VkCommandPool that commandBuffer was allocated from, in vkCmdWriteTimestamp

• The VkCommandPool that commandBuffer was allocated from, in vkCmdCopyQueryPoolResults

• The VkCommandPool that commandBuffer was allocated from, in vkCmdPushConstants

• The VkCommandPool that commandBuffer was allocated from, in vkCmdBeginRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdNextSubpass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdEndRenderPass

• The VkCommandPool that commandBuffer was allocated from, in vkCmdExecuteCommands

2.6 Errors

Vulkan is a layered API. The lowest layer is the core Vulkan layer, as defined by this Specification. The application can
use additional layers above the core for debugging, validation, and other purposes.

One of the core principles of Vulkan is that building and submitting command buffers should be highly efficient. Thus
error checking and validation of state in the core layer is minimal, although more rigorous validation can be enabled
through the use of layers.

The core layer assumes applications are using the API correctly. Except as documented elsewhere in the Specification,
the behavior of the core layer to an application using the API incorrectly is undefined, and may include program

termination. However, implementations must ensure that incorrect usage by an application does not affect the integrity of
the operating system, the Vulkan implementation, or other Vulkan client applications in the system, and does not allow
one application to access data belonging to another application. Applications can request stronger robustness guarantees
by enabling the robustBufferAccess feature as described in Chapter 30.

Validation of correct API usage is left to validation layers. Applications should be developed with validation layers
enabled, to help catch and eliminate errors. Once validated, released applications should not enable validation layers by
default.

2.6.1 Valid Usage

Valid usage defines a set of conditions which must be met in order to achieve well-defined run-time behavior in an
application. These conditions depend only on Vulkan state, and the parameters or objects whose usage is constrained by
the condition.

Some valid usage conditions have dependencies on run-time limits or feature availability. It is possible to validate these
conditions against Vulkan’s minimum supported values for these limits and features, or some subset of other known
values.

Valid usage conditions do not cover conditions where well-defined behavior (including returning an error code) exists.

Valid usage conditions should apply to the command or structure where complete information about the condition would
be known during execution of an application. This is such that a validation layer or linter can be written directly against
these statements at the point they are specified.

Note
This does lead to some non-obvious places for valid usage statements. For instance, the valid values for a
structure might depend on a separate value in the calling command. In this case, the structure itself will not
reference this valid usage as it is impossible to determine validity from the structure that it is invalid - instead this
valid usage would be attached to the calling command.
Another example is draw state - the state setters are independent, and can cause a legitimately invalid state
configuration between draw calls; so the valid usage statements are attached to the place where all state needs
to be valid - at the draw command.

Valid usage conditions are described in a block labelled “Valid Usage” following each command or structure they apply
to.

2.6.2 Implicit Valid Usage

Some valid usage conditions apply to all commands and structures in the API, unless explicitly denoted otherwise for a
specific command or structure. These conditions are considered implicit, and are described in a block labelled “Valid
Usage (Implicit)” following each command or structure they apply to. Implicit valid usage conditions are described in
detail below.

2.6.2.1 Valid Usage for Object Handles

Any input parameter to a command that is an object handle must be a valid object handle, unless otherwise specified. An
object handle is valid if:

• It has been created or allocated by a previous, successful call to the API. Such calls are noted in the specification.

Vulkan 1.0.36 - A Specification 19 / 683

• It has not been deleted or freed by a previous call to the API. Such calls are noted in the specification.

• Any objects used by that object, either as part of creation or execution, must also be valid.

The reserved handle VK_NULL_HANDLE can be passed in place of valid object handles when explicitly called out in the
specification. Any command that creates an object successfully must not return VK_NULL_HANDLE. It is valid to pass
VK_NULL_HANDLE to any vkDestroy* or vkFree* command, which will silently ignore these values.

2.6.2.2 Valid Usage for Pointers

Any parameter that is a pointer must be a valid pointer. A pointer is valid if it points at memory containing values of the
number and type(s) expected by the command, and all fundamental types accessed through the pointer (e.g. as elements
of an array or as members of a structure) satisfy the alignment requirements of the host processor.

2.6.2.3 Valid Usage for Enumerated Types

Any parameter of an enumerated type must be a valid enumerant for that type. A enumerant is valid if:

• The enumerant is defined as part of the enumerated type.

• The enumerant is not one of the special values defined for the enumerated type, which are suffixed with _BEGIN_
RANGE, _END_RANGE, _RANGE_SIZE or _MAX_ENUM.

2.6.2.4 Valid Usage for Flags

A collection of flags is represented by a bitmask using the type VkFlags:

typedef uint32_t VkFlags;

Bitmasks are passed to many commands and structures to compactly represent options, but VkFlags is not used
directly in the API. Instead, a Vk*Flags type which is an alias of VkFlags, and whose name matches the
corresponding Vk*FlagBits that are valid for that type, is used. These aliases are described in the Flag Types
appendix of the Specification.

Any Vk*Flags member or parameter used in the API must be a valid combination of bit flags. A valid combination is
either zero or the bitwise OR of valid bit flags. A bit flag is valid if:

• The bit flag is defined as part of the Vk*FlagBits type, where the bits type is obtained by taking the flag type and
replacing the trailing Flags with FlagBits. For example, a flag value of type VkColorComponentFlags must
contain only bit flags defined by VkColorComponentFlagBits.

• The flag is allowed in the context in which it is being used. For example, in some cases, certain bit flags or
combinations of bit flags are mutually exclusive.

2.6.2.5 Valid Usage for Structure Types

Any parameter that is a structure containing a sType member must have a value of sType which is a valid
VkStructureType value matching the type of the structure. As a general rule, the name of this value is obtained by
taking the structure name, stripping the leading Vk, prefixing each capital letter with _, converting the entire resulting
string to upper case, and prefixing it with VK_STRUCTURE_TYPE_. For example, structures of type
VkImageCreateInfo must have a sType value of VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO.

The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and VK_STRUCTURE_TYPE_
LOADER_DEVICE_CREATE_INFO are reserved for internal use by the loader, and do not have corresponding Vulkan
structures in this specification.

The list of supported structure types is defined in an appendix.

2.6.2.6 Valid Usage for Structure Pointer Chains

Any parameter that is a structure containing a void* pNext member must have a value of pNext that is either NULL, or
points to a valid structure defined by an extension, containing sType and pNext members as described in the Vulkan
Documentation and Extensions document in the section “Extension Interactions”. If that extension is supported by the
implementation, then it must be enabled. Any component of the implementation (the loader, any enabled layers, and
drivers) must skip over, without processing (other than reading the sType and pNext members) any chained structures
with sType values not defined by extensions supported by that component.

Extension structures are not described in the base Vulkan specification, but either in layered specifications incorporating
those extensions, or in separate vendor-provided documents.

2.6.2.7 Valid Usage for Nested Structures

The above conditions also apply recursively to members of structures provided as input to a command, either as a direct
argument to the command, or themselves a member of another structure.

Specifics on valid usage of each command are covered in their individual sections.

2.6.3 Return Codes

While the core Vulkan API is not designed to capture incorrect usage, some circumstances still require return codes.
Commands in Vulkan return their status via return codes that are in one of two categories:

• Successful completion codes are returned when a command needs to communicate success or status information. All
successful completion codes are non-negative values.

• Run time error codes are returned when a command needs to communicate a failure that could only be detected at run
time. All run time error codes are negative values.

All return codes in Vulkan are reported via VkResult return values. The possible codes are:

typedef enum VkResult {
VK_SUCCESS = 0,
VK_NOT_READY = 1,
VK_TIMEOUT = 2,
VK_EVENT_SET = 3,
VK_EVENT_RESET = 4,
VK_INCOMPLETE = 5,
VK_ERROR_OUT_OF_HOST_MEMORY = -1,
VK_ERROR_OUT_OF_DEVICE_MEMORY = -2,
VK_ERROR_INITIALIZATION_FAILED = -3,
VK_ERROR_DEVICE_LOST = -4,
VK_ERROR_MEMORY_MAP_FAILED = -5,
VK_ERROR_LAYER_NOT_PRESENT = -6,
VK_ERROR_EXTENSION_NOT_PRESENT = -7,
VK_ERROR_FEATURE_NOT_PRESENT = -8,

Vulkan 1.0.36 - A Specification 21 / 683

VK_ERROR_INCOMPATIBLE_DRIVER = -9,
VK_ERROR_TOO_MANY_OBJECTS = -10,
VK_ERROR_FORMAT_NOT_SUPPORTED = -11,
VK_ERROR_FRAGMENTED_POOL = -12,

} VkResult;

SUCCESS CODES

• VK_SUCCESS Command successfully completed

• VK_NOT_READY A fence or query has not yet completed

• VK_TIMEOUT A wait operation has not completed in the specified time

• VK_EVENT_SET An event is signaled

• VK_EVENT_RESET An event is unsignaled

• VK_INCOMPLETE A return array was too small for the result

ERROR CODES

• VK_ERROR_OUT_OF_HOST_MEMORY A host memory allocation has failed.

• VK_ERROR_OUT_OF_DEVICE_MEMORY A device memory allocation has failed.

• VK_ERROR_INITIALIZATION_FAILED Initialization of an object could not be completed for
implementation-specific reasons.

• VK_ERROR_DEVICE_LOST The logical or physical device has been lost. See Lost Device

• VK_ERROR_MEMORY_MAP_FAILED Mapping of a memory object has failed.

• VK_ERROR_LAYER_NOT_PRESENT A requested layer is not present or could not be loaded.

• VK_ERROR_EXTENSION_NOT_PRESENT A requested extension is not supported.

• VK_ERROR_FEATURE_NOT_PRESENT A requested feature is not supported.

• VK_ERROR_INCOMPATIBLE_DRIVER The requested version of Vulkan is not supported by the driver or is
otherwise incompatible for implementation-specific reasons.

• VK_ERROR_TOO_MANY_OBJECTS Too many objects of the type have already been created.

• VK_ERROR_FORMAT_NOT_SUPPORTED A requested format is not supported on this device.

• VK_ERROR_FRAGMENTED_POOL A requested pool allocation has failed due to fragmentation of the pool’s memory.

If a command returns a run time error, it will leave any result pointers unmodified, unless other behavior is explicitly
defined in the specification.

Out of memory errors do not damage any currently existing Vulkan objects. Objects that have already been successfully
created can still be used by the application.

Performance-critical commands generally do not have return codes. If a run time error occurs in such commands, the
implementation will defer reporting the error until a specified point. For commands that record into command buffers
(vkCmd*) run time errors are reported by vkEndCommandBuffer.

2.7 Numeric Representation and Computation

Implementations normally perform computations in floating-point, and must meet the range and precision requirements
defined under “Floating-Point Computation” below.

These requirements only apply to computations performed in Vulkan operations outside of shader execution, such as
texture image specification and sampling, and per-fragment operations. Range and precision requirements during shader
execution differ and are specified by the Precision and Operation of SPIR-V Instructions section.

In some cases, the representation and/or precision of operations is implicitly limited by the specified format of vertex or
texel data consumed by Vulkan. Specific floating-point formats are described later in this section.

2.7.1 Floating-Point Computation

Most floating-point computation is performed in SPIR-V shader modules. The properties of computation within shaders
are constrained as defined by the Precision and Operation of SPIR-V Instructions section.

Some floating-point computation is performed outside of shaders, such as viewport and depth range calculations. For
these computations, we do not specify how floating-point numbers are to be represented, or the details of how operations
on them are performed, but only place minimal requirements on representation and precision as described in the
remainder of this section.

We require simply that numbers’ floating-point parts contain enough bits and that their exponent fields are large enough
so that individual results of floating-point operations are accurate to about 1 part in 105. The maximum representable
magnitude for all floating-point values must be at least 232.

x × 0 = 0 × x = 0 for any non-infinite and non-NaN x.

1 × x = x × 1 = x.

x + 0 = 0 + x = x.

00 = 1.

Occasionally, further requirements will be specified. Most single-precision floating-point formats meet these
requirements.

The special values Inf and -Inf encode values with magnitudes too large to be represented; the special value NaN encodes
“Not A Number” values resulting from undefined arithmetic operations such as 0 / 0. Implementations may support Inf
and NaN in their floating-point computations.

Any representable floating-point value is legal as input to a Vulkan command that requires floating-point data. The result
of providing a value that is not a floating-point number to such a command is unspecified, but must not lead to Vulkan
interruption or termination. In IEEE 754 arithmetic, for example, providing a negative zero or a denormalized number to
an Vulkan command must yield deterministic results, while providing a NaN or Inf yields unspecified results.

2.7.2 16-Bit Floating-Point Numbers

16-bit floating point numbers are defined in the “16-bit floating point numbers” section of the Khronos Data Format
Specification.

Vulkan 1.0.36 - A Specification 23 / 683

Any representable 16-bit floating-point value is legal as input to a Vulkan command that accepts 16-bit floating-point
data. The result of providing a value that is not a floating-point number (such as Inf or NaN) to such a command is
unspecified, but must not lead to Vulkan interruption or termination. Providing a denormalized number or negative zero
to Vulkan must yield deterministic results.

2.7.3 Unsigned 11-Bit Floating-Point Numbers

Unsigned 11-bit floating point numbers are defined in the “Unsigned 11-bit floating point numbers” section of the
Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 11-bit floating-point representation, finite values are rounded to
the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This means negative values
are converted to zero. Likewise, finite positive values greater than 65024 (the maximum finite representable unsigned
11-bit floating-point value) are converted to 65024. Additionally: negative infinity is converted to zero; positive infinity
is converted to positive infinity; and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 11-bit floating-point value is legal as input to a Vulkan command that accepts 11-bit
floating-point data. The result of providing a value that is not a floating-point number (such as Inf or NaN) to such a
command is unspecified, but must not lead to Vulkan interruption or termination. Providing a denormalized number to
Vulkan must yield deterministic results.

2.7.4 Unsigned 10-Bit Floating-Point Numbers

Unsigned 10-bit floating point numbers are defined in the “Unsigned 10-bit floating point numbers” section of the
Khronos Data Format Specification.

When a floating-point value is converted to an unsigned 10-bit floating-point representation, finite values are rounded to
the closest representable finite value.

While less accurate, implementations are allowed to always round in the direction of zero. This means negative values
are converted to zero. Likewise, finite positive values greater than 64512 (the maximum finite representable unsigned
10-bit floating-point value) are converted to 64512. Additionally: negative infinity is converted to zero; positive infinity
is converted to positive infinity; and both positive and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a Vulkan command that accepts 10-bit
floating-point data. The result of providing a value that is not a floating-point number (such as Inf or NaN) to such a
command is unspecified, but must not lead to Vulkan interruption or termination. Providing a denormalized number to
Vulkan must yield deterministic results.

2.7.5 General Requirements

Some calculations require division. In such cases (including implied divisions performed by vector normalization),
division by zero produces an unspecified result but must not lead to Vulkan interruption or termination.

2.8 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are represented as integers, they are often (but not
always) considered to be normalized. Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point.

In the remainder of this section, b denotes the bit width of the fixed-point integer representation. When the integer is one
of the types defined by the API, b is the bit width of that type. When the integer comes from an image containing color or
depth component texels, b is the number of bits allocated to that component in its specified image format.

The signed and unsigned fixed-point representations are assumed to be b-bit binary two’s-complement integers and
binary unsigned integers, respectively.

2.8.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0,1]. The conversion from an unsigned
normalized fixed-point value c to the corresponding floating-point value f is defined as

f =
c

2b−1

Signed normalized fixed-point integers represent numbers in the range [-1,1]. The conversion from a signed normalized
fixed-point value c to the corresponding floating-point value f is performed using

f = max
(

c
2b−1−1

,−1.0
)

Only the range [-2b-1 + 1, 2b-1 - 1] is used to represent signed fixed-point values in the range [-1,1]. For example, if b = 8,
then the integer value -127 corresponds to -1.0 and the value 127 corresponds to 1.0. Note that while zero is exactly
expressible in this representation, one value (-128 in the example) is outside the representable range, and must be
clamped before use. This equation is used everywhere that signed normalized fixed-point values are converted to
floating-point.

2.8.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned normalized fixed-point value c is defined by
first clamping f to the range [0,1], then computing

c = convertFloatToUint(f × (2b - 1), b)

where convertFloatToUint}(r,b) returns one of the two unsigned binary integer values with exactly b bits which are
closest to the floating-point value r. Implementations should round to nearest. If r is equal to an integer, then that integer
value must be returned. In particular, if f is equal to 0.0 or 1.0, then c must be assigned 0 or 2b - 1, respectively.

The conversion from a floating-point value f to the corresponding signed normalized fixed-point value c is performed by
clamping f to the range [-1,1], then computing

c = convertFloatToInt(f × (2b-1 - 1), b)

where convertFloatToInt(r,b) returns one of the two signed two’s-complement binary integer values with exactly b bits
which are closest to the floating-point value r. Implementations should round to nearest. If r is equal to an integer, then
that integer value must be returned. In particular, if f is equal to -1.0, 0.0, or 1.0, then c must be assigned -(2b-1 - 1), 0, or
2b-1 - 1, respectively.

This equation is used everywhere that floating-point values are converted to signed normalized fixed-point.

Vulkan 1.0.36 - A Specification 25 / 683

2.9 API Version Numbers and Semantics

The Vulkan version number is used in several places in the API. In each such use, the API major version number, minor
version number, and patch version number are packed into a 32-bit integer as follows:

• The major version number is a 10-bit integer packed into bits 31-22.

• The minor version number is a 10-bit integer packed into bits 21-12.

• The patch version number is a 12-bit integer packed into bits 11-0.

Differences in any of the Vulkan version numbers indicates a change to the API in some way, with each part of the
version number indicating a different scope of changes.

A difference in patch version numbers indicates that some usually small part of the specification or header has been
modified, typically to fix a bug, and may have an impact on the behavior of existing functionality. Differences in this
version number should not affect either full compatibility or backwards compatibility between two versions, or add
additional interfaces to the API.

A difference in minor version numbers indicates that some amount of new functionality has been added. This will
usually include new interfaces in the header, and may also include behavior changes and bug fixes. Functionality may be
deprecated in a minor revision, but will not be removed. When a new minor version is introduced, the patch version is
reset to 0, and each minor revision maintains its own set of patch versions. Differences in this version should not affect
backwards compatibility, but will affect full compatibility.

A difference in major version numbers indicates a large set of changes to the API, potentially including new functionality
and header interfaces, behavioral changes, removal of deprecated features, modification or outright replacement of any
feature, and is thus very likely to break any and all compatibility. Differences in this version will typically require
significant modification to an application in order for it to function.

C language macros for manipulating version numbers are defined in the Version Number Macros appendix.

2.10 Common Object Types

Some types of Vulkan objects are used in many different structures and command parameters, and are described here.
These types include offsets, extents, and rectangles.

2.10.1 Offsets

Offsets are used to describe a pixel location within an image or framebuffer, as an (x,y) location for two-dimensional
images, or an (x,y,z) location for three-dimensional images.

A two-dimensional offsets is defined by the structure:

typedef struct VkOffset2D {
int32_t x;
int32_t y;

} VkOffset2D;

A three-dimensional offset is defined by the structure:

typedef struct VkOffset3D {
int32_t x;
int32_t y;
int32_t z;

} VkOffset3D;

2.10.2 Extents

Extents are used to describe the size of a rectangular region of pixels within an image or framebuffer, as (width,height)
for two-dimensional images, or as (width,height,depth) for three-dimensional images.

A two-dimensional extent is defined by the structure:

typedef struct VkExtent2D {
uint32_t width;
uint32_t height;

} VkExtent2D;

A three-dimensional extent is defined by the structure:

typedef struct VkExtent3D {
uint32_t width;
uint32_t height;
uint32_t depth;

} VkExtent3D;

2.10.3 Rectangles

Rectangles are used to describe a specified rectangular region of pixels within an image or framebuffer. Rectangles
include both an offset and an extent of the same dimensionality, as described above. Two-dimensional rectangles are
defined by the structure

typedef struct VkRect2D {
VkOffset2D offset;
VkExtent2D extent;

} VkRect2D;

Vulkan 1.0.36 - A Specification 27 / 683

Chapter 3

Initialization

Before using Vulkan, an application must initialize it by loading the Vulkan commands, and creating a VkInstance
object.

3.1 Command Function Pointers

Vulkan commands are not necessarily exposed statically on a platform. Function pointers for all Vulkan commands can
be obtained with the command:

PFN_vkVoidFunction vkGetInstanceProcAddr(
VkInstance instance,
const char* pName);

• instance is the instance that the function pointer will be compatible with, or NULL for commands not dependent on
any instance.

• pName is the name of the command to obtain.

vkGetInstanceProcAddr itself is obtained in a platform- and loader- specific manner. Typically, the loader library
will export this command as a function symbol, so applications can link against the loader library, or load it dynamically
and look up the symbol using platform-specific APIs. Loaders are encouraged to export function symbols for all other
core Vulkan commands as well; if this is done, then applications that use only the core Vulkan commands have no need
to use vkGetInstanceProcAddr.

The table below defines the various use cases for vkGetInstanceProcAddr and expected return value ("fp" is
function pointer) for each case.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the command being
queried.

Table 3.1: vkGetInstanceProcAddr behavior

instance pName return value
* NULL undefined
invalid instance * undefined

Table 3.1: (continued)

instance pName return value
NULL vkEnumerateInstanc

eExtensionPropert
ies

fp

NULL vkEnumerateInstanc
eLayerProperties

fp

NULL vkCreateInstance fp
NULL * (any pName not covered

above)
NULL

instance core Vulkan command fp1

instance enabled instance extension
commands for instance

fp1

instance available device extension2

commands for instance
fp1

instance * (any pName not covered
above)

NULL

1
The returned function pointer must only be called with a dispatchable object (the first parameter) that is instance
or a child of instance. e.g. VkInstance, VkPhysicalDevice, VkDevice, VkQueue, or
VkCommandBuffer.

2
An “available extension” is an extension function supported by any of the loader, driver or layer.

Valid Usage (Implicit)

• If instance is not NULL, instance must be a valid VkInstance handle

• pName must be a null-terminated string

In order to support systems with multiple Vulkan implementations comprising heterogeneous collections of hardware
and software, the function pointers returned by vkGetInstanceProcAddr may point to dispatch code, which calls a
different real implementation for different VkDevice objects (and objects created from them). The overhead of this
internal dispatch can be avoided by obtaining device-specific function pointers for any commands that use a device or
device-child object as their dispatchable object. Such function pointers can be obtained with the command:

PFN_vkVoidFunction vkGetDeviceProcAddr(
VkDevice device,
const char* pName);

The table below defines the various use cases for vkGetDeviceProcAddr and expected return value for each case.

The returned function pointer is of type PFN_vkVoidFunction, and must be cast to the type of the command being
queried.

Vulkan 1.0.36 - A Specification 29 / 683

Table 3.2: vkGetDeviceProcAddr behavior

device pName return value
NULL * undefined
invalid device * undefined
device NULL undefined
device core Vulkan command fp1

device enabled extension
commands

fp1

device * (any pName not covered
above)

NULL

1
The returned function pointer must only be called with a dispatchable object (the first parameter) that is device or
a child of device. e.g. VkDevice, VkQueue, or VkCommandBuffer.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pName must be a null-terminated string

The definition of PFN_vkVoidFunction is:

typedef void (VKAPI_PTR *PFN_vkVoidFunction)(void);

3.2 Instances

There is no global state in Vulkan and all per-application state is stored in a VkInstance object. Creating a
VkInstance object initializes the Vulkan library and allows the application to pass information about itself to the
implementation.

Instances are represented by VkInstance handles:

VK_DEFINE_HANDLE(VkInstance)

To create an instance object, call:

VkResult vkCreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance);

• pCreateInfo points to an instance of VkInstanceCreateInfo controlling creation of the instance.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pInstance points a VkInstance handle in which the resulting instance is returned.

vkCreateInstance creates the instance, then enables and initializes global layers and extensions requested by the
application. If an extension is provided by a layer, both the layer and extension must be specified at
vkCreateInstance time. If a specified layer cannot be found, no VkInstance will be created and the function
will return VK_ERROR_LAYER_NOT_PRESENT. Likewise, if a specified extension cannot be found the call will return
VK_ERROR_EXTENSION_NOT_PRESENT.

Valid Usage (Implicit)

• pCreateInfo must be a pointer to a valid VkInstanceCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pInstance must be a pointer to a VkInstance handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_LAYER_NOT_PRESENT

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_INCOMPATIBLE_DRIVER

The VkInstanceCreateInfo structure is defined as:

typedef struct VkInstanceCreateInfo {
VkStructureType sType;
const void* pNext;
VkInstanceCreateFlags flags;
const VkApplicationInfo* pApplicationInfo;
uint32_t enabledLayerCount;

Vulkan 1.0.36 - A Specification 31 / 683

const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;

} VkInstanceCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• pApplicationInfo is NULL or a pointer to an instance of VkApplicationInfo. If not NULL, this information
helps implementations recognize behavior inherent to classes of applications. VkApplicationInfo is defined in
detail below.

• enabledLayerCount is the number of global layers to enable.

• ppEnabledLayerNames is a pointer to an array of enabledLayerCount null-terminated UTF-8 strings containing
the names of layers to enable for the created instance. See the Layers section for further details.

• enabledExtensionCount is the number of global extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8 strings
containing the names of extensions to enable.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If pApplicationInfo is not NULL, pApplicationInfo must be a pointer to a valid VkApplicationInfo
structure

• If enabledLayerCount is not 0, ppEnabledLayerNames must be a pointer to an array of
enabledLayerCount null-terminated strings

• If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of
enabledExtensionCount null-terminated strings

The VkApplicationInfo structure is defined as:

typedef struct VkApplicationInfo {
VkStructureType sType;
const void* pNext;
const char* pApplicationName;
uint32_t applicationVersion;
const char* pEngineName;
uint32_t engineVersion;
uint32_t apiVersion;

} VkApplicationInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• pApplicationName is a pointer to a null-terminated UTF-8 string containing the name of the application.

• applicationVersion is an unsigned integer variable containing the developer-supplied version number of the
application.

• pEngineName is a pointer to a null-terminated UTF-8 string containing the name of the engine (if any) used to create
the application.

• engineVersion is an unsigned integer variable containing the developer-supplied version number of the engine used
to create the application.

• apiVersion is the version of the Vulkan API against which the application expects to run, encoded as described in
the API Version Numbers and Semantics section. If apiVersion is 0 the implementation must ignore it, otherwise if
the implementation does not support the requested apiVersion it must return VK_ERROR_INCOMPATIBLE_
DRIVER. The patch version number specified in apiVersion is ignored when creating an instance object. Only the
major and minor versions of the instance must match those requested in apiVersion.

Valid Usage

• apiVersion must be zero, or otherwise it must be a version that the implementation supports, or supports an
effective substitute for

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_APPLICATION_INFO

• pNext must be NULL

• If pApplicationName is not NULL, pApplicationName must be a null-terminated string

• If pEngineName is not NULL, pEngineName must be a null-terminated string

To destroy an instance, call:

void vkDestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator);

• instance is the handle of the instance to destroy.

Vulkan 1.0.36 - A Specification 33 / 683

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All child objects created using instance must have been destroyed prior to destroying instance

• If VkAllocationCallbacks were provided when instance was created, a compatible set of callbacks must
be provided here

• If no VkAllocationCallbacks were provided when instance was created, pAllocator must be NULL

Valid Usage (Implicit)

• If instance is not NULL, instance must be a valid VkInstance handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

Host Synchronization

• Host access to instance must be externally synchronized

Vulkan 1.0.36 - A Specification 35 / 683

Chapter 4

Devices and Queues

Once Vulkan is initialized, devices and queues are the primary objects used to interact with a Vulkan implementation.

Vulkan separates the concept of physical and logical devices. A physical device usually represents a single device in a
system (perhaps made up of several individual hardware devices working together), of which there are a finite number. A
logical device represents an application’s view of the device.

Physical devices are represented by VkPhysicalDevice handles:

VK_DEFINE_HANDLE(VkPhysicalDevice)

4.1 Physical Devices

To retrieve a list of physical device objects representing the physical devices installed in the system, call:

VkResult vkEnumeratePhysicalDevices(
VkInstance instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices);

• instance is a handle to a Vulkan instance previously created with vkCreateInstance.

• pPhysicalDeviceCount is a pointer to an integer related to the number of physical devices available or queried, as
described below.

• pPhysicalDevices is either NULL or a pointer to an array of VkPhysicalDevice handles.

If pPhysicalDevices is NULL, then the number of physical devices available is returned in
pPhysicalDeviceCount. Otherwise, pPhysicalDeviceCount must point to a variable set by the user to the number
of elements in the pPhysicalDevices array, and on return the variable is overwritten with the number of structures
actually written to pPhysicalDevices. If pPhysicalDeviceCount is less than the number of physical devices
available, at most pPhysicalDeviceCount structures will be written. If pPhysicalDeviceCount is smaller than the
number of physical devices available, VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not
all the available physical devices were returned.

Valid Usage (Implicit)

• instance must be a valid VkInstance handle

• pPhysicalDeviceCount must be a pointer to a uint32_t value

• If the value referenced by pPhysicalDeviceCount is not 0, and pPhysicalDevices is not NULL,
pPhysicalDevices must be a pointer to an array of pPhysicalDeviceCount VkPhysicalDevice handles

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

To query general properties of physical devices once enumerated, call:

void vkGetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pProperties points to an instance of the VkPhysicalDeviceProperties structure, that will be filled with
returned information.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pProperties must be a pointer to a VkPhysicalDeviceProperties structure

The VkPhysicalDeviceProperties structure is defined as:

Vulkan 1.0.36 - A Specification 37 / 683

typedef struct VkPhysicalDeviceProperties {
uint32_t apiVersion;
uint32_t driverVersion;
uint32_t vendorID;
uint32_t deviceID;
VkPhysicalDeviceType deviceType;
char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t pipelineCacheUUID[VK_UUID_SIZE];
VkPhysicalDeviceLimits limits;
VkPhysicalDeviceSparseProperties sparseProperties;

} VkPhysicalDeviceProperties;

• apiVersion is the version of Vulkan supported by the device, encoded as described in the API Version Numbers and
Semantics section.

• driverVersion is the vendor-specified version of the driver.

• vendorID is a unique identifier for the vendor (see below) of the physical device.

• deviceID is a unique identifier for the physical device among devices available from the vendor.

• deviceType is a VkPhysicalDeviceType specifying the type of device.

• deviceName is a null-terminated UTF-8 string containing the name of the device.

• pipelineCacheUUID is an array of size VK_UUID_SIZE, containing 8-bit values that represent a universally unique
identifier for the device.

• limits is the VkPhysicalDeviceLimits structure which specifies device-specific limits of the physical device.
See Limits for details.

• sparseProperties is the VkPhysicalDeviceSparseProperties structure which specifies various sparse
related properties of the physical device. See Sparse Properties for details.

The vendorID and deviceID fields are provided to allow applications to adapt to device characteristics that are not
adequately exposed by other Vulkan queries. These may include performance profiles, hardware errata, or other
characteristics. In PCI-based implementations, the low sixteen bits of vendorID and deviceID must contain
(respectively) the PCI vendor and device IDs associated with the hardware device, and the remaining bits must be set to
zero. In non-PCI implementations, the choice of what values to return may be dictated by operating system or platform
policies. It is otherwise at the discretion of the implementer, subject to the following constraints and guidelines:

• For purposes of physical device identification, the vendor of a physical device is the entity responsible for the most
salient characteristics of the hardware represented by the physical device handle. In the case of a discrete GPU, this
should be the GPU chipset vendor. In the case of a GPU or other accelerator integrated into a system-on-chip (SoC),
this should be the supplier of the silicon IP used to create the GPU or other accelerator.

• If the vendor of the physical device has a valid PCI vendor ID issued by PCI-SIG, that ID should be used to construct
vendorID as described above for PCI-based implementations. Implementations that do not return a PCI vendor ID in
vendorID must return a valid Khronos vendor ID, obtained as described in the Vulkan Documentation and Extensions
document in the section “Registering a Vendor ID with Khronos”. Khronos vendor IDs are allocated starting at
0x10000, to distinguish them from the PCI vendor ID namespace.

https://pcisig.com/

• The vendor of the physical device is responsible for selecting deviceID. The value selected should uniquely identify
both the device version and any major configuration options (for example, core count in the case of multicore devices).
The same device ID should be used for all physical implementations of that device version and configuration. For
example, all uses of a specific silicon IP GPU version and configuration should use the same device ID, even if those
uses occur in different SoCs.

The physical devices types are:

typedef enum VkPhysicalDeviceType {
VK_PHYSICAL_DEVICE_TYPE_OTHER = 0,
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU = 1,
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU = 2,
VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU = 3,
VK_PHYSICAL_DEVICE_TYPE_CPU = 4,

} VkPhysicalDeviceType;

• VK_PHYSICAL_DEVICE_TYPE_OTHER The device does not match any other available types.

• VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU The device is typically one embedded in or tightly coupled
with the host.

• VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU The device is typically a separate processor connected to the
host via an interlink.

• VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU The device is typically a virtual node in a virtualization
environment.

• VK_PHYSICAL_DEVICE_TYPE_CPU The device is typically running on the same processors as the host.

The physical device type is advertised for informational purposes only, and does not directly affect the operation of the
system. However, the device type may correlate with other advertised properties or capabilities of the system, such as
how many memory heaps there are.

To query properties of queues available on a physical device, call:

void vkGetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pQueueFamilyProperties);

• physicalDevice is the handle to the physical device whose properties will be queried.

• pQueueFamilyPropertyCount is a pointer to an integer related to the number of queue families available or
queried, as described below.

• pQueueFamilyProperties is either NULL or a pointer to an array of VkQueueFamilyProperties structures.

If pQueueFamilyProperties is NULL, then the number of queue families available is returned in
pQueueFamilyPropertyCount. Otherwise, pQueueFamilyPropertyCount must point to a variable set by the user
to the number of elements in the pQueueFamilyProperties array, and on return the variable is overwritten with the
number of structures actually written to pQueueFamilyProperties. If pQueueFamilyPropertyCount is less than
the number of queue families available, at most pQueueFamilyPropertyCount structures will be written.

Vulkan 1.0.36 - A Specification 39 / 683

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pQueueFamilyPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pQueueFamilyPropertyCount is not 0, and pQueueFamilyProperties is not
NULL, pQueueFamilyProperties must be a pointer to an array of pQueueFamilyPropertyCount
VkQueueFamilyProperties structures

The VkQueueFamilyProperties structure is defined as:

typedef struct VkQueueFamilyProperties {
VkQueueFlags queueFlags;
uint32_t queueCount;
uint32_t timestampValidBits;
VkExtent3D minImageTransferGranularity;

} VkQueueFamilyProperties;

• queueFlags contains flags indicating the capabilities of the queues in this queue family.

• queueCount is the unsigned integer count of queues in this queue family.

• timestampValidBits is the unsigned integer count of meaningful bits in the timestamps written via
vkCmdWriteTimestamp. The valid range for the count is 36..64 bits, or a value of 0, indicating no support for
timestamps. Bits outside the valid range are guaranteed to be zeros.

• minImageTransferGranularity is the minimum granularity supported for image transfer operations on the queues
in this queue family.

The bits specified in queueFlags are:

typedef enum VkQueueFlagBits {
VK_QUEUE_GRAPHICS_BIT = 0x00000001,
VK_QUEUE_COMPUTE_BIT = 0x00000002,
VK_QUEUE_TRANSFER_BIT = 0x00000004,
VK_QUEUE_SPARSE_BINDING_BIT = 0x00000008,

} VkQueueFlagBits;

• if VK_QUEUE_GRAPHICS_BIT is set, then the queues in this queue family support graphics operations.

• if VK_QUEUE_COMPUTE_BIT is set, then the queues in this queue family support compute operations.

• if VK_QUEUE_TRANSFER_BIT is set, then the queues in this queue family support transfer operations.

• if VK_QUEUE_SPARSE_BINDING_BIT is set, then the queues in this queue family support sparse memory
management operations (see Sparse Resources). If any of the sparse resource features are enabled, then at least one
queue family must support this bit.

If an implementation exposes any queue family that supports graphics operations, at least one queue family of at least
one physical device exposed by the implementation must support both graphics and compute operations.

Note
All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that
supports either graphics or compute operations thus if the capabilities of a queue family include VK_QUEUE_G
RAPHICS_BIT or VK_QUEUE_COMPUTE_BIT then reporting the VK_QUEUE_TRANSFER_BIT capability
separately for that queue family is optional.

For further details see Queues.

The value returned in minImageTransferGranularity has a unit of compressed texel blocks for images having a
block-compressed format, and a unit of texels otherwise.

Possible values of minImageTransferGranularity are:

• (0,0,0) which indicates that only whole mip levels must be transferred using the image transfer operations on the
corresponding queues. In this case, the following restrictions apply to all offset and extent parameters of image transfer
operations:

– The x, y, and z members of a VkOffset3D parameter must always be zero.

– The width, height, and depth members of a VkExtent3D parameter must always match the width, height, and
depth of the image subresource corresponding to the parameter, respectively.

• (Ax, Ay, Az) where Ax, Ay, and Az are all integer powers of two. In this case the following restrictions apply to all
image transfer operations:

– x, y, and z of a VkOffset3D parameter must be integer multiples of Ax, Ay, and Az, respectively.

– width of a VkExtent3D parameter must be an integer multiple of Ax, or else x + width must equal the width of
the image subresource corresponding to the parameter.

– height of a VkExtent3D parameter must be an integer multiple of Ay, or else y + height must equal the height
of the image subresource corresponding to the parameter.

– depth of a VkExtent3D parameter must be an integer multiple of Az, or else z + depth must equal the depth of
the image subresource corresponding to the parameter.

– If the format of the image corresponding to the parameters is one of the block-compressed formats then for the
purposes of the above calculations the granularity must be scaled up by the compressed texel block dimensions.

Queues supporting graphics and/or compute operations must report (1,1,1) in minImageTransferGranularity,
meaning that there are no additional restrictions on the granularity of image transfer operations for these queues. Other
queues supporting image transfer operations are only required to support whole mip level transfers, thus
minImageTransferGranularity for queues belonging to such queue families may be (0,0,0).

The Device Memory section describes memory properties queried from the physical device.

For physical device feature queries see the Features chapter.

4.2 Devices

Device objects represent logical connections to physical devices. Each device exposes a number of queue families each
having one or more queues. All queues in a queue family support the same operations.

As described in Physical Devices, a Vulkan application will first query for all physical devices in a system. Each physical
device can then be queried for its capabilities, including its queue and queue family properties. Once an acceptable
physical device is identified, an application will create a corresponding logical device. An application must create a

Vulkan 1.0.36 - A Specification 41 / 683

separate logical device for each physical device it will use. The created logical device is then the primary interface to the
physical device.

How to enumerate the physical devices in a system and query those physical devices for their queue family properties is
described in the Physical Device Enumeration section above.

4.2.1 Device Creation

Logical devices are represented by VkDevice handles:

VK_DEFINE_HANDLE(VkDevice)

A logical device is created as a connection to a physical device. To create a logical device, call:

VkResult vkCreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice);

• physicalDevice must be one of the device handles returned from a call to vkEnumeratePhysicalDevices
(see Physical Device Enumeration).

• pCreateInfo is a pointer to a VkDeviceCreateInfo structure containing information about how to create the
device.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDevice points to a handle in which the created VkDevice is returned.

Multiple logical devices can be created from the same physical device. Logical device creation may fail due to lack of
device-specific resources (in addition to the other errors). If that occurs, vkCreateDevice will return VK_ERROR_
TOO_MANY_OBJECTS.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pCreateInfo must be a pointer to a valid VkDeviceCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pDevice must be a pointer to a VkDevice handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_INITIALIZATION_FAILED

• VK_ERROR_EXTENSION_NOT_PRESENT

• VK_ERROR_FEATURE_NOT_PRESENT

• VK_ERROR_TOO_MANY_OBJECTS

• VK_ERROR_DEVICE_LOST

The VkDeviceCreateInfo structure is defined as:

typedef struct VkDeviceCreateInfo {
VkStructureType sType;
const void* pNext;
VkDeviceCreateFlags flags;
uint32_t queueCreateInfoCount;
const VkDeviceQueueCreateInfo* pQueueCreateInfos;
uint32_t enabledLayerCount;
const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;
const VkPhysicalDeviceFeatures* pEnabledFeatures;

} VkDeviceCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• queueCreateInfoCount is the unsigned integer size of the pQueueCreateInfos array. Refer to the Queue
Creation section below for further details.

• pQueueCreateInfos is a pointer to an array of VkDeviceQueueCreateInfo structures describing the queues
that are requested to be created along with the logical device. Refer to the Queue Creation section below for further
details.

• enabledLayerCount is deprecated and ignored.

• ppEnabledLayerNames is deprecated and ignored. See Device Layer Deprecation.

• enabledExtensionCount is the number of device extensions to enable.

• ppEnabledExtensionNames is a pointer to an array of enabledExtensionCount null-terminated UTF-8 strings
containing the names of extensions to enable for the created device. See the Extensions section for further details.

Vulkan 1.0.36 - A Specification 43 / 683

• pEnabledFeatures is NULL or a pointer to a VkPhysicalDeviceFeatures structure that contains boolean
indicators of all the features to be enabled. Refer to the Features section for further details.

Valid Usage

• The queueFamilyIndex member of any given element of pQueueCreateInfos must be unique within
pQueueCreateInfos

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pQueueCreateInfos must be a pointer to an array of queueCreateInfoCount valid
VkDeviceQueueCreateInfo structures

• If enabledLayerCount is not 0, ppEnabledLayerNames must be a pointer to an array of
enabledLayerCount null-terminated strings

• If enabledExtensionCount is not 0, ppEnabledExtensionNames must be a pointer to an array of
enabledExtensionCount null-terminated strings

• If pEnabledFeatures is not NULL, pEnabledFeatures must be a pointer to a valid
VkPhysicalDeviceFeatures structure

• queueCreateInfoCount must be greater than 0

4.2.2 Device Use

The following is a high-level list of VkDevice uses along with references on where to find more information:

• Creation of queues. See the Queues section below for further details.

• Creation and tracking of various synchronization constructs. See Synchronization and Cache Control for further
details.

• Allocating, freeing, and managing memory. See Memory Allocation and Resource Creation for further details.

• Creation and destruction of command buffers and command buffer pools. See Command Buffers for further details.

• Creation, destruction, and management of graphics state. See Pipelines and Resource Descriptors, among others, for
further details.

4.2.3 Lost Device

A logical device may become lost because of hardware errors, execution timeouts, power management events and/or
platform-specific events. This may cause pending and future command execution to fail and cause hardware resources to
be corrupted. When this happens, certain commands will return VK_ERROR_DEVICE_LOST (see Error Codes for a list
of such commands). After any such event, the logical device is considered lost. It is not possible to reset the logical
device to a non-lost state, however the lost state is specific to a logical device (VkDevice), and the corresponding
physical device (VkPhysicalDevice) may be otherwise unaffected. In some cases, the physical device may also be
lost, and attempting to create a new logical device will fail, returning VK_ERROR_DEVICE_LOST. This is usually
indicative of a problem with the underlying hardware, or its connection to the host. If the physical device has not been
lost, and a new logical device is successfully created from that physical device, it must be in the non-lost state.

Note
Whilst logical device loss may be recoverable, in the case of physical device loss, it is unlikely that an application
will be able to recover unless additional, unaffected physical devices exist on the system. The error is largely
informational and intended only to inform the user that their hardware has probably developed a fault or become
physically disconnected, and should be investigated further. In many cases, physical device loss may cause
other more serious issues such as the operating system crashing; in which case it may not be reported via the
Vulkan API.

Note
Undefined behavior caused by an application error may cause a device to become lost. However, such unde-
fined behavior may also cause unrecoverable damage to the process, and it is then not guaranteed that the API
objects, including the VkPhysicalDevice or the VkInstance are still valid or that the error is recover-
able.

When a device is lost, its child objects are not implicitly destroyed and their handles are still valid. Those objects must
still be destroyed before their parents or the device can be destroyed (see the Object Lifetime section). The host address
space corresponding to device memory mapped using vkMapMemory is still valid, and host memory accesses to these
mapped regions are still valid, but the contents are undefined. It is still legal to call any API command on the device and
child objects.

Once a device is lost, command execution may fail, and commands that return a VkResult may return VK_ERROR_
DEVICE_LOST. Commands that do not allow run-time errors must still operate correctly for valid usage and, if
applicable, return valid data.

Commands that wait indefinitely for device execution (namely vkDeviceWaitIdle, vkQueueWaitIdle,
vkWaitForFences with a maximum timeout, and vkGetQueryPoolResults with the VK_QUERY_RESULT_
WAIT_BIT bit set in flags) must return in finite time even in the case of a lost device, and return either VK_SUCCESS
or VK_ERROR_DEVICE_LOST. For any command that may return VK_ERROR_DEVICE_LOST, for the purpose of
determining whether a command buffer is pending execution, or whether resources are considered in-use by the device, a
return value of VK_ERROR_DEVICE_LOST is equivalent to VK_SUCCESS.

4.2.4 Device Destruction

To destroy a device, call:

void vkDestroyDevice(
VkDevice device,
const VkAllocationCallbacks* pAllocator);

Vulkan 1.0.36 - A Specification 45 / 683

• device is the logical device to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

To ensure that no work is active on the device, vkDeviceWaitIdle can be used to gate the destruction of the device.
Prior to destroying a device, an application is responsible for destroying/freeing any Vulkan objects that were created
using that device as the first parameter of the corresponding vkCreate* or vkAllocate* command.

Note
The lifetime of each of these objects is bound by the lifetime of the VkDevice object. Therefore, to avoid
resource leaks, it is critical that an application explicitly free all of these resources prior to calling vkDestroy
Device.

Valid Usage

• All child objects created on device must have been destroyed prior to destroying device

• If VkAllocationCallbacks were provided when device was created, a compatible set of callbacks must be
provided here

• If no VkAllocationCallbacks were provided when device was created, pAllocator must be NULL

Valid Usage (Implicit)

• If device is not NULL, device must be a valid VkDevice handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

Host Synchronization

• Host access to device must be externally synchronized

4.3 Queues

4.3.1 Queue Family Properties

As discussed in the Physical Device Enumeration section above, the
vkGetPhysicalDeviceQueueFamilyProperties command is used to retrieve details about the queue families
and queues supported by a device.

Each index in the pQueueFamilyProperties array returned by
vkGetPhysicalDeviceQueueFamilyProperties describes a unique queue family on that physical device.
These indices are used when creating queues, and they correspond directly with the queueFamilyIndex that is passed
to the vkCreateDevice command via the VkDeviceQueueCreateInfo structure as described in the Queue
Creation section below.

Grouping of queue families within a physical device is implementation-dependent.

Note
The general expectation is that a physical device groups all queues of matching capabilities into a single family.
However, this is a recommendation to implementations and it is possible that a physical device may return two
separate queue families with the same capabilities.

Once an application has identified a physical device with the queue(s) that it desires to use, it will create those queues in
conjunction with a logical device. This is described in the following section.

4.3.2 Queue Creation

Creating a logical device also creates the queues associated with that device. The queues to create are described by a set
of VkDeviceQueueCreateInfo structures that are passed to vkCreateDevice in pQueueCreateInfos.

Queues are represented by VkQueue handles:

VK_DEFINE_HANDLE(VkQueue)

The VkDeviceQueueCreateInfo structure is defined as:

typedef struct VkDeviceQueueCreateInfo {
VkStructureType sType;
const void* pNext;
VkDeviceQueueCreateFlags flags;
uint32_t queueFamilyIndex;
uint32_t queueCount;
const float* pQueuePriorities;

} VkDeviceQueueCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• queueFamilyIndex is an unsigned integer indicating the index of the queue family to create on this device. This
index corresponds to the index of an element of the pQueueFamilyProperties array that was returned by
vkGetPhysicalDeviceQueueFamilyProperties.

Vulkan 1.0.36 - A Specification 47 / 683

• queueCount is an unsigned integer specifying the number of queues to create in the queue family indicated by
queueFamilyIndex.

• pQueuePriorities is an array of queueCount normalized floating point values, specifying priorities of work that
will be submitted to each created queue. See Queue Priority for more information.

Valid Usage

• queueFamilyIndex must be less than pQueueFamilyPropertyCount returned by
vkGetPhysicalDeviceQueueFamilyProperties

• queueCount must be less than or equal to the queueCount member of the VkQueueFamilyProperties
structure, as returned by vkGetPhysicalDeviceQueueFamilyProperties in the
pQueueFamilyProperties[queueFamilyIndex]

• Each element of pQueuePriorities must be between 0.0 and 1.0 inclusive

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pQueuePriorities must be a pointer to an array of queueCount float values

• queueCount must be greater than 0

To retrieve a handle to a VkQueue object, call:

void vkGetDeviceQueue(
VkDevice device,
uint32_t queueFamilyIndex,
uint32_t queueIndex,
VkQueue* pQueue);

• device is the logical device that owns the queue.

• queueFamilyIndex is the index of the queue family to which the queue belongs.

• queueIndex is the index within this queue family of the queue to retrieve.

• pQueue is a pointer to a VkQueue object that will be filled with the handle for the requested queue.

Valid Usage

• queueFamilyIndex must be one of the queue family indices specified when device was created, via the
VkDeviceQueueCreateInfo structure

• queueIndex must be less than the number of queues created for the specified queue family index when device

was created, via the queueCount member of the VkDeviceQueueCreateInfo structure

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pQueue must be a pointer to a VkQueue handle

4.3.3 Queue Family Index

The queue family index is used in multiple places in Vulkan in order to tie operations to a specific family of queues.

When retrieving a handle to the queue via vkGetDeviceQueue, the queue family index is used to select which queue
family to retrieve the VkQueue handle from as described in the previous section.

When creating a VkCommandPool object (see Command Pools), a queue family index is specified in the
VkCommandPoolCreateInfo structure. Command buffers from this pool can only be submitted on queues
corresponding to this queue family.

When creating VkImage (see Images) and VkBuffer (see Buffers) resources, a set of queue families is included in the
VkImageCreateInfo and VkBufferCreateInfo structures to specify the queue families that can access the
resource.

When inserting a VkBufferMemoryBarrier or VkImageMemoryBarrier (see Section 6.4) a source and
destination queue family index is specified to allow the ownership of a buffer or image to be transferred from one queue
family to another. See the Resource Sharing section for details.

4.3.4 Queue Priority

Each queue is assigned a priority, as set in the VkDeviceQueueCreateInfo structures when creating the device.
The priority of each queue is a normalized floating point value between 0.0 and 1.0, which is then translated to a discrete
priority level by the implementation. Higher values indicate a higher priority, with 0.0 being the lowest priority and 1.0
being the highest.

Within the same device, queues with higher priority may be allotted more processing time than queues with lower
priority. The implementation makes no guarantees with regards to ordering or scheduling among queues with the same

Vulkan 1.0.36 - A Specification 49 / 683

priority, other than the constraints defined by explicit scheduling primitives. The implementation make no guarantees
with regards to queues across different devices.

An implementation may allow a higher-priority queue to starve a lower-priority queue on the same VkDevice until the
higher-priority queue has no further commands to execute. The relationship of queue priorities must not cause queues on
one VkDevice to starve queues on another VkDevice.

No specific guarantees are made about higher priority queues receiving more processing time or better quality of service
than lower priority queues.

4.3.5 Queue Submission

Work is submitted to a queue via queue submission commands such as vkQueueSubmit. Queue submission
commands define a set of queue operations to be executed by the underlying physical device, including synchronization
with semaphores and fences.

Submission commands take as parameters a target queue, zero or more batches of work, and an optional fence to signal
upon completion. Each batch consists of three distinct parts:

1. Zero or more semaphores to wait on before execution of the rest of the batch.

• If present, these describe a semaphore wait operation.

2. Zero or more work items to execute.

• If present, these describe a queue operation matching the work described.

3. Zero or more semaphores to signal upon completion of the work items.

• If present, these describe a semaphore signal operation.

If a fence is present in a queue submission, it describes a fence signal operation.

All work described by a queue submission command must be submitted to the queue before the command returns.

4.3.5.1 Sparse Memory Binding

In Vulkan it is possible to sparsely bind memory to buffers and images as described in the Sparse Resource chapter.
Sparse memory binding is a queue operation. A queue whose flags include the VK_QUEUE_SPARSE_BINDING_BIT
must be able to support the mapping of a virtual address to a physical address on the device. This causes an update to the
page table mappings on the device. This update must be synchronized on a queue to avoid corrupting page table
mappings during execution of graphics commands. By binding the sparse memory resources on queues, all commands
that are dependent on the updated bindings are synchronized to only execute after the binding is updated. See the
Synchronization and Cache Control chapter for how this synchronization is accomplished.

4.3.6 Queue Destruction

Queues are created along with a logical device during vkCreateDevice. All queues associated with a logical device
are destroyed when vkDestroyDevice is called on that device.

Vulkan 1.0.36 - A Specification 51 / 683

Chapter 5

Command Buffers

Command buffers are objects used to record commands which can be subsequently submitted to a device queue for
execution. There are two levels of command buffers - primary command buffers, which can execute secondary command
buffers, and which are submitted to queues, and secondary command buffers, which can be executed by primary
command buffers, and which are not directly submitted to queues.

Command buffers are represented by VkCommandBuffer handles:

VK_DEFINE_HANDLE(VkCommandBuffer)

Recorded commands include commands to bind pipelines and descriptor sets to the command buffer, commands to
modify dynamic state, commands to draw (for graphics rendering), commands to dispatch (for compute), commands to
execute secondary command buffers (for primary command buffers only), commands to copy buffers and images, and
other commands.

Each command buffer manages state independently of other command buffers. There is no inheritance of state across
primary and secondary command buffers, or between secondary command buffers. When a command buffer begins
recording, all state in that command buffer is undefined. When secondary command buffer(s) are recorded to execute on
a primary command buffer, the secondary command buffer inherits no state from the primary command buffer, and all
state of the primary command buffer is undefined after an execute secondary command buffer command is recorded.
There is one exception to this rule - if the primary command buffer is inside a render pass instance, then the render pass
and subpass state is not disturbed by executing secondary command buffers. Whenever the state of a command buffer is
undefined, the application must set all relevant state on the command buffer before any state dependent commands such
as draws and dispatches are recorded, otherwise the behavior of executing that command buffer is undefined.

Unless otherwise specified, and without explicit synchronization, the various commands submitted to a queue via
command buffers may execute in arbitrary order relative to each other, and/or concurrently. Also, the memory
side-effects of those commands may not be directly visible to other commands without memory barriers. This is true
within a command buffer, and across command buffers submitted to a given queue. See Section 6.4, Section 6.5 and
Section 6.6 about synchronization primitives suitable to guarantee execution order and side-effect visibility between
commands on a given queue.

Each command buffer is always in one of three states:

• Initial state: Before vkBeginCommandBuffer. Either vkBeginCommandBuffer has never been called, or the
command buffer has been reset since it last recorded commands.

• Recording state: Between vkBeginCommandBuffer and vkEndCommandBuffer. The command buffer is in a
state where it can record commands.

• Executable state: After vkEndCommandBuffer. The command buffer is in a state where it has finished recording
commands and can be executed.

Resetting a command buffer is an operation that discards any previously recorded commands and puts a command buffer
in the initial state. Resetting occurs as a result of vkResetCommandBuffer or vkResetCommandPool, or as part
of vkBeginCommandBuffer (which additionally puts the command buffer in the recording state).

5.1 Command Pools

Command pools are opaque objects that command buffer memory is allocated from, and which allow the implementation
to amortize the cost of resource creation across multiple command buffers. Command pools are
application-synchronized, meaning that a command pool must not be used concurrently in multiple threads. That
includes use via recording commands on any command buffers allocated from the pool, as well as operations that
allocate, free, and reset command buffers or the pool itself.

Command pools are represented by VkCommandPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkCommandPool)

To create a command pool, call:

VkResult vkCreateCommandPool(
VkDevice device,
const VkCommandPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkCommandPool* pCommandPool);

• device is the logical device that creates the command pool.

• pCreateInfo contains information used to create the command pool.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pCommandPool points to a VkCommandPool handle in which the created pool is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkCommandPoolCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pCommandPool must be a pointer to a VkCommandPool handle

Vulkan 1.0.36 - A Specification 53 / 683

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandPoolCreateInfo structure is defined as:

typedef struct VkCommandPoolCreateInfo {
VkStructureType sType;
const void* pNext;
VkCommandPoolCreateFlags flags;
uint32_t queueFamilyIndex;

} VkCommandPoolCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask indicating usage behavior for the pool and command buffers allocated from it. Bits which can be
set include:

typedef enum VkCommandPoolCreateFlagBits {
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT = 0x00000001,
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT = 0x00000002,

} VkCommandPoolCreateFlagBits;

– VK_COMMAND_POOL_CREATE_TRANSIENT_BIT indicates that command buffers allocated from the pool will
be short-lived, meaning that they will be reset or freed in a relatively short timeframe. This flag may be used by the
implementation to control memory allocation behavior within the pool.

– VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT controls whether command buffers allocated
from the pool can be individually reset. If this flag is set, individual command buffers allocated from the pool can be
reset either explicitly, by calling vkResetCommandBuffer, or implicitly, by calling
vkBeginCommandBuffer on an executable command buffer. If this flag is not set, then
vkResetCommandBuffer and vkBeginCommandBuffer (on an executable command buffer) must not be
called on the command buffers allocated from the pool, and they can only be reset in bulk by calling
vkResetCommandPool.

• queueFamilyIndex designates a queue family as described in section Queue Family Properties. All command
buffers allocated from this command pool must be submitted on queues from the same queue family.

Valid Usage

• queueFamilyIndex must be the index of a queue family available in the calling command’s device parameter

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkCommandPoolCreateFlagBits values

To reset a command pool, call:

VkResult vkResetCommandPool(
VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags);

• device is the logical device that owns the command pool.

• commandPool is the command pool to reset.

• flags contains additional flags controlling the behavior of the reset. Bits which can be set include:

typedef enum VkCommandPoolResetFlagBits {
VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT = 0x00000001,

} VkCommandPoolResetFlagBits;

If flags includes VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT, resetting a command pool recycles
all of the resources from the command pool back to the system.

Resetting a command pool recycles all of the resources from all of the command buffers allocated from the command
pool back to the command pool. All command buffers that have been allocated from the command pool are put in the
initial state.

Valid Usage

• All VkCommandBuffer objects allocated from commandPool must not currently be pending execution

Vulkan 1.0.36 - A Specification 55 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• commandPool must be a valid VkCommandPool handle

• flags must be a valid combination of VkCommandPoolResetFlagBits values

• commandPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To destroy a command pool, call:

void vkDestroyCommandPool(
VkDevice device,
VkCommandPool commandPool,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the command pool.

• commandPool is the handle of the command pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all command buffers allocated from the pool are implicitly freed and become invalid.
Command buffers allocated from a given pool do not need to be freed before destroying that command pool.

Valid Usage

• All VkCommandBuffer objects allocated from commandPool must not be pending execution

• If VkAllocationCallbacks were provided when commandPool was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when commandPool was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If commandPool is not VK_NULL_HANDLE, commandPool must be a valid VkCommandPool handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If commandPool is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to commandPool must be externally synchronized

5.2 Command Buffer Allocation and Management

To allocate command buffers, call:

VkResult vkAllocateCommandBuffers(
VkDevice device,
const VkCommandBufferAllocateInfo* pAllocateInfo,
VkCommandBuffer* pCommandBuffers);

Vulkan 1.0.36 - A Specification 57 / 683

• device is the logical device that owns the command pool.

• pAllocateInfo is a pointer to an instance of the VkCommandBufferAllocateInfo structure describing
parameters of the allocation.

• pCommandBuffers is a pointer to an array of VkCommandBuffer handles in which the resulting command buffer
objects are returned. The array must be at least the length specified by the commandBufferCount member of
pAllocateInfo. Each allocated command buffer begins in the initial state.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pAllocateInfo must be a pointer to a valid VkCommandBufferAllocateInfo structure

• pCommandBuffers must be a pointer to an array of pAllocateInfo::commandBufferCount
VkCommandBuffer handles

Host Synchronization

• Host access to pAllocateInfo::commandPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferAllocateInfo structure is defined as:

typedef struct VkCommandBufferAllocateInfo {
VkStructureType sType;
const void* pNext;

VkCommandPool commandPool;
VkCommandBufferLevel level;
uint32_t commandBufferCount;

} VkCommandBufferAllocateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• commandPool is the name of the command pool that the command buffers allocate their memory from.

• level determines whether the command buffers are primary or secondary command buffers. Possible values include:

typedef enum VkCommandBufferLevel {
VK_COMMAND_BUFFER_LEVEL_PRIMARY = 0,
VK_COMMAND_BUFFER_LEVEL_SECONDARY = 1,

} VkCommandBufferLevel;

• commandBufferCount is the number of command buffers to allocate from the pool.

Valid Usage

• commandBufferCount must be greater than 0

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO

• pNext must be NULL

• commandPool must be a valid VkCommandPool handle

• level must be a valid VkCommandBufferLevel value

To reset command buffers, call:

VkResult vkResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags);

• commandBuffer is the command buffer to reset. The command buffer can be in any state, and is put in the initial state.

Vulkan 1.0.36 - A Specification 59 / 683

• flags is a bitmask controlling the reset operation. Bits which can be set include:

typedef enum VkCommandBufferResetFlagBits {
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = 0x00000001,

} VkCommandBufferResetFlagBits;

If flags includes VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT, then most or all memory
resources currently owned by the command buffer should be returned to the parent command pool. If this flag is not
set, then the command buffer may hold onto memory resources and reuse them when recording commands.

Valid Usage

• commandBuffer must not currently be pending execution

• commandBuffer must have been allocated from a pool that was created with the VK_COMMAND_POOL_
CREATE_RESET_COMMAND_BUFFER_BIT

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• flags must be a valid combination of VkCommandBufferResetFlagBits values

Host Synchronization

• Host access to commandBuffer must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To free command buffers, call:

void vkFreeCommandBuffers(
VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers);

• device is the logical device that owns the command pool.

• commandPool is the handle of the command pool that the command buffers were allocated from.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is an array of handles of command buffers to free.

Valid Usage

• All elements of pCommandBuffers must not be pending execution

• pCommandBuffers must be a pointer to an array of commandBufferCount VkCommandBuffer handles, each
element of which must either be a valid handle or NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• commandPool must be a valid VkCommandPool handle

• commandBufferCount must be greater than 0

• commandPool must have been created, allocated, or retrieved from device

• Each element of pCommandBuffers that is a valid handle must have been created, allocated, or retrieved from
commandPool

Vulkan 1.0.36 - A Specification 61 / 683

Host Synchronization

• Host access to commandPool must be externally synchronized

• Host access to each member of pCommandBuffers must be externally synchronized

5.3 Command Buffer Recording

To begin recording a command buffer, call:

VkResult vkBeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo);

• commandBuffer is the handle of the command buffer which is to be put in the recording state.

• pBeginInfo is an instance of the VkCommandBufferBeginInfo structure, which defines additional information
about how the command buffer begins recording.

Valid Usage

• commandBuffer must not be in the recording state

• commandBuffer must not currently be pending execution

• If commandBuffer was allocated from a VkCommandPool which did not have the VK_COMMAND_POOL_
CREATE_RESET_COMMAND_BUFFER_BIT flag set, commandBuffer must be in the initial state

• If commandBuffer is a secondary command buffer, the pInheritanceInfo member of pBeginInfo must be a
valid VkCommandBufferInheritanceInfo structure

• If commandBuffer is a secondary command buffer and either the occlusionQueryEnable member of the
pInheritanceInfo member of pBeginInfo is VK_FALSE, or the precise occlusion queries feature is not
enabled, the queryFlags member of the pInheritanceInfo member pBeginInfo must not contain VK_
QUERY_CONTROL_PRECISE_BIT

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pBeginInfo must be a pointer to a valid VkCommandBufferBeginInfo structure

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkCommandBufferBeginInfo structure is defined as:

typedef struct VkCommandBufferBeginInfo {
VkStructureType sType;
const void* pNext;
VkCommandBufferUsageFlags flags;
const VkCommandBufferInheritanceInfo* pInheritanceInfo;

} VkCommandBufferBeginInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask indicating usage behavior for the command buffer. Bits which can be set include:

typedef enum VkCommandBufferUsageFlagBits {
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT = 0x00000001,
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT = 0x00000002,
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT = 0x00000004,

} VkCommandBufferUsageFlagBits;

Vulkan 1.0.36 - A Specification 63 / 683

– VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT indicates that each recording of the command
buffer will only be submitted once, and the command buffer will be reset and recorded again between each
submission.

– VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT indicates that a secondary command buffer
is considered to be entirely inside a render pass. If this is a primary command buffer, then this bit is ignored.

– Setting VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT allows the command buffer to be
resubmitted to a queue or recorded into a primary command buffer while it is pending execution.

• pInheritanceInfo is a pointer to a VkCommandBufferInheritanceInfo structure, which is used if
commandBuffer is a secondary command buffer. If this is a primary command buffer, then this value is ignored.

Valid Usage

• If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the renderPass
member of pInheritanceInfo must be a valid VkRenderPass

• If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the subpass member
of pInheritanceInfo must be a valid subpass index within the renderPass member of pInheritanceInfo

• If flags contains VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, the framebuffer
member of pInheritanceInfo must be either VK_NULL_HANDLE, or a valid VkFramebuffer that is
compatible with the renderPass member of pInheritanceInfo

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO

• pNext must be NULL

• flags must be a valid combination of VkCommandBufferUsageFlagBits values

If the command buffer is a secondary command buffer, then the VkCommandBufferInheritanceInfo structure
defines any state that will be inherited from the primary command buffer:

typedef struct VkCommandBufferInheritanceInfo {
VkStructureType sType;
const void* pNext;
VkRenderPass renderPass;
uint32_t subpass;
VkFramebuffer framebuffer;
VkBool32 occlusionQueryEnable;
VkQueryControlFlags queryFlags;
VkQueryPipelineStatisticFlags pipelineStatistics;

} VkCommandBufferInheritanceInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• renderPass is a VkRenderPass object defining which render passes the VkCommandBuffer will be compatible
with and can be executed within. If the VkCommandBuffer will not be executed within a render pass instance,
renderPass is ignored.

• subpass is the index of the subpass within the render pass instance that the VkCommandBuffer will be executed
within. If the VkCommandBuffer will not be executed within a render pass instance, subpass is ignored.

• framebuffer optionally refers to the VkFramebuffer object that the VkCommandBuffer will be rendering to if
it is executed within a render pass instance. It can be VK_NULL_HANDLE if the framebuffer is not known, or if the
VkCommandBuffer will not be executed within a render pass instance.

Note
Specifying the exact framebuffer that the secondary command buffer will be executed with may result in better
performance at command buffer execution time.

• occlusionQueryEnable indicates whether the command buffer can be executed while an occlusion query is active
in the primary command buffer. If this is VK_TRUE, then this command buffer can be executed whether the primary
command buffer has an occlusion query active or not. If this is VK_FALSE, then the primary command buffer must not
have an occlusion query active.

• queryFlags indicates the query flags that can be used by an active occlusion query in the primary command buffer
when this secondary command buffer is executed. If this value includes the VK_QUERY_CONTROL_PRECISE_BIT
bit, then the active query can return boolean results or actual sample counts. If this bit is not set, then the active query
must not use the VK_QUERY_CONTROL_PRECISE_BIT bit.

• pipelineStatistics indicates the set of pipeline statistics that can be counted by an active query in the primary
command buffer when this secondary command buffer is executed. If this value includes a given bit, then this
command buffer can be executed whether the primary command buffer has a pipeline statistics query active that
includes this bit or not. If this value excludes a given bit, then the active pipeline statistics query must not be from a
query pool that counts that statistic.

Valid Usage

• If the inherited queries feature is not enabled, occlusionQueryEnable must be VK_FALSE

• If the inherited queries feature is enabled, queryFlags must be a valid combination of
VkQueryControlFlagBits values

• If the pipeline statistics queries feature is not enabled, pipelineStatistics must be 0

Vulkan 1.0.36 - A Specification 65 / 683

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO

• pNext must be NULL

• Both of framebuffer, and renderPass that are valid handles must have been created, allocated, or retrieved
from the same VkDevice

A primary command buffer is considered to be pending execution from the time it is submitted via vkQueueSubmit
until that submission completes.

A secondary command buffer is considered to be pending execution from the time its execution is recorded into a primary
buffer (via vkCmdExecuteCommands) until the final time that primary buffer’s submission to a queue completes. If,
after the primary buffer completes, the secondary command buffer is recorded to execute on a different primary buffer,
the first primary buffer must not be resubmitted until after it is reset with vkResetCommandBuffer unless the
secondary command buffer was recorded with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT.

If VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT is not set on a secondary command buffer, that
command buffer must not be used more than once in a given primary command buffer. Furthermore, if a secondary
command buffer without VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set is recorded to execute in
a primary command buffer with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set, the primary
command buffer must not be pending execution more than once at a time.

Note
On some implementations, not using the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT bit
enables command buffers to be patched in-place if needed, rather than creating a copy of the command buffer.

If a command buffer is in the executable state and the command buffer was allocated from a command pool with the VK_
COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then vkBeginCommandBuffer implicitly
resets the command buffer, behaving as if vkResetCommandBuffer had been called with VK_COMMAND_BUFFER_
RESET_RELEASE_RESOURCES_BIT not set. It then puts the command buffer in the recording state.

Once recording starts, an application records a sequence of commands (vkCmd*) to set state in the command buffer,
draw, dispatch, and other commands.

To complete recording of a command buffer, call:

VkResult vkEndCommandBuffer(
VkCommandBuffer commandBuffer);

• commandBuffer is the command buffer to complete recording. The command buffer must have been in the recording
state, and is moved to the executable state.

If there was an error during recording, the application will be notified by an unsuccessful return code returned by
vkEndCommandBuffer. If the application wishes to further use the command buffer, the command buffer must be
reset.

Valid Usage

• commandBuffer must be in the recording state

• If commandBuffer is a primary command buffer, there must not be an active render pass instance

• All queries made active during the recording of commandBuffer must have been made inactive

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a command buffer is in the executable state, it can be submitted to a queue for execution.

5.4 Command Buffer Submission

To submit command buffers to a queue, call:

Vulkan 1.0.36 - A Specification 67 / 683

VkResult vkQueueSubmit(
VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence);

• queue is the queue that the command buffers will be submitted to.

• submitCount is the number of elements in the pSubmits array.

• pSubmits is a pointer to an array of VkSubmitInfo structures, each specifying a command buffer submission
batch.

• fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it defines a fence signal
operation.

Note
Submission can be a high overhead operation, and applications should attempt to batch work together into as
few calls to vkQueueSubmit as possible.

vkQueueSubmit is a queue submission command, with each batch defined by an element of pSubmits as an instance
of the VkSubmitInfo structure. Batches begin execution in the order they appear in pSubmits, but may complete out
of order.

Fence and semaphore operations submitted with vkQueueSubmit have additional ordering constraints compared to
other submission commands, with dependencies involving previous and subsequent queue operations. Information about
these additional constraints can be found in the semaphore and fence sections of the synchronization chapter.

Details on the interaction of pWaitDstStageMask with synchronization are described in the semaphore wait operation
section of the synchronization chapter.

Valid Usage

• If fence is not VK_NULL_HANDLE, fence must be unsignaled

• If fence is not VK_NULL_HANDLE, fence must not be associated with any other queue command that has not
yet completed execution on that queue

• Any calls to vkCmdSetEvent, vkCmdResetEvent or vkCmdWaitEvents that have been recorded into
any of the command buffer elements of the pCommandBuffers member of any element of pSubmits, must not
reference any VkEvent that is referenced by any of those commands that is pending execution on another queue.

• Any stage flag included in any element of the pWaitDstStageMask member of any element of pSubmits must
be a pipeline stage supported by one of the capabilities of queue, as specified in the table of supported pipeline
stages.

Valid Usage (Implicit)

• queue must be a valid VkQueue handle

• If submitCount is not 0, pSubmits must be a pointer to an array of submitCount valid VkSubmitInfo
structures

• If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• Both of fence, and queue that are valid handles must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to pSubmits[].pWaitSemaphores[] must be externally synchronized

• Host access to pSubmits[].pSignalSemaphores[] must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Vulkan 1.0.36 - A Specification 69 / 683

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkSubmitInfo structure is defined as:

typedef struct VkSubmitInfo {
VkStructureType sType;
const void* pNext;
uint32_t waitSemaphoreCount;
const VkSemaphore* pWaitSemaphores;
const VkPipelineStageFlags* pWaitDstStageMask;
uint32_t commandBufferCount;
const VkCommandBuffer* pCommandBuffers;
uint32_t signalSemaphoreCount;
const VkSemaphore* pSignalSemaphores;

} VkSubmitInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the command buffers for
the batch.

• pWaitSemaphores is a pointer to an array of semaphores upon which to wait before the command buffers for this
batch begin execution. If semaphores to wait on are provided, they define a semaphore wait operation.

• pWaitDstStageMask is a pointer to an array of pipeline stages at which each corresponding semaphore wait will
occur.

• commandBufferCount is the number of command buffers to execute in the batch.

• pCommandBuffers is a pointer to an array of command buffers to execute in the batch. The command buffers
submitted in a batch begin execution in the order they appear in pCommandBuffers, but may complete out of order.

• signalSemaphoreCount is the number of semaphores to be signaled once the commands specified in
pCommandBuffers have completed execution.

• pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the command buffers for
this batch have completed execution. If semaphores to be signaled are provided, they define a semaphore signal
operation.

Valid Usage

• Any given element of pSignalSemaphores must currently be unsignaled

• Any given element of pCommandBuffers must either have been recorded with the VK_COMMAND_BUFFER_
USAGE_SIMULTANEOUS_USE_BIT, or not currently be executing on the device

• Any given element of pCommandBuffers must be in the executable state

• If any given element of pCommandBuffers contains commands that execute secondary command buffers, those
secondary command buffers must have been recorded with the VK_COMMAND_BUFFER_USAGE_
SIMULTANEOUS_USE_BIT, or not currently be executing on the device

• If any given element of pCommandBuffers was recorded with VK_COMMAND_BUFFER_USAGE_ONE_TIME_
SUBMIT_BIT, it must not have been previously submitted without re-recording that command buffer

• If any given element of pCommandBuffers contains commands that execute secondary command buffers
recorded with VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, each such secondary command
buffer must not have been previously submitted without re-recording that command buffer

• Any given element of pCommandBuffers must not contain commands that execute a secondary command buffer,
if that secondary command buffer has been recorded in another primary command buffer after it was recorded into
this VkCommandBuffer

• Any given element of pCommandBuffers must have been allocated from a VkCommandPool that was created
for the same queue family that the calling command’s queue belongs to

• Any given element of pCommandBuffers must not have been allocated with VK_COMMAND_BUFFER_LEVEL_
SECONDARY

• Any given element of VkSemaphore in pWaitSemaphores must refer to a prior signal of that VkSemaphore
that will not be consumed by any other wait on that semaphore

• If the geometry shaders feature is not enabled, any given element of pWaitDstStageMask must not contain VK_
PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, any given element of pWaitDstStageMask must not contain
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_
TESSELLATION_EVALUATION_SHADER_BIT

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SUBMIT_INFO

• pNext must be NULL

• If waitSemaphoreCount is not 0, pWaitSemaphores must be a pointer to an array of waitSemaphoreCount
valid VkSemaphore handles

• If waitSemaphoreCount is not 0, pWaitDstStageMask must be a pointer to an array of
waitSemaphoreCount valid combinations of VkPipelineStageFlagBits values

• Each element of pWaitDstStageMask must not be 0

Vulkan 1.0.36 - A Specification 71 / 683

• If commandBufferCount is not 0, pCommandBuffers must be a pointer to an array of commandBufferCount
valid VkCommandBuffer handles

• If signalSemaphoreCount is not 0, pSignalSemaphores must be a pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

• Each of the elements of pCommandBuffers, the elements of pSignalSemaphores, and the elements of
pWaitSemaphores that are valid handles must have been created, allocated, or retrieved from the same
VkDevice

5.5 Queue Forward Progress

The application must ensure that command buffer submissions will be able to complete without any subsequent
operations by the application on any queue. After any call to vkQueueSubmit, for every queued wait on a semaphore
there must be a prior signal of that semaphore that will not be consumed by a different wait on the semaphore.

Command buffers in the submission can include vkCmdWaitEvents commands that wait on events that will not be
signaled by earlier commands in the queue. Such events must be signaled by the application using vkSetEvent, and
the vkCmdWaitEvents commands that wait upon them must not be inside a render pass instance. Implementations
may have limits on how long the command buffer will wait, in order to avoid interfering with progress of other clients of
the device. If the event is not signaled within these limits, results are undefined and may include device loss.

5.6 Secondary Command Buffer Execution

A secondary command buffer must not be directly submitted to a queue. Instead, secondary command buffers are
recorded to execute as part of a primary command buffer with the command:

void vkCmdExecuteCommands(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers);

• commandBuffer is a handle to a primary command buffer that the secondary command buffers are executed in.

• commandBufferCount is the length of the pCommandBuffers array.

• pCommandBuffers is an array of secondary command buffer handles, which are recorded to execute in the primary
command buffer in the order they are listed in the array.

Once vkCmdExecuteCommands has been called, any prior executions of the secondary command buffers specified by
pCommandBuffers in any other primary command buffer become invalidated, unless those secondary command buffers
were recorded with VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT.

Valid Usage

• commandBuffer must have been allocated with a level of VK_COMMAND_BUFFER_LEVEL_PRIMARY

• Any given element of pCommandBuffers must have been allocated with a level of VK_COMMAND_BUFFER_
LEVEL_SECONDARY

• Any given element of pCommandBuffers must not be already pending execution in commandBuffer, or appear
twice in pCommandBuffers, unless it was recorded with the VK_COMMAND_BUFFER_USAGE_
SIMULTANEOUS_USE_BIT flag

• Any given element of pCommandBuffers must not be already pending execution in any other
VkCommandBuffer, unless it was recorded with the VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_
USE_BIT flag

• Any given element of pCommandBuffers must be in the executable state

• Any given element of pCommandBuffers must have been allocated from a VkCommandPool that was created
for the same queue family as the VkCommandPool from which commandBuffer was allocated

• If vkCmdExecuteCommands is being called within a render pass instance, that render pass instance must have
been begun with the contents parameter of vkCmdBeginRenderPass set to VK_SUBPASS_CONTENTS_
SECONDARY_COMMAND_BUFFERS

• If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBuffers must have been recorded with the VK_COMMAND_BUFFER_USAGE_RENDER_PASS_
CONTINUE_BIT

• If vkCmdExecuteCommands is being called within a render pass instance, any given element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo::subpass set to
the index of the subpass which the given command buffer will be executed in

• If vkCmdExecuteCommands is being called within a render pass instance, the render passes specified in the
pname::pBeginInfo::pInheritanceInfo::renderPass members of the vkBeginCommandBuffer
commands used to begin recording each element of pCommandBuffers must be compatible with the current
render pass.

• If vkCmdExecuteCommands is being called within a render pass instance, and any given element of
pCommandBuffers was recorded with VkCommandBufferInheritanceInfo::framebuffer not equal to
VK_NULL_HANDLE, that VkFramebuffer must match the VkFramebuffer used in the current render pass
instance

• If vkCmdExecuteCommands is not being called within a render pass instance, any given element of
pCommandBuffers must not have been recorded with the VK_COMMAND_BUFFER_USAGE_RENDER_PASS_
CONTINUE_BIT

• If the inherited queries feature is not enabled, commandBuffer must not have any queries active

• If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with
VkCommandBufferInheritanceInfo::occlusionQueryEnable set to VK_TRUE

• If commandBuffer has a VK_QUERY_TYPE_OCCLUSION query active, then each element of
pCommandBuffers must have been recorded with VkCommandBufferInheritanceInfo::queryFlags
having all bits set that are set for the query

Vulkan 1.0.36 - A Specification 73 / 683

• If commandBuffer has a VK_QUERY_TYPE_PIPELINE_STATISTICS query active, then each element of
pCommandBuffers must have been recorded with
VkCommandBufferInheritanceInfo::pipelineStatistics having all bits set that are set in the
VkQueryPool the query uses

• Any given element of pCommandBuffers must not begin any query types that are active in commandBuffer

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pCommandBuffers must be a pointer to an array of commandBufferCount valid VkCommandBuffer handles

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

• commandBuffer must be a primary VkCommandBuffer

• commandBufferCount must be greater than 0

• Both of commandBuffer, and the elements of pCommandBuffers must have been created, allocated, or retrieved
from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary Both Transfer
graphics
compute

Vulkan 1.0.36 - A Specification 75 / 683

Chapter 6

Synchronization and Cache Control

Synchronization of access to resources is primarily the responsibility of the application in Vulkan. The order of
execution of commands with respect to the host and other commands on the device has few implicit guarantees, and
needs to be explicitly specified. Memory caches and other optimizations are also explicitly managed, requiring that the
flow of data through the system is largely under application control.

Whilst some implicit guarantees exist between commands, four explicit synchronization primitives are exposed by
Vulkan:

Fences
Fences can be used to communicate to the host that execution of some task on the device has completed.

Semaphores
Semaphores can be used to control resource access across multiple queues.

Events
Events provide a fine-grained synchronization primitive which can be signaled either within a command buffer or
by the host, and can be waited upon within a command buffer or queried on the host.

Pipeline Barriers
Pipeline barriers also provide synchronization control within a command buffer, but at a single point, rather than
with separate signal and wait operations.

In addition to the base primitives provided here, Render Passes provide a useful synchronization framework for most
rendering tasks, built upon the concepts in this chapter. Many cases that would otherwise need an application to use
synchronization primitives in this chapter can be expressed more efficiently as part of a render pass.

6.1 Execution and Memory Dependencies

An operation is an arbitrary amount of work to be executed on the host, a device, or an external entity such as a
presentation engine. Synchronization commands introduce explicit execution dependencies, and memory dependencies
between two sets of operations defined by the command’s two synchronization scopes.

The synchronization scopes define which other operations a synchronization command is able to create execution
dependencies with. Any type of operation that is not in a synchronization command’s synchronization scopes will not be
included in the resulting dependency. For example, for many synchronization commands, the synchronization scopes can

be limited to just operations executing in specific pipeline stages, which allows other pipeline stages to be excluded from
a dependency. Other scoping options are possible, depending on the particular command.

An execution dependency is a guarantee that for two sets of operations, the first set must happen-before the second set. If
an operation happens-before another operation, then the first operation must complete before the second operation is
initiated. More precisely:

• Let A and B be separate sets of operations.

• Let S be a synchronization command.

• Let AS and BS be the synchronization scopes of S.

• Let A’ be the intersection of sets A and AS.

• Let B’ be the intersection of sets B and BS.

• Submitting A, S and B for execution, in that order, will result in execution dependency E between A’ and B’.

• Execution dependency E guarantees that A’ happens-before B’.

An execution dependency chain is a sequence of execution dependencies that form a happens-before relation between the
first dependency’s A’ and the final dependency’s B’. For each consecutive pair of execution dependencies, a chain exists
if the intersection of BS in the first dependency and AS in the second dependency is not an empty set. The formation of a
single execution dependency from an execution dependency chain can be described by substituting the following in the
description of execution dependencies:

• Let S be a set of synchronization commands that generate an execution dependency chain.

• Let AS be the first synchronization scope of the first command in S.

• Let BS be the second synchronization scope of the last command in S.

Note
An execution dependency is inherently also multiple execution dependencies - a dependency exists between
each subset of A’ and each subset of B’, and the same is true for execution dependency chains. For example, a
synchronization command with multiple pipeline stages in its stage masks effectively generates one dependency
between each source stage and each destination stage. This can be useful to think about when considering
how execution chains are formed if they don’t involve all parts of a synchronization command’s dependency.
Similarly, any set of adjacent dependencies in an execution dependency chain can be considered an execution
dependency chain in its own right.

Execution dependencies alone are not sufficient to guarantee that values resulting from writes in one set of operations can
be read from another set of operations.

Two additional types of operation are used to control memory access. Availability operations cause the values generated
by specified memory write accesses to become available for future access. Any available value remains available until a
subsequent write to the same memory location occurs (whether it is made available or not) or the memory is freed.
Visibility operations cause any available values to become visible to specified memory accesses.

A memory dependency is an execution dependency which includes availability and visibility operations such that:

• The first set of operations happens-before the availability operation.

• The availability operation happens-before the visibility operation.

Vulkan 1.0.36 - A Specification 77 / 683

• The visibility operation happens-before the second set of operations.

Once written values are made visible to a particular type of memory access, they can be read or written by that type of
memory access. Most synchronization commands in Vulkan define a memory dependency.

The specific memory accesses that are made available and visible are defined by the access scopes of a memory
dependency. Any type of access that is in a memory dependency’s first access scope and occurs in A’ is made available.
Any type of access that is in a memory dependency’s second access scope and occurs in B’ has any available writes made
visible to it. Any type of operation that is not in a synchronization command’s access scopes will not be included in the
resulting dependency.

A memory dependency enforces availability and visibility of memory accesses and execution order two sets of
operations. Adding to the description of execution dependency chains:

• Let a be the set of memory accesses performed by A’.

• Let b be the set of memory accesses performed by B’.

• Let aS be the first access scope of the first command in S.

• Let bS be the second access scope of the last command in S.

• Let a’ be the intersection of sets a and aS.

• Let b’ be the intersection of sets b and bS.

• Submitting A, S and B for execution, in that order, will result in a memory dependency m between A’ and B’.

• Memory dependency m guarantees that:

– Memory writes in a’ are made available.

– Available memory writes, including those from a’, are made visible to b’.

Note
Execution and memory dependencies are used to solve data hazards, i.e. to ensure that read and write opera-
tions occur in a well-defined order. Write-after-read hazards can be solved with just an execution dependency,
but read-after-write and write-after-write hazards need appropriate memory dependencies to be included be-
tween them. If an application does not include dependencies to solve these hazards, the results and execution
orders of memory accesses are undefined.

6.1.1 Image Layout Transitions

Image subresources can be transitioned from one layout to another as part of a memory dependency (e.g. by using an
image memory barrier). When a layout transition is specified in a memory dependency, it happens-after the availability
operations in the memory dependency, and happens-before the visibility operations. Image layout transitions may
perform read and write accesses on all memory bound to the image subresource range, so applications must ensure that
all memory writes have been made available before a layout transition is executed. Available memory is automatically
made visible to a layout transition, and writes performed by a layout transition are automatically made available.

Layout transitions always apply to a particular image subresource range, and specify both an old layout and new layout.
If the old layout does not match the new layout, a transition occurs. The old layout must match the current layout of the
image subresource range, with one exception. The old layout can always be specified as VK_IMAGE_LAYOUT_
UNDEFINED, though doing so invalidates the contents of the image subresource range.

Note
Setting the old layout to VK_IMAGE_LAYOUT_UNDEFINED implies that the contents of the image subre-
source need not be preserved. Implementations may use this information to avoid performing expensive data
transition operations.

Note
Applications must ensure that layout transitions happen-after all operations accessing the image with the old
layout, and happen-before any operations that will access the image with the new layout. Layout transitions are
potentially read/write operations, so not defining appropriate memory dependencies to guarantee this will result
in a data race.

The contents of any portion of another resource which aliases memory that is bound to the transitioned image
subresource range are undefined after an image layout transition.

6.1.2 Pipeline Stages

The work performed by an action command consists of multiple operations, which are performed by a sequence of
logically independent execution units known as pipeline stages. The exact pipeline stages executed depend on the
particular action command that is used, and current command buffer state when the action command was recorded.
Drawing commands, dispatching commands, copy commands, and clear commands all execute different sets of pipeline
stages.

Execution of operations across pipeline stages must adhere to API order, command order, and pipeline stage order.
Otherwise, execution across pipeline stages may overlap or execute out of order with regards to other stages, unless
otherwise enforced by an execution dependency.

Several of the synchronization commands include pipeline stage parameters, restricting the synchronization scopes for
that command to those stages. This allows fine grained control over the exact execution dependencies and accesses
performed by action commands. Implementations should use these pipeline stages to avoid unnecessary stalls or cache
flushing.

These pipeline stages are specified using a bitmask:

typedef enum VkPipelineStageFlagBits {
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT = 0x00000001,
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT = 0x00000002,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT = 0x00000004,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT = 0x00000008,
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT = 0x00000010,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT = 0x00000020,
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT = 0x00000040,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT = 0x00000080,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT = 0x00000100,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT = 0x00000200,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT = 0x00000400,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT = 0x00000800,
VK_PIPELINE_STAGE_TRANSFER_BIT = 0x00001000,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT = 0x00002000,
VK_PIPELINE_STAGE_HOST_BIT = 0x00004000,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT = 0x00008000,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT = 0x00010000,

} VkPipelineStageFlagBits;

Vulkan 1.0.36 - A Specification 79 / 683

The meaning of each bit is:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT: Stage of the pipeline where any commands are initially received by
the queue.

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT: Stage of the pipeline where Draw/DispatchIndirect data
structures are consumed.

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT: Stage of the pipeline where vertex and index buffers are consumed.

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT: Vertex shader stage.

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT: Tessellation control shader stage.

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT: Tessellation evaluation shader stage.

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT: Geometry shader stage.

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT: Fragment shader stage.

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT: Stage of the pipeline where early fragment tests (depth
and stencil tests before fragment shading) are performed. This stage also includes subpass load operations for
framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT: Stage of the pipeline where late fragment tests (depth
and stencil tests after fragment shading) are performed. This stage also includes subpass store operations for
framebuffer attachments with a depth/stencil format.

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT: Stage of the pipeline after blending where the
final color values are output from the pipeline. This stage also includes subpass load and store operations and
multisample resolve operations for framebuffer attachments with a color format.

• VK_PIPELINE_STAGE_TRANSFER_BIT: Execution of copy commands. This includes the operations resulting
from all copy commands, clear commands (with the exception of vkCmdClearAttachments), and
vkCmdCopyQueryPoolResults.

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT: Execution of a compute shader.

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT: Final stage in the pipeline where operations generated by all
commands complete execution.

• VK_PIPELINE_STAGE_HOST_BIT: A pseudo-stage indicating execution on the host of reads/writes of device
memory. This stage is not invoked by any action commands.

• VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT: Execution of all graphics pipeline stages. Equivalent to the logical
or of:

– VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

– VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

– VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

– VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

– VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT

– VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

– VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

– VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

– VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

– VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

– VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

– VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

• VK_PIPELINE_STAGE_ALL_COMMANDS_BIT: Equivalent to the logical or of every other pipeline stage flag that
is supported on the queue it is used with.

Note
An execution dependency with only VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT in the destination
stage mask will only prevent that stage from executing in subsequently submitted commands. As this stage
doesn’t perform any actual execution, this is not observable - in effect, it does not delay processing of subsequent
commands. Similarly an execution dependency with only VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT in
the source stage mask will effectively not wait for any prior commands to complete.
When defining a memory dependency, using only VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT or VK_
PIPELINE_STAGE_TOP_OF_PIPE_BIT would never make any accesses available and/or visible because
these stages do not access memory.
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT and VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT
are useful for accomplishing layout transitions and queue ownership operations when the required execution
dependency is satisfied by other means - for example, semaphore operations between queues.

If a synchronization command includes a source stage mask, its first synchronization scope only includes execution of
the pipeline stages specified in that mask, as well as any logically earlier stages. If a synchronization command includes
a destination stage mask, its second synchronization scope only includes execution of the pipeline stages specified in that
mask, as well as any logically later stages.

Access scopes are affected in a similar way. If a synchronization command includes a source stage mask, its first access
scope only includes memory access performed by pipeline stages specified in that mask. If a synchronization command
includes a destination stage mask, its second access scope only includes memory access performed by pipeline stages
specified in that mask.

Note
Implementations may not support synchronization at every pipeline stage for every synchronization operation. If
a pipeline stage that an implementation does not support synchronization for appears in a source stage mask,
then it may substitute that stage for any logically later stage. If a pipeline stage that an implementation does
not support synchronization for appears in a destination stage mask, then it may substitute that stage for any
logically earlier stage.
For example, if an implementation is unable to signal an event immediately after vertex shader execution is
complete, it may instead signal the event after color attachment output has completed.
If an implementation makes such a substitution, it must not affect the semantics of execution or memory depen-
dencies or image and buffer memory barriers.

Certain pipeline stages are only available on queues that support a particular set of operations. The following table lists,
for each pipeline stage flag, which queue capability flag must be supported by the queue. When multiple flags are
enumerated in the second column of the table, it means that the pipeline stage is supported on the queue if it supports any
of the listed capability flags. For further details on queue capabilities see Physical Device Enumeration and Queues.

Vulkan 1.0.36 - A Specification 81 / 683

Table 6.1: Supported pipeline stage flags

Pipeline stage flag Required queue capability flag
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT None required
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT VK_QUEUE_GRAPHICS_BIT or

VK_QUEUE_COMPUTE_BIT
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_
BIT

VK_QUEUE_GRAPHICS_BIT

VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT VK_QUEUE_COMPUTE_BIT
VK_PIPELINE_STAGE_TRANSFER_BIT VK_QUEUE_GRAPHICS_BIT,

VK_QUEUE_COMPUTE_BIT or
VK_QUEUE_TRANSFER_BIT

VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT None required
VK_PIPELINE_STAGE_HOST_BIT None required
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT VK_QUEUE_GRAPHICS_BIT
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT None required

Pipeline stages that execute as a result of a command logically complete execution in a specific order, such that
completion of a logically later pipeline stage must not happen-before completion of a logically earlier stage. This means
that including any given stage in the source stage mask for a particular synchronization command also implies that any
logically earlier stages are included in AS for that command.

Similarly, initiation of a logically earlier pipeline stage must not happen-after initiation of a logically later pipeline stage.
Including any given stage in the destination stage mask for a particular synchronization command also implies that any
logically later stages are included in BS for that command.

Note
Logically earlier/later stages are not included when defining the access scopes of a memory barrier.

The order of pipeline stages depends on the particular pipeline; graphics, compute, transfer or host.

For the graphics pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_VERTEX_INPUT_BIT

• VK_PIPELINE_STAGE_VERTEX_SHADER_BIT

• VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT

• VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT

• VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For the compute pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

• VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT

• VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For the transfer pipeline, the following stages occur in this order:

• VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

• VK_PIPELINE_STAGE_TRANSFER_BIT

• VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

For host operations, only one pipeline stage occurs, so no order is guaranteed:

• VK_PIPELINE_STAGE_HOST_BIT

6.1.3 Access Types

Memory in Vulkan can be accessed from within shader invocations and via some fixed-function stages of the pipeline.
The access type is a function of the descriptor type used, or how a fixed-function stage accesses memory. Each access
type corresponds to a bit flag in VkAccessFlagBits.

Some synchronization commands take sets of access types as parameters to define the access scopes of a memory
dependency. If a synchronization command includes a source access mask, its first access scope only includes accesses
via the access types specified in that mask. Similarly, if a synchronization command includes a destination access mask,
its second access scope only includes accesses via the access types specified in that mask.

Access types that can be set in an access mask include:

Vulkan 1.0.36 - A Specification 83 / 683

typedef enum VkAccessFlagBits {
VK_ACCESS_INDIRECT_COMMAND_READ_BIT = 0x00000001,
VK_ACCESS_INDEX_READ_BIT = 0x00000002,
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT = 0x00000004,
VK_ACCESS_UNIFORM_READ_BIT = 0x00000008,
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT = 0x00000010,
VK_ACCESS_SHADER_READ_BIT = 0x00000020,
VK_ACCESS_SHADER_WRITE_BIT = 0x00000040,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT = 0x00000080,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT = 0x00000100,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT = 0x00000200,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT = 0x00000400,
VK_ACCESS_TRANSFER_READ_BIT = 0x00000800,
VK_ACCESS_TRANSFER_WRITE_BIT = 0x00001000,
VK_ACCESS_HOST_READ_BIT = 0x00002000,
VK_ACCESS_HOST_WRITE_BIT = 0x00004000,
VK_ACCESS_MEMORY_READ_BIT = 0x00008000,
VK_ACCESS_MEMORY_WRITE_BIT = 0x00010000,

} VkAccessFlagBits;

• VK_ACCESS_INDIRECT_COMMAND_READ_BIT: Read access to an indirect command structure read as part of an
indirect drawing or dispatch command.

• VK_ACCESS_INDEX_READ_BIT: Read access to an index buffer as part of an indexed drawing command, bound by
vkCmdBindIndexBuffer.

• VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT: Read access to a vertex buffer as part of a drawing command,
bound by vkCmdBindVertexBuffers.

• VK_ACCESS_UNIFORM_READ_BIT: Read access to a uniform buffer.

• VK_ACCESS_INPUT_ATTACHMENT_READ_BIT: Read access to an input attachment within a renderpass during
fragment shading.

• VK_ACCESS_SHADER_READ_BIT: Read access to a storage buffer, uniform texel buffer, storage texel buffer,
sampled image, or storage image.

• VK_ACCESS_SHADER_WRITE_BIT: Write access to a storage buffer, storage texel buffer, or storage image.

• VK_ACCESS_COLOR_ATTACHMENT_READ_BIT: Read access to a color attachment, such as via blending, logic
operations, or via certain subpass load operations.

• VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT: Write access to a color or resolve attachment during a render
pass or via certain subpass load and store operations.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT: Read access to a depth/stencil attachment, via depth
or stencil operations or via certain subpass load operations.

• VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT: Write access to a depth/stencil attachment, via
depth or stencil operations or via certain subpass load and store operations.

• VK_ACCESS_TRANSFER_READ_BIT: Read access to an image or buffer in a copy operation.

• VK_ACCESS_TRANSFER_WRITE_BIT: Write access to an image or buffer in a clear or copy operation.

• VK_ACCESS_HOST_READ_BIT: Read access by a host operation.

• VK_ACCESS_HOST_WRITE_BIT: Write access by a host operation.

• VK_ACCESS_MEMORY_READ_BIT: Read access via non-specific entities. These entities include the Vulkan device
and host, but may also include entities external to the Vulkan device or otherwise not part of the core Vulkan pipeline.
When included in a destination access mask, makes all available writes visible to all future read accesses on entities
known to the Vulkan device.

• VK_ACCESS_MEMORY_WRITE_BIT: Write access via non-specific entities. These entities include the Vulkan device
and host, but may also include entities external to the Vulkan device or otherwise not part of the core Vulkan pipeline.
When included in a source access mask, all writes that are performed by entities known to the Vulkan device are made
available. When included in a destination access mask, makes all available writes visible to all future write accesses on
entities known to the Vulkan device.

Certain access types are only performed by a subset of pipeline stages. Any synchronization command that takes both
stage masks and access masks uses both to define the access scopes - only the specified access types performed by the
specified stages are included in the access scope. An application must not specify an access flag in a synchronization
command if it does not include a pipeline stage in the corresponding stage mask that is able to perform accesses of that
type. The following table lists, for each access flag, which pipeline stages can perform that type of access.

Table 6.2: Supported access types

Access flag Supported pipeline stages
VK_ACCESS_INDIRECT_COMMAND_READ_BIT VK_PIPELINE_STAGE_DRAW_

INDIRECT_BIT
VK_ACCESS_INDEX_READ_BIT VK_PIPELINE_STAGE_

VERTEX_INPUT_BIT
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT VK_PIPELINE_STAGE_

VERTEX_INPUT_BIT
VK_ACCESS_UNIFORM_READ_BIT VK_PIPELINE_STAGE_

VERTEX_SHADER_BIT, VK_
PIPELINE_STAGE_
TESSELLATION_CONTROL_
SHADER_BIT, VK_PIPELINE_
STAGE_TESSELLATION_
EVALUATION_SHADER_BIT,
VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT, VK_
PIPELINE_STAGE_FRAGMENT_
SHADER_BIT, or VK_PIPELINE_
STAGE_COMPUTE_SHADER_BIT

VK_ACCESS_INPUT_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_
FRAGMENT_SHADER_BIT

VK_ACCESS_SHADER_READ_BIT VK_PIPELINE_STAGE_
VERTEX_SHADER_BIT, VK_
PIPELINE_STAGE_
TESSELLATION_CONTROL_
SHADER_BIT, VK_PIPELINE_
STAGE_TESSELLATION_
EVALUATION_SHADER_BIT,
VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT, VK_
PIPELINE_STAGE_FRAGMENT_
SHADER_BIT, or VK_PIPELINE_
STAGE_COMPUTE_SHADER_BIT

Vulkan 1.0.36 - A Specification 85 / 683

Table 6.2: (continued)

Access flag Supported pipeline stages
VK_ACCESS_SHADER_WRITE_BIT VK_PIPELINE_STAGE_

VERTEX_SHADER_BIT, VK_
PIPELINE_STAGE_
TESSELLATION_CONTROL_
SHADER_BIT, VK_PIPELINE_
STAGE_TESSELLATION_
EVALUATION_SHADER_BIT,
VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT, VK_
PIPELINE_STAGE_FRAGMENT_
SHADER_BIT, or VK_PIPELINE_
STAGE_COMPUTE_SHADER_BIT

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_COLOR_
ATTACHMENT_OUTPUT_BIT

VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_COLOR_
ATTACHMENT_OUTPUT_BIT

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT VK_PIPELINE_STAGE_EARLY_
FRAGMENT_TESTS_BIT, or VK_
PIPELINE_STAGE_LATE_
FRAGMENT_TESTS_BIT

VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT VK_PIPELINE_STAGE_EARLY_
FRAGMENT_TESTS_BIT, or VK_
PIPELINE_STAGE_LATE_
FRAGMENT_TESTS_BIT

VK_ACCESS_TRANSFER_READ_BIT VK_PIPELINE_STAGE_
TRANSFER_BIT

VK_ACCESS_TRANSFER_WRITE_BIT VK_PIPELINE_STAGE_
TRANSFER_BIT

VK_ACCESS_HOST_READ_BIT VK_PIPELINE_STAGE_HOST_
BIT

VK_ACCESS_HOST_WRITE_BIT VK_PIPELINE_STAGE_HOST_
BIT

VK_ACCESS_MEMORY_READ_BIT N/A
VK_ACCESS_MEMORY_WRITE_BIT N/A

6.1.4 Framebuffer Region Dependencies

Pipeline stages that operate on, or with respect to, the framebuffer are collectively the framebuffer-space pipeline stages.
These stages are:

• VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

• VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT

• VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT

For these pipeline stages, an execution or memory dependency from the first set of operations to the second set can either
be a single framebuffer-global dependency, or split into multiple framebuffer-local dependencies. A dependency with
non-framebuffer-space pipeline stages is neither framebuffer-global nor framebuffer-local.

A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the entire framebuffer.

A single framebuffer-local dependency guarantees that only for a single framebuffer region, the first set of operations and
availability operations happen-before visibility operations and the second set of operations. No ordering guarantees are
made between framebuffer regions for a framebuffer-local dependency.

A framebuffer-global dependency guarantees that the first set of operations for all framebuffer regions happens-before
the second set of operations for any framebuffer region.

Note
Since fragment invocations are not specified to run in any particular groupings, the size of a framebuffer region
is implementation-dependent, not known to the application, and must be assumed to be no larger than a single
sample.

If a synchronization command includes a dependencyFlags parameter, and specifies the VK_DEPENDENCY_BY_
REGION_BIT flag, then it defines framebuffer-local dependencies for the framebuffer-space pipeline stages in that
synchronization command, for all framebuffer regions. If no dependencyFlags parameter is included, or the VK_
DEPENDENCY_BY_REGION_BIT flag is not specified, then a framebuffer-global dependency is specified for those
stages. The VK_DEPENDENCY_BY_REGION_BIT flag does not affect the dependencies between
non-framebuffer-space pipeline stages, nor does it affect the dependencies between framebuffer-space and
non-framebuffer-space pipeline stages.

Note
Framebuffer-local dependencies are more optimal for most architectures; particularly tile-based architectures -
which can keep framebuffer-regions entirely in on-chip registers and thus avoid external bandwidth across such a
dependency. Including a framebuffer-global dependency in your rendering will usually force all implementations
to flush data to memory, or to a higher level cache, breaking any potential locality optimizations.

6.2 Fences

Fences are a synchronization primitive that can be used to insert a dependency from a queue to the host. Fences have two
states - signaled and unsignaled. A fence can be signaled as part of the execution of a queue submission command.
Fences can be unsignaled on the host with vkResetFences. Fences can be waited on by the host with the
vkWaitForFences command, and the current state can be queried with vkGetFenceStatus.

Fences are represented by VkFence handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFence)

To create a fence, call:

VkResult vkCreateFence(
VkDevice device,
const VkFenceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFence* pFence);

Vulkan 1.0.36 - A Specification 87 / 683

• device is the logical device that creates the fence.

• pCreateInfo is a pointer to an instance of the VkFenceCreateInfo structure which contains information about
how the fence is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFence points to a handle in which the resulting fence object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkFenceCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pFence must be a pointer to a VkFence handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFenceCreateInfo structure is defined as:

typedef struct VkFenceCreateInfo {
VkStructureType sType;
const void* pNext;
VkFenceCreateFlags flags;

} VkFenceCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags defines the initial state and behavior of the fence. Bits which can be set include:

typedef enum VkFenceCreateFlagBits {
VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,

} VkFenceCreateFlagBits;

If flags contains VK_FENCE_CREATE_SIGNALED_BIT then the fence object is created in the signaled state;
otherwise it is created in the unsignaled state.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkFenceCreateFlagBits values

To destroy a fence, call:

void vkDestroyFence(
VkDevice device,
VkFence fence,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the fence.

• fence is the handle of the fence to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All queue submission commands that refer to fence must have completed execution

• If VkAllocationCallbacks were provided when fence was created, a compatible set of callbacks must be
provided here

• If no VkAllocationCallbacks were provided when fence was created, pAllocator must be NULL

Vulkan 1.0.36 - A Specification 89 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If fence is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to fence must be externally synchronized

To query the status of a fence from the host, call:

VkResult vkGetFenceStatus(
VkDevice device,
VkFence fence);

• device is the logical device that owns the fence.

• fence is the handle of the fence to query.

Upon success, vkGetFenceStatus returns the status of the fence object, with the following return codes:

Table 6.3: Fence Object Status Codes

Status Meaning
VK_SUCCESS The fence specified by fence is signaled.
VK_NOT_READY The fence specified by fence is

unsignaled.

If a queue submission command is pending execution, then the value returned by this command may immediately be out
of date.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• fence must be a valid VkFence handle

• fence must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of fences to unsignaled from the host, call:

VkResult vkResetFences(
VkDevice device,
uint32_t fenceCount,
const VkFence* pFences);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to reset.

• pFences is a pointer to an array of fence handles to reset.

When vkResetFences is executed on the host, it defines a fence unsignal operation for each fence, which resets the
fence to the unsignaled state.

If any member of pFences is already in the unsignaled state when vkResetFences is executed, then
vkResetFences has no effect on that fence.

Valid Usage

• Any given element of pFences must not currently be associated with any queue command that has not yet
completed execution on that queue

Vulkan 1.0.36 - A Specification 91 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pFences must be a pointer to an array of fenceCount valid VkFence handles

• fenceCount must be greater than 0

• Each element of pFences must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to each member of pFences must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

When a fence is submitted to a queue as part of a queue submission command, it defines a memory dependency on the
batches that were submitted as part of that command, and defines a fence signal operation which sets the fence to the
signaled state.

The first synchronization scope includes every batch submitted in the same queue submission command. Fence signal
operations that are defined by vkQueueSubmit additionally include all previous queue submissions to the same queue
via vkQueueSubmit in the first synchronization scope.

The second synchronization scope only includes the fence signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

To wait for one or more fences to enter the signaled state on the host, call:

VkResult vkWaitForFences(
VkDevice device,
uint32_t fenceCount,
const VkFence* pFences,
VkBool32 waitAll,
uint64_t timeout);

• device is the logical device that owns the fences.

• fenceCount is the number of fences to wait on.

• pFences is a pointer to an array of fenceCount fence handles.

• waitAll is the condition that must be satisfied to successfully unblock the wait. If waitAll is VK_TRUE, then the
condition is that all fences in pFences are signaled. Otherwise, the condition is that at least one fence in pFences is
signaled.

• timeout is the timeout period in units of nanoseconds. timeout is adjusted to the closest value allowed by the
implementation-dependent timeout accuracy, which may be substantially longer than one nanosecond, and may be
longer than the requested period.

If the condition is satisfied when vkWaitForFences is called, then vkWaitForFences returns immediately. If the
condition is not satisfied at the time vkWaitForFences is called, then vkWaitForFences will block and wait up
to timeout nanoseconds for the condition to become satisfied.

If timeout is zero, then vkWaitForFences does not wait, but simply returns the current state of the fences. VK_
TIMEOUT will be returned in this case if the condition is not satisfied, even though no actual wait was performed.

If the specified timeout period expires before the condition is satisfied, vkWaitForFences returns VK_TIMEOUT. If
the condition is satisfied before timeout nanoseconds has expired, vkWaitForFences returns VK_SUCCESS.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pFences must be a pointer to an array of fenceCount valid VkFence handles

• fenceCount must be greater than 0

• Each element of pFences must have been created, allocated, or retrieved from device

Return Codes

Success

Vulkan 1.0.36 - A Specification 93 / 683

• VK_SUCCESS

• VK_TIMEOUT

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

An execution dependency is defined by waiting for a fence to become signaled, either via vkWaitForFences or by
polling on vkGetFenceStatus.

The first synchronization scope includes only the fence signal operation.

The second synchronization scope includes the host operations of vkWaitForFences or vkGetFenceStatus
indicating that the fence has become signaled.

Note
Signaling a fence and waiting on the host does not guarantee that the results of memory accesses will be visible
to the host. To provide that guarantee, the application must insert a memory barrier between the device writes
and the end of the submission that will signal the fence, with dstAccessMask having the VK_ACCESS_HOST_
READ_BIT bit set, with dstStageMask having the VK_PIPELINE_STAGE_HOST_BIT bit set, and with the
appropriate srcStageMask and srcAccessMask members set to guarantee completion of the writes. If the
memory was allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, then vkInval
idateMappedMemoryRanges must be called after the fence is signaled in order to ensure the writes are
visible to the host, as described in Host Access to Device Memory Objects.

6.3 Semaphores

Semaphores are a synchronization primitive that can be used to insert a dependency between batches submitted to
queues. Semaphores have two states - signaled and unsignaled. The state of a semaphore can be signaled after execution
of a batch of commands is completed. A batch can wait for a semaphore to become signaled before it begins execution,
and the semaphore is also unsignaled before the batch begins execution.

Semaphores are represented by VkSemaphore handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSemaphore)

To create a semaphore, call:

VkResult vkCreateSemaphore(
VkDevice device,
const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore);

• device is the logical device that creates the semaphore.

• pCreateInfo is a pointer to an instance of the VkSemaphoreCreateInfo structure which contains information
about how the semaphore is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSemaphore points to a handle in which the resulting semaphore object is returned.

When created, the semaphore is in the unsignaled state.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkSemaphoreCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pSemaphore must be a pointer to a VkSemaphore handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkSemaphoreCreateInfo structure is defined as:

typedef struct VkSemaphoreCreateInfo {
VkStructureType sType;
const void* pNext;
VkSemaphoreCreateFlags flags;

} VkSemaphoreCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

Vulkan 1.0.36 - A Specification 95 / 683

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO

• pNext must be NULL

• flags must be 0

To destroy a semaphore, call:

void vkDestroySemaphore(
VkDevice device,
VkSemaphore semaphore,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the semaphore.

• semaphore is the handle of the semaphore to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted batches that refer to semaphore must have completed execution

• If VkAllocationCallbacks were provided when semaphore was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when semaphore was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If semaphore is not VK_NULL_HANDLE, semaphore must be a valid VkSemaphore handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If semaphore is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to semaphore must be externally synchronized

6.3.1 Semaphore Signaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be signaled, it defines a
memory dependency on the batch, and defines semaphore signal operations which set the semaphores to the signaled
state.

The first synchronization scope includes every command submitted in the same batch. Semaphore signal operations that
are defined by vkQueueSubmit additionally include all batches previously submitted to the same queue via
vkQueueSubmit, including batches that are submitted in the same queue submission command, but at a lower index
within the array of batches.

The second synchronization scope includes only the semaphore signal operation.

The first access scope includes all memory access performed by the device.

The second access scope is empty.

6.3.2 Semaphore Waiting & Unsignaling

When a batch is submitted to a queue via a queue submission, and it includes semaphores to be waited on, it defines a
memory dependency between prior semaphore signal operations and the batch, and defines semaphore unsignal
operations which set the semaphores to the unsignaled state.

The first synchronization scope includes all semaphore signal operations that operate on semaphores waited on in the
same batch, and that happen-before the wait completes.

The second synchronization scope includes every command submitted in the same batch. In the case of
vkQueueSubmit, the second synchronization scope is limited to operations on the pipeline stages determined by the
destination stage mask specified by the corresponding element of pWaitDstStageMask. Also, in the case of
vkQueueSubmit, the second synchronization scope additionally includes all batches subsequently submitted to the
same queue via vkQueueSubmit, including batches that are submitted in the same queue submission command, but at
a higher index within the array of batches.

The first access scope is empty.

The second access scope includes all memory access performed by the device.

The semaphore unsignal operation happens-after the first set of operations in the execution dependency, and
happens-before the second set of operations in the execution dependency.

6.4 Events

Events are a synchronization primitive that can be used to insert a fine-grained dependency between commands
submitted to the same queue, or between the host and a queue. Events have two states - signaled and unsignaled. An

Vulkan 1.0.36 - A Specification 97 / 683

application can signal an event, or unsignal it, on either the host or the device. A device can wait for an event to become
signaled before executing further operations. No command exists to wait for an event to become signaled on the host, but
the current state of an event can be queried.

Events are represented by VkEvent handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkEvent)

To create an event, call:

VkResult vkCreateEvent(
VkDevice device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent);

• device is the logical device that creates the event.

• pCreateInfo is a pointer to an instance of the VkEventCreateInfo structure which contains information about
how the event is to be created.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pEvent points to a handle in which the resulting event object is returned.

When created, the event object is in the unsignaled state.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkEventCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pEvent must be a pointer to a VkEvent handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkEventCreateInfo structure is defined as:

typedef struct VkEventCreateInfo {
VkStructureType sType;
const void* pNext;
VkEventCreateFlags flags;

} VkEventCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO

• pNext must be NULL

• flags must be 0

To destroy an event, call:

void vkDestroyEvent(
VkDevice device,
VkEvent event,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the event.

• event is the handle of the event to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to event must have completed execution

• If VkAllocationCallbacks were provided when event was created, a compatible set of callbacks must be
provided here

• If no VkAllocationCallbacks were provided when event was created, pAllocator must be NULL

Vulkan 1.0.36 - A Specification 99 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If event is not VK_NULL_HANDLE, event must be a valid VkEvent handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If event is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

To query the state of an event from the host, call:

VkResult vkGetEventStatus(
VkDevice device,
VkEvent event);

• device is the logical device that owns the event.

• event is the handle of the event to query.

Upon success, vkGetEventStatus returns the state of the event object with the following return codes:

Table 6.4: Event Object Status Codes

Status Meaning
VK_EVENT_SET The event specified by event is signaled.
VK_EVENT_RESET The event specified by event is unsignaled.

If a vkCmdSetEvent or vkCmdResetEvent command is pending execution, then the value returned by this
command may immediately be out of date.

The state of an event can be updated by the host. The state of the event is immediately changed, and subsequent calls to
vkGetEventStatus will return the new state. If an event is already in the requested state, then updating it to the
same state has no effect.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• event must be a valid VkEvent handle

• event must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_EVENT_SET

• VK_EVENT_RESET

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To set the state of an event to signaled from the host, call:

VkResult vkSetEvent(
VkDevice device,
VkEvent event);

• device is the logical device that owns the event.

• event is the event to set.

When vkSetEvent is executed on the host, it defines an event signal operation which sets the event to the signaled
state.

If event is already in the signaled state when vkSetEvent is executed, then vkSetEvent has no effect, and no
event signal operation occurs.

Valid Usage (Implicit)

Vulkan 1.0.36 - A Specification 101 / 683

• device must be a valid VkDevice handle

• event must be a valid VkEvent handle

• event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To set the state of an event to unsignaled from the host, call:

VkResult vkResetEvent(
VkDevice device,
VkEvent event);

• device is the logical device that owns the event.

• event is the event to reset.

When vkResetEvent is executed on the host, it defines an event unsignal operation which resets the event to the
unsignaled state.

If event is already in the unsignaled state when vkResetEvent is executed, then vkResetEvent has no effect, and
no event unsignal operation occurs.

Valid Usage

• event must not be waited on by a vkCmdWaitEvents command that is currently executing

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• event must be a valid VkEvent handle

• event must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to event must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The state of an event can also be updated on the device by commands inserted in command buffers.

To set the state of an event to signaled from a device, call:

void vkCmdSetEvent(
VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask);

Vulkan 1.0.36 - A Specification 103 / 683

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be signaled.

• stageMask specifies the source stage mask used to determine when the event is signaled.

When vkCmdSetEvent is submitted to a queue, it defines an execution dependency on commands that were submitted
before it, and defines an event signal operation which sets the event to the signaled state.

The first synchronization scope includes every command previously submitted to the same queue, including those in the
same command buffer and batch. The synchronization scope is limited to operations on the pipeline stages determined
by the source stage mask specified by stageMask.

The second synchronization scope includes only the event signal operation.

If event is already in the signaled state when vkCmdSetEvent is executed on the device, then vkCmdSetEvent has
no effect, no event signal operation occurs, and no execution dependency is generated.

Valid Usage

• If the geometry shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• event must be a valid VkEvent handle

• stageMask must be a valid combination of VkPipelineStageFlagBits values

• stageMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and event must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics
compute

To set the state of an event to unsignaled from a device, call:

void vkCmdResetEvent(
VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask);

• commandBuffer is the command buffer into which the command is recorded.

• event is the event that will be unsignaled.

• stageMask specifies the source stage mask used to determine when the event is unsignaled.

When vkCmdResetEvent is submitted to a queue, it defines an execution dependency on commands that were
submitted before it, and defines an event unsignal operation which resets the event to the unsignaled state.

The first synchronization scope includes every command previously submitted to the same queue, including those in the
same command buffer and batch. The synchronization scope is limited to operations on the pipeline stages determined
by the source stage mask specified by stageMask.

The second synchronization scope includes only the event unsignal operation.

If event is already in the unsignaled state when vkCmdResetEvent is executed on the device, then
vkCmdResetEvent has no effect, no event unsignal operation occurs, and no execution dependency is generated.

Valid Usage

• If the geometry shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

Vulkan 1.0.36 - A Specification 105 / 683

• If the tessellation shaders feature is not enabled, stageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• When this command executes, event must not be waited on by a vkCmdWaitEvents command that is
currently executing

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• event must be a valid VkEvent handle

• stageMask must be a valid combination of VkPipelineStageFlagBits values

• stageMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and event must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics
compute

To wait for one or more events to enter the signaled state on a device, call:

void vkCmdWaitEvents(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• eventCount is the length of the pEvents array.

• pEvents is an array of event object handles to wait on.

• srcStageMask is the source stage mask

• dstStageMask is the destination stage mask.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

When vkCmdWaitEvents is submitted to a queue, it defines a memory dependency between prior event signal
operations, and subsequent commands.

The first synchronization scope only includes event signal operations that operate on members of pEvents, and the
operations that happened-before the event signal operations. Event signal operations performed by vkCmdSetEvent
that were previously submitted to the same queue are included in the first synchronization scope, if the logically latest
pipeline stage in their stageMask parameter is logically earlier than or equal to the logically latest pipeline stage in
srcStageMask. Event signal operations performed by vkSetEvent are only included in the first synchronization
scope if VK_PIPELINE_STAGE_HOST_BIT is included in srcStageMask.

The second synchronization scope includes commands subsequently submitted to the same queue, including those in the
same command buffer and batch. The second synchronization scope is limited to operations on the pipeline stages
determined by the destination stage mask specified by dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage mask specified by
srcStageMask. Within that, the first access scope only includes the first access scopes defined by elements of the
pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers arrays, which each define a set of
memory barriers. If no memory barriers are specified, then the first access scope includes no accesses.

The second access scope is limited to access in the pipeline stages determined by the destination stage mask specified by
dstStageMask. Within that, the second access scope only includes the second access scopes defined by elements of the
pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers arrays, which each define a set of
memory barriers. If no memory barriers are specified, then the second access scope includes no accesses.

Vulkan 1.0.36 - A Specification 107 / 683

Note
vkCmdWaitEvents is used with vkCmdSetEvent to define a memory dependency between two sets of
action commands, roughly in the same way as pipeline barriers, but split into two commands such that work
between the two may execute unhindered.

Note
Applications should be careful to avoid race conditions when using events. There is no direct ordering guarantee
between a vkCmdResetEvent command and a vkCmdWaitEvents command submitted after it, so some
other execution dependency must be included between these commands (e.g. a semaphore).

Valid Usage

• srcStageMask must be the bitwise OR of the stageMask parameter used in previous calls to
vkCmdSetEvent with any of the members of pEvents and VK_PIPELINE_STAGE_HOST_BIT if any of the
members of pEvents was set using vkSetEvent

• If the geometry shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the geometry shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• If the tessellation shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• If pEvents includes one or more events that will be signaled by vkSetEvent after commandBuffer has been
submitted to a queue, then vkCmdWaitEvents must not be called inside a render pass instance

• Any pipeline stage included in srcStageMask or dstStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the VkCommandPoolCreateInfo structure
that was used to create the VkCommandPool that commandBuffer was allocated from, as specified in the table
of supported pipeline stages.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers must not
have any access flag included in its srcAccessMask member if that bit is not supported by any of the pipeline
stages in srcStageMask, as specified in the table of supported access types.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers must not
have any access flag included in its dstAccessMask member if that bit is not supported by any of the pipeline
stages in dstStageMask, as specified in the table of supported access types.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pEvents must be a pointer to an array of eventCount valid VkEvent handles

• srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• srcStageMask must not be 0

• dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• dstStageMask must not be 0

• If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of memoryBarrierCount
valid VkMemoryBarrier structures

• If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a pointer to an array of
bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of
imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• eventCount must be greater than 0

• Both of commandBuffer, and the elements of pEvents must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Vulkan 1.0.36 - A Specification 109 / 683

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

6.5 Pipeline Barriers

vkCmdPipelineBarrier is a synchronization command that inserts a dependency between commands submitted to
the same queue, or between commands in the same subpass.

To record a pipeline barrier, call:

void vkCmdPipelineBarrier(
VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers);

• commandBuffer is the command buffer into which the command is recorded.

• srcStageMask defines a source stage mask.

• dstStageMask defines a destination stage mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits. The bits that can be included in
dependencyFlags are:

typedef enum VkDependencyFlagBits {
VK_DEPENDENCY_BY_REGION_BIT = 0x00000001,

} VkDependencyFlagBits;

– VK_DEPENDENCY_BY_REGION_BIT signifies that dependencies will be framebuffer-local.

• memoryBarrierCount is the length of the pMemoryBarriers array.

• pMemoryBarriers is a pointer to an array of VkMemoryBarrier structures.

• bufferMemoryBarrierCount is the length of the pBufferMemoryBarriers array.

• pBufferMemoryBarriers is a pointer to an array of VkBufferMemoryBarrier structures.

• imageMemoryBarrierCount is the length of the pImageMemoryBarriers array.

• pImageMemoryBarriers is a pointer to an array of VkImageMemoryBarrier structures.

When vkCmdPipelineBarrier is submitted to a queue, it defines a memory dependency between commands that
were submitted before it, and those submitted after it.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the first synchronization scope includes
every command submitted to the same queue before it, including those in the same command buffer and batch. If
vkCmdPipelineBarrier was recorded inside a render pass instance, the first synchronization scope includes only
commands submitted before it within the same subpass. In either case, the first synchronization scope is limited to
operations on the pipeline stages determined by the source stage mask specified by srcStageMask.

If vkCmdPipelineBarrier was recorded outside a render pass instance, the second synchronization scope includes
every command submitted to the same queue after it, including those in the same command buffer and batch. If
vkCmdPipelineBarrier was recorded inside a render pass instance, the second synchronization scope includes
only commands submitted after it within the same subpass. In either case, the second synchronization scope is limited to
operations on the pipeline stages determined by the destination stage mask specified by dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage mask specified by
srcStageMask. Within that, the first access scope only includes the first access scopes defined by elements of the
pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers arrays, which each define a set of
memory barriers. If no memory barriers are specified, then the first access scope includes no accesses.

The second access scope is limited to access in the pipeline stages determined by the destination stage mask specified by
dstStageMask. Within that, the second access scope only includes the second access scopes defined by elements of the
pMemoryBarriers, pBufferMemoryBarriers and pImageMemoryBarriers arrays, which each define a set of
memory barriers. If no memory barriers are specified, then the second access scope includes no accesses.

If dependencyFlags includes VK_DEPENDENCY_BY_REGION_BIT, then any dependency between
framebuffer-space pipeline stages is framebuffer-local - otherwise it is framebuffer-global.

Valid Usage

• If the geometry shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the geometry shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• If the tessellation shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• If vkCmdPipelineBarrier is called within a render pass instance, the render pass must have been created
with a VkSubpassDependency instance in pDependencies that expresses a dependency from the current
subpass to itself. Additionally:

– srcStageMask must contain a subset of the bit values in the srcStageMask member of that instance of
VkSubpassDependency

– dstStageMask must contain a subset of the bit values in the dstStageMask member of that instance of
VkSubpassDependency

Vulkan 1.0.36 - A Specification 111 / 683

– The srcAccessMask of any element of pMemoryBarriers or pImageMemoryBarriers must contain a
subset of the bit values the srcAccessMask member of that instance of VkSubpassDependency

– The dstAccessMask of any element of pMemoryBarriers or pImageMemoryBarriers must contain a
subset of the bit values the dstAccessMask member of that instance of VkSubpassDependency

– dependencyFlags must be equal to the dependencyFlags member of that instance of
VkSubpassDependency

• If vkCmdPipelineBarrier is called within a render pass instance, bufferMemoryBarrierCount must be
0

• If vkCmdPipelineBarrier is called within a render pass instance, the image member of any element of
pImageMemoryBarriers must be equal to one of the elements of pAttachments that the current
framebuffer was created with, that is also referred to by one of the elements of the pColorAttachments,
pResolveAttachments or pDepthStencilAttachment members of the VkSubpassDescription
instance that the current subpass was created with

• If vkCmdPipelineBarrier is called within a render pass instance, the oldLayout and newLayout

members of any element of pImageMemoryBarriers must be equal to the layout member of an element of the
pColorAttachments, pResolveAttachments or pDepthStencilAttachment members of the
VkSubpassDescription instance that the current subpass was created with, that refers to the same image

• If vkCmdPipelineBarrier is called within a render pass instance, the oldLayout and newLayout

members of an element of pImageMemoryBarriers must be equal

• If vkCmdPipelineBarrier is called within a render pass instance, the srcQueueFamilyIndex and
dstQueueFamilyIndex members of any element of pImageMemoryBarriers must be VK_QUEUE_FAMILY_
IGNORED

• Any pipeline stage included in srcStageMask or dstStageMask must be supported by the capabilities of the
queue family specified by the queueFamilyIndex member of the VkCommandPoolCreateInfo structure
that was used to create the VkCommandPool that commandBuffer was allocated from, as specified in the table
of supported pipeline stages.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers must not
have any access flag included in its srcAccessMask member if that bit is not supported by any of the pipeline
stages in srcStageMask, as specified in the table of supported access types.

• Any given element of pMemoryBarriers, pBufferMemoryBarriers or pImageMemoryBarriers must not
have any access flag included in its dstAccessMask member if that bit is not supported by any of the pipeline
stages in dstStageMask, as specified in the table of supported access types.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• srcStageMask must not be 0

• dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• dstStageMask must not be 0

• dependencyFlags must be a valid combination of VkDependencyFlagBits values

• If memoryBarrierCount is not 0, pMemoryBarriers must be a pointer to an array of memoryBarrierCount
valid VkMemoryBarrier structures

• If bufferMemoryBarrierCount is not 0, pBufferMemoryBarriers must be a pointer to an array of
bufferMemoryBarrierCount valid VkBufferMemoryBarrier structures

• If imageMemoryBarrierCount is not 0, pImageMemoryBarriers must be a pointer to an array of
imageMemoryBarrierCount valid VkImageMemoryBarrier structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Transfer
graphics
compute

6.5.1 Subpass Self-dependency

If vkCmdPipelineBarrier is called inside a render pass instance, the following restrictions apply. For a given
subpass to allow a pipeline barrier, the render pass must declare a self-dependency from that subpass to itself. That is,
there must exist a VkSubpassDependency in the subpass dependency list for the render pass with srcSubpass and
dstSubpass equal to that subpass index. More than one self-dependency can be declared for each subpass.

Vulkan 1.0.36 - A Specification 113 / 683

Self-dependencies must only include pipeline stage bits that are graphics stages. Self-dependencies must not have any
earlier pipeline stages depend on any later pipeline stages. More precisely, this means that whatever is the last pipeline
stage in srcStageMask must be no later than whatever is the first pipeline stage in dstStageMask (the latest source
stage can be equal to the earliest destination stage). If the source and destination stage masks both include
framebuffer-space stages, then dependencyFlags must include VK_DEPENDENCY_BY_REGION_BIT.

A vkCmdPipelineBarrier command inside a render pass instance must be a subset of one of the self-dependencies
of the subpass it is used in, meaning that the stage masks and access masks must each include only a subset of the bits of
the corresponding mask in that self-dependency. If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT set,
then so must the pipeline barrier. Pipeline barriers within a render pass instance can only be types VkMemoryBarrier
or VkImageMemoryBarrier. If a VkImageMemoryBarrier is used, the image and image subresource range
specified in the barrier must be a subset of one of the image views used by the framebuffer in the current subpass.
Additionally, oldLayout must be equal to newLayout, and both the srcQueueFamilyIndex and
dstQueueFamilyIndex must be VK_QUEUE_FAMILY_IGNORED.

6.6 Memory Barriers

Memory barriers are used to explicitly control access to buffer and image subresource ranges. Memory barriers are used
to transfer ownership between queue families, change image layouts, and define availability and visibility operations.
They explicitly define the access types and buffer and image subresource ranges that are included in the access scopes of
a memory dependency that is created by a synchronization command that includes them.

6.6.1 Global Memory Barriers

Global memory barriers apply to memory accesses involving all memory objects that exist at the time of its execution.

The VkMemoryBarrier structure is defined as:

typedef struct VkMemoryBarrier {
VkStructureType sType;
const void* pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcAccessMask defines a source access mask.

• dstAccessMask defines a destination access mask.

The first access scope is limited to access types in the source access mask specified by srcAccessMask.

The second access scope is limited to access types in the destination access mask specified by dstAccessMask.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_MEMORY_BARRIER

• pNext must be NULL

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

6.6.2 Buffer Memory Barriers

Buffer memory barriers only apply to memory accesses involving a specific buffer range. That is, a memory dependency
formed from an buffer memory barrier is scoped to access via the specified buffer range. Buffer memory barriers can also
be used to define a queue family ownership transfer for the specified buffer range.

The VkBufferMemoryBarrier structure is defined as:

typedef struct VkBufferMemoryBarrier {
VkStructureType sType;
const void* pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
VkBuffer buffer;
VkDeviceSize offset;
VkDeviceSize size;

} VkBufferMemoryBarrier;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcAccessMask defines a source access mask.

• dstAccessMask defines a destination access mask.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer

• buffer is a handle to the buffer whose backing memory is affected by the barrier.

• offset is an offset in bytes into the backing memory for buffer; this is relative to the base offset as bound to the
buffer (see vkBindBufferMemory).

• size is a size in bytes of the affected area of backing memory for buffer, or VK_WHOLE_SIZE to use the range
from offset to the end of the buffer.

The first access scope is limited to access to the memory backing the specified buffer range, via access types in the
source access mask specified by srcAccessMask.

The second access scope is limited to access to the memory backing the specified buffer range, via access types in the
destination access mask specified by dstAccessMask.

Vulkan 1.0.36 - A Specification 115 / 683

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the specified buffer range, and
the second access scope includes no access, as if dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the specified buffer range,
and the first access scope includes no access, as if srcAccessMask was 0.

Valid Usage

• offset must be less than the size of buffer

• If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to than the size of buffer minus
offset

• If buffer was created with a sharing mode of VK_SHARING_MODE_CONCURRENT, srcQueueFamilyIndex
and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

• If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, srcQueueFamilyIndex
and dstQueueFamilyIndex must either both be VK_QUEUE_FAMILY_IGNORED, or both be a valid queue
family (see Section 4.3.1)

• If buffer was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and
srcQueueFamilyIndex and dstQueueFamilyIndex are valid queue families, at least one of them must be the
same as the family of the queue that will execute this barrier

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER

• pNext must be NULL

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

• buffer must be a valid VkBuffer handle

6.6.3 Image Memory Barriers

Image memory barriers only apply to memory accesses involving a specific image subresource range. That is, a memory
dependency formed from an image memory barrier is scoped to access via the specified image subresource range. Image

memory barriers can also be used to define image layout transitions or a queue family ownership transfer for the
specified image subresource range.

The VkImageMemoryBarrier structure is defined as:

typedef struct VkImageMemoryBarrier {
VkStructureType sType;
const void* pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkImageLayout oldLayout;
VkImageLayout newLayout;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
VkImage image;
VkImageSubresourceRange subresourceRange;

} VkImageMemoryBarrier;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcAccessMask defines a source access mask.

• dstAccessMask defines a destination access mask.

• oldLayout is the old layout in an image layout transition.

• newLayout is the new layout in an image layout transition.

• srcQueueFamilyIndex is the source queue family for a queue family ownership transfer

• dstQueueFamilyIndex is the destination queue family for a queue family ownership transfer

• image is a handle to the image whose backing memory is affected by the barrier.

• subresourceRange describes an area of the backing memory for image (see Section 11.5 for the description of
VkImageSubresourceRange), as well as the set of image subresources whose image layouts are modified.

The first access scope is limited to access to the memory backing the specified image subresource range, via access types
in the source access mask specified by srcAccessMask.

The second access scope is limited to access to the memory backing the specified image subresource range, via access
types in the destination access mask specified by dstAccessMask.

If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, and srcQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family release operation for the specified image
subresource range, and the second access scope includes no access, as if dstAccessMask was 0.

If dstQueueFamilyIndex is not equal to srcQueueFamilyIndex, and dstQueueFamilyIndex is equal to the
current queue family, then the memory barrier defines a queue family acquire operation for the specified image
subresource range, and the first access scope includes no access, as if srcAccessMask was 0.

If oldLayout is not equal to newLayout, then the memory barrier defines an image layout transition for the specified
image subresource range. Layout transitions that are performed via image memory barriers automatically happen-after
layout transitions previously submitted to the same queue, and automatically happen-before layout transitions
subsequently submitted to the same queue; this includes layout transitions that occur as part of a render pass instance, in
both cases.

Vulkan 1.0.36 - A Specification 117 / 683

Valid Usage

• oldLayout must be VK_IMAGE_LAYOUT_UNDEFINED or the current layout of the image subresources
affected by the barrier

• newLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

• If image was created with a sharing mode of VK_SHARING_MODE_CONCURRENT, srcQueueFamilyIndex
and dstQueueFamilyIndex must both be VK_QUEUE_FAMILY_IGNORED

• If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, srcQueueFamilyIndex and
dstQueueFamilyIndex must either both be VK_QUEUE_FAMILY_IGNORED, or both be a valid queue family
(see Section 4.3.1)

• If image was created with a sharing mode of VK_SHARING_MODE_EXCLUSIVE, and srcQueueFamilyIndex

and dstQueueFamilyIndex are valid queue families, at least one of them must be the same as the family of the
queue that will execute this barrier

• subresourceRange must be a valid image subresource range for the image (see Section 11.5)

• If image has a depth/stencil format with both depth and stencil components, then aspectMask member of
subresourceRange must include both VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_ASPECT_
STENCIL_BIT

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL then image

must have been created with VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
then image must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL
then image must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL then image

must have been created with VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_INPUT_
ATTACHMENT_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL then image must
have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT set

• If either oldLayout or newLayout is VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL then image must
have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT set

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER

• pNext must be NULL

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

• oldLayout must be a valid VkImageLayout value

• newLayout must be a valid VkImageLayout value

• image must be a valid VkImage handle

• subresourceRange must be a valid VkImageSubresourceRange structure

6.6.4 Queue Family Ownership Transfer

Resources created with a VkSharingMode of VK_SHARING_MODE_EXCLUSIVE must have their ownership
explicitly transferred from one queue family to another in order to access their content in a well-defined manner on a
queue in a different queue family. If memory dependencies are correctly expressed between uses of such a resource
between two queues in different families, but no ownership transfer is defined, the contents of that resource are undefined
for any read accesses performed by the second queue family.

Note
If an application does not need the contents of a resource to remain valid when transferring from one queue
family to another, then the ownership transfer should be skipped.

A queue family ownership transfer consists of two distinct parts:

1. Release exclusive ownership from the source queue family

2. Acquire exclusive ownership for the destination queue family

An application must ensure that these operations occur in the correct order by defining an execution dependency between
them, e.g. using a semaphore.

A release operation is used to release exclusive ownership of a range of a buffer or image subresource range. A release
operation is defined by executing a buffer memory barrier (for a buffer range) or an image memory barrier (for an image
subresource range), on a queue from the source queue family. The srcQueueFamilyIndex parameter of the barrier
must be set to the source queue family index, and the dstQueueFamilyIndex parameter to the destination queue
family index. dstStageMask is ignored for such a barrier, such that no visibility operation is executed - the value of this
mask does not affect the validity of the barrier. The release operation happens-after the availability operation.

An acquire operation is used to acquire exclusive ownership of a range of a buffer or image subresource range. An
acquire operation is defined by executing a buffer memory barrier (for a buffer range) or an image memory barrier (for an
image subresource range), on a queue from the destination queue family. The srcQueueFamilyIndex parameter of the
barrier must be set to the source queue family index, and the dstQueueFamilyIndex parameter to the destination queue
family index. srcStageMask is ignored for such a barrier, such that no availability operation is executed - the value of
this mask does not affect the validity of the barrier. The acquire operation happens-before the visibility operation.

Vulkan 1.0.36 - A Specification 119 / 683

Note
Whilst it is not invalid to provide destination or source access masks for memory barriers used for release or
acquire operations, respectively, they have no practical effect. Access after a release operation has undefined
results, and so visibility for those accesses has no practical effect. Similarly, write access before an acquire
operation will produce undefined results for future access, so availability of those writes has no practical use. In
an earlier version of the specification, these were required to match on both sides - but this was subsequently
relaxed. It is now recommended that these masks are simply set to 0.

If the transfer is via an image memory barrier, and an image layout transition is desired, then the values of oldLayout
and newLayout in the release memory barrier must be equal to values of oldLayout and newLayout in the acquire
memory barrier. Although the image layout transition is submitted twice, it will only be executed once. A layout
transition specified in this way happens-after the release operation and happens-before the acquire operation.

If the values of srcQueueFamilyIndex and dstQueueFamilyIndex are equal, no ownership transfer is performed,
and the barrier operates as if they were both set to VK_QUEUE_FAMILY_IGNORED.

Queue family ownership transfers may perform read and write accesses on all memory bound to the image subresource
or buffer range, so applications must ensure that all memory writes have been made available before a queue family
ownership transfer is executed. Available memory is automatically made visible to queue family release and acquire
operations, and writes performed by those operations are automatically made available.

Once a queue family has acquired ownership of a buffer range or image subresource range of an VK_SHARING_MODE_
EXCLUSIVE resource, its contents are undefined to other queue families unless ownership is transferred. The contents
of any portion of another resource which aliases memory that is bound to the transferred buffer or image subresource
range are undefined after a release or acquire operation.

6.7 Wait Idle Operations

To wait on the host for the completion of outstanding queue operations for a given queue, call:

VkResult vkQueueWaitIdle(
VkQueue queue);

• queue is the queue on which to wait.

vkQueueWaitIdle is equivalent to submitting a fence to a queue and waiting with an infinite timeout for that fence to
signal.

Valid Usage (Implicit)

• queue must be a valid VkQueue handle

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

- - Any -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To wait on the host for the completion of outstanding queue operations for all queues on a given logical device, call:

VkResult vkDeviceWaitIdle(
VkDevice device);

• device is the logical device to idle.

vkDeviceWaitIdle is equivalent to calling vkQueueWaitIdle for all queues owned by device.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

Host Synchronization

• Host access to all VkQueue objects created from device must be externally synchronized

Vulkan 1.0.36 - A Specification 121 / 683

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

6.8 Host Write Ordering Guarantees

When batches of command buffers are submitted to a queue via vkQueueSubmit, it defines a memory dependency
with prior host operations, and execution of command buffers submitted to the queue.

The first synchronization scope is defined by the host execution model, but includes execution of vkQueueSubmit on
the host and anything that happened-before it.

The second synchronization scope includes every command submitted in the same queue submission command, and all
future submissions to the same queue.

The first access scope includes all host writes to mappable device memory that are either coherent, or have been flushed
with vkFlushMappedMemoryRanges.

The second access scope includes all memory access performed by the device.

Vulkan 1.0.36 - A Specification 123 / 683

Chapter 7

Render Pass

A render pass represents a collection of attachments, subpasses, and dependencies between the subpasses, and describes
how the attachments are used over the course of the subpasses. The use of a render pass in a command buffer is a render
pass instance.

Render passes are represented by VkRenderPass handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkRenderPass)

An attachment description describes the properties of an attachment including its format, sample count, and how its
contents are treated at the beginning and end of each render pass instance.

A subpass represents a phase of rendering that reads and writes a subset of the attachments in a render pass. Rendering
commands are recorded into a particular subpass of a render pass instance.

A subpass description describes the subset of attachments that is involved in the execution of a subpass. Each subpass
can read from some attachments as input attachments, write to some as color attachments or depth/stencil attachments,
and perform multisample resolve operations to resolve attachments. A subpass description can also include a set of
preserve attachments, which are attachments that are not read or written by the subpass but whose contents must be
preserved throughout the subpass.

A subpass uses an attachment if the attachment is a color, depth/stencil, resolve, or input attachment for that subpass (as
determined by the pColorAttachments, pDepthStencilAttachment, pResolveAttachments, and
pInputAttachments members of VkSubpassDescription, respectively). A subpass does not use an attachment
if that attachment is preserved by the subpass. The first use of an attachment is in the lowest numbered subpass that uses
that attachment. Similarly, the last use of an attachment is in the highest numbered subpass that uses that attachment.

The subpasses in a render pass all render to the same dimensions, and fragments for pixel (x,y,layer) in one subpass can
only read attachment contents written by previous subpasses at that same (x,y,layer) location.

Note
By describing a complete set of subpasses in advance, render passes provide the implementation an opportunity
to optimize the storage and transfer of attachment data between subpasses.
In practice, this means that subpasses with a simple framebuffer-space dependency may be merged into a single
tiled rendering pass, keeping the attachment data on-chip for the duration of a render pass instance. However,
it is also quite common for a render pass to only contain a single subpass.

Subpass dependencies describe execution and memory dependencies between subpasses.

A subpass dependency chain is a sequence of subpass dependencies in a render pass, where the source subpass of each
subpass dependency (after the first) equals the destination subpass of the previous dependency.

Execution of subpasses may overlap or execute out of order with regards to other subpasses, unless otherwise enforced
by an execution dependency.

A render pass describes the structure of subpasses and attachments independent of any specific image views for the
attachments. The specific image views that will be used for the attachments, and their dimensions, are specified in
VkFramebuffer objects. Framebuffers are created with respect to a specific render pass that the framebuffer is
compatible with (see Render Pass Compatibility). Collectively, a render pass and a framebuffer define the complete
render target state for one or more subpasses as well as the algorithmic dependencies between the subpasses.

The various pipeline stages of the drawing commands for a given subpass may execute concurrently and/or out of order,
both within and across drawing commands. However for a given (x,y,layer,sample) sample location, certain per-sample
operations are performed in rasterization order.

7.1 Render Pass Creation

To create a render pass, call:

VkResult vkCreateRenderPass(
VkDevice device,
const VkRenderPassCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkRenderPass* pRenderPass);

• device is the logical device that creates the render pass.

• pCreateInfo is a pointer to an instance of the VkRenderPassCreateInfo structure that describes the
parameters of the render pass.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pRenderPass points to a VkRenderPass handle in which the resulting render pass object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkRenderPassCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pRenderPass must be a pointer to a VkRenderPass handle

Vulkan 1.0.36 - A Specification 125 / 683

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkRenderPassCreateInfo structure is defined as:

typedef struct VkRenderPassCreateInfo {
VkStructureType sType;
const void* pNext;
VkRenderPassCreateFlags flags;
uint32_t attachmentCount;
const VkAttachmentDescription* pAttachments;
uint32_t subpassCount;
const VkSubpassDescription* pSubpasses;
uint32_t dependencyCount;
const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• attachmentCount is the number of attachments used by this render pass, or zero indicating no attachments.
Attachments are referred to by zero-based indices in the range [0,attachmentCount).

• pAttachments points to an array of attachmentCount number of VkAttachmentDescription structures
describing properties of the attachments, or NULL if attachmentCount is zero.

• subpassCount is the number of subpasses to create for this render pass. Subpasses are referred to by zero-based
indices in the range [0,subpassCount). A render pass must have at least one subpass.

• pSubpasses points to an array of subpassCount number of VkSubpassDescription structures describing
properties of the subpasses.

• dependencyCount is the number of dependencies between pairs of subpasses, or zero indicating no dependencies.

• pDependencies points to an array of dependencyCount number of VkSubpassDependency structures
describing dependencies between pairs of subpasses, or NULL if dependencyCount is zero.

Valid Usage

• If any two subpasses operate on attachments with overlapping ranges of the same VkDeviceMemory object, and
at least one subpass writes to that area of VkDeviceMemory, a subpass dependency must be included (either
directly or via some intermediate subpasses) between them

• If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or the attachment indexed by any element of
pPreserveAttachments in any given element of pSubpasses is bound to a range of a VkDeviceMemory
object that overlaps with any other attachment in any subpass (including the same subpass), the
VkAttachmentDescription structures describing them must include VK_ATTACHMENT_
DESCRIPTION_MAY_ALIAS_BIT in flags

• If the attachment member of any element of pInputAttachments, pColorAttachments,
pResolveAttachments or pDepthStencilAttachment, or any element of pPreserveAttachments in any
given element of pSubpasses is not VK_ATTACHMENT_UNUSED, it must be less than attachmentCount

• The value of any element of the pPreserveAttachments member in any given element of pSubpasses must
not be VK_ATTACHMENT_UNUSED

• For any member of pAttachments with a loadOp equal to VK_ATTACHMENT_LOAD_OP_CLEAR, the first use
of that attachment must not specify a layout equal to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL or
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL.

• For any element of pDependencies, if the srcSubpass is not VK_SUBPASS_EXTERNAL, all stage flags
included in the srcStageMask member of that dependency must be a pipeline stage supported by the pipeline
identified by the pipelineBindPoint member of the source subpass.

• For any element of pDependencies, if the dstSubpass is not VK_SUBPASS_EXTERNAL, all stage flags
included in the dstStageMask member of that dependency must be a pipeline stage supported by the pipeline
identified by the pipelineBindPoint member of the source subpass.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount valid
VkAttachmentDescription structures

• pSubpasses must be a pointer to an array of subpassCount valid VkSubpassDescription structures

• If dependencyCount is not 0, pDependencies must be a pointer to an array of dependencyCount valid
VkSubpassDependency structures

• subpassCount must be greater than 0

Vulkan 1.0.36 - A Specification 127 / 683

The VkAttachmentDescription structure is defined as:

typedef struct VkAttachmentDescription {
VkAttachmentDescriptionFlags flags;
VkFormat format;
VkSampleCountFlagBits samples;
VkAttachmentLoadOp loadOp;
VkAttachmentStoreOp storeOp;
VkAttachmentLoadOp stencilLoadOp;
VkAttachmentStoreOp stencilStoreOp;
VkImageLayout initialLayout;
VkImageLayout finalLayout;

} VkAttachmentDescription;

• flags is a bitmask describing additional properties of the attachment. Bits which can be set include:

typedef enum VkAttachmentDescriptionFlagBits {
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT = 0x00000001,

} VkAttachmentDescriptionFlagBits;

• format is a VkFormat value specifying the format of the image that will be used for the attachment.

• samples is the number of samples of the image as defined in VkSampleCountFlagBits.

• loadOp specifies how the contents of color and depth components of the attachment are treated at the beginning of the
subpass where it is first used:

typedef enum VkAttachmentLoadOp {
VK_ATTACHMENT_LOAD_OP_LOAD = 0,
VK_ATTACHMENT_LOAD_OP_CLEAR = 1,
VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,

} VkAttachmentLoadOp;

– VK_ATTACHMENT_LOAD_OP_LOAD means the previous contents of the image within the render area will be
preserved. For attachments with a depth/stencil format, this uses the access type VK_ACCESS_DEPTH_STENCIL_
ATTACHMENT_READ_BIT. For attachments with a color format, this uses the access type VK_ACCESS_COLOR_
ATTACHMENT_READ_BIT.

– VK_ATTACHMENT_LOAD_OP_CLEAR means the contents within the render area will be cleared to a uniform
value, which is specified when a render pass instance is begun. For attachments with a depth/stencil format, this uses
the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color
format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

– VK_ATTACHMENT_LOAD_OP_DONT_CARE means the previous contents within the area need not be preserved;
the contents of the attachment will be undefined inside the render area. For attachments with a depth/stencil format,
this uses the access type VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a
color format, this uses the access type VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

• storeOp specifies how the contents of color and depth components of the attachment are treated at the end of the
subpass where it is last used:

typedef enum VkAttachmentStoreOp {
VK_ATTACHMENT_STORE_OP_STORE = 0,
VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,

} VkAttachmentStoreOp;

– VK_ATTACHMENT_STORE_OP_STORE means the contents generated during the render pass and within the render
area are written to memory. For attachments with a depth/stencil format, this uses the access type VK_ACCESS_
DEPTH_STENCIL_ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses the access type
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT.

– VK_ATTACHMENT_STORE_OP_DONT_CARE means the contents within the render area are not needed after
rendering, and may be discarded; the contents of the attachment will be undefined inside the render area. For
attachments with a depth/stencil format, this uses the access type VK_ACCESS_DEPTH_STENCIL_
ATTACHMENT_WRITE_BIT. For attachments with a color format, this uses the access type VK_ACCESS_
COLOR_ATTACHMENT_WRITE_BIT.

• stencilLoadOp specifies how the contents of stencil components of the attachment are treated at the beginning of the
subpass where it is first used, and must be one of the same values allowed for loadOp above.

• stencilStoreOp specifies how the contents of stencil components of the attachment are treated at the end of the last
subpass where it is used, and must be one of the same values allowed for storeOp above.

• initialLayout is the layout the attachment image subresource will be in when a render pass instance begins.

• finalLayout is the layout the attachment image subresource will be transitioned to when a render pass instance ends.
During a render pass instance, an attachment can use a different layout in each subpass, if desired.

If the attachment uses a color format, then loadOp and storeOp are used, and stencilLoadOp and stencilStoreOp

are ignored. If the format has depth and/or stencil components, loadOp and storeOp apply only to the depth data, while
stencilLoadOp and stencilStoreOp define how the stencil data is handled. loadOp and stencilLoadOp define
the load operations that execute as part of the first subpass that uses the attachment. storeOp and stencilStoreOp

define the store operations that execute as part of the last subpass that uses the attachment.

The load operation for each value in an attachment used by a subpass happens-before any command recorded into that
subpass reads from that value. Load operations for attachments with a depth/stencil format execute in the VK_
PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT pipeline stage. Load operations for attachments with a color
format execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

Store operations for each value in an attachment used by a subpass happen-after any command recorded into that subpass
writes to that value. Store operations for attachments with a depth/stencil format execute in the VK_PIPELINE_
STAGE_LATE_FRAGMENT_TESTS_BIT pipeline stage. Store operations for attachments with a color format execute
in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage.

If an attachment is not used by any subpass, then loadOp, storeOp, stencilStoreOp, and stencilLoadOp are
ignored, and the attachment’s memory contents will not be modified by execution of a render pass instance.

During a render pass instance, input/color attachments with color formats that have a component size of 8, 16, or 32 bits
must be represented in the attachment’s format throughout the instance. Attachments with other floating- or fixed-point
color formats, or with depth components may be represented in a format with a precision higher than the attachment
format, but must be represented with the same range. When such a component is loaded via the loadOp, it will be
converted into an implementation-dependent format used by the render pass. Such components must be converted from
the render pass format, to the format of the attachment, before they are resolved or stored at the end of a render pass
instance via storeOp. Conversions occur as described in Numeric Representation and Computation and Fixed-Point
Data Conversions.

If flags includes VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, then the attachment is treated as if it
shares physical memory with another attachment in the same render pass. This information limits the ability of the
implementation to reorder certain operations (like layout transitions and the loadOp) such that it is not improperly
reordered against other uses of the same physical memory via a different attachment. This is described in more detail
below.

Vulkan 1.0.36 - A Specification 129 / 683

Valid Usage

• finalLayout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

Valid Usage (Implicit)

• flags must be a valid combination of VkAttachmentDescriptionFlagBits values

• format must be a valid VkFormat value

• samples must be a valid VkSampleCountFlagBits value

• loadOp must be a valid VkAttachmentLoadOp value

• storeOp must be a valid VkAttachmentStoreOp value

• stencilLoadOp must be a valid VkAttachmentLoadOp value

• stencilStoreOp must be a valid VkAttachmentStoreOp value

• initialLayout must be a valid VkImageLayout value

• finalLayout must be a valid VkImageLayout value

If a render pass uses multiple attachments that alias the same device memory, those attachments must each include the
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit in their attachment description flags. Attachments aliasing
the same memory occurs in multiple ways:

• Multiple attachments being assigned the same image view as part of framebuffer creation.

• Attachments using distinct image views that correspond to the same image subresource of an image.

• Attachments using views of distinct image subresources which are bound to overlapping memory ranges.

Note
Render passes must include subpass dependencies (either directly or via a subpass dependency chain) be-
tween any two subpasses that operate on the same attachment or aliasing attachments and those subpass
dependencies must include execution and memory dependencies separating uses of the aliases, if at least one
of those subpasses writes to one of the aliases. These dependencies must not include the VK_DEPENDENCY_
BY_REGION_BIT if the aliases are views of distinct image subresources which overlap in memory.

Multiple attachments that alias the same memory must not be used in a single subpass. A given attachment index must
not be used multiple times in a single subpass, with one exception: two subpass attachments can use the same attachment
index if at least one use is as an input attachment and neither use is as a resolve or preserve attachment. In other words,
the same view can be used simultaneously as an input and color or depth/stencil attachment, but must not be used as

multiple color or depth/stencil attachments nor as resolve or preserve attachments. The precise set of valid scenarios is
described in more detail below.

If a set of attachments alias each other, then all except the first to be used in the render pass must use an
initialLayout of VK_IMAGE_LAYOUT_UNDEFINED, since the earlier uses of the other aliases make their contents
undefined. Once an alias has been used and a different alias has been used after it, the first alias must not be used in any
later subpasses. However, an application can assign the same image view to multiple aliasing attachment indices, which
allows that image view to be used multiple times even if other aliases are used in between.

Note
Once an attachment needs the VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT bit, there should be
no additional cost of introducing additional aliases, and using these additional aliases may allow more efficient
clearing of the attachments on multiple uses via VK_ATTACHMENT_LOAD_OP_CLEAR.

The VkSubpassDescription structure is defined as:

typedef struct VkSubpassDescription {
VkSubpassDescriptionFlags flags;
VkPipelineBindPoint pipelineBindPoint;
uint32_t inputAttachmentCount;
const VkAttachmentReference* pInputAttachments;
uint32_t colorAttachmentCount;
const VkAttachmentReference* pColorAttachments;
const VkAttachmentReference* pResolveAttachments;
const VkAttachmentReference* pDepthStencilAttachment;
uint32_t preserveAttachmentCount;
const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

• flags is reserved for future use.

• pipelineBindPoint is a VkPipelineBindPoint value specifying whether this is a compute or graphics
subpass. Currently, only graphics subpasses are supported.

• inputAttachmentCount is the number of input attachments.

• pInputAttachments is an array of VkAttachmentReference structures (defined below) that lists which of the
render pass’s attachments can be read in the shader during the subpass, and what layout each attachment will be in
during the subpass. Each element of the array corresponds to an input attachment unit number in the shader, i.e. if the
shader declares an input variable layout(input_attachment_index=X, set=Y, binding=Z) then it
uses the attachment provided in pInputAttachments[X]. Input attachments must also be bound to the pipeline with
a descriptor set, with the input attachment descriptor written in the location (set=Y, binding=Z).

• colorAttachmentCount is the number of color attachments.

• pColorAttachments is an array of colorAttachmentCount VkAttachmentReference structures that lists
which of the render pass’s attachments will be used as color attachments in the subpass, and what layout each
attachment will be in during the subpass. Each element of the array corresponds to a fragment shader output location,
i.e. if the shader declared an output variable layout(location=X) then it uses the attachment provided in
pColorAttachments[X].

• pResolveAttachments is NULL or an array of colorAttachmentCount VkAttachmentReference structures
that lists which of the render pass’s attachments are resolved to at the end of the subpass, and what layout each

Vulkan 1.0.36 - A Specification 131 / 683

attachment will be in during the multisample resolve operation. If pResolveAttachments is not NULL, each of its
elements corresponds to a color attachment (the element in pColorAttachments at the same index), and a
multisample resolve operation is defined for each attachment. At the end of each subpass, multisample resolve
operations read the subpass’s color attachments, and resolve the samples for each pixel to the same pixel location in the
corresponding resolve attachments, unless the resolve attachment index is VK_ATTACHMENT_UNUSED. If the first
use of an attachment in a render pass is as a resolve attachment, then the loadOp is effectively ignored as the resolve is
guaranteed to overwrite all pixels in the render area.

• pDepthStencilAttachment is a pointer to a VkAttachmentReference specifying which attachment will be
used for depth/stencil data and the layout it will be in during the subpass. Setting the attachment index to VK_
ATTACHMENT_UNUSED or leaving this pointer as NULL indicates that no depth/stencil attachment will be used in the
subpass.

• preserveAttachmentCount is the number of preserved attachments.

• pPreserveAttachments is an array of preserveAttachmentCount render pass attachment indices describing the
attachments that are not used by a subpass, but whose contents must be preserved throughout the subpass.

The contents of an attachment within the render area become undefined at the start of a subpass S if all of the following
conditions are true:

• The attachment is used as a color, depth/stencil, or resolve attachment in any subpass in the render pass.

• There is a subpass S1 that uses or preserves the attachment, and a subpass dependency from S1 to S.

• The attachment is not used or preserved in subpass S.

Once the contents of an attachment become undefined in subpass S, they remain undefined for subpasses in subpass
dependency chains starting with subpass S until they are written again. However, they remain valid for subpasses in other
subpass dependency chains starting with subpass S1 if those subpasses use or preserve the attachment.

Valid Usage

• pipelineBindPoint must be VK_PIPELINE_BIND_POINT_GRAPHICS

• colorAttachmentCount must be less than or equal to
VkPhysicalDeviceLimits::maxColorAttachments

• If the first use of an attachment in this render pass is as an input attachment, and the attachment is not also used as
a color or depth/stencil attachment in the same subpass, then loadOp must not be VK_ATTACHMENT_LOAD_
OP_CLEAR

• If pResolveAttachments is not NULL, for each resolve attachment that does not have the value VK_
ATTACHMENT_UNUSED, the corresponding color attachment must not have the value VK_ATTACHMENT_
UNUSED

• If pResolveAttachments is not NULL, the sample count of each element of pColorAttachments must be
anything other than VK_SAMPLE_COUNT_1_BIT

• Any given element of pResolveAttachments must have a sample count of VK_SAMPLE_COUNT_1_BIT

• Any given element of pResolveAttachments must have the same VkFormat as its corresponding color
attachment

• All attachments in pColorAttachments and pDepthStencilAttachment that are not VK_ATTACHMENT_
UNUSED must have the same sample count

• If any input attachments are VK_ATTACHMENT_UNUSED, then any pipelines bound during the subpass must not
access those input attachments from the fragment shader

• The attachment member of any element of pPreserveAttachments must not be VK_ATTACHMENT_
UNUSED

• Any given element of pPreserveAttachments must not also be an element of any other member of the subpass
description

• If any attachment is used as both an input attachment and a color or depth/stencil attachment, then each use must
use the same layout

Valid Usage (Implicit)

• flags must be 0

• pipelineBindPoint must be a valid VkPipelineBindPoint value

• If inputAttachmentCount is not 0, pInputAttachments must be a pointer to an array of
inputAttachmentCount valid VkAttachmentReference structures

• If colorAttachmentCount is not 0, pColorAttachments must be a pointer to an array of
colorAttachmentCount valid VkAttachmentReference structures

• If colorAttachmentCount is not 0, and pResolveAttachments is not NULL, pResolveAttachments must
be a pointer to an array of colorAttachmentCount valid VkAttachmentReference structures

• If pDepthStencilAttachment is not NULL, pDepthStencilAttachment must be a pointer to a valid
VkAttachmentReference structure

• If preserveAttachmentCount is not 0, pPreserveAttachments must be a pointer to an array of
preserveAttachmentCount uint32_t values

The VkAttachmentReference structure is defined as:

typedef struct VkAttachmentReference {
uint32_t attachment;
VkImageLayout layout;

} VkAttachmentReference;

• attachment is the index of the attachment of the render pass, and corresponds to the index of the corresponding
element in the pAttachments array of the VkRenderPassCreateInfo structure. If any color or depth/stencil
attachments are VK_ATTACHMENT_UNUSED, then no writes occur for those attachments.

Vulkan 1.0.36 - A Specification 133 / 683

• layout is a VkImageLayout value specifying the layout the attachment uses during the subpass.

Valid Usage

• layout must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED

Valid Usage (Implicit)

• layout must be a valid VkImageLayout value

The VkSubpassDependency structure is defined as:

typedef struct VkSubpassDependency {
uint32_t srcSubpass;
uint32_t dstSubpass;
VkPipelineStageFlags srcStageMask;
VkPipelineStageFlags dstStageMask;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkDependencyFlags dependencyFlags;

} VkSubpassDependency;

• srcSubpass is the subpass index of the first subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• dstSubpass is the subpass index of the second subpass in the dependency, or VK_SUBPASS_EXTERNAL.

• srcStageMask defines a source stage mask.

• dstStageMask defines a destination stage mask.

• srcAccessMask defines a source access mask.

• dstAccessMask defines a destination access mask.

• dependencyFlags is a bitmask of VkDependencyFlagBits.

If srcSubpass is equal to dstSubpass then the VkSubpassDependency describes a subpass self-dependency, and
only constrains the pipeline barriers allowed within a subpass instance. Otherwise, when a render pass instance which
includes a subpass dependency is submitted to a queue, it defines a memory dependency between the subpasses identified
by srcSubpass and dstSubpass.

If srcSubpass is equal to VK_SUBPASS_EXTERNAL, the first synchronization scope includes commands submitted to
the queue before the render pass instance began. Otherwise, the first set of commands includes all commands submitted

as part of the subpass instance identified by srcSubpass and any load, store or multisample resolve operations on
attachments used in srcSubpass. In either case, the first synchronization scope is limited to operations on the pipeline
stages determined by the source stage mask specified by srcStageMask.

If dstSubpass is equal to VK_SUBPASS_EXTERNAL, the second synchronization scope includes commands
submitted after the render pass instance is ended. Otherwise, the second set of commands includes all commands
submitted as part of the subpass instance identified by dstSubpass and any load, store or multisample resolve
operations on attachments used in dstSubpass. In either case, the second synchronization scope is limited to operations
on the pipeline stages determined by the destination stage mask specified by dstStageMask.

The first access scope is limited to access in the pipeline stages determined by the source stage mask specified by
srcStageMask. It is also limited to access types in the source access mask specified by srcAccessMask.

The second access scope is limited to access in the pipeline stages determined by the destination stage mask specified by
dstStageMask. It is also limited to access types in the destination access mask specified by dstAccessMask.

The availability and visibility operations defined by a subpass dependency affect the execution of image layout
transitions within the render pass.

Valid Usage

• If the geometry shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the geometry shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
GEOMETRY_SHADER_BIT

• If the tessellation shaders feature is not enabled, srcStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• If the tessellation shaders feature is not enabled, dstStageMask must not contain VK_PIPELINE_STAGE_
TESSELLATION_CONTROL_SHADER_BIT or VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_
SHADER_BIT

• srcSubpass must be less than or equal to dstSubpass, unless one of them is VK_SUBPASS_EXTERNAL, to
avoid cyclic dependencies and ensure a valid execution order

• srcSubpass and dstSubpass must not both be equal to VK_SUBPASS_EXTERNAL

• If srcSubpass is equal to dstSubpass, srcStageMask and dstStageMask must only contain one of VK_
PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT, VK_
PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_
PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, VK_PIPELINE_STAGE_
TESSELLATION_EVALUATION_SHADER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, VK_
PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_
BIT, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_COLOR_
ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, or VK_PIPELINE_
STAGE_ALL_GRAPHICS_BIT

• If srcSubpass is equal to dstSubpass, the logically latest pipeline stage in srcStageMask must be logically
earlier than or equal to the logically earliest pipeline stage in dstStageMask

Vulkan 1.0.36 - A Specification 135 / 683

• Any access flag included in srcAccessMask must be supported by one of the pipeline stages in srcStageMask,
as specified in the table of supported access types.

• Any access flag included in dstAccessMask must be supported by one of the pipeline stages in dstStageMask,
as specified in the table of supported access types.

Valid Usage (Implicit)

• srcStageMask must be a valid combination of VkPipelineStageFlagBits values

• srcStageMask must not be 0

• dstStageMask must be a valid combination of VkPipelineStageFlagBits values

• dstStageMask must not be 0

• srcAccessMask must be a valid combination of VkAccessFlagBits values

• dstAccessMask must be a valid combination of VkAccessFlagBits values

• dependencyFlags must be a valid combination of VkDependencyFlagBits values

If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the first subpass that uses an attachment, then an
implicit subpass dependency exists from VK_SUBPASS_EXTERNAL to the first subpass it is used in. The subpass
dependency operates as if defined with the following parameters:

VkSubpassDependency implicitDependency = {
.srcSubpass = VK_SUBPASS_EXTERNAL;
.dstSubpass = firstSubpass; // First subpass attachment is used in
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
.srcAccessMask = 0;
.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |

VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

.dependencyFlags = 0;
};

Similarly, if there is no subpass dependency from the last subpass that uses an attachment to VK_SUBPASS_
EXTERNAL, then an implicit subpass dependency exists from the last subpass it is used in to VK_SUBPASS_
EXTERNAL. The subpass dependency operates as if defined with the following parameters:

VkSubpassDependency implicitDependency = {
.srcSubpass = lastSubpass; // Last subpass attachment is used in
.dstSubpass = VK_SUBPASS_EXTERNAL;
.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;

.srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

.dstAccessMask = 0;

.dependencyFlags = 0;
};

As subpasses may overlap or execute out of order with regards to other subpasses unless a subpass dependency chain
describes otherwise, the layout transitions required between subpasses cannot be known to an application. Instead, an
application provides the layout that each attachment must be in at the start and end of a renderpass, and the layout it must
be in during each subpass it is used in. The implementation then must execute layout transitions between subpasses in
order to guarantee that the images are in the layouts required by each subpass, and in the final layout at the end of the
render pass.

Automatic layout transitions away from the layout used in a subpass happen-after the availability operations for all
dependencies with that subpass as the srcSubpass.

Automatic layout transitions into the layout used in a subpass happen-before the visibility operations for all
dependencies with that subpass as the dstSubpass.

Automatic layout transitions away from initialLayout happens-after the availability operations for all dependencies
with a srcSubpass equal to VK_SUBPASS_EXTERNAL, where dstSubpass uses the attachment that will be
transitioned. For attachments created with VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, automatic layout
transitions away from initialLayout happen-after the availability operations for all dependencies with a srcSubpass
equal to VK_SUBPASS_EXTERNAL, where dstSubpass uses any aliased attachment.

Automatic layout transitions into finalLayout happens-before the visibility operations for all dependencies with a
dstSubpass equal to VK_SUBPASS_EXTERNAL, where srcSubpass uses the attachment that will be transitioned.
For attachments created with VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, automatic layout transitions
into finalLayout happen-before the visibility operations for all dependencies with a dstSubpass equal to VK_
SUBPASS_EXTERNAL, where srcSubpass uses any aliased attachment.

If two subpasses use the same attachment in different layouts, and both layouts are read-only, no subpass dependency
needs to be specified between those subpasses. If an implementation treats those layouts separately, it must insert an
implicit subpass dependency between those subpasses to separate the uses in each layout. The subpass dependency
operates as if defined with the following parameters:

// Used for input attachments
VkPipelineStageFlags inputAttachmentStages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
VkAccessFlags inputAttachmentAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;

// Used for depth stencil attachments
VkPipelineStageFlags depthStencilAttachmentStages = ←↩

VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | ←↩
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;

VkAccessFlags depthStencilAttachmentAccess = ←↩
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;

VkSubpassDependency implicitDependency = {
.srcSubpass = firstSubpass;
.dstSubpass = secondSubpass;
.srcStageMask = inputAttachmentStages | depthStencilAttachmentStages;
.dstStageMask = inputAttachmentStages | depthStencilAttachmentStages;
.srcAccessMask = inputAttachmentAccess | depthStencilAttachmentAccess;

Vulkan 1.0.36 - A Specification 137 / 683

.dstAccessMask = inputAttachmentAccess | depthStencilAttachmentAccess;

.dependencyFlags = 0;
};

If a subpass uses the same attachment as both an input attachment and either a color attachment or a depth/stencil
attachment, writes via the color or depth/stencil attachment are not automatically made visible to reads via the input
attachment, causing a feedback loop, except in any of the following conditions:

• If the color components or depth/stencil components read by the input attachment are mutually exclusive with the
components written by the color or depth/stencil attachments, then there is no feedback loop. This requires the
graphics pipelines used by the subpass to disable writes to color components that are read as inputs via the
colorWriteMask, and to disable writes to depth/stencil components that are read as inputs via depthWriteEnable
or stencilTestEnable.

• If the attachment is used as an input attachment and depth/stencil attachment only, and the depth/stencil attachment is
not written to.

• If a memory dependency is inserted between when the attachment is written and when it is subsequently read by later
fragments. Pipeline barriers expressing a subpass self-dependency are the only way to achieve this, and one must be
inserted every time a fragment will read values at a particular sample (x, y, layer, sample) coordinate, if those values
have been written since the most recent pipeline barrier; or the since start of the subpass if there have been no pipeline
barriers since the start of the subpass.

An attachment used as both an input attachment and a color attachment must be in the VK_IMAGE_LAYOUT_GENERAL
layout. An attachment used as an input attachment and depth/stencil attachment must be in either VK_IMAGE_
LAYOUT_GENERAL or VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL. An attachment must not
be used as both a depth/stencil attachment and a color attachment.

To destroy a render pass, call:

void vkDestroyRenderPass(
VkDevice device,
VkRenderPass renderPass,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the render pass.

• renderPass is the handle of the render pass to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to renderPass must have completed execution

• If VkAllocationCallbacks were provided when renderPass was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when renderPass was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If renderPass is not VK_NULL_HANDLE, renderPass must be a valid VkRenderPass handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If renderPass is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to renderPass must be externally synchronized

7.2 Render Pass Compatibility

Framebuffers and graphics pipelines are created based on a specific render pass object. They must only be used with that
render pass object, or one compatible with it.

Two attachment references are compatible if they have matching format and sample count, or are both VK_
ATTACHMENT_UNUSED or the pointer that would contain the reference is NULL.

Two arrays of attachment references are compatible if all corresponding pairs of attachments are compatible. If the
arrays are of different lengths, attachment references not present in the smaller array are treated as VK_ATTACHMENT_
UNUSED.

Two render passes that contain only a single subpass are compatible if their corresponding color, input, resolve, and
depth/stencil attachment references are compatible.

If two render passes contain more than one subpass, they are compatible if they are identical except for:

• Initial and final image layout in attachment descriptions

• Load and store operations in attachment descriptions

• Image layout in attachment references

A framebuffer is compatible with a render pass if it was created using the same render pass or a compatible render pass.

Vulkan 1.0.36 - A Specification 139 / 683

7.3 Framebuffers

Render passes operate in conjunction with framebuffers. Framebuffers represent a collection of specific memory
attachments that a render pass instance uses.

Framebuffers are represented by VkFramebuffer handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkFramebuffer)

To create a framebuffer, call:

VkResult vkCreateFramebuffer(
VkDevice device,
const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFramebuffer* pFramebuffer);

• device is the logical device that creates the framebuffer.

• pCreateInfo points to a VkFramebufferCreateInfo structure which describes additional information about
framebuffer creation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pFramebuffer points to a VkFramebuffer handle in which the resulting framebuffer object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkFramebufferCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pFramebuffer must be a pointer to a VkFramebuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkFramebufferCreateInfo structure is defined as:

typedef struct VkFramebufferCreateInfo {
VkStructureType sType;
const void* pNext;
VkFramebufferCreateFlags flags;
VkRenderPass renderPass;
uint32_t attachmentCount;
const VkImageView* pAttachments;
uint32_t width;
uint32_t height;
uint32_t layers;

} VkFramebufferCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• renderPass is a render pass that defines what render passes the framebuffer will be compatible with. See Render
Pass Compatibility for details.

• attachmentCount is the number of attachments.

• pAttachments is an array of VkImageView handles, each of which will be used as the corresponding attachment in
a render pass instance.

• width, height and layers define the dimensions of the framebuffer.

Image subresources used as attachments must not be used via any non-attachment usage for the duration of a render pass
instance.

Note
This restriction means that the render pass has full knowledge of all uses of all of the attachments, so that the
implementation is able to make correct decisions about when and how to perform layout transitions, when to
overlap execution of subpasses, etc.

It is legal for a subpass to use no color or depth/stencil attachments, and rather use shader side effects such as image
stores and atomics to produce an output. In this case, the subpass continues to use the width, height, and layers of
the framebuffer to define the dimensions of the rendering area, and the rasterizationSamples from each pipeline’s
VkPipelineMultisampleStateCreateInfo to define the number of samples used in rasterization; however, if
VkPhysicalDeviceFeatures::variableMultisampleRate is VK_FALSE, then all pipelines to be bound with a
given zero-attachment subpass must have the same value for
VkPipelineMultisampleStateCreateInfo::rasterizationSamples.

Valid Usage

• attachmentCount must be equal to the attachment count specified in renderPass

Vulkan 1.0.36 - A Specification 141 / 683

• Any given element of pAttachments that is used as a color attachment or resolve attachment by renderPass

must have been created with a usage value including VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

• Any given element of pAttachments that is used as a depth/stencil attachment by renderPass must have been
created with a usage value including VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• Any given element of pAttachments that is used as an input attachment by renderPass must have been created
with a usage value including VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT

• Any given element of pAttachments must have been created with an VkFormat value that matches the
VkFormat specified by the corresponding VkAttachmentDescription in renderPass

• Any given element of pAttachments must have been created with a samples value that matches the samples
value specified by the corresponding VkAttachmentDescription in renderPass

• Any given element of pAttachments must have dimensions at least as large as the corresponding framebuffer
dimension

• Any given element of pAttachments must only specify a single mip level

• Any given element of pAttachments must have been created with the identity swizzle

• width must be less than or equal to VkPhysicalDeviceLimits::maxFramebufferWidth

• height must be less than or equal to VkPhysicalDeviceLimits::maxFramebufferHeight

• layers must be less than or equal to VkPhysicalDeviceLimits::maxFramebufferLayers

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO

• pNext must be NULL

• flags must be 0

• renderPass must be a valid VkRenderPass handle

• If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount valid
VkImageView handles

• Both of renderPass, and the elements of pAttachments that are valid handles must have been created,
allocated, or retrieved from the same VkDevice

To destroy a framebuffer, call:

void vkDestroyFramebuffer(
VkDevice device,
VkFramebuffer framebuffer,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the framebuffer.

• framebuffer is the handle of the framebuffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to framebuffer must have completed execution

• If VkAllocationCallbacks were provided when framebuffer was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when framebuffer was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If framebuffer is not VK_NULL_HANDLE, framebuffer must be a valid VkFramebuffer handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If framebuffer is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to framebuffer must be externally synchronized

7.4 Render Pass Commands

An application records the commands for a render pass instance one subpass at a time, by beginning a render pass
instance, iterating over the subpasses to record commands for that subpass, and then ending the render pass instance.

To begin a render pass instance, call:

Vulkan 1.0.36 - A Specification 143 / 683

void vkCmdBeginRenderPass(
VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• pRenderPassBegin is a pointer to a VkRenderPassBeginInfo structure (defined below) which indicates the
render pass to begin an instance of, and the framebuffer the instance uses.

• contents specifies how the commands in the first subpass will be provided, and is one of the values:

typedef enum VkSubpassContents {
VK_SUBPASS_CONTENTS_INLINE = 0,
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS = 1,

} VkSubpassContents;

If contents is VK_SUBPASS_CONTENTS_INLINE, the contents of the subpass will be recorded inline in the
primary command buffer, and secondary command buffers must not be executed within the subpass. If contents is
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS, the contents are recorded in secondary command
buffers that will be called from the primary command buffer, and vkCmdExecuteCommands is the only valid
command on the command buffer until vkCmdNextSubpass or vkCmdEndRenderPass.

After beginning a render pass instance, the command buffer is ready to record the commands for the first subpass of that
render pass.

Valid Usage

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the layout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is VK_IMAGE_LAYOUT_COLOR_
ATTACHMENT_OPTIMAL then the corresponding attachment image subresource of the framebuffer specified in
the framebuffer member of pRenderPassBegin must have been created with VK_IMAGE_USAGE_COLOR_
ATTACHMENT_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the layout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is VK_IMAGE_LAYOUT_DEPTH_STENCIL_
ATTACHMENT_OPTIMAL or VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL then the
corresponding attachment image subresource of the framebuffer specified in the framebuffer member of
pRenderPassBegin must have been created with VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_
BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the layout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is VK_IMAGE_LAYOUT_SHADER_READ_
ONLY_OPTIMAL then the corresponding attachment image subresource of the framebuffer specified in the
framebuffer member of pRenderPassBegin must have been created with VK_IMAGE_USAGE_SAMPLED_
BIT or VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the layout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is VK_IMAGE_LAYOUT_TRANSFER_SRC_
OPTIMAL then the corresponding attachment image subresource of the framebuffer specified in the
framebuffer member of pRenderPassBegin must have been created with VK_IMAGE_USAGE_TRANSFER_
SRC_BIT set

• If any of the initialLayout or finalLayout member of the VkAttachmentDescription structures or
the layout member of the VkAttachmentReference structures specified when creating the render pass
specified in the renderPass member of pRenderPassBegin is VK_IMAGE_LAYOUT_TRANSFER_DST_
OPTIMAL then the corresponding attachment image subresource of the framebuffer specified in the
framebuffer member of pRenderPassBegin must have been created with VK_IMAGE_USAGE_TRANSFER_
DST_BIT set

• If any of the initialLayout members of the VkAttachmentDescription structures specified when
creating the render pass specified in the renderPass member of pRenderPassBegin is not VK_IMAGE_
LAYOUT_UNDEFINED, then each such initialLayout must be equal to the current layout of the corresponding
attachment image subresource of the framebuffer specified in the framebuffer member of pRenderPassBegin

• The srcStageMask and dstStageMask members of any element of the pDependencies member of
VkRenderPassCreateInfo used to create renderpass must be supported by the capabilities of the queue
family identified by the queueFamilyIndex member of the VkCommandPoolCreateInfo used to create the
command pool which commandBuffer was allocated from.

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pRenderPassBegin must be a pointer to a valid VkRenderPassBeginInfo structure

• contents must be a valid VkSubpassContents value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called outside of a render pass instance

• commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

Vulkan 1.0.36 - A Specification 145 / 683

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary Outside Graphics Graphics

The VkRenderPassBeginInfo structure is defined as:

typedef struct VkRenderPassBeginInfo {
VkStructureType sType;
const void* pNext;
VkRenderPass renderPass;
VkFramebuffer framebuffer;
VkRect2D renderArea;
uint32_t clearValueCount;
const VkClearValue* pClearValues;

} VkRenderPassBeginInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• renderPass is the render pass to begin an instance of.

• framebuffer is the framebuffer containing the attachments that are used with the render pass.

• renderArea is the render area that is affected by the render pass instance, and is described in more detail below.

• clearValueCount is the number of elements in pClearValues.

• pClearValues is an array of VkClearValue structures that contains clear values for each attachment, if the
attachment uses a loadOp value of VK_ATTACHMENT_LOAD_OP_CLEAR or if the attachment has a depth/stencil
format and uses a stencilLoadOp value of VK_ATTACHMENT_LOAD_OP_CLEAR. The array is indexed by
attachment number. Only elements corresponding to cleared attachments are used. Other elements of pClearValues
are ignored.

renderArea is the render area that is affected by the render pass instance. The effects of attachment load, store and
multisample resolve operations are restricted to the pixels whose x and y coordinates fall within the render area on all
attachments. The render area extends to all layers of framebuffer. The application must ensure (using scissor if
necessary) that all rendering is contained within the render area, otherwise the pixels outside of the render area become
undefined and shader side effects may occur for fragments outside the render area. The render area must be contained
within the framebuffer dimensions.

Note
There may be a performance cost for using a render area smaller than the framebuffer, unless it matches the
render area granularity for the render pass.

Valid Usage

• clearValueCount must be greater than the largest attachment index in renderPass that specifies a loadOp (or
stencilLoadOp, if the attachment has a depth/stencil format) of VK_ATTACHMENT_LOAD_OP_CLEAR

• If clearValueCount is not 0, pClearValues must be a pointer to an array of clearValueCount valid
VkClearValue unions

• renderPass must be compatible with the renderPass member of the VkFramebufferCreateInfo
structure specified when creating framebuffer.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO

• pNext must be NULL

• renderPass must be a valid VkRenderPass handle

• framebuffer must be a valid VkFramebuffer handle

• Both of framebuffer, and renderPass must have been created, allocated, or retrieved from the same
VkDevice

To query the render area granularity, call:

void vkGetRenderAreaGranularity(
VkDevice device,
VkRenderPass renderPass,
VkExtent2D* pGranularity);

• device is the logical device that owns the render pass.

• renderPass is a handle to a render pass.

• pGranularity points to a VkExtent2D structure in which the granularity is returned.

The conditions leading to an optimal renderArea are:

Vulkan 1.0.36 - A Specification 147 / 683

• the offset.x member in renderArea is a multiple of the width member of the returned VkExtent2D (the
horizontal granularity).

• the offset.y member in renderArea is a multiple of the height of the returned VkExtent2D (the vertical
granularity).

• either the offset.width member in renderArea is a multiple of the horizontal granularity or offset.x+offset.
width is equal to the width of the framebuffer in the VkRenderPassBeginInfo.

• either the offset.height member in renderArea is a multiple of the vertical granularity or offset.y+offset.
height is equal to the height of the framebuffer in the VkRenderPassBeginInfo.

Subpass dependencies are not affected by the render area, and apply to the entire image subresources attached to the
framebuffer. Similarly, pipeline barriers are valid even if their effect extends outside the render area.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• renderPass must be a valid VkRenderPass handle

• pGranularity must be a pointer to a VkExtent2D structure

• renderPass must have been created, allocated, or retrieved from device

To transition to the next subpass in the render pass instance after recording the commands for a subpass, call:

void vkCmdNextSubpass(
VkCommandBuffer commandBuffer,
VkSubpassContents contents);

• commandBuffer is the command buffer in which to record the command.

• contents specifies how the commands in the next subpass will be provided, in the same fashion as the corresponding
parameter of vkCmdBeginRenderPass.

The subpass index for a render pass begins at zero when vkCmdBeginRenderPass is recorded, and increments each
time vkCmdNextSubpass is recorded.

Moving to the next subpass automatically performs any multisample resolve operations in the subpass being ended.
End-of-subpass multisample resolves are treated as color attachment writes for the purposes of synchronization. That is,
they are considered to execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage
and their writes are synchronized with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
rendering within a subpass and any resolve operations at the end of the subpass occurs automatically, without need for
explicit dependencies or pipeline barriers. However, if the resolve attachment is also used in a different subpass, an
explicit dependency is needed.

After transitioning to the next subpass, the application can record the commands for that subpass.

Valid Usage

• The current subpass index must be less than the number of subpasses in the render pass minus one

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• contents must be a valid VkSubpassContents value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

• commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary Inside Graphics Graphics

To record a command to end a render pass instance after recording the commands for the last subpass, call:

void vkCmdEndRenderPass(
VkCommandBuffer commandBuffer);

Vulkan 1.0.36 - A Specification 149 / 683

• commandBuffer is the command buffer in which to end the current render pass instance.

Ending a render pass instance performs any multisample resolve operations on the final subpass.

Valid Usage

• The current subpass index must be equal to the number of subpasses in the render pass minus one

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

• commandBuffer must be a primary VkCommandBuffer

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary Inside Graphics Graphics

Vulkan 1.0.36 - A Specification 151 / 683

Chapter 8

Shaders

A shader specifies programmable operations that execute for each vertex, control point, tessellated vertex, primitive,
fragment, or workgroup in the corresponding stage(s) of the graphics and compute pipelines.

Graphics pipelines include vertex shader execution as a result of primitive assembly, followed, if enabled, by tessellation
control and evaluation shaders operating on patches, geometry shaders, if enabled, operating on primitives, and fragment
shaders, if present, operating on fragments generated by Rasterization. In this specification, vertex, tessellation control,
tessellation evaluation and geometry shaders are collectively referred to as vertex processing stages and occur in the
logical pipeline before rasterization. The fragment shader occurs logically after rasterization.

Only the compute shader stage is included in a compute pipeline. Compute shaders operate on compute invocations in a
workgroup.

Shaders can read from input variables, and read from and write to output variables. Input and output variables can be
used to transfer data between shader stages, or to allow the shader to interact with values that exist in the execution
environment. Similarly, the execution environment provides constants that describe capabilities.

Shader variables are associated with execution environment-provided inputs and outputs using built-in decorations in the
shader. The available decorations for each stage are documented in the following subsections.

8.1 Shader Modules

Shader modules contain shader code and one or more entry points. Shaders are selected from a shader module by
specifying an entry point as part of pipeline creation. The stages of a pipeline can use shaders that come from different
modules. The shader code defining a shader module must be in the SPIR-V format, as described by the Vulkan
Environment for SPIR-V appendix.

Shader modules are represented by VkShaderModule handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkShaderModule)

To create a shader module, call:

VkResult vkCreateShaderModule(
VkDevice device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule);

• device is the logical device that creates the shader module.

• pCreateInfo parameter is a pointer to an instance of the VkShaderModuleCreateInfo structure.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pShaderModule points to a VkShaderModule handle in which the resulting shader module object is returned.

Once a shader module has been created, any entry points it contains can be used in pipeline shader stages as described in
Compute Pipelines and Graphics Pipelines.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkShaderModuleCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pShaderModule must be a pointer to a VkShaderModule handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkShaderModuleCreateInfo structure is defined as:

typedef struct VkShaderModuleCreateInfo {
VkStructureType sType;
const void* pNext;
VkShaderModuleCreateFlags flags;
size_t codeSize;
const uint32_t* pCode;

} VkShaderModuleCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

Vulkan 1.0.36 - A Specification 153 / 683

• flags is reserved for future use.

• codeSize is the size, in bytes, of the code pointed to by pCode.

• pCode points to code that is used to create the shader module. The type and format of the code is determined from the
content of the memory addressed by pCode.

Valid Usage

• codeSize must be greater than 0

• codeSize must be a multiple of 4. If the VK_NV_glsl_shader extension is enabled and pCode

references GLSL code codeSize can be a multiple of 1

• pCode must point to valid SPIR-V code, formatted and packed as described by the Khronos SPIR-V
Specification. If the VK_NV_glsl_shader extension is enabled pCode can instead reference valid GLSL code
and must be written to the GL_KHR_vulkan_glsl extension specification

• pCode must adhere to the validation rules described by the Validation Rules within a Module section of the
SPIR-V Environment appendix. If the VK_NV_glsl_shader extension is enabled pCode can be valid GLSL
code with respect to the GL_KHR_vulkan_glsl GLSL extension specification

• pCode must declare the Shader capability for SPIR-V code

• pCode must not declare any capability that is not supported by the API, as described by the Capabilities section of
the SPIR-V Environment appendix

• If pCode declares any of the capabilities that are listed as not required by the implementation, the relevant feature
must be enabled, as listed in the SPIR-V Environment appendix

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pCode must be a pointer to an array of codeSize
4 uint32_t values

To destroy a shader module, call:

void vkDestroyShaderModule(
VkDevice device,
VkShaderModule shaderModule,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the shader module.

• shaderModule is the handle of the shader module to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

A shader module can be destroyed while pipelines created using its shaders are still in use.

Valid Usage

• If VkAllocationCallbacks were provided when shaderModule was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when shaderModule was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If shaderModule is not VK_NULL_HANDLE, shaderModule must be a valid VkShaderModule handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If shaderModule is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to shaderModule must be externally synchronized

8.2 Shader Execution

At each stage of the pipeline, multiple invocations of a shader may execute simultaneously. Further, invocations of a
single shader produced as the result of different commands may execute simultaneously. The relative execution order of
invocations of the same shader type is undefined. Shader invocations may complete in a different order than that in which

Vulkan 1.0.36 - A Specification 155 / 683

the primitives they originated from were drawn or dispatched by the application. However, fragment shader outputs are
written to attachments in rasterization order.

The relative order of invocations of different shader types is largely undefined. However, when invoking a shader whose
inputs are generated from a previous pipeline stage, the shader invocations from the previous stage are guaranteed to
have executed far enough to generate input values for all required inputs.

8.3 Shader Memory Access Ordering

The order in which image or buffer memory is read or written by shaders is largely undefined. For some shader types
(vertex, tessellation evaluation, and in some cases, fragment), even the number of shader invocations that may perform
loads and stores is undefined.

In particular, the following rules apply:

• Vertex and tessellation evaluation shaders will be invoked at least once for each unique vertex, as defined in those
sections.

• Fragment shaders will be invoked zero or more times, as defined in that section.

• The relative order of invocations of the same shader type are undefined. A store issued by a shader when working on
primitive B might complete prior to a store for primitive A, even if primitive A is specified prior to primitive B. This
applies even to fragment shaders; while fragment shader outputs are always written to the framebuffer in primitive
order, stores executed by fragment shader invocations are not.

• The relative order of invocations of different shader types is largely undefined.

Note
The above limitations on shader invocation order make some forms of synchronization between shader invoca-
tions within a single set of primitives unimplementable. For example, having one invocation poll memory written
by another invocation assumes that the other invocation has been launched and will complete its writes in finite
time.

Stores issued to different memory locations within a single shader invocation may not be visible to other invocations, or
may not become visible in the order they were performed.

The OpMemoryBarrier instruction can be used to provide stronger ordering of reads and writes performed by a single
invocation. OpMemoryBarrier guarantees that any memory transactions issued by the shader invocation prior to the
instruction complete prior to the memory transactions issued after the instruction. Memory barriers are needed for
algorithms that require multiple invocations to access the same memory and require the operations to be performed in a
partially-defined relative order. For example, if one shader invocation does a series of writes, followed by an
OpMemoryBarrier instruction, followed by another write, then the results of the series of writes before the barrier
become visible to other shader invocations at a time earlier or equal to when the results of the final write become visible
to those invocations. In practice it means that another invocation that sees the results of the final write would also see the
previous writes. Without the memory barrier, the final write may be visible before the previous writes.

Writes that are the result of shader stores through a variable decorated with Coherent automatically have available
writes to the same buffer, buffer view, or image view made visible to them, and are themselves automatically made
available to access by the same buffer, buffer view, or image view. Reads that are the result of shader loads through a
variable decorated with Coherent automatically have available writes to the same buffer, buffer view, or image view
made visible to them. The order that coherent writes to different locations become available is undefined, unless enforced
by a memory barrier instruction or other memory dependency.

Note
Explicit memory dependencies must still be used to guarantee availability and visibility for access via other
buffers, buffer views, or image views.

The built-in atomic memory transaction instructions can be used to read and write a given memory address atomically.
While built-in atomic functions issued by multiple shader invocations are executed in undefined order relative to each
other, these functions perform both a read and a write of a memory address and guarantee that no other memory
transaction will write to the underlying memory between the read and write. Atomic operations ensure automatic
availability and visibility for writes and reads in the same way as those to Coherent variables.

Example 8.1 Note
Memory accesses performed on different resource descriptors with the same memory backing may not be well-defined
even with the Coherent decoration or via atomics, due to things such as image layouts or ownership of the resource -
as described in the Synchronization and Cache Control chapter.

Note
Atomics allow shaders to use shared global addresses for mutual exclusion or as counters, among other uses.

8.4 Shader Inputs and Outputs

Data is passed into and out of shaders using variables with input or output storage class, respectively. User-defined inputs
and outputs are connected between stages by matching their Location decorations. Additionally, data can be provided
by or communicated to special functions provided by the execution environment using BuiltIn decorations.

In many cases, the same BuiltIn decoration can be used in multiple shader stages with similar meaning. The specific
behavior of variables decorated as BuiltIn is documented in the following sections.

8.5 Vertex Shaders

Each vertex shader invocation operates on one vertex and its associated vertex attribute data, and outputs one vertex and
associated data. Graphics pipelines must include a vertex shader, and the vertex shader stage is always the first shader
stage in the graphics pipeline.

8.5.1 Vertex Shader Execution

A vertex shader must be executed at least once for each vertex specified by a draw command. During execution, the
shader is presented with the index of the vertex and instance for which it has been invoked. Input variables declared in
the vertex shader are filled by the implementation with the values of vertex attributes associated with the invocation being
executed.

If the same vertex is specified multiple times in a draw command (e.g. by including the same index value multiple times
in an index buffer) the implementation may reuse the results of vertex shading if it can statically determine that the vertex
shader invocations will produce identical results.

Vulkan 1.0.36 - A Specification 157 / 683

Note
It is implementation-dependent when and if results of vertex shading are reused, and thus how many times the
vertex shader will be executed. This is true also if the vertex shader contains stores or atomic operations (see
vertexPipelineStoresAndAtomics).

8.6 Tessellation Control Shaders

The tessellation control shader is used to read an input patch provided by the application and to produce an output patch.
Each tessellation control shader invocation operates on an input patch (after all control points in the patch are processed
by a vertex shader) and its associated data, and outputs a single control point of the output patch and its associated data,
and can also output additional per-patch data. The input patch is sized according to the patchControlPoints member
of VkPipelineTessellationStateCreateInfo, as part of input assembly. The size of the output patch is
controlled by the OpExecutionMode OutputVertices specified in the tessellation control or tessellation
evaluation shaders, which must be specified in at least one of the shaders. The size of the input and output patches must
each be greater than zero and less than or equal to VkPhysicalDeviceLimits::maxTessellationPatchSize.

8.6.1 Tessellation Control Shader Execution

A tessellation control shader is invoked at least once for each output vertex in a patch.

Inputs to the tessellation control shader are generated by the vertex shader. Each invocation of the tessellation control
shader can read the attributes of any incoming vertices and their associated data. The invocations corresponding to a
given patch execute logically in parallel, with undefined relative execution order. However, the OpControlBarrier
instruction can be used to provide limited control of the execution order by synchronizing invocations within a patch,
effectively dividing tessellation control shader execution into a set of phases. Tessellation control shaders will read
undefined values if one invocation reads a per-vertex or per-patch attribute written by another invocation at any point
during the same phase, or if two invocations attempt to write different values to the same per-patch output in a single
phase.

8.7 Tessellation Evaluation Shaders

The Tessellation Evaluation Shader operates on an input patch of control points and their associated data, and a single
input barycentric coordinate indicating the invocation’s relative position within the subdivided patch, and outputs a single
vertex and its associated data.

8.7.1 Tessellation Evaluation Shader Execution

A tessellation evaluation shader is invoked at least once for each unique vertex generated by the tessellator.

8.8 Geometry Shaders

The geometry shader operates on a group of vertices and their associated data assembled from a single input primitive,
and emits zero or more output primitives and the group of vertices and their associated data required for each output
primitive.

8.8.1 Geometry Shader Execution

A geometry shader is invoked at least once for each primitive produced by the tessellation stages, or at least once for
each primitive generated by primitive assembly when tessellation is not in use. The number of geometry shader
invocations per input primitive is determined from the invocation count of the geometry shader specified by the
OpExecutionMode Invocations in the geometry shader. If the invocation count is not specified, then a default of
one invocation is executed.

8.9 Fragment Shaders

Fragment shaders are invoked as the result of rasterization in a graphics pipeline. Each fragment shader invocation
operates on a single fragment and its associated data. With few exceptions, fragment shaders do not have access to any
data associated with other fragments and are considered to execute in isolation of fragment shader invocations associated
with other fragments.

8.9.1 Fragment Shader Execution

For each fragment generated by rasterization, a fragment shader may be invoked. A fragment shader must not be invoked
if the Early Per-Fragment Tests cause it to have no coverage.

Furthermore, if it is determined that a fragment generated as the result of rasterizing a first primitive will have its outputs
entirely overwritten by a fragment generated as the result of rasterizing a second primitive in the same subpass, and the
fragment shader used for the fragment has no other side effects, then the fragment shader may not be executed for the
fragment from the first primitive.

Relative ordering of execution of different fragment shader invocations is not defined.

The number of fragment shader invocations produced per-pixel is determined as follows:

• If per-sample shading is enabled, the fragment shader is invoked once per covered sample.

• Otherwise, the fragment shader is invoked at least once per fragment but no more than once per covered sample.

In addition to the conditions outlined above for the invocation of a fragment shader, a fragment shader invocation may be
produced as a helper invocation. A helper invocation is a fragment shader invocation that is created solely for the
purposes of evaluating derivatives for use in non-helper fragment shader invocations. Stores and atomics performed by
helper invocations must not have any effect on memory, and values returned by atomic instructions in helper invocations
are undefined.

8.9.2 Early Fragment Tests

An explicit control is provided to allow fragment shaders to enable early fragment tests. If the fragment shader specifies
the EarlyFragmentTests OpExecutionMode, the per-fragment tests described in Early Fragment Test Mode are
performed prior to fragment shader execution. Otherwise, they are performed after fragment shader execution.

8.10 Compute Shaders

Compute shaders are invoked via vkCmdDispatch and vkCmdDispatchIndirect commands. In general, they
have access to similar resources as shader stages executing as part of a graphics pipeline.

Vulkan 1.0.36 - A Specification 159 / 683

Compute workloads are formed from groups of work items called workgroups and processed by the compute shader in
the current compute pipeline. A workgroup is a collection of shader invocations that execute the same shader, potentially
in parallel. Compute shaders execute in global workgroups which are divided into a number of local workgroups with a
size that can be set by assigning a value to the LocalSize execution mode or via an object decorated by the
WorkgroupSize decoration. An invocation within a local workgroup can share data with other members of the local
workgroup through shared variables and issue memory and control flow barriers to synchronize with other members of
the local workgroup.

8.11 Interpolation Decorations

Interpolation decorations control the behavior of attribute interpolation in the fragment shader stage. Interpolation
decorations can be applied to Input storage class variables in the fragment shader stage’s interface, and control the
interpolation behavior of those variables.

Inputs that could be interpolated can be decorated by at most one of the following decorations:

• Flat: no interpolation

• NoPerspective: linear interpolation (for lines and polygons).

Fragment input variables decorated with neither Flat nor NoPerspective use perspective-correct interpolation (for
lines and polygons).

The presence of and type of interpolation is controlled by the above interpolation decorations as well as the auxiliary
decorations Centroid and Sample.

A variable decorated with Flat will not be interpolated. Instead, it will have the same value for every fragment within a
triangle. This value will come from a single provoking vertex. A variable decorated with Flat can also be decorated
with Centroid or Sample, which will mean the same thing as decorating it only as Flat.

For fragment shader input variables decorated with neither Centroid nor Sample, the assigned variable may be
interpolated anywhere within the pixel and a single value may be assigned to each sample within the pixel.

Centroid and Sample can be used to control the location and frequency of the sampling of the decorated fragment
shader input. If a fragment shader input is decorated with Centroid, a single value may be assigned to that variable for
all samples in the pixel, but that value must be interpolated to a location that lies in both the pixel and in the primitive
being rendered, including any of the pixel’s samples covered by the primitive. Because the location at which the variable
is interpolated may be different in neighboring pixels, and derivatives may be computed by computing differences
between neighboring pixels, derivatives of centroid-sampled inputs may be less accurate than those for non-centroid
interpolated variables. If a fragment shader input is decorated with Sample, a separate value must be assigned to that
variable for each covered sample in the pixel, and that value must be sampled at the location of the individual sample.
When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center must be used for Centroid,
Sample, and undecorated attribute interpolation.

Fragment shader inputs that are signed or unsigned integers, integer vectors, or any double-precision floating-point type
must be decorated with Flat.

8.12 Static Use

A SPIR-V module declares a global object in memory using the OpVariable instruction, which results in a pointer x
to that object. A specific entry point in a SPIR-V module is said to statically use that object if that entry point’s call tree
contains a function that contains a memory instruction or image instruction with x as an id operand. See the “Memory

Instructions” and “Image Instructions” subsections of section 3 “Binary Form” of the SPIR-V specification for the
complete list of SPIR-V memory instructions.

Static use is not used to control the behavior of variables with Input and Output storage. The effects of those
variables are applied based only on whether they are present in a shader entry point’s interface.

8.13 Invocation and Derivative Groups

An invocation group (see the subsection “Control Flow” of section 2 of the SPIR-V specification) for a compute shader
is the set of invocations in a single local workgroup. For graphics shaders, an invocation group is an
implementation-dependent subset of the set of shader invocations of a given shader stage which are produced by a single
drawing command. For indirect drawing commands with drawCount greater than one, invocations from separate draws
are in distinct invocation groups.

Note
Because the partitioning of invocations into invocation groups is implementation-dependent and not observable,
applications generally need to assume the worst case of all invocations in a draw belonging to a single invocation
group.

A derivative group (see the subsection “Control Flow” of section 2 of the SPIR-V 1.00 Revision 4 specification) for a
fragment shader is the set of invocations generated by a single primitive (point, line, or triangle), including any helper
invocations generated by that primitive. Derivatives are undefined for a sampled image instruction if the instruction is in
flow control that is not uniform across the derivative group.

Vulkan 1.0.36 - A Specification 161 / 683

Chapter 9

Pipelines

The following figure shows a block diagram of the Vulkan pipelines. Some Vulkan commands specify geometric objects
to be drawn or computational work to be performed, while others specify state controlling how objects are handled by the
various pipeline stages, or control data transfer between memory organized as images and buffers. Commands are
effectively sent through a processing pipeline, either a graphics pipeline or a compute pipeline.

The first stage of the graphics pipeline (Input Assembler) assembles vertices to form geometric primitives such as points,
lines, and triangles, based on a requested primitive topology. In the next stage (Vertex Shader) vertices can be
transformed, computing positions and attributes for each vertex. If tessellation and/or geometry shaders are supported,
they can then generate multiple primitives from a single input primitive, possibly changing the primitive topology or
generating additional attribute data in the process.

The final resulting primitives are clipped to a clip volume in preparation for the next stage, Rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional description of a point, line segment, or
triangle. Each fragment so produced is fed to the next stage (Fragment Shader) that performs operations on individual
fragments before they finally alter the framebuffer. These operations include conditional updates into the framebuffer
based on incoming and previously stored depth values (to effect depth buffering), blending of incoming fragment colors
with stored colors, as well as masking, stenciling, and other logical operations on fragment values.

Framebuffer operations read and write the color and depth/stencil attachments of the framebuffer for a given subpass of a
render pass instance. The attachments can be used as input attachments in the fragment shader in a later subpass of the
same render pass.

The compute pipeline is a separate pipeline from the graphics pipeline, which operates on one-, two-, or
three-dimensional workgroups which can read from and write to buffer and image memory.

This ordering is meant only as a tool for describing Vulkan, not as a strict rule of how Vulkan is implemented, and we
present it only as a means to organize the various operations of the pipelines.

Legend

Color Attachment

Draw

Vertex Shader

Tessellation Control Shader

Tessellation Primitive Generator

Geometry Shader

Rasterization

Fragment Shader

Indirect Buffer Binding

Color/Blending Operations

Storage Image

Storage Texel Buffer

Storage Buffer

Sampled Image

Uniform Texel Buffer

Index Buffer Binding

Vertex Buffer Binding

Image

Buffer

Programmable Stage

Fixed Function Stage

Tessellation Evaluation Shader

Dispatch

Compute Shader

Uniform Buffer

Input Attachment

Input Assembler

Tessellation Assembler

Geometry Assembler

Primitive Assembler

Pre-Fragment Operations

Fragment Assembler

Post-Fragment Operations

Compute Assembler

Depth/Stencil Attachment

Constants

Push Constants

Descriptor Sets

Framebuffer

Figure 9.1: Block diagram of the Vulkan pipeline

Each pipeline is controlled by a monolithic object created from a description of all of the shader stages and any relevant
fixed-function stages. Linking the whole pipeline together allows the optimization of shaders based on their
input/outputs and eliminates expensive draw time state validation.

A pipeline object is bound to the device state in command buffers. Any pipeline object state that is marked as dynamic is
not applied to the device state when the pipeline is bound. Dynamic state not set by binding the pipeline object can be
modified at any time and persists for the lifetime of the command buffer, or until modified by another dynamic state

Vulkan 1.0.36 - A Specification 163 / 683

command or another pipeline bind. No state, including dynamic state, is inherited from one command buffer to another.
Only dynamic state that is required for the operations performed in the command buffer needs to be set. For example, if
blending is disabled by the pipeline state then the dynamic color blend constants do not need to be specified in the
command buffer, even if this state is marked as dynamic in the pipeline state object. If a new pipeline object is bound
with state not marked as dynamic after a previous pipeline object with that same state as dynamic, the new pipeline
object state will override the dynamic state. Modifying dynamic state that is not set as dynamic by the pipeline state
object will lead to undefined results.

Compute and graphics pipelines are each represented by VkPipeline handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipeline)

9.1 Compute Pipelines

Compute pipelines consist of a single static compute shader stage and the pipeline layout.

The compute pipeline represents a compute shader and is created by calling vkCreateComputePipelines with
module and pName selecting an entry point from a shader module, where that entry point defines a valid compute shader,
in the VkPipelineShaderStageCreateInfo structure contained within the
VkComputePipelineCreateInfo structure.

To create compute pipelines, call:

VkResult vkCreateComputePipelines(
VkDevice device,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines);

• device is the logical device that creates the compute pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the handle of a valid
pipeline cache object, in which case use of that cache is enabled for the duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is an array of VkComputePipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array in which the resulting compute pipeline objects are returned.

Valid Usage

• If the flags member of any given element of pCreateInfos contains the VK_PIPELINE_CREATE_
DERIVATIVE_BIT flag, and the basePipelineIndex member of that same element is not -1,
basePipelineIndex must be less than the index into pCreateInfos that corresponds to that element

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache handle

• pCreateInfos must be a pointer to an array of createInfoCount valid
VkComputePipelineCreateInfo structures

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pPipelines must be a pointer to an array of createInfoCount VkPipeline handles

• createInfoCount must be greater than 0

• If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkComputePipelineCreateInfo structure is defined as:

typedef struct VkComputePipelineCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineCreateFlags flags;
VkPipelineShaderStageCreateInfo stage;
VkPipelineLayout layout;
VkPipeline basePipelineHandle;
int32_t basePipelineIndex;

} VkComputePipelineCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags provides options for pipeline creation, and is of type VkPipelineCreateFlagBits.

Vulkan 1.0.36 - A Specification 165 / 683

• stage is a VkPipelineShaderStageCreateInfo describing the compute shader.

• layout is the description of binding locations used by both the pipeline and descriptor sets used with the pipeline.

• basePipelineHandle is a pipeline to derive from

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive from

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline Derivatives.

stage points to a structure of type VkPipelineShaderStageCreateInfo.

Valid Usage

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not -
1, basePipelineHandle must be VK_NULL_HANDLE

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not -
1, it must be a valid index into the calling command’s pCreateInfos parameter

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineIndex must be -1

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineHandle must be a valid VkPipeline handle

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, it must be a valid handle to a compute VkPipeline

• The stage member of stage must be VK_SHADER_STAGE_COMPUTE_BIT

• The shader code for the entry point identified by stage and the rest of the state identified by this structure must
adhere to the pipeline linking rules described in the Shader Interfaces chapter

• layout must be consistent with the layout of the compute shader specified in stage

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkPipelineCreateFlagBits values

• stage must be a valid VkPipelineShaderStageCreateInfo structure

• layout must be a valid VkPipelineLayout handle

• Both of basePipelineHandle, and layout that are valid handles must have been created, allocated, or
retrieved from the same VkDevice

The VkPipelineShaderStageCreateInfo structure is defined as:

typedef struct VkPipelineShaderStageCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineShaderStageCreateFlags flags;
VkShaderStageFlagBits stage;
VkShaderModule module;
const char* pName;
const VkSpecializationInfo* pSpecializationInfo;

} VkPipelineShaderStageCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• stage names a single pipeline stage. Bits which can be set include:

typedef enum VkShaderStageFlagBits {
VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 0x00000004,
VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,
VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,
VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,
VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,
VK_SHADER_STAGE_ALL = 0x7FFFFFFF,

} VkShaderStageFlagBits;

• module is a VkShaderModule object that contains the shader for this stage.

• pName is a pointer to a null-terminated UTF-8 string specifying the entry point name of the shader for this stage.

• pSpecializationInfo is a pointer to VkSpecializationInfo, as described in Specialization Constants, and
can be NULL.

Valid Usage

• If the geometry shaders feature is not enabled, stage must not be VK_SHADER_STAGE_GEOMETRY_BIT

• If the tessellation shaders feature is not enabled, stage must not be VK_SHADER_STAGE_TESSELLATION_
CONTROL_BIT or VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

• stage must not be VK_SHADER_STAGE_ALL_GRAPHICS, or VK_SHADER_STAGE_ALL

• pName must be the name of an OpEntryPoint in module with an execution model that matches stage

• If the identified entry point includes any variable in its interface that is declared with the ClipDistance
BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxClipDistances

Vulkan 1.0.36 - A Specification 167 / 683

• If the identified entry point includes any variable in its interface that is declared with the CullDistance
BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxCullDistances

• If the identified entry point includes any variables in its interface that are declared with the ClipDistance or
CullDistance BuiltIn decoration, those variables must not have array sizes which sum to more than
VkPhysicalDeviceLimits::maxCombinedClipAndCullDistances

• If the identified entry point includes any variable in its interface that is declared with the SampleMask
BuiltIn decoration, that variable must not have an array size greater than
VkPhysicalDeviceLimits::maxSampleMaskWords

• If stage is VK_SHADER_STAGE_VERTEX_BIT, the identified entry point must not include any input variable
in its interface that is decorated with CullDistance

• If stage is VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT or VK_SHADER_STAGE_
TESSELLATION_EVALUATION_BIT, and the identified entry point has an OpExecutionMode instruction
that specifies a patch size with OutputVertices, the patch size must be greater than 0 and less than or equal
to VkPhysicalDeviceLimits::maxTessellationPatchSize

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction that specifies a maximum output vertex count that is greater than 0 and less
than or equal to VkPhysicalDeviceLimits::maxGeometryOutputVertices

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, the identified entry point must have an
OpExecutionMode instruction that specifies an invocation count that is greater than 0 and less than or equal to
VkPhysicalDeviceLimits::maxGeometryShaderInvocations

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to Layer for any
primitive, it must write the same value to Layer for all vertices of a given primitive

• If stage is VK_SHADER_STAGE_GEOMETRY_BIT, and the identified entry point writes to ViewportIndex
for any primitive, it must write the same value to ViewportIndex for all vertices of a given primitive

• If stage is VK_SHADER_STAGE_FRAGMENT_BIT, the identified entry point must not include any output
variables in its interface decorated with CullDistance

• If stage is VK_SHADER_STAGE_FRAGMENT_BIT, and the identified entry point writes to FragDepth in any
execution path, it must write to FragDepth in all execution paths

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• stage must be a valid VkShaderStageFlagBits value

• module must be a valid VkShaderModule handle

• pName must be a null-terminated string

• If pSpecializationInfo is not NULL, pSpecializationInfo must be a pointer to a valid
VkSpecializationInfo structure

9.2 Graphics Pipelines

Graphics pipelines consist of multiple shader stages, multiple fixed-function pipeline stages, and a pipeline layout.

To create graphics pipelines, call:

VkResult vkCreateGraphicsPipelines(
VkDevice device,
VkPipelineCache pipelineCache,
uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines);

• device is the logical device that creates the graphics pipelines.

• pipelineCache is either VK_NULL_HANDLE, indicating that pipeline caching is disabled; or the handle of a valid
pipeline cache object, in which case use of that cache is enabled for the duration of the command.

• createInfoCount is the length of the pCreateInfos and pPipelines arrays.

• pCreateInfos is an array of VkGraphicsPipelineCreateInfo structures.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelines is a pointer to an array in which the resulting graphics pipeline objects are returned.

The VkGraphicsPipelineCreateInfo structure includes an array of shader create info structures containing all
the desired active shader stages, as well as creation info to define all relevant fixed-function stages, and a pipeline layout.

Valid Usage

• If the flags member of any given element of pCreateInfos contains the VK_PIPELINE_CREATE_
DERIVATIVE_BIT flag, and the basePipelineIndex member of that same element is not -1,
basePipelineIndex must be less than the index into pCreateInfos that corresponds to that element

Vulkan 1.0.36 - A Specification 169 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache handle

• pCreateInfos must be a pointer to an array of createInfoCount valid
VkGraphicsPipelineCreateInfo structures

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pPipelines must be a pointer to an array of createInfoCount VkPipeline handles

• createInfoCount must be greater than 0

• If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkGraphicsPipelineCreateInfo structure is defined as:

typedef struct VkGraphicsPipelineCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineCreateFlags flags;
uint32_t stageCount;
const VkPipelineShaderStageCreateInfo* pStages;
const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
const VkPipelineTessellationStateCreateInfo* pTessellationState;
const VkPipelineViewportStateCreateInfo* pViewportState;
const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
const VkPipelineDynamicStateCreateInfo* pDynamicState;
VkPipelineLayout layout;
VkRenderPass renderPass;
uint32_t subpass;
VkPipeline basePipelineHandle;

int32_t basePipelineIndex;
} VkGraphicsPipelineCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask of VkPipelineCreateFlagBits controlling how the pipeline will be generated, as described
below.

• stageCount is the number of entries in the pStages array.

• pStages is an array of size stageCount structures of type VkPipelineShaderStageCreateInfo describing
the set of the shader stages to be included in the graphics pipeline.

• pVertexInputState is a pointer to an instance of the VkPipelineVertexInputStateCreateInfo
structure.

• pInputAssemblyState is a pointer to an instance of the VkPipelineInputAssemblyStateCreateInfo
structure which determines input assembly behavior, as described in Drawing Commands.

• pTessellationState is a pointer to an instance of the VkPipelineTessellationStateCreateInfo
structure, or NULL if the pipeline does not include a tessellation control shader stage and tessellation evaluation shader
stage.

• pViewportState is a pointer to an instance of the VkPipelineViewportStateCreateInfo structure, or
NULL if the pipeline has rasterization disabled.

• pRasterizationState is a pointer to an instance of the VkPipelineRasterizationStateCreateInfo
structure.

• pMultisampleState is a pointer to an instance of the VkPipelineMultisampleStateCreateInfo, or
NULL if the pipeline has rasterization disabled.

• pDepthStencilState is a pointer to an instance of the VkPipelineDepthStencilStateCreateInfo
structure, or NULL if the pipeline has rasterization disabled or if the subpass of the render pass the pipeline is created
against does not use a depth/stencil attachment.

• pColorBlendState is a pointer to an instance of the VkPipelineColorBlendStateCreateInfo structure,
or NULL if the pipeline has rasterization disabled or if the subpass of the render pass the pipeline is created against
does not use any color attachments.

• pDynamicState is a pointer to VkPipelineDynamicStateCreateInfo and is used to indicate which
properties of the pipeline state object are dynamic and can be changed independently of the pipeline state. This can be
NULL, which means no state in the pipeline is considered dynamic.

• layout is the description of binding locations used by both the pipeline and descriptor sets used with the pipeline.

• renderPass is a handle to a render pass object describing the environment in which the pipeline will be used; the
pipeline must only be used with an instance of any render pass compatible with the one provided. See Render Pass
Compatibility for more information.

• subpass is the index of the subpass in the render pass where this pipeline will be used.

• basePipelineHandle is a pipeline to derive from.

• basePipelineIndex is an index into the pCreateInfos parameter to use as a pipeline to derive from.

Vulkan 1.0.36 - A Specification 171 / 683

The parameters basePipelineHandle and basePipelineIndex are described in more detail in Pipeline Derivatives.

pStages points to an array of VkPipelineShaderStageCreateInfo structures, which were previously
described in Compute Pipelines.

Bits which can be set in flags are:

typedef enum VkPipelineCreateFlagBits {
VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT = 0x00000001,
VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT = 0x00000002,
VK_PIPELINE_CREATE_DERIVATIVE_BIT = 0x00000004,

} VkPipelineCreateFlagBits;

• VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT specifies that the created pipeline will not be
optimized. Using this flag may reduce the time taken to create the pipeline.

• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT specifies that the pipeline to be created is allowed to be
the parent of a pipeline that will be created in a subsequent call to vkCreateGraphicsPipelines.

• VK_PIPELINE_CREATE_DERIVATIVE_BIT specifies that the pipeline to be created will be a child of a previously
created parent pipeline.

It is valid to set both VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT and VK_PIPELINE_CREATE_
DERIVATIVE_BIT. This allows a pipeline to be both a parent and possibly a child in a pipeline hierarchy. See Pipeline
Derivatives for more information.

pDynamicState points to a structure of type VkPipelineDynamicStateCreateInfo.

Valid Usage

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not -
1, basePipelineHandle must be VK_NULL_HANDLE

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineIndex is not -
1, it must be a valid index into the calling command’s pCreateInfos parameter

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineIndex must be -1

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, basePipelineHandle must be a valid VkPipeline handle

• If flags contains the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag, and basePipelineHandle is not
VK_NULL_HANDLE, it must be a valid handle to a graphics VkPipeline

• The stage member of each element of pStages must be unique

• The stage member of one element of pStages must be VK_SHADER_STAGE_VERTEX_BIT

• The stage member of any given element of pStages must not be VK_SHADER_STAGE_COMPUTE_BIT

• If pStages includes a tessellation control shader stage, it must include a tessellation evaluation shader stage

• If pStages includes a tessellation evaluation shader stage, it must include a tessellation control shader stage

• If pStages includes a tessellation control shader stage and a tessellation evaluation shader stage,
pTessellationState must not be NULL

• If pStages includes tessellation shader stages, the shader code of at least one stage must contain an
OpExecutionMode instruction that specifies the type of subdivision in the pipeline

• If pStages includes tessellation shader stages, and the shader code of both stages contain an
OpExecutionMode instruction that specifies the type of subdivision in the pipeline, they must both specify the
same subdivision mode

• If pStages includes tessellation shader stages, the shader code of at least one stage must contain an
OpExecutionMode instruction that specifies the output patch size in the pipeline

• If pStages includes tessellation shader stages, and the shader code of both contain an OpExecutionMode
instruction that specifies the out patch size in the pipeline, they must both specify the same patch size

• If pStages includes tessellation shader stages, the topology member of pInputAssembly must be VK_
PRIMITIVE_TOPOLOGY_PATCH_LIST

• If the topology member of pInputAssembly is VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, pStages
must include tessellation shader stages

• If pStages includes a geometry shader stage, and does not include any tessellation shader stages, its shader code
must contain an OpExecutionMode instruction that specifies an input primitive type that is compatible with the
primitive topology specified in pInputAssembly

• If pStages includes a geometry shader stage, and also includes tessellation shader stages, its shader code must
contain an OpExecutionMode instruction that specifies an input primitive type that is compatible with the
primitive topology that is output by the tessellation stages

• If pStages includes a fragment shader stage and a geometry shader stage, and the fragment shader code reads
from an input variable that is decorated with PrimitiveID, then the geometry shader code must write to a
matching output variable, decorated with PrimitiveID, in all execution paths

• If pStages includes a fragment shader stage, its shader code must not read from any input attachment that is
defined as VK_ATTACHMENT_UNUSED in subpass

• The shader code for the entry points identified by pStages, and the rest of the state identified by this structure
must adhere to the pipeline linking rules described in the Shader Interfaces chapter

• If subpass uses a depth/stencil attachment in renderpass that has a layout of VK_IMAGE_LAYOUT_DEPTH_
STENCIL_READ_ONLY_OPTIMAL in the VkAttachmentReference defined by subpass, and
pDepthStencilState is not NULL, the depthWriteEnable member of pDepthStencilState must be VK_
FALSE

• If subpass uses a depth/stencil attachment in renderpass that has a layout of VK_IMAGE_LAYOUT_DEPTH_
STENCIL_READ_ONLY_OPTIMAL in the VkAttachmentReference defined by subpass, and
pDepthStencilState is not NULL, the failOp, passOp and depthFailOp members of each of the front
and back members of pDepthStencilState must be VK_STENCIL_OP_KEEP

• If pColorBlendState is not NULL, the blendEnable member of each element of the pAttachment member
of pColorBlendState must be VK_FALSE if the format of the attachment referred to in subpass of
renderPass does not support color blend operations, as specified by the VK_FORMAT_FEATURE_COLOR_
ATTACHMENT_BLEND_BIT flag in VkFormatProperties::linearTilingFeatures or

Vulkan 1.0.36 - A Specification 173 / 683

VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

• If pColorBlendState is not NULL, The attachmentCount member of pColorBlendState must be equal to
the colorAttachmentCount used to create subpass

• If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_VIEWPORT, the
pViewports member of pViewportState must be a pointer to an array of
pViewportState::viewportCount VkViewport structures

• If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_SCISSOR, the
pScissors member of pViewportState must be a pointer to an array of pViewportState::scissorCount
VkRect2D structures

• If the wide lines feature is not enabled, and no element of the pDynamicStates member of pDynamicState is
VK_DYNAMIC_STATE_LINE_WIDTH, the lineWidth member of pRasterizationState must be 1.0

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, pViewportState
must be a pointer to a valid VkPipelineViewportStateCreateInfo structure

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, pMultisampleState
must be a pointer to a valid VkPipelineMultisampleStateCreateInfo structure

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and subpass uses a
depth/stencil attachment, pDepthStencilState must be a pointer to a valid
VkPipelineDepthStencilStateCreateInfo structure

• If the rasterizerDiscardEnable member of pRasterizationState is VK_FALSE, and subpass uses
color attachments, pColorBlendState must be a pointer to a valid
VkPipelineColorBlendStateCreateInfo structure

• If the depth bias clamping feature is not enabled, no element of the pDynamicStates member of
pDynamicState is VK_DYNAMIC_STATE_DEPTH_BIAS, and the depthBiasEnable member of
pDepthStencil is VK_TRUE, the depthBiasClamp member of pDepthStencil must be 0.0

• If no element of the pDynamicStates member of pDynamicState is VK_DYNAMIC_STATE_DEPTH_
BOUNDS, and the depthBoundsTestEnable member of pDepthStencil is VK_TRUE, the minDepthBounds
and maxDepthBounds members of pDepthStencil must be between 0.0 and 1.0, inclusive

• layout must be consistent with all shaders specified in pStages

• If subpass uses color and/or depth/stencil attachments, then the rasterizationSamples member of
pMultisampleState must be the same as the sample count for those subpass attachments

• If subpass does not use any color and/or depth/stencil attachments, then the rasterizationSamples member
of pMultisampleState must follow the rules for a zero-attachment subpass

• subpass must be a valid subpass within renderpass

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkPipelineCreateFlagBits values

• pStages must be a pointer to an array of stageCount valid VkPipelineShaderStageCreateInfo
structures

• pVertexInputState must be a pointer to a valid VkPipelineVertexInputStateCreateInfo
structure

• pInputAssemblyState must be a pointer to a valid VkPipelineInputAssemblyStateCreateInfo
structure

• pRasterizationState must be a pointer to a valid VkPipelineRasterizationStateCreateInfo
structure

• If pDynamicState is not NULL, pDynamicState must be a pointer to a valid
VkPipelineDynamicStateCreateInfo structure

• layout must be a valid VkPipelineLayout handle

• renderPass must be a valid VkRenderPass handle

• stageCount must be greater than 0

• Each of basePipelineHandle, layout, and renderPass that are valid handles must have been created,
allocated, or retrieved from the same VkDevice

The VkPipelineDynamicStateCreateInfo structure is defined as:

typedef struct VkPipelineDynamicStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineDynamicStateCreateFlags flags;
uint32_t dynamicStateCount;
const VkDynamicState* pDynamicStates;

} VkPipelineDynamicStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• dynamicStateCount is the number of elements in the pDynamicStates array.

• pDynamicStates is an array of VkDynamicState enums which indicate which pieces of pipeline state will use the
values from dynamic state commands rather than from the pipeline state creation info.

Vulkan 1.0.36 - A Specification 175 / 683

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• pDynamicStates must be a pointer to an array of dynamicStateCount valid VkDynamicState values

• dynamicStateCount must be greater than 0

The source of difference pieces of dynamic state is determined by the
VkPipelineDynamicStateCreateInfo::pDynamicStates property of the currently active pipeline, which
takes the following values:

typedef enum VkDynamicState {
VK_DYNAMIC_STATE_VIEWPORT = 0,
VK_DYNAMIC_STATE_SCISSOR = 1,
VK_DYNAMIC_STATE_LINE_WIDTH = 2,
VK_DYNAMIC_STATE_DEPTH_BIAS = 3,
VK_DYNAMIC_STATE_BLEND_CONSTANTS = 4,
VK_DYNAMIC_STATE_DEPTH_BOUNDS = 5,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK = 6,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK = 7,
VK_DYNAMIC_STATE_STENCIL_REFERENCE = 8,

} VkDynamicState;

• VK_DYNAMIC_STATE_VIEWPORT indicates that the pViewports state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetViewport before any draw commands. The number of viewports used by a pipeline is still specified by
the viewportCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_SCISSOR indicates that the pScissors state in
VkPipelineViewportStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetScissor before any draw commands. The number of scissor rectangles used by a pipeline is still
specified by the scissorCount member of VkPipelineViewportStateCreateInfo.

• VK_DYNAMIC_STATE_LINE_WIDTH indicates that the lineWidth state in
VkPipelineRasterizationStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetLineWidth before any draw commands that generate line primitives for the rasterizer.

• VK_DYNAMIC_STATE_DEPTH_BIAS indicates that the depthBiasConstantFactor, depthBiasClamp and
depthBiasSlopeFactor states in VkPipelineRasterizationStateCreateInfo will be ignored and must
be set dynamically with vkCmdSetDepthBias before any draws are performed with depthBiasEnable in
VkPipelineRasterizationStateCreateInfo set to VK_TRUE.

• VK_DYNAMIC_STATE_BLEND_CONSTANTS indicates that the blendConstants state in
VkPipelineColorBlendStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetBlendConstants before any draws are performed with a pipeline state with
VkPipelineColorBlendAttachmentState member blendEnable set to VK_TRUE and any of the blend
functions using a constant blend color.

• VK_DYNAMIC_STATE_DEPTH_BOUNDS indicates that the minDepthBounds and maxDepthBounds states of
VkPipelineDepthStencilStateCreateInfo will be ignored and must be set dynamically with
vkCmdSetDepthBounds before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member depthBoundsTestEnable set to VK_TRUE.

• VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK indicates that the compareMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilCompareMask before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_WRITE_MASK indicates that the writeMask state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilWriteMask before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

• VK_DYNAMIC_STATE_STENCIL_REFERENCE indicates that the reference state in
VkPipelineDepthStencilStateCreateInfo for both front and back will be ignored and must be set
dynamically with vkCmdSetStencilReference before any draws are performed with a pipeline state with
VkPipelineDepthStencilStateCreateInfo member stencilTestEnable set to VK_TRUE

9.2.1 Valid Combinations of Stages for Graphics Pipelines

If tessellation shader stages are omitted, the tessellation shading and fixed-function stages of the pipeline are skipped.

If a geometry shader is omitted, the geometry shading stage is skipped.

If a fragment shader is omitted, the results of fragment processing are undefined. Specifically, any fragment color outputs
are considered to have undefined values, and the fragment depth is considered to be unmodified. This can be useful for
depth-only rendering.

Presence of a shader stage in a pipeline is indicated by including a valid VkPipelineShaderStageCreateInfo
with module and pName selecting an entry point from a shader module, where that entry point is valid for the stage
specified by stage.

Presence of some of the fixed-function stages in the pipeline is implicitly derived from enabled shaders and provided
state. For example, the fixed-function tessellator is always present when the pipeline has valid Tessellation Control and
Tessellation Evaluation shaders.

FOR EXAMPLE:

• Depth/stencil-only rendering in a subpass with no color attachments

– Active Pipeline Shader Stages

* Vertex Shader

– Required: Fixed-Function Pipeline Stages

* VkPipelineVertexInputStateCreateInfo

* VkPipelineInputAssemblyStateCreateInfo

* VkPipelineViewportStateCreateInfo

* VkPipelineRasterizationStateCreateInfo

* VkPipelineMultisampleStateCreateInfo

* VkPipelineDepthStencilStateCreateInfo

• Color-only rendering in a subpass with no depth/stencil attachment

Vulkan 1.0.36 - A Specification 177 / 683

– Active Pipeline Shader Stages

* Vertex Shader

* Fragment Shader

– Required: Fixed-Function Pipeline Stages

* VkPipelineVertexInputStateCreateInfo

* VkPipelineInputAssemblyStateCreateInfo

* VkPipelineViewportStateCreateInfo

* VkPipelineRasterizationStateCreateInfo

* VkPipelineMultisampleStateCreateInfo

* VkPipelineColorBlendStateCreateInfo

• Rendering pipeline with tessellation and geometry shaders

– Active Pipeline Shader Stages

* Vertex Shader

* Tessellation Control Shader

* Tessellation Evaluation Shader

* Geometry Shader

* Fragment Shader

– Required: Fixed-Function Pipeline Stages

* VkPipelineVertexInputStateCreateInfo

* VkPipelineInputAssemblyStateCreateInfo

* VkPipelineTessellationStateCreateInfo

* VkPipelineViewportStateCreateInfo

* VkPipelineRasterizationStateCreateInfo

* VkPipelineMultisampleStateCreateInfo

* VkPipelineDepthStencilStateCreateInfo

* VkPipelineColorBlendStateCreateInfo

9.3 Pipeline destruction

To destroy a graphics or compute pipeline, call:

void vkDestroyPipeline(
VkDevice device,
VkPipeline pipeline,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline.

• pipeline is the handle of the pipeline to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to pipeline must have completed execution

• If VkAllocationCallbacks were provided when pipeline was created, a compatible set of callbacks must
be provided here

• If no VkAllocationCallbacks were provided when pipeline was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipeline is not VK_NULL_HANDLE, pipeline must be a valid VkPipeline handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If pipeline is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to pipeline must be externally synchronized

9.4 Multiple Pipeline Creation

Multiple pipelines can be created simultaneously by passing an array of VkGraphicsPipelineCreateInfo or
VkComputePipelineCreateInfo structures into the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands, respectively. Applications can group together similar pipelines to be
created in a single call, and implementations are encouraged to look for reuse opportunities within a group-create.

When an application attempts to create many pipelines in a single command, it is possible that some subset may fail
creation. In that case, the corresponding entries in the pPipelines output array will be filled with VK_NULL_HANDLE
values. If any pipeline fails creation (for example, due to out of memory errors), the vkCreate*Pipelines
commands will return an error code. The implementation will attempt to create all pipelines, and only return VK_NULL_
HANDLE values for those that actually failed.

Vulkan 1.0.36 - A Specification 179 / 683

9.5 Pipeline Derivatives

A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent are expected to have
much commonality. The goal of derivative pipelines is that they be cheaper to create using the parent as a starting point,
and that it be more efficient (on either host or device) to switch/bind between children of the same parent.

A derivative pipeline is created by setting the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag in the
Vk*PipelineCreateInfo structure. If this is set, then exactly one of basePipelineHandle or
basePipelineIndex members of the structure must have a valid handle/index, and indicates the parent pipeline. If
basePipelineHandle is used, the parent pipeline must have already been created. If basePipelineIndex is used,
then the parent is being created in the same command. VK_NULL_HANDLE acts as the invalid handle for
basePipelineHandle, and -1 is the invalid index for basePipelineIndex. If basePipelineIndex is used, the
base pipeline must appear earlier in the array. The base pipeline must have been created with the VK_PIPELINE_
CREATE_ALLOW_DERIVATIVES_BIT flag set.

9.6 Pipeline Cache

Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and between runs of an
application. Reuse between pipelines is achieved by passing the same pipeline cache object when creating multiple
related pipelines. Reuse across runs of an application is achieved by retrieving pipeline cache contents in one run of an
application, saving the contents, and using them to preinitialize a pipeline cache on a subsequent run. The contents of the
pipeline cache objects are managed by the implementation. Applications can manage the host memory consumed by a
pipeline cache object and control the amount of data retrieved from a pipeline cache object.

Pipeline cache objects are represented by VkPipelineCache handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineCache)

To create pipeline cache objects, call:

VkResult vkCreatePipelineCache(
VkDevice device,
const VkPipelineCacheCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineCache* pPipelineCache);

• device is the logical device that creates the pipeline cache object.

• pCreateInfo is a pointer to a VkPipelineCacheCreateInfo structure that contains the initial parameters for
the pipeline cache object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineCache is a pointer to a VkPipelineCache handle in which the resulting pipeline cache object is
returned.

Note
Applications can track and manage the total host memory size of a pipeline cache object using the pAllocator.
Applications can limit the amount of data retrieved from a pipeline cache object in vkGetPipelineCacheD
ata. Implementations should not internally limit the total number of entries added to a pipeline cache object or
the total host memory consumed.

Once created, a pipeline cache can be passed to the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands. If the pipeline cache passed into these commands is not VK_NULL_
HANDLE, the implementation will query it for possible reuse opportunities and update it with new content. The use of the
pipeline cache object in these commands is internally synchronized, and the same pipeline cache object can be used in
multiple threads simultaneously.

Note
Implementations should make every effort to limit any critical sections to the actual accesses to the cache,
which is expected to be significantly shorter than the duration of the vkCreateGraphicsPipelines and
vkCreateComputePipelines commands.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkPipelineCacheCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pPipelineCache must be a pointer to a VkPipelineCache handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineCacheCreateInfo structure is defined as:

typedef struct VkPipelineCacheCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineCacheCreateFlags flags;
size_t initialDataSize;
const void* pInitialData;

} VkPipelineCacheCreateInfo;

Vulkan 1.0.36 - A Specification 181 / 683

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• initialDataSize is the number of bytes in pInitialData. If initialDataSize is zero, the pipeline cache will
initially be empty.

• pInitialData is a pointer to previously retrieved pipeline cache data. If the pipeline cache data is incompatible (as
defined below) with the device, the pipeline cache will be initially empty. If initialDataSize is zero,
pInitialData is ignored.

Valid Usage

• If initialDataSize is not 0, it must be equal to the size of pInitialData, as returned by
vkGetPipelineCacheData when pInitialData was originally retrieved

• If initialDataSize is not 0, pInitialData must have been retrieved from a previous call to
vkGetPipelineCacheData

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If initialDataSize is not 0, pInitialData must be a pointer to an array of initialDataSize bytes

Pipeline cache objects can be merged using the command:

VkResult vkMergePipelineCaches(
VkDevice device,
VkPipelineCache dstCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches);

• device is the logical device that owns the pipeline cache objects.

• dstCache is the handle of the pipeline cache to merge results into.

• srcCacheCount is the length of the pSrcCaches array.

• pSrcCaches is an array of pipeline cache handles, which will be merged into dstCache. The previous contents of
dstCache are included after the merge.

Note
The details of the merge operation are implementation dependent, but implementations should merge the con-
tents of the specified pipelines and prune duplicate entries.

Valid Usage

• dstCache must not appear in the list of source caches

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• dstCache must be a valid VkPipelineCache handle

• pSrcCaches must be a pointer to an array of srcCacheCount valid VkPipelineCache handles

• srcCacheCount must be greater than 0

• dstCache must have been created, allocated, or retrieved from device

• Each element of pSrcCaches must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to dstCache must be externally synchronized

Vulkan 1.0.36 - A Specification 183 / 683

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Data can be retrieved from a pipeline cache object using the command:

VkResult vkGetPipelineCacheData(
VkDevice device,
VkPipelineCache pipelineCache,
size_t* pDataSize,
void* pData);

• device is the logical device that owns the pipeline cache.

• pipelineCache is the pipeline cache to retrieve data from.

• pDataSize is a pointer to a value related to the amount of data in the pipeline cache, as described below.

• pData is either NULL or a pointer to a buffer.

If pData is NULL, then the maximum size of the data that can be retrieved from the pipeline cache, in bytes, is returned
in pDataSize. Otherwise, pDataSize must point to a variable set by the user to the size of the buffer, in bytes, pointed
to by pData, and on return the variable is overwritten with the amount of data actually written to pData.

If pDataSize is less than the maximum size that can be retrieved by the pipeline cache, at most pDataSize bytes will
be written to pData, and vkGetPipelineCacheData will return VK_INCOMPLETE. Any data written to pData is
valid and can be provided as the pInitialData member of the VkPipelineCacheCreateInfo structure passed
to vkCreatePipelineCache.

Two calls to vkGetPipelineCacheData with the same parameters must retrieve the same data unless a command
that modifies the contents of the cache is called between them.

Applications can store the data retrieved from the pipeline cache, and use these data, possibly in a future run of the
application, to populate new pipeline cache objects. The results of pipeline compiles, however, may depend on the
vendor ID, device ID, driver version, and other details of the device. To enable applications to detect when previously
retrieved data is incompatible with the device, the initial bytes written to pData must be a header consisting of the
following members:

Table 9.1: Layout for pipeline cache header version VK_PIPELINE_
CACHE_HEADER_VERSION_ONE

Offset Size Meaning
0 4 length in bytes of the entire pipeline cache header written as a

stream of bytes, with the least significant byte first

Table 9.1: (continued)

Offset Size Meaning
4 4 a VkPipelineCacheHeaderVersion value written as a

stream of bytes, with the least significant byte first
8 4 a vendor ID equal to

VkPhysicalDeviceProperties::vendorID written as a
stream of bytes, with the least significant byte first

12 4 a device ID equal to
VkPhysicalDeviceProperties::deviceID written as a
stream of bytes, with the least significant byte first

16 VK_UUID_SIZE a pipeline cache ID equal to
VkPhysicalDeviceProperties::pipelineCacheUUID

The first four bytes encode the length of the entire pipeline header, in bytes. This value includes all fields in the header
including the pipeline cache version field and the size of the length field.

The next four bytes encode the pipeline cache version. This field is interpreted as a
VkPipelineCacheHeaderVersion value, and must have one of the following values:

typedef enum VkPipelineCacheHeaderVersion {
VK_PIPELINE_CACHE_HEADER_VERSION_ONE = 1,

} VkPipelineCacheHeaderVersion;

A consumer of the pipeline cache should use the cache version to interpret the remainder of the cache header.

If pDataSize is less than what is necessary to store this header, nothing will be written to pData and zero will be
written to pDataSize.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pipelineCache must be a valid VkPipelineCache handle

• pDataSize must be a pointer to a size_t value

• If the value referenced by pDataSize is not 0, and pData is not NULL, pData must be a pointer to an array of
pDataSize bytes

• pipelineCache must have been created, allocated, or retrieved from device

Return Codes

Vulkan 1.0.36 - A Specification 185 / 683

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To destroy a pipeline cache, call:

void vkDestroyPipelineCache(
VkDevice device,
VkPipelineCache pipelineCache,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline cache object.

• pipelineCache is the handle of the pipeline cache to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• If VkAllocationCallbacks were provided when pipelineCache was created, a compatible set of
callbacks must be provided here

• If no VkAllocationCallbacks were provided when pipelineCache was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineCache is not VK_NULL_HANDLE, pipelineCache must be a valid VkPipelineCache handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If pipelineCache is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to pipelineCache must be externally synchronized

9.7 Specialization Constants

Specialization constants are a mechanism whereby constants in a SPIR-V module can have their constant value specified
at the time the VkPipeline is created. This allows a SPIR-V module to have constants that can be modified while
executing an application that uses the Vulkan API.

Note
Specialization constants are useful to allow a compute shader to have its local workgroup size changed at
runtime by the user, for example.

Each instance of the VkPipelineShaderStageCreateInfo structure contains a parameter
pSpecializationInfo, which can be NULL to indicate no specialization constants, or point to a
VkSpecializationInfo structure.

The VkSpecializationInfo structure is defined as:

typedef struct VkSpecializationInfo {
uint32_t mapEntryCount;
const VkSpecializationMapEntry* pMapEntries;
size_t dataSize;
const void* pData;

} VkSpecializationInfo;

• mapEntryCount is the number of entries in the pMapEntries array.

• pMapEntries is a pointer to an array of VkSpecializationMapEntry which maps constant IDs to offsets in
pData.

• dataSize is the byte size of the pData buffer.

• pData contains the actual constant values to specialize with.

pMapEntries points to a structure of type VkSpecializationMapEntry.

Valid Usage

Vulkan 1.0.36 - A Specification 187 / 683

• The offset member of any given element of pMapEntries must be less than dataSize

• For any given element of pMapEntries, size must be less than or equal to dataSize minus offset

• If mapEntryCount is not 0, pMapEntries must be a pointer to an array of mapEntryCount valid
VkSpecializationMapEntry structures

Valid Usage (Implicit)

• If dataSize is not 0, pData must be a pointer to an array of dataSize bytes

The VkSpecializationMapEntry structure is defined as:

typedef struct VkSpecializationMapEntry {
uint32_t constantID;
uint32_t offset;
size_t size;

} VkSpecializationMapEntry;

• constantID is the ID of the specialization constant in SPIR-V.

• offset is the byte offset of the specialization constant value within the supplied data buffer.

• size is the byte size of the specialization constant value within the supplied data buffer.

If a constantID value is not a specialization constant ID used in the shader, that map entry does not affect the behavior
of the pipeline.

Valid Usage

• For a constantID specialization constant declared in a shader, size must match the byte size of the
constantID. If the specialization constant is of type boolean, size must be the byte size of VkBool32

In human readable SPIR-V:

OpDecorate %x SpecId 13 ; decorate .x component of WorkgroupSize with ID 13
OpDecorate %y SpecId 42 ; decorate .y component of WorkgroupSize with ID 42
OpDecorate %z SpecId 3 ; decorate .z component of WorkgroupSize with ID 3
OpDecorate %wgsize BuiltIn WorkgroupSize ; decorate WorkgroupSize onto constant
%i32 = OpTypeInt 32 0 ; declare an unsigned 32-bit type

%uvec3 = OpTypeVector %i32 3 ; declare a 3 element vector type of unsigned 32-bit
%x = OpSpecConstant %i32 1 ; declare the .x component of WorkgroupSize
%y = OpSpecConstant %i32 1 ; declare the .y component of WorkgroupSize
%z = OpSpecConstant %i32 1 ; declare the .z component of WorkgroupSize
%wgsize = OpSpecConstantComposite %uvec3 %x %y %z ; declare WorkgroupSize

From the above we have three specialization constants, one for each of the x, y & z elements of the WorkgroupSize
vector.

Now to specialize the above via the specialization constants mechanism:

const VkSpecializationMapEntry entries[] =
{

{
13, // constantID
0 * sizeof(uint32_t), // offset
sizeof(uint32_t) // size

},
{

42, // constantID
1 * sizeof(uint32_t), // offset
sizeof(uint32_t) // size

},
{

3, // constantID
2 * sizeof(uint32_t), // offset
sizeof(uint32_t) // size

}
};

const uint32_t data[] = { 16, 8, 4 }; // our workgroup size is 16x8x4

const VkSpecializationInfo info =
{

3, // mapEntryCount
entries, // pMapEntries
3 * sizeof(uint32_t), // dataSize
data, // pData

};

Then when calling vkCreateComputePipelines, and passing the VkSpecializationInfo we defined as the
pSpecializationInfo parameter of VkPipelineShaderStageCreateInfo, we will create a compute pipeline
with the runtime specified local workgroup size.

Another example would be that an application has a SPIR-V module that has some platform-dependent constants they
wish to use.

In human readable SPIR-V:

OpDecorate %1 SpecId 0 ; decorate our signed 32-bit integer constant
OpDecorate %2 SpecId 12 ; decorate our 32-bit floating-point constant
%i32 = OpTypeInt 32 1 ; declare a signed 32-bit type
%float = OpTypeFloat 32 ; declare a 32-bit floating-point type
%1 = OpSpecConstant %i32 -1 ; some signed 32-bit integer constant
%2 = OpSpecConstant %float 0.5 ; some 32-bit floating-point constant

From the above we have two specialization constants, one is a signed 32-bit integer and the second is a 32-bit
floating-point.

Vulkan 1.0.36 - A Specification 189 / 683

Now to specialize the above via the specialization constants mechanism:

struct SpecializationData {
int32_t data0;
float data1;

};

const VkSpecializationMapEntry entries[] =
{

{
0, // constantID
offsetof(SpecializationData, data0), // offset
sizeof(SpecializationData::data0) // size

},
{

12, // constantID
offsetof(SpecializationData, data1), // offset
sizeof(SpecializationData::data1) // size

}
};

SpecializationData data;
data.data0 = -42; // set the data for the 32-bit integer
data.data1 = 42.0f; // set the data for the 32-bit floating-point

const VkSpecializationInfo info =
{

2, // mapEntryCount
entries, // pMapEntries
sizeof(data), // dataSize
&data, // pData

};

It is legal for a SPIR-V module with specializations to be compiled into a pipeline where no specialization info was
provided. SPIR-V specialization constants contain default values such that if a specialization is not provided, the default
value will be used. In the examples above, it would be valid for an application to only specialize some of the
specialization constants within the SPIR-V module, and let the other constants use their default values encoded within
the OpSpecConstant declarations.

9.8 Pipeline Binding

Once a pipeline has been created, it can be bound to the command buffer using the command:

void vkCmdBindPipeline(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline);

• commandBuffer is the command buffer that the pipeline will be bound to.

• pipelineBindPoint specifies the bind point, and must have one of the values

typedef enum VkPipelineBindPoint {
VK_PIPELINE_BIND_POINT_GRAPHICS = 0,

VK_PIPELINE_BIND_POINT_COMPUTE = 1,
} VkPipelineBindPoint;

specifying whether pipeline will be bound as a compute (VK_PIPELINE_BIND_POINT_COMPUTE) or graphics
(VK_PIPELINE_BIND_POINT_GRAPHICS) pipeline. There are separate bind points for each of graphics and
compute, so binding one does not disturb the other.

• pipeline is the pipeline to be bound.

Once bound, a pipeline binding affects subsequent graphics or compute commands in the command buffer until a
different pipeline is bound to the bind point. The pipeline bound to VK_PIPELINE_BIND_POINT_COMPUTE controls
the behavior of vkCmdDispatch and vkCmdDispatchIndirect. The pipeline bound to VK_PIPELINE_BIND_
POINT_GRAPHICS controls the behavior of vkCmdDraw, vkCmdDrawIndexed, vkCmdDrawIndirect, and
vkCmdDrawIndexedIndirect. No other commands are affected by the pipeline state.

Valid Usage

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, the VkCommandPool that
commandBuffer was allocated from must support compute operations

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_COMPUTE, pipeline must be a compute pipeline

• If pipelineBindPoint is VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline must be a graphics pipeline

• If the variable multisample rate feature is not supported, pipeline is a graphics pipeline, the current subpass has
no attachments, and this is not the first call to this function with a graphics pipeline after transitioning to the
current subpass, then the sample count specified by this pipeline must match that set in the previous pipeline

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pipelineBindPoint must be a valid VkPipelineBindPoint value

• pipeline must be a valid VkPipeline handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• Both of commandBuffer, and pipeline must have been created, allocated, or retrieved from the same
VkDevice

Vulkan 1.0.36 - A Specification 191 / 683

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

Vulkan 1.0.36 - A Specification 193 / 683

Chapter 10

Memory Allocation

Vulkan memory is broken up into two categories, host memory and device memory.

10.1 Host Memory

Host memory is memory needed by the Vulkan implementation for non-device-visible storage. This storage may be used
for e.g. internal software structures.

Vulkan provides applications the opportunity to perform host memory allocations on behalf of the Vulkan
implementation. If this feature is not used, the implementation will perform its own memory allocations. Since most
memory allocations are off the critical path, this is not meant as a performance feature. Rather, this can be useful for
certain embedded systems, for debugging purposes (e.g. putting a guard page after all host allocations), or for memory
allocation logging.

Allocators are provided by the application as a pointer to a VkAllocationCallbacks structure:

typedef struct VkAllocationCallbacks {
void* pUserData;
PFN_vkAllocationFunction pfnAllocation;
PFN_vkReallocationFunction pfnReallocation;
PFN_vkFreeFunction pfnFree;
PFN_vkInternalAllocationNotification pfnInternalAllocation;
PFN_vkInternalFreeNotification pfnInternalFree;

} VkAllocationCallbacks;

• pUserData is a value to be interpreted by the implementation of the callbacks. When any of the callbacks in
VkAllocationCallbacks are called, the Vulkan implementation will pass this value as the first parameter to the
callback. This value can vary each time an allocator is passed into a command, even when the same object takes an
allocator in multiple commands.

• pfnAllocation is a pointer to an application-defined memory allocation function of type PFN_
vkAllocationFunction.

• pfnReallocation is a pointer to an application-defined memory reallocation function of type PFN_
vkReallocationFunction.

• pfnFree is a pointer to an application-defined memory free function of type PFN_vkFreeFunction.

• pfnInternalAllocation is a pointer to an application-defined function that is called by the implementation when
the implementation makes internal allocations, and it is of type PFN_vkInternalAllocationNotification.

• pfnInternalFree is a pointer to an application-defined function that is called by the implementation when the
implementation frees internal allocations, and it is of type PFN_vkInternalFreeNotification.

Valid Usage

• pfnAllocation must be a pointer to a valid user-defined PFN_vkAllocationFunction

• pfnReallocation must be a pointer to a valid user-defined PFN_vkReallocationFunction

• pfnFree must be a pointer to a valid user-defined PFN_vkFreeFunction

• If either of pfnInternalAllocation or pfnInternalFree is not NULL, both must be valid callbacks

The type of pfnAllocation is:

typedef void* (VKAPI_PTR *PFN_vkAllocationFunction)(
void* pUserData,
size_t size,
size_t alignment,
VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by the
application.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the lifetime of the
allocation, as described here.

If pfnAllocation is unable to allocate the requested memory, it must return NULL. If the allocation was successful, it
must return a valid pointer to memory allocation containing at least size bytes, and with the pointer value being a
multiple of alignment.

Note
Correct Vulkan operation cannot be assumed if the application does not follow these rules.
For example, pfnAllocation (or pfnReallocation) could cause termination of running Vulkan instance(s)
on a failed allocation for debugging purposes, either directly or indirectly. In these circumstances, it cannot be
assumed that any part of any affected VkInstance objects are going to operate correctly (even vkDestroyIn
stance), and the application must ensure it cleans up properly via other means (e.g. process termination).

Vulkan 1.0.36 - A Specification 195 / 683

If pfnAllocation returns NULL, and if the implementation is unable to continue correct processing of the current
command without the requested allocation, it must treat this as a run-time error, and generate VK_ERROR_OUT_OF_
HOST_MEMORY at the appropriate time for the command in which the condition was detected, as described in Return
Codes.

If the implementation is able to continue correct processing of the current command without the requested allocation,
then it may do so, and must not generate VK_ERROR_OUT_OF_HOST_MEMORY as a result of this failed allocation.

The type of pfnReallocation is:

typedef void* (VKAPI_PTR *PFN_vkReallocationFunction)(
void* pUserData,
void* pOriginal,
size_t size,
size_t alignment,
VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by the
application.

• pOriginal must be either NULL or a pointer previously returned by pfnReallocation or pfnAllocation of the
same allocator.

• size is the size in bytes of the requested allocation.

• alignment is the requested alignment of the allocation in bytes and must be a power of two.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the lifetime of the
allocation, as described here.

pfnReallocation must return an allocation with enough space for size bytes, and the contents of the original
allocation from bytes zero to min(original size, new size) - 1 must be preserved in the returned allocation. If size is
larger than the old size, the contents of the additional space are undefined. If satisfying these requirements involves
creating a new allocation, then the old allocation should be freed.

If pOriginal is NULL, then pfnReallocation must behave equivalently to a call to PFN_
vkAllocationFunction with the same parameter values (without pOriginal).

If size is zero, then pfnReallocation must behave equivalently to a call to PFN_vkFreeFunction with the same
pUserData parameter value, and pMemory equal to pOriginal.

If pOriginal is non-NULL, the implementation must ensure that alignment is equal to the alignment used to
originally allocate pOriginal.

If this function fails and pOriginal is non-NULL the application must not free the old allocation.

pfnReallocation must follow the same rules for return values as PFN_vkAllocationFunction.

The type of pfnFree is:

typedef void (VKAPI_PTR *PFN_vkFreeFunction)(
void* pUserData,
void* pMemory);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by the
application.

• pMemory is the allocation to be freed.

pMemory may be NULL, which the callback must handle safely. If pMemory is non-NULL, it must be a pointer
previously allocated by pfnAllocation or pfnReallocation. The application should free this memory.

The type of pfnInternalAllocation is:

typedef void (VKAPI_PTR *PFN_vkInternalAllocationNotification)(
void* pUserData,
size_t size,
VkInternalAllocationType allocationType,
VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by the
application.

• size is the requested size of an allocation.

• allocationType is the requested type of an allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the lifetime of the
allocation, as described here.

This is a purely informational callback.

The type of pfnInternalFree is:

typedef void (VKAPI_PTR *PFN_vkInternalFreeNotification)(
void* pUserData,
size_t size,
VkInternalAllocationType allocationType,
VkSystemAllocationScope allocationScope);

• pUserData is the value specified for VkAllocationCallbacks::pUserData in the allocator specified by the
application.

• size is the requested size of an allocation.

• allocationType is the requested type of an allocation.

• allocationScope is a VkSystemAllocationScope value specifying the allocation scope of the lifetime of the
allocation, as described here.

Each allocation has an allocation scope which defines its lifetime and which object it is associated with. The allocation
scope is provided in the allocationScope parameter passed to callbacks defined in VkAllocationCallbacks.
Possible values for this parameter are defined by VkSystemAllocationScope:

typedef enum VkSystemAllocationScope {
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND = 0,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT = 1,
VK_SYSTEM_ALLOCATION_SCOPE_CACHE = 2,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE = 3,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE = 4,

} VkSystemAllocationScope;

• VK_SYSTEM_ALLOCATION_SCOPE_COMMAND - The allocation is scoped to the duration of the Vulkan command.

Vulkan 1.0.36 - A Specification 197 / 683

• VK_SYSTEM_ALLOCATION_SCOPE_OBJECT - The allocation is scoped to the lifetime of the Vulkan object that is
being created or used.

• VK_SYSTEM_ALLOCATION_SCOPE_CACHE - The allocation is scoped to the lifetime of a VkPipelineCache
object.

• VK_SYSTEM_ALLOCATION_SCOPE_DEVICE - The allocation is scoped to the lifetime of the Vulkan device.

• VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE - The allocation is scoped to the lifetime of the Vulkan instance.

Most Vulkan commands operate on a single object, or there is a sole object that is being created or manipulated. When
an allocation uses an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_OBJECT or VK_SYSTEM_
ALLOCATION_SCOPE_CACHE, the allocation is scoped to the object being created or manipulated.

When an implementation requires host memory, it will make callbacks to the application using the most specific allocator
and allocation scope available:

• If an allocation is scoped to the duration of a command, the allocator will use the VK_SYSTEM_ALLOCATION_
SCOPE_COMMAND allocation scope. The most specific allocator available is used: if the object being created or
manipulated has an allocator, that object’s allocator will be used, else if the parent VkDevice has an allocator it will
be used, else if the parent VkInstance has an allocator it will be used. Else,

• If an allocation is associated with an object of type VkPipelineCache, the allocator will use the VK_SYSTEM_
ALLOCATION_SCOPE_CACHE allocation scope. The most specific allocator available is used (pipeline cache, else
device, else instance). Else,

• If an allocation is scoped to the lifetime of an object, that object is being created or manipulated by the command, and
that object’s type is not VkDevice or VkInstance, the allocator will use an allocation scope of VK_SYSTEM_
ALLOCATION_SCOPE_OBJECT. The most specific allocator available is used (object, else device, else instance).
Else,

• If an allocation is scoped to the lifetime of a device, the allocator will use an allocation scope of ename VK_SYSTEM_
ALLOCATION_SCOPE_DEVICE. The most specific allocator available is used (device, else instance). Else,

• If the allocation is scoped to the lifetime of an instance and the instance has an allocator, its allocator will be used with
an allocation scope of VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE.

• Otherwise an implementation will allocate memory through an alternative mechanism that is unspecified.

Objects that are allocated from pools do not specify their own allocator. When an implementation requires host memory
for such an object, that memory is sourced from the object’s parent pool’s allocator.

The application is not expected to handle allocating memory that is intended for execution by the host due to the
complexities of differing security implementations across multiple platforms. The implementation will allocate such
memory internally and invoke an application provided informational callback when these internal allocations are
allocated and freed. Upon allocation of executable memory, pfnInternalAllocation will be called. Upon freeing
executable memory, pfnInternalFree will be called. An implementation will only call an informational callback for
executable memory allocations and frees.

The allocationType parameter to the pfnInternalAllocation and pfnInternalFree functions may be one of
the following values:

typedef enum VkInternalAllocationType {
VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE = 0,

} VkInternalAllocationType;

• VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE - The allocation is intended for execution by the host.

An implementation must only make calls into an application-provided allocator during the execution of an API
command. An implementation must only make calls into an application-provided allocator from the same thread that
called the provoking API command. The implementation should not synchronize calls to any of the callbacks. If
synchronization is needed, the callbacks must provide it themselves. The informational callbacks are subject to the same
restrictions as the allocation callbacks.

If an implementation intends to make calls through an VkAllocationCallbacks structure between the time a
vkCreate* command returns and the time a corresponding vkDestroy* command begins, that implementation must
save a copy of the allocator before the vkCreate* command returns. The callback functions and any data structures
they rely upon must remain valid for the lifetime of the object they are associated with.

If an allocator is provided to a vkCreate* command, a compatible allocator must be provided to the corresponding
vkDestroy* command. Two VkAllocationCallbacks structures are compatible if memory allocated with
pfnAllocation or pfnReallocation in each can be freed with pfnReallocation or pfnFree in the other. An
allocator must not be provided to a vkDestroy* command if an allocator was not provided to the corresponding
vkCreate* command.

If a non-NULL allocator is used, the pfnAllocation, pfnReallocation and pfnFree members must be non-NULL
and point to valid implementations of the callbacks. An application can choose to not provide informational callbacks by
setting both pfnInternalAllocation and pfnInternalFree to NULL. pfnInternalAllocation and
pfnInternalFree must either both be NULL or both be non-NULL.

If pfnAllocation or pfnReallocation fail, the implementation may fail object creation and/or generate an VK_
ERROR_OUT_OF_HOST_MEMORY error, as appropriate.

Allocation callbacks must not call any Vulkan commands.

The following sets of rules define when an implementation is permitted to call the allocator callbacks.

pfnAllocation or pfnReallocation may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be allocated from any API command.

• Allocations scoped to a command may be allocated from any API command.

• Allocations scoped to a VkPipelineCache may only be allocated from:

– vkCreatePipelineCache

– vkMergePipelineCaches for dstCache

– vkCreateGraphicsPipelines for pPipelineCache

– vkCreateComputePipelines for pPipelineCache

• Allocations scoped to a VkDescriptorPool may only be allocated from:

– any command that takes the pool as a direct argument

– vkAllocateDescriptorSets for the descriptorPool member of its pAllocateInfo parameter

– vkCreateDescriptorPool

• Allocations scoped to a VkCommandPool may only be allocated from:

– any command that takes the pool as a direct argument

– vkCreateCommandPool

– vkAllocateCommandBuffers for the commandPool member of its pAllocateInfo parameter

Vulkan 1.0.36 - A Specification 199 / 683

– any vkCmd* command whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may only be allocated in that object’s vkCreate* command.

pfnFree may be called in the following situations:

• Allocations scoped to a VkDevice or VkInstance may be freed from any API command.

• Allocations scoped to a command must be freed by any API command which allocates such memory.

• Allocations scoped to a VkPipelineCache may be freed from vkDestroyPipelineCache.

• Allocations scoped to a VkDescriptorPool may be freed from

– any command that takes the pool as a direct argument

• Allocations scoped to a VkCommandPool may be freed from:

– any command that takes the pool as a direct argument

– vkResetCommandBuffer whose commandBuffer was allocated from that VkCommandPool

• Allocations scoped to any other object may be freed in that object’s vkDestroy* command.

• Any command that allocates host memory may also free host memory of the same scope.

10.2 Device Memory

Device memory is memory that is visible to the device, for example the contents of opaque images that can be natively
used by the device, or uniform buffer objects that reside in on-device memory.

Memory properties of a physical device describe the memory heaps and memory types available.

To query memory properties, call:

void vkGetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties);

• physicalDevice is the handle to the device to query.

• pMemoryProperties points to an instance of VkPhysicalDeviceMemoryProperties structure in which the
properties are returned.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pMemoryProperties must be a pointer to a VkPhysicalDeviceMemoryProperties structure

The VkPhysicalDeviceMemoryProperties structure is defined as:

typedef struct VkPhysicalDeviceMemoryProperties {
uint32_t memoryTypeCount;
VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
uint32_t memoryHeapCount;
VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];

} VkPhysicalDeviceMemoryProperties;

• memoryTypeCount is the number of valid elements in the memoryTypes array.

• memoryTypes is an array of VkMemoryType structures describing the memory types that can be used to access
memory allocated from the heaps specified by memoryHeaps.

• memoryHeapCount is the number of valid elements in the memoryHeaps array.

• memoryHeaps is an array of VkMemoryHeap structures describing the memory heaps from which memory can be
allocated.

The VkPhysicalDeviceMemoryProperties structure describes a number of memory heaps as well as a number
of memory types that can be used to access memory allocated in those heaps. Each heap describes a memory resource of
a particular size, and each memory type describes a set of memory properties (e.g. host cached vs uncached) that can be
used with a given memory heap. Allocations using a particular memory type will consume resources from the heap
indicated by that memory type’s heap index. More than one memory type may share each heap, and the heaps and
memory types provide a mechanism to advertise an accurate size of the physical memory resources while allowing the
memory to be used with a variety of different properties.

The number of memory heaps is given by memoryHeapCount and is less than or equal to VK_MAX_MEMORY_HEAPS.
Each heap is described by an element of the memoryHeaps array, as a VkMemoryHeap structure. The number of
memory types available across all memory heaps is given by memoryTypeCount and is less than or equal to VK_MAX_
MEMORY_TYPES. Each memory type is described by an element of the memoryTypes array, as a VkMemoryType
structure.

At least one heap must include VK_MEMORY_HEAP_DEVICE_LOCAL_BIT in VkMemoryHeap::flags. If there are
multiple heaps that all have similar performance characteristics, they may all include VK_MEMORY_HEAP_DEVICE_
LOCAL_BIT. In a unified memory architecture (UMA) system, there is often only a single memory heap which is
considered to be equally “local” to the host and to the device, and such an implementation must advertise the heap as
device-local.

Each memory type returned by vkGetPhysicalDeviceMemoryProperties must have its propertyFlags set
to one of the following values:

• 0

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_
MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_
MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_
MEMORY_PROPERTY_HOST_CACHED_BIT

Vulkan 1.0.36 - A Specification 201 / 683

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_
MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT

There must be at least one memory type with both the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and VK_
MEMORY_PROPERTY_HOST_COHERENT_BIT bits set in its propertyFlags. There must be at least one memory
type with the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set in its propertyFlags.

The memory types are sorted according to a preorder which serves to aid in easily selecting an appropriate memory type.
Given two memory types X and Y, the preorder defines X ≤ Y if:

• the memory property bits set for X are a strict subset of the memory property bits set for Y. Or,

• the memory property bits set for X are the same as the memory property bits set for Y, and X uses a memory heap with
greater or equal performance (as determined in an implementation-specific manner).

Memory types are ordered in the list such that X is assigned a lesser memoryTypeIndex than Y if (X ≤ Y) ∧ ¬ (Y ≤ X)
according to the preorder. Note that the list of all allowed memory property flag combinations above satisfies this
preorder, but other orders would as well. The goal of this ordering is to enable applications to use a simple search loop in
selecting the proper memory type, along the lines of:

// Find a memory type in "memoryTypeBits" that includes all of "properties"
int32_t FindProperties(uint32_t memoryTypeBits, VkMemoryPropertyFlags properties)
{

for (int32_t i = 0; i < memoryTypeCount; ++i)
{

if ((memoryTypeBits & (1 << i)) &&
((memoryTypes[i].propertyFlags & properties) == properties))
return i;

}
return -1;

}

// Try to find an optimal memory type, or if it does not exist
// find any compatible memory type
VkMemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(device, image, &memoryRequirements);
int32_t memoryType = FindProperties(memoryRequirements.memoryTypeBits, ←↩

optimalProperties);
if (memoryType == -1)

memoryType = FindProperties(memoryRequirements.memoryTypeBits, requiredProperties) ←↩
;

The loop will find the first supported memory type that has all bits requested in properties set. If there is no exact
match, it will find a closest match (i.e. a memory type with the fewest additional bits set), which has some additional bits
set but which are not detrimental to the behaviors requested by properties. The application can first search for the
optimal properties, e.g. a memory type that is device-local or supports coherent cached accesses, as appropriate for the
intended usage, and if such a memory type is not present can fallback to searching for a less optimal but guaranteed set
of properties such as "0" or "host-visible and coherent".

The VkMemoryHeap structure is defined as:

typedef struct VkMemoryHeap {
VkDeviceSize size;
VkMemoryHeapFlags flags;

} VkMemoryHeap;

• size is the total memory size in bytes in the heap.

• flags is a bitmask of attribute flags for the heap. The bits specified in flags are:

typedef enum VkMemoryHeapFlagBits {
VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,

} VkMemoryHeapFlagBits;

– if flags contains VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, it means the heap corresponds to device local
memory. Device local memory may have different performance characteristics than host local memory, and may
support different memory property flags.

The VkMemoryType structure is defined as:

typedef struct VkMemoryType {
VkMemoryPropertyFlags propertyFlags;
uint32_t heapIndex;

} VkMemoryType;

• heapIndex describes which memory heap this memory type corresponds to, and must be less than
memoryHeapCount from the VkPhysicalDeviceMemoryProperties structure.

• propertyFlags is a bitmask of properties for this memory type. The bits specified in propertyFlags are:

typedef enum VkMemoryPropertyFlagBits {
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,
VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010,

} VkMemoryPropertyFlagBits;

– if propertyFlags has the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set, memory allocated with this
type is the most efficient for device access. This property will only be set for memory types belonging to heaps with
the VK_MEMORY_HEAP_DEVICE_LOCAL_BIT set.

– if propertyFlags has the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit set, memory allocated with this
type can be mapped for host access using vkMapMemory.

– if propertyFlags has the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set, host cache management
commands vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges are not needed to
make host writes visible to the device or device writes visible to the host, respectively.

– if propertyFlags has the VK_MEMORY_PROPERTY_HOST_CACHED_BIT bit set, memory allocated with this
type is cached on the host. Host memory accesses to uncached memory are slower than to cached memory, however
uncached memory is always host coherent.

– if propertyFlags has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set, the memory type only
allows device access to the memory. Memory types must not have both VK_MEMORY_PROPERTY_LAZILY_
ALLOCATED_BIT and VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set. Additionally, the object’s backing
memory may be provided by the implementation lazily as specified in Lazily Allocated Memory.

A Vulkan device operates on data in device memory via memory objects that are represented in the API by a
VkDeviceMemory handle.

Memory objects are represented by VkDeviceMemory handles:

Vulkan 1.0.36 - A Specification 203 / 683

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDeviceMemory)

To allocate memory objects, call:

VkResult vkAllocateMemory(
VkDevice device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMemory);

• device is the logical device that owns the memory.

• pAllocateInfo is a pointer to an instance of the VkMemoryAllocateInfo structure describing parameters of the
allocation. A successful returned allocation must use the requested parameters — no substitution is permitted by the
implementation.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pMemory is a pointer to a VkDeviceMemory handle in which information about the allocated memory is returned.

Allocations returned by vkAllocateMemory are guaranteed to meet any alignment requirement by the
implementation. For example, if an implementation requires 128 byte alignment for images and 64 byte alignment for
buffers, the device memory returned through this mechanism would be 128-byte aligned. This ensures that applications
can correctly suballocate objects of different types (with potentially different alignment requirements) in the same
memory object.

When memory is allocated, its contents are undefined.

There is an implementation-dependent maximum number of memory allocations which can be simultaneously created on
a device. This is specified by the maxMemoryAllocationCount member of the VkPhysicalDeviceLimits
structure. If maxMemoryAllocationCount is exceeded, vkAllocateMemory will return VK_ERROR_TOO_MANY_
OBJECTS.

Note
Some platforms may have a limit on the maximum size of a single allocation. For example, certain systems may
fail to create allocations with a size greater than or equal to 4GB. Such a limit is implementation-dependent, and
if such a failure occurs then the error VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned.

Valid Usage

• The number of currently valid memory objects, allocated from device, must be less than
VkPhysicalDeviceLimits::maxMemoryAllocationCount

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pAllocateInfo must be a pointer to a valid VkMemoryAllocateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pMemory must be a pointer to a VkDeviceMemory handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_TOO_MANY_OBJECTS

The VkMemoryAllocateInfo structure is defined as:

typedef struct VkMemoryAllocateInfo {
VkStructureType sType;
const void* pNext;
VkDeviceSize allocationSize;
uint32_t memoryTypeIndex;

} VkMemoryAllocateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• allocationSize is the size of the allocation in bytes

• memoryTypeIndex is the memory type index, which selects the properties of the memory to be allocated, as well as
the heap the memory will come from.

Valid Usage

Vulkan 1.0.36 - A Specification 205 / 683

• allocationSize must be less than or equal to the amount of memory available to the VkMemoryHeap
specified by memoryTypeIndex and the calling command’s VkDevice

• allocationSize must be greater than 0

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO

• pNext must be NULL

To free a memory object, call:

void vkFreeMemory(
VkDevice device,
VkDeviceMemory memory,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be freed.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Before freeing a memory object, an application must ensure the memory object is no longer in use by the device—for
example by command buffers queued for execution. The memory can remain bound to images or buffers at the time the
memory object is freed, but any further use of them (on host or device) for anything other than destroying those objects
will result in undefined behavior. If there are still any bound images or buffers, the memory may not be immediately
released by the implementation, but must be released by the time all bound images and buffers have been destroyed.
Once memory is released, it is returned to the heap from which it was allocated.

How memory objects are bound to Images and Buffers is described in detail in the Resource Memory Association
section.

If a memory object is mapped at the time it is freed, it is implicitly unmapped.

Valid Usage

• All submitted commands that refer to memory (via images or buffers) must have completed execution

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If memory is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

10.2.1 Host Access to Device Memory Objects

Memory objects created with vkAllocateMemory are not directly host accessible.

Memory objects created with the memory property VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT are considered
mappable. Memory objects must be mappable in order to be successfully mapped on the host.

To retrieve a host virtual address pointer to a region of a mappable memory object, call:

VkResult vkMapMemory(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData);

• device is the logical device that owns the memory.

• memory is the VkDeviceMemory object to be mapped.

• offset is a zero-based byte offset from the beginning of the memory object.

• size is the size of the memory range to map, or VK_WHOLE_SIZE to map from offset to the end of the allocation.

• flags is reserved for future use.

• ppData points to a pointer in which is returned a host-accessible pointer to the beginning of the mapped range. This
pointer minus offset must be aligned to at least VkPhysicalDeviceLimits::minMemoryMapAlignment.

It is an application error to call vkMapMemory on a memory object that is already mapped.

Vulkan 1.0.36 - A Specification 207 / 683

Note
vkMapMemory will fail if the implementation is unable to allocate an appropriately sized contiguous virtual
address range, e.g. due to virtual address space fragmentation or platform limits. In such cases, vkMapMem
ory must return VK_ERROR_MEMORY_MAP_FAILED. The application can improve the likelihood of success
by reducing the size of the mapped range and/or removing unneeded mappings using VkUnmapMemory.

vkMapMemory does not check whether the device memory is currently in use before returning the host-accessible
pointer. The application must guarantee that any previously submitted command that writes to this range has completed
before the host reads from or writes to that range, and that any previously submitted command that reads from that range
has completed before the host writes to that region (see here for details on fulfilling such a guarantee). If the device
memory was allocated without the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, these guarantees must be
made for an extended range: the application must round down the start of the range to the nearest multiple of
VkPhysicalDeviceLimits::nonCoherentAtomSize, and round the end of the range up to the nearest multiple of
VkPhysicalDeviceLimits::nonCoherentAtomSize.

While a range of device memory is mapped for host access, the application is responsible for synchronizing both device
and host access to that memory range.

Note
It is important for the application developer to become meticulously familiar with all of the mechanisms described
in the chapter on Synchronization and Cache Control as they are crucial to maintaining memory access order-
ing.

Valid Usage

• memory must not currently be mapped

• offset must be less than the size of memory

• If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of the memory minus
offset

• memory must have been created with a memory type that reports VK_MEMORY_PROPERTY_HOST_VISIBLE_
BIT

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• memory must be a valid VkDeviceMemory handle

• flags must be 0

• ppData must be a pointer to a pointer

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_MEMORY_MAP_FAILED

Two commands are provided to enable applications to work with non-coherent memory allocations:
vkFlushMappedMemoryRanges and vkInvalidateMappedMemoryRanges.

Note
If the memory object was created with the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT set, vkFlus
hMappedMemoryRanges and vkInvalidateMappedMemoryRanges are unnecessary and may have
performance cost.

To flush ranges of non-coherent memory from the host caches, call:

VkResult vkFlushMappedMemoryRanges(
VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges);

Vulkan 1.0.36 - A Specification 209 / 683

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the memory ranges to
flush.

vkFlushMappedMemoryRanges must be used to guarantee that host writes to non-coherent memory are visible to
the device. It must be called after the host writes to non-coherent memory have completed and before command buffers
that will read or write any of those memory locations are submitted to a queue.

Note
Unmapping non-coherent memory does not implicitly flush the mapped memory, and host writes that have not
been flushed may not ever be visible to the device.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange
structures

• memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To invalidate ranges of non-coherent memory from the host caches, call:

VkResult vkInvalidateMappedMemoryRanges(
VkDevice device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges);

• device is the logical device that owns the memory ranges.

• memoryRangeCount is the length of the pMemoryRanges array.

• pMemoryRanges is a pointer to an array of VkMappedMemoryRange structures describing the memory ranges to
invalidate.

vkInvalidateMappedMemoryRanges must be used to guarantee that device writes to non-coherent memory are
visible to the host. It must be called after command buffers that execute and flush (via memory barriers) the device writes
have completed, and before the host will read or write any of those locations. If a range of non-coherent memory is
written by the host and then invalidated without first being flushed, its contents are undefined.

Note
Mapping non-coherent memory does not implicitly invalidate the mapped memory, and device writes that have
not been invalidated must be made visible before the host reads or overwrites them.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pMemoryRanges must be a pointer to an array of memoryRangeCount valid VkMappedMemoryRange
structures

• memoryRangeCount must be greater than 0

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkMappedMemoryRange structure is defined as:

typedef struct VkMappedMemoryRange {
VkStructureType sType;
const void* pNext;

Vulkan 1.0.36 - A Specification 211 / 683

VkDeviceMemory memory;
VkDeviceSize offset;
VkDeviceSize size;

} VkMappedMemoryRange;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• memory is the memory object to which this range belongs.

• offset is the zero-based byte offset from the beginning of the memory object.

• size is either the size of range, or VK_WHOLE_SIZE to affect the range from offset to the end of the current
mapping of the allocation.

Valid Usage

• memory must currently be mapped

• If size is not equal to VK_WHOLE_SIZE, offset and size must specify a range contained within the currently
mapped range of memory

• If size is equal to VK_WHOLE_SIZE, offset must be within the currently mapped range of memory

• offset must be a multiple of VkPhysicalDeviceLimits::nonCoherentAtomSize

• If size is not equal to VK_WHOLE_SIZE, size must be a multiple of
VkPhysicalDeviceLimits::nonCoherentAtomSize

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE

• pNext must be NULL

• memory must be a valid VkDeviceMemory handle

Host-visible memory types that advertise the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property still require
memory barriers between host and device in order to be coherent, but do not require additional cache management
operations to achieve coherency. For host writes to be seen by subsequent command buffer operations, a pipeline barrier
from a source of VK_ACCESS_HOST_WRITE_BIT and VK_PIPELINE_STAGE_HOST_BIT to a destination of the
relevant device pipeline stages and access types must be performed. Note that such a barrier is performed implicitly upon

each command buffer submission, so an explicit barrier is only rarely needed (e.g. if a command buffer waits upon an
event signaled by the host, where the host wrote some data after submission). A pipeline barrier is required to make
writes visible to subsequent reads on the host.

To unmap a memory object once host access to it is no longer needed by the application, call:

void vkUnmapMemory(
VkDevice device,
VkDeviceMemory memory);

• device is the logical device that owns the memory.

• memory is the memory object to be unmapped.

Valid Usage

• memory must currently be mapped

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• memory must be a valid VkDeviceMemory handle

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to memory must be externally synchronized

10.2.2 Lazily Allocated Memory

If the memory object is allocated from a heap with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set,
that object’s backing memory may be provided by the implementation lazily. The actual committed size of the memory
may initially be as small as zero (or as large as the requested size), and monotonically increases as additional memory is
needed.

A memory type with this flag set is only allowed to be bound to a VkImage whose usage flags include VK_IMAGE_
USAGE_TRANSIENT_ATTACHMENT_BIT.

Vulkan 1.0.36 - A Specification 213 / 683

Note
Using lazily allocated memory objects for framebuffer attachments that are not needed once a render pass
instance has completed may allow some implementations to never allocate memory for such attachments.

To determine the amount of lazily-allocated memory that is currently committed for a memory object, call:

void vkGetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes);

• device is the logical device that owns the memory.

• memory is the memory object being queried.

• pCommittedMemoryInBytes is a pointer to a VkDeviceSize value in which the number of bytes currently
committed is returned, on success.

The implementation may update the commitment at any time, and the value returned by this query may be out of date.

The implementation guarantees to allocate any committed memory from the heapIndex indicated by the memory type
that the memory object was created with.

Valid Usage

• memory must have been created with a memory type that reports VK_MEMORY_PROPERTY_LAZILY_
ALLOCATED_BIT

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• memory must be a valid VkDeviceMemory handle

• pCommittedMemoryInBytes must be a pointer to a VkDeviceSize value

• memory must have been created, allocated, or retrieved from device

Vulkan 1.0.36 - A Specification 215 / 683

Chapter 11

Resource Creation

Vulkan supports two primary resource types: buffers and images. Resources are views of memory with associated
formatting and dimensionality. Buffers are essentially unformatted arrays of bytes whereas images contain format
information, can be multidimensional and may have associated metadata.

11.1 Buffers

Buffers represent linear arrays of data which are used for various purposes by binding them to a graphics or compute
pipeline via descriptor sets or via certain commands, or by directly specifying them as parameters to certain commands.

Buffers are represented by VkBuffer handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBuffer)

To create buffers, call:

VkResult vkCreateBuffer(
VkDevice device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer);

• device is the logical device that creates the buffer object.

• pCreateInfo is a pointer to an instance of the VkBufferCreateInfo structure containing parameters affecting
creation of the buffer.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pBuffer points to a VkBuffer handle in which the resulting buffer object is returned.

Valid Usage

• If the flags member of pCreateInfo includes VK_BUFFER_CREATE_SPARSE_BINDING_BIT, creating
this VkBuffer must not cause the total required sparse memory for all currently valid sparse resources on the
device to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkBufferCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pBuffer must be a pointer to a VkBuffer handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferCreateInfo structure is defined as:

typedef struct VkBufferCreateInfo {
VkStructureType sType;
const void* pNext;
VkBufferCreateFlags flags;
VkDeviceSize size;
VkBufferUsageFlags usage;
VkSharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;

} VkBufferCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

Vulkan 1.0.36 - A Specification 217 / 683

• flags is a bitmask describing additional parameters of the buffer. See VkBufferCreateFlagBits below for a
description of the supported bits.

• size is the size in bytes of the buffer to be created.

• usage is a bitmask describing the allowed usages of the buffer. See VkBufferUsageFlagBits below for a
description of the supported bits.

• sharingMode is the sharing mode of the buffer when it will be accessed by multiple queue families, see
VkSharingMode in the Resource Sharing section below for supported values.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a list of queue families that will access this buffer (ignored if sharingMode is not VK_
SHARING_MODE_CONCURRENT).

Bits which can be set in usage are:

typedef enum VkBufferUsageFlagBits {
VK_BUFFER_USAGE_TRANSFER_SRC_BIT = 0x00000001,
VK_BUFFER_USAGE_TRANSFER_DST_BIT = 0x00000002,
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000004,
VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT = 0x00000008,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT = 0x00000010,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT = 0x00000020,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT = 0x00000040,
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT = 0x00000080,
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT = 0x00000100,

} VkBufferUsageFlagBits;

• VK_BUFFER_USAGE_TRANSFER_SRC_BIT indicates that the buffer can be used as the source of a transfer
command (see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT).

• VK_BUFFER_USAGE_TRANSFER_DST_BIT indicates that the buffer can be used as the destination of a transfer
command.

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT indicates that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_UNIFORM_
TEXEL_BUFFER.

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT indicates that the buffer can be used to create a
VkBufferView suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_
TEXEL_BUFFER.

• VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT indicates that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type VK_
DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_STORAGE_BUFFER_BIT indicates that the buffer can be used in a
VkDescriptorBufferInfo suitable for occupying a VkDescriptorSet slot either of type VK_
DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• VK_BUFFER_USAGE_INDEX_BUFFER_BIT indicates that the buffer is suitable for passing as the buffer
parameter to vkCmdBindIndexBuffer.

• VK_BUFFER_USAGE_VERTEX_BUFFER_BIT indicates that the buffer is suitable for passing as an element of the
pBuffers array to vkCmdBindVertexBuffers.

• VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT indicates that the buffer is suitable for passing as the buffer
parameter to vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, or vkCmdDispatchIndirect.

Any combination of bits can be specified for usage, but at least one of the bits must be set in order to create a valid
buffer.

Bits which can be set in flags are:

typedef enum VkBufferCreateFlagBits {
VK_BUFFER_CREATE_SPARSE_BINDING_BIT = 0x00000001,
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT = 0x00000004,

} VkBufferCreateFlagBits;

These bits have the following meanings:

• VK_BUFFER_CREATE_SPARSE_BINDING_BIT indicates that the buffer will be backed using sparse memory
binding.

• VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT indicates that the buffer can be partially backed using sparse
memory binding. Buffers created with this flag must also be created with the VK_BUFFER_CREATE_SPARSE_
BINDING_BIT flag.

• VK_BUFFER_CREATE_SPARSE_ALIASED_BIT indicates that the buffer will be backed using sparse memory
binding with memory ranges that might also simultaneously be backing another buffer (or another portion of the same
buffer). Buffers created with this flag must also be created with the VK_BUFFER_CREATE_SPARSE_BINDING_
BIT flag.

See Sparse Resource Features and Physical Device Features for details of the sparse memory features supported on a
device.

Valid Usage

• size must be greater than 0

• If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an
array of queueFamilyIndexCount uint32_t values

• If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than 1

• If the sparse bindings feature is not enabled, flags must not contain VK_BUFFER_CREATE_SPARSE_
BINDING_BIT

• If the sparse buffer residency feature is not enabled, flags must not contain VK_BUFFER_CREATE_SPARSE_
RESIDENCY_BIT

• If the sparse aliased residency feature is not enabled, flags must not contain VK_BUFFER_CREATE_SPARSE_
ALIASED_BIT

• If flags contains VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or VK_BUFFER_CREATE_SPARSE_
ALIASED_BIT, it must also contain VK_BUFFER_CREATE_SPARSE_BINDING_BIT

Vulkan 1.0.36 - A Specification 219 / 683

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkBufferCreateFlagBits values

• usage must be a valid combination of VkBufferUsageFlagBits values

• usage must not be 0

• sharingMode must be a valid VkSharingMode value

To destroy a buffer, call:

void vkDestroyBuffer(
VkDevice device,
VkBuffer buffer,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer.

• buffer is the buffer to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to buffer, either directly or via a VkBufferView, must have completed
execution

• If VkAllocationCallbacks were provided when buffer was created, a compatible set of callbacks must be
provided here

• If no VkAllocationCallbacks were provided when buffer was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If buffer is not VK_NULL_HANDLE, buffer must be a valid VkBuffer handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If buffer is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to buffer must be externally synchronized

11.2 Buffer Views

A buffer view represents a contiguous range of a buffer and a specific format to be used to interpret the data. Buffer views
are used to enable shaders to access buffer contents interpreted as formatted data. In order to create a valid buffer view,
the buffer must have been created with at least one of the following usage flags:

• VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT

• VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

Buffer views are represented by VkBufferView handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkBufferView)

To create a buffer view, call:

VkResult vkCreateBufferView(
VkDevice device,
const VkBufferViewCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBufferView* pView);

• device is the logical device that creates the buffer view.

• pCreateInfo is a pointer to an instance of the VkBufferViewCreateInfo structure containing parameters to be
used to create the buffer.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView points to a VkBufferView handle in which the resulting buffer view object is returned.

Vulkan 1.0.36 - A Specification 221 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkBufferViewCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pView must be a pointer to a VkBufferView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkBufferViewCreateInfo structure is defined as:

typedef struct VkBufferViewCreateInfo {
VkStructureType sType;
const void* pNext;
VkBufferViewCreateFlags flags;
VkBuffer buffer;
VkFormat format;
VkDeviceSize offset;
VkDeviceSize range;

} VkBufferViewCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• buffer is a VkBuffer on which the view will be created.

• format is a VkFormat describing the format of the data elements in the buffer.

• offset is an offset in bytes from the base address of the buffer. Accesses to the buffer view from shaders use
addressing that is relative to this starting offset.

• range is a size in bytes of the buffer view. If range is equal to VK_WHOLE_SIZE, the range from offset to the end
of the buffer is used. If VK_WHOLE_SIZE is used and the remaining size of the buffer is not a multiple of the element
size of format, then the nearest smaller multiple is used.

Valid Usage

• offset must be less than the size of buffer

• offset must be a multiple of VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment

• If range is not equal to VK_WHOLE_SIZE:

– range must be greater than 0

– range must be a multiple of the element size of format

– range divided by the element size of format, must be less than or equal to
VkPhysicalDeviceLimits::maxTexelBufferElements

– the sum of offset and range must be less than or equal to the size of buffer

• buffer must have been created with a usage value containing at least one of VK_BUFFER_USAGE_
UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT

• If buffer was created with usage containing VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
format must be supported for uniform texel buffers, as specified by the VK_FORMAT_FEATURE_UNIFORM_
TEXEL_BUFFER_BIT flag in VkFormatProperties::bufferFeatures returned by
vkGetPhysicalDeviceFormatProperties

• If buffer was created with usage containing VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
format must be supported for storage texel buffers, as specified by the VK_FORMAT_FEATURE_STORAGE_
TEXEL_BUFFER_BIT flag in VkFormatProperties::bufferFeatures returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO

• pNext must be NULL

• flags must be 0

• buffer must be a valid VkBuffer handle

• format must be a valid VkFormat value

To destroy a buffer view, call:

void vkDestroyBufferView(
VkDevice device,
VkBufferView bufferView,

Vulkan 1.0.36 - A Specification 223 / 683

const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the buffer view.

• bufferView is the buffer view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to bufferView must have completed execution

• If VkAllocationCallbacks were provided when bufferView was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when bufferView was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If bufferView is not VK_NULL_HANDLE, bufferView must be a valid VkBufferView handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If bufferView is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to bufferView must be externally synchronized

11.3 Images

Images represent multidimensional - up to 3 - arrays of data which can be used for various purposes (e.g. attachments,
textures), by binding them to a graphics or compute pipeline via descriptor sets, or by directly specifying them as
parameters to certain commands.

Images are represented by VkImage handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImage)

To create images, call:

VkResult vkCreateImage(
VkDevice device,
const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkImage* pImage);

• device is the logical device that creates the image.

• pCreateInfo is a pointer to an instance of the VkImageCreateInfo structure containing parameters to be used to
create the image.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pImage points to a VkImage handle in which the resulting image object is returned.

Valid Usage

• If the flags member of pCreateInfo includes VK_IMAGE_CREATE_SPARSE_BINDING_BIT, creating this
VkImage must not cause the total required sparse memory for all currently valid sparse resources on the device
to exceed VkPhysicalDeviceLimits::sparseAddressSpaceSize

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkImageCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pImage must be a pointer to a VkImage handle

Return Codes

Success

Vulkan 1.0.36 - A Specification 225 / 683

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageCreateInfo structure is defined as:

typedef struct VkImageCreateInfo {
VkStructureType sType;
const void* pNext;
VkImageCreateFlags flags;
VkImageType imageType;
VkFormat format;
VkExtent3D extent;
uint32_t mipLevels;
uint32_t arrayLayers;
VkSampleCountFlagBits samples;
VkImageTiling tiling;
VkImageUsageFlags usage;
VkSharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
VkImageLayout initialLayout;

} VkImageCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is a bitmask describing additional parameters of the image. See VkImageCreateFlagBits below for a
description of the supported bits.

• imageType is a VkImageType specifying the basic dimensionality of the image, as described below. Layers in array
textures do not count as a dimension for the purposes of the image type.

• format is a VkFormat describing the format and type of the data elements that will be contained in the image.

• extent is a VkExtent3D describing the number of data elements in each dimension of the base level.

• mipLevels describes the number of levels of detail available for minified sampling of the image.

• arrayLayers is the number of layers in the image.

• samples is the number of sub-data element samples in the image as defined in VkSampleCountFlagBits. See
Multisampling.

• tiling is a VkImageTiling specifying the tiling arrangement of the data elements in memory, as described below.

• usage is a bitmask describing the intended usage of the image. See VkImageUsageFlagBits below for a
description of the supported bits.

• sharingMode is the sharing mode of the image when it will be accessed by multiple queue families, and must be one
of the values described for VkSharingMode in the Resource Sharing section below.

• queueFamilyIndexCount is the number of entries in the pQueueFamilyIndices array.

• pQueueFamilyIndices is a list of queue families that will access this image (ignored if sharingMode is not VK_
SHARING_MODE_CONCURRENT).

• initialLayout selects the initial VkImageLayout state of all image subresources of the image. See Image
Layouts. initialLayout must be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_
PREINITIALIZED.

Valid limits for the image extent, mipLevels, arrayLayers and samples members are queried with the
vkGetPhysicalDeviceImageFormatProperties command.

Images created with tiling equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits and
capabilities compared to images created with tiling equal to VK_IMAGE_TILING_OPTIMAL. Creation of images
with tiling VK_IMAGE_TILING_LINEAR may not be supported unless other parameters meet all of the constraints:

• imageType is VK_IMAGE_TYPE_2D

• format is not a depth/stencil format

• mipLevels is 1

• arrayLayers is 1

• samples is VK_SAMPLE_COUNT_1_BIT

• usage only includes VK_IMAGE_USAGE_TRANSFER_SRC_BIT and/or VK_IMAGE_USAGE_TRANSFER_DST_
BIT

Implementations may support additional limits and capabilities beyond those listed above. To determine the specific
capabilities of an implementation, query the valid usage bits by calling
vkGetPhysicalDeviceFormatProperties and the valid limits for mipLevels and arrayLayers by calling
vkGetPhysicalDeviceImageFormatProperties.

Valid Usage

• If sharingMode is VK_SHARING_MODE_CONCURRENT, pQueueFamilyIndices must be a pointer to an
array of queueFamilyIndexCount uint32_t values

• If sharingMode is VK_SHARING_MODE_CONCURRENT, queueFamilyIndexCount must be greater than 1

• format must not be VK_FORMAT_UNDEFINED

• The width, height, and depth members of extent must all be greater than 0

• mipLevels must be greater than 0

• arrayLayers must be greater than 0

• If flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, imageType must be VK_IMAGE_
TYPE_2D

Vulkan 1.0.36 - A Specification 227 / 683

• If imageType is VK_IMAGE_TYPE_1D, extent.width must be less than or equal to
VkPhysicalDeviceLimits::maxImageDimension1D, or VkImageFormatProperties::maxExtent.
width (as returned by vkGetPhysicalDeviceImageFormatProperties with format, type, tiling,
usage, and flags equal to those in this structure) - whichever is higher

• If imageType is VK_IMAGE_TYPE_2D and flags does not contain VK_IMAGE_CREATE_CUBE_
COMPATIBLE_BIT, extent.width and extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxImageDimension2D, or VkImageFormatProperties::maxExtent.
width/height (as returned by vkGetPhysicalDeviceImageFormatProperties with format, type,
tiling, usage, and flags equal to those in this structure) - whichever is higher

• If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_
BIT, extent.width and extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxImageDimensionCube, or
VkImageFormatProperties::maxExtent.width/height (as returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, usage, and flags

equal to those in this structure) - whichever is higher

• If imageType is VK_IMAGE_TYPE_2D and flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_
BIT, extent.width and extent.height must be equal and arrayLayers must be greater than or equal to 6

• If imageType is VK_IMAGE_TYPE_3D, extent.width, extent.height and extent.depth must be less
than or equal to VkPhysicalDeviceLimits::maxImageDimension3D, or
VkImageFormatProperties::maxExtent.width/height/depth (as returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, usage, and flags

equal to those in this structure) - whichever is higher

• If imageType is VK_IMAGE_TYPE_1D, both extent.height and extent.depth must be 1

• If imageType is VK_IMAGE_TYPE_2D, extent.depth must be 1

• mipLevels must be less than or equal to blog2(max(extent.width, extent.height, extent.depth))c + 1.

• If any of extent.width, extent.height, or extent.depth are greater than the equivalently named members
of VkPhysicalDeviceLimits::maxImageDimension3D, mipLevels must be less than or equal to
VkImageFormatProperties::maxMipLevels (as returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, usage, and flags

equal to those in this structure)

• arrayLayers must be less than or equal to VkImageFormatProperties::maxArrayLayers (as returned
by vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, usage, and flags

equal to those in this structure)

• If imageType is VK_IMAGE_TYPE_3D, arrayLayers must be 1.

• If samples is not VK_SAMPLE_COUNT_1_BIT, imageType must be VK_IMAGE_TYPE_2D, flags must not
contain VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, tiling must be VK_IMAGE_TILING_OPTIMAL,
and mipLevels must be equal to 1

• If usage includes VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, then bits other than VK_IMAGE_
USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must not be set

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_
STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, or VK_IMAGE_
USAGE_INPUT_ATTACHMENT_BIT, extent.width must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferWidth

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, VK_IMAGE_USAGE_DEPTH_
STENCIL_ATTACHMENT_BIT, VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, or VK_IMAGE_
USAGE_INPUT_ATTACHMENT_BIT, extent.height must be less than or equal to
VkPhysicalDeviceLimits::maxFramebufferHeight

• samples must be a bit value that is set in VkImageFormatProperties::sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, usage, and flags

equal to those in this structure

• If the ETC2 texture compression feature is not enabled, format must not be VK_FORMAT_ETC2_R8G8B8_
UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM_
BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT_
EAC_R11_SNORM_BLOCK, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, or VK_FORMAT_EAC_R11G11_
SNORM_BLOCK

• If the ASTC LDR texture compression feature is not enabled, format must not be VK_FORMAT_ASTC_4x4_
UNORM_BLOCK, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_
FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC_
5x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_ASTC_
8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_
8x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_SRGB_
BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK_
FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_ASTC_
10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x10_
UNORM_BLOCK, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
or VK_FORMAT_ASTC_12x12_SRGB_BLOCK

• If the BC texture compression feature is not enabled, format must not be VK_FORMAT_BC1_RGB_UNORM_
BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_
BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK_
FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_SNORM_
BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_
UNORM_BLOCK, or VK_FORMAT_BC7_SRGB_BLOCK

• If the multisampled storage images feature is not enabled, and usage contains VK_IMAGE_USAGE_STORAGE_
BIT, samples must be VK_SAMPLE_COUNT_1_BIT

• If the sparse bindings feature is not enabled, flags must not contain VK_IMAGE_CREATE_SPARSE_
BINDING_BIT

• If imageType is VK_IMAGE_TYPE_1D, flags must not contain VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT

• If the sparse residency for 2D images feature is not enabled, and imageType is VK_IMAGE_TYPE_2D, flags
must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

Vulkan 1.0.36 - A Specification 229 / 683

• If the sparse residency for 3D images feature is not enabled, and imageType is VK_IMAGE_TYPE_3D, flags
must not contain VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT

• If the sparse residency for images with 2 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_2_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT

• If the sparse residency for images with 4 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_4_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT

• If the sparse residency for images with 8 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_8_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT

• If the sparse residency for images with 16 samples feature is not enabled, imageType is VK_IMAGE_TYPE_2D,
and samples is VK_SAMPLE_COUNT_16_BIT, flags must not contain VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT

• If tiling is VK_IMAGE_TILING_LINEAR, format must be a format that has at least one supported feature
bit present in the value of VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_SAMPLED_
BIT

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_STORAGE_
BIT

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT

• If tiling is VK_IMAGE_TILING_LINEAR, and VkFormatProperties::linearTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, usage must not contain VK_IMAGE_
USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, format must be a format that has at least one supported feature
bit present in the value of VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_SAMPLED_
BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT, usage must not contain VK_IMAGE_USAGE_STORAGE_
BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, usage must not contain VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT

• If tiling is VK_IMAGE_TILING_OPTIMAL, and VkFormatProperties::optimalTilingFeatures (as
returned by vkGetPhysicalDeviceFormatProperties with the same value of format) does not include
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, usage must not contain VK_IMAGE_
USAGE_DEPTH_STENCIL_ATTACHMENT_BIT

• If flags contains VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or VK_IMAGE_CREATE_SPARSE_
ALIASED_BIT, it must also contain VK_IMAGE_CREATE_SPARSE_BINDING_BIT

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkImageCreateFlagBits values

• imageType must be a valid VkImageType value

• format must be a valid VkFormat value

• samples must be a valid VkSampleCountFlagBits value

• tiling must be a valid VkImageTiling value

• usage must be a valid combination of VkImageUsageFlagBits values

• usage must not be 0

• sharingMode must be a valid VkSharingMode value

• initialLayout must be a valid VkImageLayout value

The intended usage of an image is specified by the bitmask VkImageCreateInfo::usage. Bits which can be set
include:

typedef enum VkImageUsageFlagBits {
VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,

} VkImageUsageFlagBits;

Vulkan 1.0.36 - A Specification 231 / 683

These bits have the following meanings:

• VK_IMAGE_USAGE_TRANSFER_SRC_BIT indicates that the image can be used as the source of a transfer
command.

• VK_IMAGE_USAGE_TRANSFER_DST_BIT indicates that the image can be used as the destination of a transfer
command.

• VK_IMAGE_USAGE_SAMPLED_BIT indicates that the image can be used to create a VkImageView suitable for
occupying a VkDescriptorSet slot either of type VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or VK_
DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and be sampled by a shader.

• VK_IMAGE_USAGE_STORAGE_BIT indicates that the image can be used to create a VkImageView suitable for
occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

• VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT indicates that the image can be used to create a VkImageView
suitable for use as a color or resolve attachment in a VkFramebuffer.

• VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT indicates that the image can be used to create a
VkImageView suitable for use as a depth/stencil attachment in a VkFramebuffer.

• VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT indicates that the memory bound to this image will have
been allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT (see Chapter 10 for more detail).
This bit can be set for any image that can be used to create a VkImageView suitable for use as a color, resolve,
depth/stencil, or input attachment.

• VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT indicates that the image can be used to create a VkImageView
suitable for occupying VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; be read
from a shader as an input attachment; and be used as an input attachment in a framebuffer.

Additional parameters of an image are specified by VkImageCreateInfo::flags. Bits which can be set include:

typedef enum VkImageCreateFlagBits {
VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,

} VkImageCreateFlagBits;

These bits have the following meanings:

• VK_IMAGE_CREATE_SPARSE_BINDING_BIT indicates that the image will be backed using sparse memory
binding.

• VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT indicates that the image can be partially backed using sparse
memory binding. Images created with this flag must also be created with the VK_IMAGE_CREATE_SPARSE_
BINDING_BIT flag.

• VK_IMAGE_CREATE_SPARSE_ALIASED_BIT indicates that the image will be backed using sparse memory
binding with memory ranges that might also simultaneously be backing another image (or another portion of the same
image). Images created with this flag must also be created with the VK_IMAGE_CREATE_SPARSE_BINDING_BIT
flag

• VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT indicates that the image can be used to create a VkImageView
with a different format from the image.

• VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT indicates that the image can be used to create a VkImageView
of type VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

If any of the bits VK_IMAGE_CREATE_SPARSE_BINDING_BIT, VK_IMAGE_CREATE_SPARSE_RESIDENCY_
BIT, or VK_IMAGE_CREATE_SPARSE_ALIASED_BIT are set, VK_IMAGE_USAGE_TRANSIENT_
ATTACHMENT_BIT must not also be set.

See Sparse Resource Features and Sparse Physical Device Features for more details.

The basic dimensionality of an image is specified by VkImageCreateInfo::imageType, which must be one of the
values

typedef enum VkImageType {
VK_IMAGE_TYPE_1D = 0,
VK_IMAGE_TYPE_2D = 1,
VK_IMAGE_TYPE_3D = 2,

} VkImageType;

These values specify one-, two-, or three-dimensional images, respectively.

The tiling arrangement of data elements in an image is specified by VkImageCreateInfo::tiling, which must be
one of the values

typedef enum VkImageTiling {
VK_IMAGE_TILING_OPTIMAL = 0,
VK_IMAGE_TILING_LINEAR = 1,

} VkImageTiling;

VK_IMAGE_TILING_OPTIMAL specifies optimal tiling (texels are laid out in an implementation-dependent
arrangement, for more optimal memory access), and VK_IMAGE_TILING_LINEAR specifies linear tiling (texels are
laid out in memory in row-major order, possibly with some padding on each row).

To query the host access layout of an image subresource, for an image created with linear tiling, call:

void vkGetImageSubresourceLayout(
VkDevice device,
VkImage image,
const VkImageSubresource* pSubresource,
VkSubresourceLayout* pLayout);

• device is the logical device that owns the image.

• image is the image whose layout is being queried.

• pSubresource is a pointer to a VkImageSubresource structure selecting a specific image for the image
subresource.

• pLayout points to a VkSubresourceLayout structure in which the layout is returned.

vkGetImageSubresourceLayout is invariant for the lifetime of a single image.

Valid Usage

Vulkan 1.0.36 - A Specification 233 / 683

• image must have been created with tiling equal to VK_IMAGE_TILING_LINEAR

• The aspectMask member of pSubresource must only have a single bit set

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• pSubresource must be a pointer to a valid VkImageSubresource structure

• pLayout must be a pointer to a VkSubresourceLayout structure

• image must have been created, allocated, or retrieved from device

The VkImageSubresource structure is defined as:

typedef struct VkImageSubresource {
VkImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t arrayLayer;

} VkImageSubresource;

• aspectMask is a VkImageAspectFlags selecting the image aspect.

• mipLevel selects the mipmap level.

• arrayLayer selects the array layer.

Valid Usage

• mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created

• arrayLayer must be less than the arrayLayers specified in VkImageCreateInfo when the image was
created

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

Information about the layout of the image subresource is returned in a VkSubresourceLayout structure:

typedef struct VkSubresourceLayout {
VkDeviceSize offset;
VkDeviceSize size;
VkDeviceSize rowPitch;
VkDeviceSize arrayPitch;
VkDeviceSize depthPitch;

} VkSubresourceLayout;

• offset is the byte offset from the start of the image where the image subresource begins.

• size is the size in bytes of the image subresource. size includes any extra memory that is required based on
rowPitch.

• rowPitch describes the number of bytes between each row of texels in an image.

• arrayPitch describes the number of bytes between each array layer of an image.

• depthPitch describes the number of bytes between each slice of 3D image.

For images created with linear tiling, rowPitch, arrayPitch and depthPitch describe the layout of the image
subresource in linear memory. For uncompressed formats, rowPitch is the number of bytes between texels with the
same x coordinate in adjacent rows (y coordinates differ by one). arrayPitch is the number of bytes between texels
with the same x and y coordinate in adjacent array layers of the image (array layer values differ by one). depthPitch is
the number of bytes between texels with the same x and y coordinate in adjacent slices of a 3D image (z coordinates
differ by one). Expressed as an addressing formula, the starting byte of a texel in the image subresource has address:

// (x,y,z,layer) are in texel coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x*elementSize + ←↩

offset

For compressed formats, the rowPitch is the number of bytes between compressed texel blocks in adjacent rows.
arrayPitch is the number of bytes between compressed texel blocks in adjacent array layers. depthPitch is the
number of bytes between compressed texel blocks in adjacent slices of a 3D image.

// (x,y,z,layer) are in compressed texel block coordinates
address(x,y,z,layer) = layer*arrayPitch + z*depthPitch + y*rowPitch + x* ←↩

compressedTexelBlockByteSize + offset;

arrayPitch is undefined for images that were not created as arrays. depthPitch is defined only for 3D images.

For color formats, the aspectMask member of VkImageSubresource must be VK_IMAGE_ASPECT_COLOR_
BIT. For depth/stencil formats, aspectMask must be either VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_
ASPECT_STENCIL_BIT. On implementations that store depth and stencil aspects separately, querying each of these
image subresource layouts will return a different offset and size representing the region of memory used for that

Vulkan 1.0.36 - A Specification 235 / 683

aspect. On implementations that store depth and stencil aspects interleaved, the same offset and size are returned and
represent the interleaved memory allocation.

To destroy an image, call:

void vkDestroyImage(
VkDevice device,
VkImage image,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image.

• image is the image to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to image, either directly or via a VkImageView, must have completed
execution

• If VkAllocationCallbacks were provided when image was created, a compatible set of callbacks must be
provided here

• If no VkAllocationCallbacks were provided when image was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If image is not VK_NULL_HANDLE, image must be a valid VkImage handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If image is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

11.4 Image Layouts

Images are stored in implementation-dependent opaque layouts in memory. Implementations may support several
opaque layouts, and the layout used at any given time is determined by the VkImageLayout state of the image
subresource. Each layout has limitations on what kinds of operations are supported for image subresources using the
layout. Applications have control over which layout each image subresource uses, and can transition an image
subresource from one layout to another. Transitions can happen with an image memory barrier, included as part of a
vkCmdPipelineBarrier or a vkCmdWaitEvents command buffer command (see Section 6.6.3), or as part of a
subpass dependency within a render pass (see VkSubpassDependency). The image layout state is per-image
subresource, and separate image subresources of the same image can be in different layouts at the same time with one
exception - depth and stencil aspects of a given image subresource must always be in the same layout.

Note
Each layout may offer optimal performance for a specific usage of image memory. For example, an image with a
layout of VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL may provide optimal performance for use
as a color attachment, but be unsupported for use in transfer commands. Applications can transition an image
subresource from one layout to another in order to achieve optimal performance when the image subresource
is used for multiple kinds of operations. After initialization, applications need not use any layout other than the
general layout, though this may produce suboptimal performance on some implementations.

Upon creation, all image subresources of an image are initially in the same layout, where that layout is selected by the
VkImageCreateInfo::initialLayout member. The initialLayout must be either VK_IMAGE_LAYOUT_
UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED. If it is VK_IMAGE_LAYOUT_PREINITIALIZED, then
the image data can be preinitialized by the host while using this layout, and the transition away from this layout will
preserve that data. If it is VK_IMAGE_LAYOUT_UNDEFINED, then the contents of the data are considered to be
undefined, and the transition away from this layout is not guaranteed to preserve that data. For either of these initial
layouts, any image subresources must be transitioned to another layout before they are accessed by the device.

Host access to image memory is only well-defined for images created with VK_IMAGE_TILING_LINEAR tiling and
for image subresources of those images which are currently in either the VK_IMAGE_LAYOUT_PREINITIALIZED or
VK_IMAGE_LAYOUT_GENERAL layout. Calling vkGetImageSubresourceLayout for a linear image returns a
subresource layout mapping that is valid for either of those image layouts.

The set of image layouts consists of:

typedef enum VkImageLayout {
VK_IMAGE_LAYOUT_UNDEFINED = 0,
VK_IMAGE_LAYOUT_GENERAL = 1,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL = 2,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL = 3,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL = 4,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL = 5,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL = 6,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL = 7,
VK_IMAGE_LAYOUT_PREINITIALIZED = 8,

} VkImageLayout;

The type(s) of device access supported by each layout are:

• VK_IMAGE_LAYOUT_UNDEFINED: Supports no device access. This layout must only be used as the
initialLayout member of VkImageCreateInfo or VkAttachmentDescription, or as the oldLayout in
an image transition. When transitioning out of this layout, the contents of the memory are not guaranteed to be
preserved.

Vulkan 1.0.36 - A Specification 237 / 683

• VK_IMAGE_LAYOUT_PREINITIALIZED: Supports no device access. This layout must only be used as the
initialLayout member of VkImageCreateInfo or VkAttachmentDescription, or as the oldLayout in
an image transition. When transitioning out of this layout, the contents of the memory are preserved. This layout is
intended to be used as the initial layout for an image whose contents are written by the host, and hence the data can be
written to memory immediately, without first executing a layout transition. Currently, VK_IMAGE_LAYOUT_
PREINITIALIZED is only useful with VK_IMAGE_TILING_LINEAR images because there is not a standard
layout defined for VK_IMAGE_TILING_OPTIMAL images.

• VK_IMAGE_LAYOUT_GENERAL: Supports all types of device access.

• VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: must only be used as a color or resolve attachment in a
VkFramebuffer. This layout is valid only for image subresources of images created with the VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: must only be used as a depth/stencil
attachment in a VkFramebuffer. This layout is valid only for image subresources of images created with the VK_
IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: must only be used as a read-only depth/stencil
attachment in a VkFramebuffer and/or as a read-only image in a shader (which can be read as a sampled image,
combined image/sampler and/or input attachment). This layout is valid only for image subresources of images created
with the VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT usage bit enabled. Only image subresources
of images created with VK_IMAGE_USAGE_SAMPLED_BIT can be used as sampled image or combined
image/sampler in a shader. Similarly, only image subresources of images created with VK_IMAGE_USAGE_INPUT_
ATTACHMENT_BIT can be used as input attachments.

• VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: must only be used as a read-only image in a shader
(which can be read as a sampled image, combined image/sampler and/or input attachment). This layout is valid only
for image subresources of images created with the VK_IMAGE_USAGE_SAMPLED_BIT or VK_IMAGE_USAGE_
INPUT_ATTACHMENT_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: must only be used as a source image of a transfer command
(see the definition of VK_PIPELINE_STAGE_TRANSFER_BIT). This layout is valid only for image subresources of
images created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit enabled.

• VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: must only be used as a destination image of a transfer
command. This layout is valid only for image subresources of images created with the VK_IMAGE_USAGE_
TRANSFER_DST_BIT usage bit enabled.

For each mechanism of accessing an image in the API, there is a parameter or structure member that controls the image
layout used to access the image. For transfer commands, this is a parameter to the command (see Chapter 17 and
Chapter 18). For use as a framebuffer attachment, this is a member in the substructures of the
VkRenderPassCreateInfo (see Render Pass). For use in a descriptor set, this is a member in the
VkDescriptorImageInfo structure (see Section 13.2.4). At the time that any command buffer command accessing
an image executes on any queue, the layouts of the image subresources that are accessed must all match the layout
specified via the API controlling those accesses.

The image layout of each image subresource must be well-defined at each point in the image subresource’s lifetime. This
means that when performing a layout transition on the image subresource, the old layout value must either equal the
current layout of the image subresource (at the time the transition executes), or else be VK_IMAGE_LAYOUT_
UNDEFINED (implying that the contents of the image subresource need not be preserved). The new layout used in a
transition must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.

11.5 Image Views

Image objects are not directly accessed by pipeline shaders for reading or writing image data. Instead, image views
representing contiguous ranges of the image subresources and containing additional metadata are used for that purpose.
Views must be created on images of compatible types, and must represent a valid subset of image subresources.

Image views are represented by VkImageView handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkImageView)

The types of image views that can be created are:

typedef enum VkImageViewType {
VK_IMAGE_VIEW_TYPE_1D = 0,
VK_IMAGE_VIEW_TYPE_2D = 1,
VK_IMAGE_VIEW_TYPE_3D = 2,
VK_IMAGE_VIEW_TYPE_CUBE = 3,
VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,

} VkImageViewType;

The exact image view type is partially implicit, based on the image’s type and sample count, as well as the view creation
parameters as described in the table below. This table also shows which SPIR-V OpTypeImage Dim and Arrayed
parameters correspond to each image view type.

To create an image view, call:

VkResult vkCreateImageView(
VkDevice device,
const VkImageViewCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkImageView* pView);

• device is the logical device that creates the image view.

• pCreateInfo is a pointer to an instance of the VkImageViewCreateInfo structure containing parameters to be
used to create the image view.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pView points to a VkImageView handle in which the resulting image view object is returned.

Some of the image creation parameters are inherited by the view. The remaining parameters are contained in the
pCreateInfo.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkImageViewCreateInfo structure

Vulkan 1.0.36 - A Specification 239 / 683

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pView must be a pointer to a VkImageView handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkImageViewCreateInfo structure is defined as:

typedef struct VkImageViewCreateInfo {
VkStructureType sType;
const void* pNext;
VkImageViewCreateFlags flags;
VkImage image;
VkImageViewType viewType;
VkFormat format;
VkComponentMapping components;
VkImageSubresourceRange subresourceRange;

} VkImageViewCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• image is a VkImage on which the view will be created.

• viewType is the type of the image view.

• format is a VkFormat describing the format and type used to interpret data elements in the image.

• components specifies a remapping of color components (or of depth or stencil components after they have been
converted into color components). See VkComponentMapping.

• subresourceRange is a VkImageSubresourceRange selecting the set of mipmap levels and array layers to be
accessible to the view.

If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format can be different from the
image’s format, but if they are not equal they must be compatible. Image format compatibility is defined in the Format
Compatibility Classes section.

Table 11.1: Image and image view parameter compatibility requirements

Dim, Arrayed,
MS

Image parameters View parameters

imageType = ci.imageType
width = ci.extent.width
height = ci.extent.height
depth = ci.extent.depth
arrayLayers = ci.arrayLayers
samples = ci.samples
where ci is the
VkImageCreateInfo used to
create image.

baseArrayLayer and layerCount are members of
the subresourceRange member.

1D, 0, 0 imageType = VK_IMAGE_TYPE_
1D
width ≥ 1
height = 1
depth = 1
arrayLayers ≥ 1
samples = 1

viewType = VK_VIEW_TYPE_1D
baseArrayLayer ≥ 0
layerCount = 1

1D, 1, 0 imageType = VK_IMAGE_TYPE_
1D
width ≥ 1
height = 1
depth = 1
arrayLayers ≥ 1
samples = 1

viewType = VK_VIEW_TYPE_1D_ARRAY
baseArrayLayer ≥ 0
layerCount ≥ 1

2D, 0, 0 imageType = VK_IMAGE_TYPE_
2D
width ≥ 1
height ≥ 1
depth = 1
arrayLayers ≥ 1
samples = 1

viewType = VK_VIEW_TYPE_2D
baseArrayLayer ≥ 0
layerCount = 1

2D, 1, 0 imageType = VK_IMAGE_TYPE_
2D
width ≥ 1
height ≥ 1
depth = 1
arrayLayers ≥ 1
samples = 1

viewType = VK_VIEW_TYPE_2D_ARRAY
baseArrayLayer ≥ 0
layerCount ≥ 1

2D, 0, 1 imageType = VK_IMAGE_TYPE_
2D
width ≥ 1
height ≥ 1
depth = 1
arrayLayers ≥ 1
samples > 1

viewType = VK_VIEW_TYPE_2D
baseArrayLayer ≥ 0
layerCount = 1

Vulkan 1.0.36 - A Specification 241 / 683

Table 11.1: (continued)

Dim, Arrayed,
MS

Image parameters View parameters

2D, 1, 1 imageType = VK_IMAGE_TYPE_
2D
width ≥ 1
height ≥ 1
depth = 1
arrayLayers ≥ 1
samples > 1

viewType = VK_VIEW_TYPE_2D_ARRAY
baseArrayLayer ≥ 0
layerCount ≥ 1

CUBE, 0, 0 imageType = VK_IMAGE_TYPE_
2D
width ≥ 1
height = width

depth = 1
arrayLayers ≥ 6
samples = 1
flags includes VK_IMAGE_
CREATE_CUBE_COMPATIBLE_
BIT

viewType = VK_VIEW_TYPE_CUBE
baseArrayLayer ≥ 0
layerCount = 6

CUBE, 1, 0 imageType = VK_IMAGE_TYPE_
2D
width ≥ 1
height = width
depth = 1
N ≥ 1
arrayLayers ≥ 6 × N
samples = 1
flags includes VK_IMAGE_
CREATE_CUBE_COMPATIBLE_
BIT

viewType = VK_VIEW_TYPE_CUBE_ARRAY
baseArrayLayer ≥ 0
layerCount = 6 × N, N ≥ 1

3D, 0, 0 imageType = VK_IMAGE_TYPE_
3D
width ≥ 1
height ≥ 1
depth ≥ 1
arrayLayers = 1
samples = 1

viewType = VK_VIEW_TYPE_3D
baseArrayLayer = 0
layerCount = 1

Valid Usage

• If image was not created with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT then viewType must not be
VK_IMAGE_VIEW_TYPE_CUBE or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY

• If the image cubemap arrays feature is not enabled, viewType must not be VK_IMAGE_VIEW_TYPE_CUBE_
ARRAY

• If the ETC2 texture compression feature is not enabled, format must not be VK_FORMAT_ETC2_R8G8B8_
UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM_
BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT_
EAC_R11_SNORM_BLOCK, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, or VK_FORMAT_EAC_R11G11_
SNORM_BLOCK

• If the ASTC LDR texture compression feature is not enabled, format must not be VK_FORMAT_ASTC_4x4_
UNORM_BLOCK, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_
FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC_
5x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_ASTC_
8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_
8x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_SRGB_
BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK_
FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_ASTC_
10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x10_
UNORM_BLOCK, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
or VK_FORMAT_ASTC_12x12_SRGB_BLOCK

• If the BC texture compression feature is not enabled, format must not be VK_FORMAT_BC1_RGB_UNORM_
BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_
BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK_
FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_SNORM_
BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_
UNORM_BLOCK, or VK_FORMAT_BC7_SRGB_BLOCK

• If image was created with VK_IMAGE_TILING_LINEAR, format must be format that has at least one
supported feature bit present in the value of VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
SAMPLED_BIT, format must be supported for sampled images, as specified by the VK_FORMAT_FEATURE_
SAMPLED_IMAGE_BIT flag in VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
STORAGE_BIT, format must be supported for storage images, as specified by the VK_FORMAT_FEATURE_
STORAGE_IMAGE_BIT flag in VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT, format must be supported for color attachments, as specified by the VK_
FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag in
VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_LINEAR and usage containing VK_IMAGE_USAGE_
DEPTH_STENCIL_ATTACHMENT_BIT, format must be supported for depth/stencil attachments, as specified

Vulkan 1.0.36 - A Specification 243 / 683

by the VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in
VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL, format must be format that has at least one
supported feature bit present in the value of VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
SAMPLED_BIT, format must be supported for sampled images, as specified by the VK_FORMAT_FEATURE_
SAMPLED_IMAGE_BIT flag in VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
STORAGE_BIT, format must be supported for storage images, as specified by the VK_FORMAT_FEATURE_
STORAGE_IMAGE_BIT flag in VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
COLOR_ATTACHMENT_BIT, format must be supported for color attachments, as specified by the VK_
FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag in
VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• If image was created with VK_IMAGE_TILING_OPTIMAL and usage containing VK_IMAGE_USAGE_
DEPTH_STENCIL_ATTACHMENT_BIT, format must be supported for depth/stencil attachments, as specified
by the VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT flag in
VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties with the same value of format

• subresourceRange must be a valid image subresource range for image (see Section 11.5)

• If image was created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format must be
compatible with the format used to create image, as defined in Format Compatibility Classes

• If image was not created with the VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT flag, format must be
identical to the format used to create image

• subResourceRange and viewType must be compatible with the image, as described in the compatibility table

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO

• pNext must be NULL

• flags must be 0

• image must be a valid VkImage handle

• viewType must be a valid VkImageViewType value

• format must be a valid VkFormat value

• components must be a valid VkComponentMapping structure

• subresourceRange must be a valid VkImageSubresourceRange structure

The VkImageSubresourceRange structure is defined as:

typedef struct VkImageSubresourceRange {
VkImageAspectFlags aspectMask;
uint32_t baseMipLevel;
uint32_t levelCount;
uint32_t baseArrayLayer;
uint32_t layerCount;

} VkImageSubresourceRange;

• aspectMask is a bitmask indicating which aspect(s) of the image are included in the view. See
VkImageAspectFlagBits.

• baseMipLevel is the first mipmap level accessible to the view.

• levelCount is the number of mipmap levels (starting from baseMipLevel) accessible to the view.

• baseArrayLayer is the first array layer accessible to the view.

• layerCount is the number of array layers (starting from baseArrayLayer) accessible to the view.

The number of mipmap levels and array layers must be a subset of the image subresources in the image. If an application
wants to use all mip levels or layers in an image after the baseMipLevel or baseArrayLayer, it can set levelCount
and layerCount to the special values VK_REMAINING_MIP_LEVELS and VK_REMAINING_ARRAY_LAYERS
without knowing the exact number of mip levels or layers.

For cube and cube array image views, the layers of the image view starting at baseArrayLayer correspond to faces in
the order +X, -X, +Y, -Y, +Z, -Z. For cube arrays, each set of six sequential layers is a single cube, so the number of cube
maps in a cube map array view is layerCount / 6, and image array layer baseArrayLayer + i is face index i mod 6 of
cube i / 6. If the number of layers in the view, whether set explicitly in layerCount or implied by VK_REMAINING_
ARRAY_LAYERS, is not a multiple of 6, behavior when indexing the last cube is undefined.

aspectMask is a bitmask indicating the format being used. Bits which may be set include:

typedef enum VkImageAspectFlagBits {
VK_IMAGE_ASPECT_COLOR_BIT = 0x00000001,
VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002,
VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004,
VK_IMAGE_ASPECT_METADATA_BIT = 0x00000008,

} VkImageAspectFlagBits;

The mask must be only VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_
ASPECT_STENCIL_BIT if format is a color, depth-only or stencil-only format, respectively. If using a depth/stencil
format with both depth and stencil components, aspectMask must include at least one of VK_IMAGE_ASPECT_
DEPTH_BIT and VK_IMAGE_ASPECT_STENCIL_BIT, and can include both.

Vulkan 1.0.36 - A Specification 245 / 683

When using an imageView of a depth/stencil image to populate a descriptor set (e.g. for sampling in the shader, or for use
as an input attachment), the aspectMask must only include one bit and selects whether the imageView is used for depth
reads (i.e. using a floating-point sampler or input attachment in the shader) or stencil reads (i.e. using an unsigned integer
sampler or input attachment in the shader). When an imageView of a depth/stencil image is used as a depth/stencil
framebuffer attachment, the aspectMask is ignored and both depth and stencil image subresources are used.

The components member is of type VkComponentMapping, and describes a remapping from components of the
image to components of the vector returned by shader image instructions. This remapping must be identity for storage
image descriptors, input attachment descriptors, and framebuffer attachments.

Valid Usage

• If levelCount is not VK_REMAINING_MIP_LEVELS, levelCount must be non-zero and (baseMipLevel +
levelCount) must be less than or equal to the mipLevels specified in VkImageCreateInfo when the image
was created

• If layerCount is not VK_REMAINING_ARRAY_LAYERS, layerCount must be non-zero and
(baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in
VkImageCreateInfo when the image was created

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

The VkComponentMapping structure is defined as:

typedef struct VkComponentMapping {
VkComponentSwizzle r;
VkComponentSwizzle g;
VkComponentSwizzle b;
VkComponentSwizzle a;

} VkComponentMapping;

• r determines the component value placed in the R component of the output vector.

• g determines the component value placed in the G component of the output vector.

• b determines the component value placed in the B component of the output vector.

• a determines the component value placed in the A component of the output vector.

Each of r, g, b, and a is one of the values:

typedef enum VkComponentSwizzle {
VK_COMPONENT_SWIZZLE_IDENTITY = 0,
VK_COMPONENT_SWIZZLE_ZERO = 1,
VK_COMPONENT_SWIZZLE_ONE = 2,
VK_COMPONENT_SWIZZLE_R = 3,
VK_COMPONENT_SWIZZLE_G = 4,
VK_COMPONENT_SWIZZLE_B = 5,
VK_COMPONENT_SWIZZLE_A = 6,

} VkComponentSwizzle;

• VK_COMPONENT_SWIZZLE_IDENTITY: the component is set to the identity swizzle.

• VK_COMPONENT_SWIZZLE_ZERO: the component is set to zero.

• VK_COMPONENT_SWIZZLE_ONE: the component is set to either 1 or 1.0 depending on whether the type of the
image view format is integer or floating-point respectively, as determined by the Format Definition section for each
VkFormat.

• VK_COMPONENT_SWIZZLE_R: the component is set to the value of the R component of the image.

• VK_COMPONENT_SWIZZLE_G: the component is set to the value of the G component of the image.

• VK_COMPONENT_SWIZZLE_B: the component is set to the value of the B component of the image.

• VK_COMPONENT_SWIZZLE_A: the component is set to the value of the A component of the image.

Setting the identity swizzle on a component is equivalent to setting the identity mapping on that component. That is:

Table 11.2: Component Mappings Equivalent To VK_COMPONENT_SW
IZZLE_IDENTITY

Component Identity Mapping
components.r VK_COMPONENT_SWIZZLE_R
components.g VK_COMPONENT_SWIZZLE_G
components.b VK_COMPONENT_SWIZZLE_B
components.a VK_COMPONENT_SWIZZLE_A

Valid Usage (Implicit)

• r must be a valid VkComponentSwizzle value

• g must be a valid VkComponentSwizzle value

• b must be a valid VkComponentSwizzle value

• a must be a valid VkComponentSwizzle value

Vulkan 1.0.36 - A Specification 247 / 683

To destroy an image view, call:

void vkDestroyImageView(
VkDevice device,
VkImageView imageView,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the image view.

• imageView is the image view to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to imageView must have completed execution

• If VkAllocationCallbacks were provided when imageView was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when imageView was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If imageView is not VK_NULL_HANDLE, imageView must be a valid VkImageView handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If imageView is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to imageView must be externally synchronized

11.6 Resource Memory Association

Resources are initially created as virtual allocations with no backing memory. Device memory is allocated separately
(see Section 10.2) and then associated with the resource. This association is done differently for sparse and non-sparse
resources.

Resources created with any of the sparse creation flags are considered sparse resources. Resources created without these
flags are non-sparse. The details on resource memory association for sparse resources is described in Chapter 28.

Non-sparse resources must be bound completely and contiguously to a single VkDeviceMemory object before the
resource is passed as a parameter to any of the following operations:

• creating image or buffer views

• updating descriptor sets

• recording commands in a command buffer

Once bound, the memory binding is immutable for the lifetime of the resource.

To determine the memory requirements for a buffer resource, call:

void vkGetBufferMemoryRequirements(
VkDevice device,
VkBuffer buffer,
VkMemoryRequirements* pMemoryRequirements);

• device is the logical device that owns the buffer.

• buffer is the buffer to query.

• pMemoryRequirements points to an instance of the VkMemoryRequirements structure in which the memory
requirements of the buffer object are returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• buffer must be a valid VkBuffer handle

• pMemoryRequirements must be a pointer to a VkMemoryRequirements structure

• buffer must have been created, allocated, or retrieved from device

To determine the memory requirements for an image resource, call:

void vkGetImageMemoryRequirements(
VkDevice device,
VkImage image,
VkMemoryRequirements* pMemoryRequirements);

Vulkan 1.0.36 - A Specification 249 / 683

• device is the logical device that owns the image.

• image is the image to query.

• pMemoryRequirements points to an instance of the VkMemoryRequirements structure in which the memory
requirements of the image object are returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• pMemoryRequirements must be a pointer to a VkMemoryRequirements structure

• image must have been created, allocated, or retrieved from device

The VkMemoryRequirements structure is defined as:

typedef struct VkMemoryRequirements {
VkDeviceSize size;
VkDeviceSize alignment;
uint32_t memoryTypeBits;

} VkMemoryRequirements;

• size is the size, in bytes, of the memory allocation required for the resource.

• alignment is the alignment, in bytes, of the offset within the allocation required for the resource.

• memoryTypeBits is a bitmask and contains one bit set for every supported memory type for the resource. Bit i is set
if and only if the memory type i in the VkPhysicalDeviceMemoryProperties structure for the physical
device is supported for the resource.

The implementation guarantees certain properties about the memory requirements returned by
vkGetBufferMemoryRequirements and vkGetImageMemoryRequirements:

• The memoryTypeBits member always contains at least one bit set.

• If buffer is a VkBuffer not created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT bit set, or if
image is a VkImage that was created with a VK_IMAGE_TILING_LINEAR value in the tiling member of the
VkImageCreateInfo structure passed to vkCreateImage, then the memoryTypeBits member always contains
at least one bit set corresponding to a VkMemoryType with a propertyFlags that has both the VK_MEMORY_
PROPERTY_HOST_VISIBLE_BIT bit and the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit set. In
other words, mappable coherent memory can always be attached to these objects.

• The memoryTypeBits member always contains at least one bit set corresponding to a VkMemoryType with a
propertyFlags that has the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT bit set.

• The memoryTypeBits member is identical for all VkBuffer objects created with the same value for the flags and
usage members in the VkBufferCreateInfo structure passed to vkCreateBuffer. Further, if usage1 and
usage2 of type VkBufferUsageFlags are such that the bits set in usage2 are a subset of the bits set in
usage1, and they have the same flags, then the bits set in memoryTypeBits returned for usage1 must be a subset
of the bits set in memoryTypeBits returned for usage2, for all values of flags.

• The alignment member is a power of two.

• The alignment member is identical for all VkBuffer objects created with the same combination of values for the
usage and flags members in the VkBufferCreateInfo structure passed to vkCreateBuffer.

• For images created with a color format, the memoryTypeBits member is identical for all VkImage objects created
with the same combination of values for the tiling member, the VK_IMAGE_CREATE_SPARSE_BINDING_BIT
bit of the flags member, and the VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT of the usage member in
the VkImageCreateInfo structure passed to vkCreateImage.

• For images created with a depth/stencil format, the memoryTypeBits member is identical for all VkImage objects
created with the same combination of values for the format member, the tiling member, the VK_IMAGE_
CREATE_SPARSE_BINDING_BIT bit of the flags member, and the VK_IMAGE_USAGE_TRANSIENT_
ATTACHMENT_BIT of the usage member in the VkImageCreateInfo structure passed to vkCreateImage.

• If the memory requirements are for a VkImage, the memoryTypeBits member must not refer to a VkMemoryType
with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set if the
vkGetImageMemoryRequirements::image did not have VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_
BIT bit set in the usage member of the VkImageCreateInfo structure passed to vkCreateImage.

• If the memory requirements are for a VkBuffer, the memoryTypeBits member must not refer to a
VkMemoryType with a propertyFlags that has the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit
set.

Note
The implication of this requirement is that lazily allocated memory is disallowed for buffers in all cases.

To attach memory to a buffer object, call:

VkResult vkBindBufferMemory(
VkDevice device,
VkBuffer buffer,
VkDeviceMemory memory,
VkDeviceSize memoryOffset);

• device is the logical device that owns the buffer and memory.

• buffer is the buffer.

• memory is a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the buffer. The number of bytes
returned in the VkMemoryRequirements::size member in memory, starting from memoryOffset bytes, will be
bound to the specified buffer.

Vulkan 1.0.36 - A Specification 251 / 683

Valid Usage

• buffer must not already be backed by a memory object

• buffer must not have been created with any sparse memory binding flags

• memoryOffset must be less than the size of memory

• If buffer was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_
USAGE_STORAGE_TEXEL_BUFFER_BIT, memoryOffset must be a multiple of
VkPhysicalDeviceLimits::minTexelBufferOffsetAlignment

• If buffer was created with the VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, memoryOffset must be a
multiple of VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment

• If buffer was created with the VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, memoryOffset must be a
multiple of VkPhysicalDeviceLimits::minStorageBufferOffsetAlignment

• memory must have been allocated using one of the memory types allowed in the memoryTypeBits member of
the VkMemoryRequirements structure returned from a call to vkGetBufferMemoryRequirements
with buffer

• memoryOffset must be an integer multiple of the alignment member of the VkMemoryRequirements
structure returned from a call to vkGetBufferMemoryRequirements with buffer

• The size member of the VkMemoryRequirements structure returned from a call to
vkGetBufferMemoryRequirements with buffer must be less than or equal to the size of memory minus
memoryOffset

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• buffer must be a valid VkBuffer handle

• memory must be a valid VkDeviceMemory handle

• buffer must have been created, allocated, or retrieved from device

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to buffer must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To attach memory to an image object, call:

VkResult vkBindImageMemory(
VkDevice device,
VkImage image,
VkDeviceMemory memory,
VkDeviceSize memoryOffset);

• device is the logical device that owns the image and memory.

• image is the image.

• memory is the a VkDeviceMemory object describing the device memory to attach.

• memoryOffset is the start offset of the region of memory which is to be bound to the image. The number of bytes
returned in the VkMemoryRequirements::size member in memory, starting from memoryOffset bytes, will be
bound to the specified image.

Valid Usage

• image must not already be backed by a memory object

• image must not have been created with any sparse memory binding flags

• memoryOffset must be less than the size of memory

Vulkan 1.0.36 - A Specification 253 / 683

• memory must have been allocated using one of the memory types allowed in the memoryTypeBits member of
the VkMemoryRequirements structure returned from a call to vkGetImageMemoryRequirements with
image

• memoryOffset must be an integer multiple of the alignment member of the VkMemoryRequirements
structure returned from a call to vkGetImageMemoryRequirements with image

• The size member of the VkMemoryRequirements structure returned from a call to
vkGetImageMemoryRequirements with image must be less than or equal to the size of memory minus
memoryOffset

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• memory must be a valid VkDeviceMemory handle

• image must have been created, allocated, or retrieved from device

• memory must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to image must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Buffer-Image Granularity

There is an implementation-dependent limit, bufferImageGranularity, which specifies a page-like granularity at
which buffer, linear image and optimal image resources must be placed in adjacent memory locations to avoid aliasing.
Two resources which do not satisfy this granularity requirement are said to alias. Linear image resource are images
created with VK_IMAGE_TILING_LINEAR and optimal image resources are those created with VK_IMAGE_
TILING_OPTIMAL. bufferImageGranularity is specified in bytes, and must be a power of two. Implementations
which do not require such an additional granularity may report a value of one.

Note
bufferImageGranularity is really a granularity between "linear" resources, including buffers and images
with linear tiling, vs. "optimal" resources, i.e. images with optimal tiling. It would have been better named
"linearOptimalGranularity".

Given resourceA at the lower memory offset and resourceB at the higher memory offset in the same VkDeviceMemory
object, where one of the resources is a buffer or a linear image and the other is an optimal image, and the following:

resourceA.end = resourceA.memoryOffset + resourceA.size - 1
resourceA.endPage = resourceA.end & ~(bufferImageGranularity-1)
resourceB.start = resourceB.memoryOffset
resourceB.startPage = resourceB.start & ~(bufferImageGranularity-1)

The following property must hold:

resourceA.endPage < resourceB.startPage

That is, the end of the first resource (A) and the beginning of the second resource (B) must be on separate “pages” of size
bufferImageGranularity. bufferImageGranularity may be different than the physical page size of the memory
heap. This restriction is only needed when a buffer or a linear image is at adjacent memory location with an optimal
image and both will be used simultaneously. Adjacent buffers’ or adjacent images’ memory ranges can be closer than
bufferImageGranularity, provided they meet the alignment requirement for the objects in question.

Sparse block size in bytes and sparse image and buffer memory alignments must all be multiples of the
bufferImageGranularity. Therefore, memory bound to sparse resources naturally satisfies the
bufferImageGranularity.

11.7 Resource Sharing Mode

Buffer and image objects are created with a sharing mode controlling how they can be accessed from queues. The
supported sharing modes are:

typedef enum VkSharingMode {
VK_SHARING_MODE_EXCLUSIVE = 0,
VK_SHARING_MODE_CONCURRENT = 1,

} VkSharingMode;

• VK_SHARING_MODE_EXCLUSIVE specifies that access to any range or image subresource of the object will be
exclusive to a single queue family at a time.

• VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image subresource of the object
from multiple queue families is supported.

Vulkan 1.0.36 - A Specification 255 / 683

Note
VK_SHARING_MODE_CONCURRENT may result in lower performance access to the buffer or image than VK_
SHARING_MODE_EXCLUSIVE.

Ranges of buffers and image subresources of image objects created using VK_SHARING_MODE_EXCLUSIVE must
only be accessed by queues in the same queue family at any given time. In order for a different queue family to be able to
interpret the memory contents of a range or image subresource, the application must perform a queue family ownership
transfer.

Upon creation, resources using VK_SHARING_MODE_EXCLUSIVE are not owned by any queue family. A buffer or
image memory barrier is not required to acquire ownership when no queue family owns the resource - it is implicitly
acquired upon first use within a queue.

Note
Images still require a layout transition from VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_
PREINITIALIZED before being used on the first queue.

A queue family can take ownership of an image subresource or buffer range of a resource created with VK_SHARING_
MODE_EXCLUSIVE, without an ownership transfer, in the same way as for a resource that was just created; however,
taking ownership in this way has the effect that the contents of the image subresource or buffer range are undefined.

Ranges of buffers and image subresources of image objects created using VK_SHARING_MODE_CONCURRENT must
only be accessed by queues from the queue families specified through the queueFamilyIndexCount and
pQueueFamilyIndices members of the corresponding create info structures.

11.8 Memory Aliasing

A range of a VkDeviceMemory allocation is aliased if it is bound to multiple resources simultaneously, via
vkBindImageMemory, vkBindBufferMemory, or via sparse memory bindings. A memory range aliased between
two images or two buffers is defined to be the intersection of the memory ranges bound to the two resources. A memory
range aliased between two resources where one is a buffer or a linear image, and the other is an optimal image, is defined
to be the intersection of the memory ranges bound to the two resources, where each range is first padded to be aligned to
the bufferImageGranularity. Applications can alias memory, but use of multiple aliases is subject to several
constraints.

Note
Memory aliasing can be useful to reduce the total device memory footprint of an application, if some large
resources are used for disjoint periods of time.

When an opaque, non-VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image is bound to an aliased range, all
image subresources of the image overlap the range. When a linear image is bound to an aliased range, the image
subresources that (according to the image’s advertised layout) include bytes from the aliased range overlap the range.
When a VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT image has sparse image blocks bound to an aliased range,
only image subresources including those sparse image blocks overlap the range, and when the memory bound to the
image’s mip tail overlaps an aliased range all image subresources in the mip tail overlap the range.

Buffers, and linear image subresources in either the VK_IMAGE_LAYOUT_PREINITIALIZED or VK_IMAGE_
LAYOUT_GENERAL layouts, are host-accessible subresources. That is, the host has a well-defined addressing scheme to
interpret the contents, and thus the layout of the data in memory can be consistently interpreted across aliases if each of
those aliases is a host-accessible subresource. Opaque images and linear image subresources in other layouts are not
host-accessible.

If two aliases are both host-accessible, then they interpret the contents of the memory in consistent ways, and data
written to one alias can be read by the other alias.

If either of two aliases is not host-accessible, then the aliases interpret the contents of the memory differently, and writes
via one alias make the contents of memory partially or completely undefined to the other alias. If the first alias is a
host-accessible subresource, then the bytes affected are those written by the memory operations according to its
addressing scheme. If the first alias is not host-accessible, then the bytes affected are those overlapped by the image
subresources that were written. If the second alias is a host-accessible subresource, the affected bytes become undefined.
If the second alias is a not host-accessible, all sparse image blocks (for sparse partially-resident images) or all image
subresources (for non-sparse image and fully resident sparse images) that overlap the affected bytes become undefined.

If any image subresources are made undefined due to writes to an alias, then each of those image subresources must have
its layout transitioned from VK_IMAGE_LAYOUT_UNDEFINED to a valid layout before it is used, or from VK_
IMAGE_LAYOUT_PREINITIALIZED if the memory has been written by the host. If any sparse blocks of a sparse
image have been made undefined, then only the image subresources containing them must be transitioned.

Use of an overlapping range by two aliases must be separated by a memory dependency using the appropriate access
types if at least one of those uses performs writes, whether the aliases interpret memory consistently or not. If buffer or
image memory barriers are used, the scope of the barrier must contain the entire range and/or set of image subresources
that overlap.

If two aliasing image views are used in the same framebuffer, then the render pass must declare the attachments using the
VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, and follow the other rules listed in that section.

Access to resources which alias memory from shaders using variables decorated with Coherent are not automatically
coherent with each other.

Note
Memory recycled via an application suballocator (i.e. without freeing and reallocating the memory objects) is not
substantially different from memory aliasing. However, a suballocator usually waits on a fence before recycling
a region of memory, and signaling a fence involves sufficient implicit dependencies to satisfy all the above
requirements.

Vulkan 1.0.36 - A Specification 257 / 683

Chapter 12

Samplers

VkSampler objects represent the state of an image sampler which is used by the implementation to read image data and
apply filtering and other transformations for the shader.

Samplers are represented by VkSampler handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkSampler)

To create a sampler object, call:

VkResult vkCreateSampler(
VkDevice device,
const VkSamplerCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSampler* pSampler);

• device is the logical device that creates the sampler.

• pCreateInfo is a pointer to an instance of the VkSamplerCreateInfo structure specifying the state of the
sampler object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSampler points to a VkSampler handle in which the resulting sampler object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkSamplerCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pSampler must be a pointer to a VkSampler handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_TOO_MANY_OBJECTS

The VkSamplerCreateInfo structure is defined as:

typedef struct VkSamplerCreateInfo {
VkStructureType sType;
const void* pNext;
VkSamplerCreateFlags flags;
VkFilter magFilter;
VkFilter minFilter;
VkSamplerMipmapMode mipmapMode;
VkSamplerAddressMode addressModeU;
VkSamplerAddressMode addressModeV;
VkSamplerAddressMode addressModeW;
float mipLodBias;
VkBool32 anisotropyEnable;
float maxAnisotropy;
VkBool32 compareEnable;
VkCompareOp compareOp;
float minLod;
float maxLod;
VkBorderColor borderColor;
VkBool32 unnormalizedCoordinates;

} VkSamplerCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• magFilter is the magnification filter to apply to lookups, and is of type:

typedef enum VkFilter {
VK_FILTER_NEAREST = 0,
VK_FILTER_LINEAR = 1,

} VkFilter;

• minFilter is the minification filter to apply to lookups, and is of type VkFilter.

Vulkan 1.0.36 - A Specification 259 / 683

• mipmapMode is the mipmap filter to apply to lookups as described in the Texel Filtering section, and is of type:

typedef enum VkSamplerMipmapMode {
VK_SAMPLER_MIPMAP_MODE_NEAREST = 0,
VK_SAMPLER_MIPMAP_MODE_LINEAR = 1,

} VkSamplerMipmapMode;

• addressModeU is the addressing mode for outside [0..1] range for U coordinate. See VkSamplerAddressMode.

• addressModeV is the addressing mode for outside [0..1] range for V coordinate. See VkSamplerAddressMode.

• addressModeW is the addressing mode for outside [0..1] range for W coordinate. See VkSamplerAddressMode.

• mipLodBias is the bias to be added to mipmap LOD calculation and bias provided by image sampling functions in
SPIR-V, as described in the Level-of-Detail Operation section.

• anisotropyEnable is VK_TRUE to enable anisotropic filtering, as described in the Texel Anisotropic Filtering
section, or VK_FALSE otherwise.

• maxAnisotropy is the anisotropy value clamp.

• compareEnable is VK_TRUE to enable comparison against a reference value during lookups, or VK_FALSE
otherwise.

– Note: Some implementations will default to shader state if this member does not match.

• compareOp is the comparison function to apply to fetched data before filtering as described in the Depth Compare
Operation section. See VkCompareOp.

• minLod and maxLod are the values used to clamp the computed level-of-detail value, as described in the
Level-of-Detail Operation section. maxLod must be greater than or equal to minLod.

• borderColor is the predefined border color to use, as described in the Texel Replacement section, and is of type:

typedef enum VkBorderColor {
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0,
VK_BORDER_COLOR_INT_TRANSPARENT_BLACK = 1,
VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2,
VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3,
VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE = 4,
VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5,

} VkBorderColor;

• unnormalizedCoordinates controls whether to use unnormalized or normalized texel coordinates to address texels
of the image. When set to VK_TRUE, the range of the image coordinates used to lookup the texel is in the range of
zero to the image dimensions for x, y and z. When set to VK_FALSE the range of image coordinates is zero to one.
When unnormalizedCoordinates is VK_TRUE, samplers have the following requirements:

– minFilter and magFilter must be equal.

– mipmapMode must be VK_SAMPLER_MIPMAP_MODE_NEAREST.

– minLod and maxLod must be zero.

– addressModeU and addressModeV must each be either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER.

– anisotropyEnable must be VK_FALSE.

– compareEnable must be VK_FALSE.

• When unnormalizedCoordinates is VK_TRUE, images the sampler is used with in the shader have the following
requirements:

– The viewType must be either VK_IMAGE_VIEW_TYPE_1D or VK_IMAGE_VIEW_TYPE_2D.

– The image view must have a single layer and a single mip level.

• When unnormalizedCoordinates is VK_TRUE, image built-in functions in the shader that use the sampler have the
following requirements:

– The functions must not use projection.

– The functions must not use offsets.

Mapping of OpenGL to Vulkan filter modes
magFilter values of VK_FILTER_NEAREST and VK_FILTER_LINEAR directly correspond to GL_NEA
REST and GL_LINEAR magnification filters. minFilter and mipmapMode combine to correspond to the
similarly named OpenGL minification filter of GL_minFilter_MIPMAP_mipmapMode (e.g. minFilter of
VK_FILTER_LINEAR and mipmapMode of VK_SAMPLER_MIPMAP_MODE_NEAREST correspond to GL_
LINEAR_MIPMAP_NEAREST).
There are no Vulkan filter modes that directly correspond to OpenGL minification filters of GL_LINEAR or GL_
NEAREST, but they can be emulated using VK_SAMPLER_MIPMAP_MODE_NEAREST, minLod = 0, and
maxLod = 0.25, and using minFilter = VK_FILTER_LINEAR or minFilter = VK_FILTER_NEAREST,
respectively.
Note that using a maxLod of zero would cause magnification to always be performed, and the magFilter to
always be used. This is valid, just not an exact match for OpenGL behavior. Clamping the maximum LOD to
0.25 allows the λ value to be non-zero and minification to be performed, while still always rounding down to the
base level. If the minFilter and magFilter are equal, then using a maxLod of zero also works.

addressModeU , addressModeV , and addressModeW must each have one of the following values:

typedef enum VkSamplerAddressMode {
VK_SAMPLER_ADDRESS_MODE_REPEAT = 0,
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT = 1,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE = 2,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER = 3,
VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE = 4,

} VkSamplerAddressMode;

These values control the behavior of sampling with coordinates outside the range [0,1] for the respective u, v, or w
coordinate as defined in the Wrapping Operation section.

• VK_SAMPLER_ADDRESS_MODE_REPEAT indicates that the repeat wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT indicates that the mirrored repeat wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE indicates that the clamp to edge wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER indicates that the clamp to border wrap mode will be used.

• VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE indicates that the mirror clamp to edge wrap mode
will be used. This is only valid if the VK_KHR_mirror_clamp_to_edge extension is enabled.

Vulkan 1.0.36 - A Specification 261 / 683

The maximum number of sampler objects which can be simultaneously created on a device is implementation-dependent
and specified by the maxSamplerAllocationCount member of the VkPhysicalDeviceLimits structure. If
maxSamplerAllocationCount is exceeded, vkCreateSampler will return VK_ERROR_TOO_MANY_OBJECTS.

Since VkSampler is a non-dispatchable handle type, implementations may return the same handle for sampler state
vectors that are identical. In such cases, all such objects would only count once against the
maxSamplerAllocationCount limit.

Valid Usage

• The absolute value of mipLodBias must be less than or equal to
VkPhysicalDeviceLimits::maxSamplerLodBias

• If the anisotropic sampling feature is not enabled, anisotropyEnable must be VK_FALSE

• If anisotropyEnable is VK_TRUE, maxAnisotropy must be between 1.0 and
VkPhysicalDeviceLimits::maxSamplerAnisotropy, inclusive

• If unnormalizedCoordinates is VK_TRUE, minFilter and magFilter must be equal

• If unnormalizedCoordinates is VK_TRUE, mipmapMode must be VK_SAMPLER_MIPMAP_MODE_
NEAREST

• If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero

• If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be either VK_
SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER

• If unnormalizedCoordinates is VK_TRUE, anisotropyEnable must be VK_FALSE

• If unnormalizedCoordinates is VK_TRUE, compareEnable must be VK_FALSE

• If any of addressModeU , addressModeV or addressModeW are VK_SAMPLER_ADDRESS_MODE_CLAMP_
TO_BORDER, borderColor must be a valid VkBorderColor value

• If the VK_KHR_sampler_mirror_clamp_to_edge extension is not enabled, addressModeU ,
addressModeV and addressModeW must not be VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_
EDGE

• If compareEnable is VK_TRUE, compareOp must be a valid VkCompareOp value

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO

• pNext must be NULL

• flags must be 0

• magFilter must be a valid VkFilter value

• minFilter must be a valid VkFilter value

• mipmapMode must be a valid VkSamplerMipmapMode value

• addressModeU must be a valid VkSamplerAddressMode value

• addressModeV must be a valid VkSamplerAddressMode value

• addressModeW must be a valid VkSamplerAddressMode value

To destroy a sampler, call:

void vkDestroySampler(
VkDevice device,
VkSampler sampler,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the sampler.

• sampler is the sampler to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to sampler must have completed execution

• If VkAllocationCallbacks were provided when sampler was created, a compatible set of callbacks must
be provided here

• If no VkAllocationCallbacks were provided when sampler was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If sampler is not VK_NULL_HANDLE, sampler must be a valid VkSampler handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If sampler is a valid handle, it must have been created, allocated, or retrieved from device

Vulkan 1.0.36 - A Specification 263 / 683

Host Synchronization

• Host access to sampler must be externally synchronized

Vulkan 1.0.36 - A Specification 265 / 683

Chapter 13

Resource Descriptors

Shaders access buffer and image resources by using special shader variables which are indirectly bound to buffer and
image views via the API. These variables are organized into sets, where each set of bindings is represented by a
descriptor set object in the API and a descriptor set is bound all at once. A descriptor is an opaque data structure
representing a shader resource such as a buffer view, image view, sampler, or combined image sampler. The content of
each set is determined by its descriptor set layout and the sequence of set layouts that can be used by resource variables
in shaders within a pipeline is specified in a pipeline layout.

Each shader can use up to maxBoundDescriptorSets (see Limits) descriptor sets, and each descriptor set can include
bindings for descriptors of all descriptor types. Each shader resource variable is assigned a tuple of (set number, binding
number, array element) that defines its location within a descriptor set layout. In GLSL, the set number and binding
number are assigned via layout qualifiers, and the array element is implicitly assigned consecutively starting with index
equal to zero for the first element of an array (and array element is zero for non-array variables):

GLSL example

// Assign set number = M, binding number = N, array element = 0
layout (set=M, binding=N) uniform sampler2D variableName;

// Assign set number = M, binding number = N for all array elements, and
// array element = I for the I’th member of the array.
layout (set=M, binding=N) uniform sampler2D variableNameArray[I];

SPIR-V example

// Assign set number = M, binding number = N, array element = 0
...

%1 = OpExtInstImport "GLSL.std.450"
...
OpName %10 "variableName"
OpDecorate %10 DescriptorSet M
OpDecorate %10 Binding N

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant

...

// Assign set number = M, binding number = N for all array elements, and
// array element = I for the I’th member of the array.

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %13 "variableNameArray"
OpDecorate %13 DescriptorSet M
OpDecorate %13 Binding N

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypeInt 32 0
%10 = OpConstant %9 I
%11 = OpTypeArray %8 %10
%12 = OpTypePointer UniformConstant %11
%13 = OpVariable %12 UniformConstant

...

13.1 Descriptor Types

The following sections outline the various descriptor types supported by Vulkan. Each section defines a descriptor type,
and each descriptor type has a manifestation in the shading language and SPIR-V as well as in descriptor sets. There is
mostly a one-to-one correspondence between descriptor types and classes of opaque types in the shading language,
where the opaque types in the shading language must refer to a descriptor in the pipeline layout of the corresponding
descriptor type. But there is an exception to this rule as described in Combined Image Sampler.

13.1.1 Storage Image

A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type that is used for load, store, and
atomic operations on image memory from within shaders bound to pipelines.

Loads from storage images do not use samplers and are unfiltered and do not support coordinate wrapping or clamping.
Loads are supported in all shader stages for image formats which report support for the VK_FORMAT_FEATURE_
STORAGE_IMAGE_BIT feature bit via vkGetPhysicalDeviceFormatProperties.

Stores to storage images are supported in compute shaders for image formats which report support for the VK_FORMAT_
FEATURE_STORAGE_IMAGE_BIT feature.

Storage images also support atomic operations in compute shaders for image formats which report support for the VK_
FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT feature.

Load and store operations on storage images can only be done on images in VK_IMAGE_LAYOUT_GENERAL layout.

When the fragmentStoresAndAtomics feature is enabled, stores and atomic operations are also supported for storage
images in fragment shaders with the same set of image formats as supported in compute shaders. When the
vertexPipelineStoresAndAtomics feature is enabled, stores and atomic operations are also supported in vertex,
tessellation, and geometry shaders with the same set of image formats as supported in compute shaders.

Storage image declarations must specify the image format in the shader if the variable is used for atomic operations.

If the shaderStorageImageReadWithoutFormat feature is not enabled, storage image declarations must specify the image
format in the shader if the variable is used for load operations.

Vulkan 1.0.36 - A Specification 267 / 683

If the shaderStorageImageWriteWithoutFormat feature is not enabled, storage image declarations must specify the image
format in the shader if the variable is used for store operations.

Storage images are declared in GLSL shader source using uniform image variables of the appropriate dimensionality as
well as a format layout qualifier (if necessary):

GLSL example

layout (set=m, binding=n, r32f) uniform image2D myStorageImage;

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %9 "myStorageImage"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 2 R32f
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant

...

13.1.2 Sampler

A sampler (VK_DESCRIPTOR_TYPE_SAMPLER) represents a set of parameters which control address calculations,
filtering behavior, and other properties, that can be used to perform filtered loads from sampled images (see Sampled
Image).

Samplers are declared in GLSL shader source using uniform sampler variables, where the sampler type has no
associated texture dimensionality:

GLSL Example

layout (set=m, binding=n) uniform sampler mySampler;

SPIR-V Example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %8 "mySampler"
OpDecorate %8 DescriptorSet m
OpDecorate %8 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeSampler
%7 = OpTypePointer UniformConstant %6
%8 = OpVariable %7 UniformConstant

...

13.1.3 Sampled Image

A sampled image (VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE) can be used (usually in conjunction with a sampler)
to retrieve sampled image data. Shaders use a sampled image handle and a sampler handle to sample data, where the
image handle generally defines the shape and format of the memory and the sampler generally defines how coordinate
addressing is performed. The same sampler can be used to sample from multiple images, and it is possible to sample
from the same sampled image with multiple samplers, each containing a different set of sampling parameters.

Sampled images are declared in GLSL shader source using uniform texture variables of the appropriate
dimensionality:

GLSL example

layout (set=m, binding=n) uniform texture2D mySampledImage;

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %9 "mySampledImage"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant

...

13.1.4 Combined Image Sampler

A combined image sampler (VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) represents a sampled image
along with a set of sampling parameters. It is logically considered a sampled image and a sampler bound together.

Note
On some implementations, it may be more efficient to sample from an image using a combination of sampler
and sampled image that are stored together in the descriptor set in a combined descriptor.

Combined image samplers are declared in GLSL shader source using uniform sampler variables of the appropriate
dimensionality:

GLSL example

layout (set=m, binding=n) uniform sampler2D myCombinedImageSampler;

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %10 "myCombinedImageSampler"

Vulkan 1.0.36 - A Specification 269 / 683

OpDecorate %10 DescriptorSet m
OpDecorate %10 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant

...

VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER descriptor set entries can also be accessed via separate
sampler and sampled image shader variables. Such variables refer exclusively to the corresponding half of the descriptor,
and can be combined in the shader with samplers or sampled images that can come from the same descriptor or from
other combined or separate descriptor types. There are no additional restrictions on how a separate sampler or sampled
image variable is used due to it originating from a combined descriptor.

13.1.5 Uniform Texel Buffer

A uniform texel buffer (VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) represents a tightly packed array of
homogeneous formatted data that is stored in a buffer and is made accessible to shaders. Uniform texel buffers are
read-only.

Uniform texel buffers are declared in GLSL shader source using uniform samplerBuffer variables:

GLSL example

layout (set=m, binding=n) uniform samplerBuffer myUniformTexelBuffer;

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %10 "myUniformTexelBuffer"
OpDecorate %10 DescriptorSet m
OpDecorate %10 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 Buffer 0 0 0 1 Unknown
%8 = OpTypeSampledImage %7
%9 = OpTypePointer UniformConstant %8
%10 = OpVariable %9 UniformConstant

...

13.1.6 Storage Texel Buffer

A storage texel buffer (VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER) represents a tightly packed array of
homogeneous formatted data that is stored in a buffer and is made accessible to shaders. Storage texel buffers differ from
uniform texel buffers in that they support stores and atomic operations in shaders, may support a different maximum
length, and may have different performance characteristics.

Storage texel buffers are declared in GLSL shader source using uniform imageBuffer variables:

GLSL example

layout (set=m, binding=n, r32f) uniform imageBuffer myStorageTexelBuffer;

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %9 "myStorageTexelBuffer"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 Buffer 0 0 0 2 R32f
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant

...

13.1.7 Uniform Buffer

A uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) is a region of structured storage that is made
accessible for read-only access to shaders. It is typically used to store medium sized arrays of constants such as shader
parameters, matrices and other related data.

Uniform buffers are declared in GLSL shader source using the uniform storage qualifier and block syntax:

GLSL example

layout (set=m, binding=n) uniform myUniformBuffer
{

vec4 myElement[32];
};

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %11 "myUniformBuffer"
OpMemberName %11 0 "myElement"
OpName %13 ""
OpDecorate %10 ArrayStride 16
OpMemberDecorate %11 0 Offset 0
OpDecorate %11 Block
OpDecorate %13 DescriptorSet m
OpDecorate %13 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 4
%8 = OpTypeInt 32 0
%9 = OpConstant %8 32
%10 = OpTypeArray %7 %9
%11 = OpTypeStruct %10
%12 = OpTypePointer Uniform %11

Vulkan 1.0.36 - A Specification 271 / 683

%13 = OpVariable %12 Uniform
...

13.1.8 Storage Buffer

A storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER) is a region of structured storage that supports both
read and write access for shaders. In addition to general read and write operations, some members of storage buffers can
be used as the target of atomic operations. In general, atomic operations are only supported on members that have
unsigned integer formats.

Storage buffers are declared in GLSL shader source using buffer storage qualifier and block syntax:

GLSL example

layout (set=m, binding=n) buffer myStorageBuffer
{

vec4 myElement[];
};

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %9 "myStorageBuffer"
OpMemberName %9 0 "myElement"
OpName %11 ""
OpDecorate %8 ArrayStride 16
OpMemberDecorate %9 0 Offset 0
OpDecorate %9 BufferBlock
OpDecorate %11 DescriptorSet m
OpDecorate %11 Binding n

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 4
%8 = OpTypeRuntimeArray %7
%9 = OpTypeStruct %8
%10 = OpTypePointer Uniform %9
%11 = OpVariable %10 Uniform

...

13.1.9 Dynamic Uniform Buffer

A dynamic uniform buffer (VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) differs from a uniform buffer
only in how its address and length are specified. Uniform buffers bind a buffer address and length that is specified in the
descriptor set update by a buffer handle, offset and range (see Descriptor Set Updates). With dynamic uniform buffers
the buffer handle, offset and range specified in the descriptor set define the base address and length. The dynamic offset
which is relative to this base address is taken from the pDynamicOffsets parameter to
vkCmdBindDescriptorSets (see Descriptor Set Binding). The address used for a dynamic uniform buffer is the
sum of the buffer base address and the relative offset. The length is unmodified and remains the range as specified in the
descriptor update. The shader syntax is identical for uniform buffers and dynamic uniform buffers.

13.1.10 Dynamic Storage Buffer

A dynamic storage buffer (VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) differs from a storage buffer
only in how its address and length are specified. The difference is identical to the difference between uniform buffers and
dynamic uniform buffers (see Dynamic Uniform Buffer). The shader syntax is identical for storage buffers and dynamic
storage buffers.

13.1.11 Input Attachment

An input attachment (VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) is an image view that can be used for pixel
local load operations from within fragment shaders bound to pipelines. Loads from input attachments are unfiltered. All
image formats that are supported for color attachments (VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) or
depth/stencil attachments (VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) for a given image tiling
mode are also supported for input attachments.

In the shader, input attachments must be decorated with their input attachment index in addition to descriptor set and
binding numbers.

GLSL example
layout (input_attachment_index=i, set=m, binding=n) uniform subpassInput ←↩

myInputAttachment;

SPIR-V example
...

%1 = OpExtInstImport "GLSL.std.450"
...
OpName %9 "myInputAttachment"
OpDecorate %9 DescriptorSet m
OpDecorate %9 Binding n
OpDecorate %9 InputAttachmentIndex i

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 SubpassData 0 0 0 2 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant

...

13.2 Descriptor Sets

Descriptors are grouped together into descriptor set objects. A descriptor set object is an opaque object that contains
storage for a set of descriptors, where the types and number of descriptors is defined by a descriptor set layout. The
layout object may be used to define the association of each descriptor binding with memory or other hardware resources.
The layout is used both for determining the resources that need to be associated with the descriptor set, and determining
the interface between shader stages and shader resources.

13.2.1 Descriptor Set Layout

A descriptor set layout object is defined by an array of zero or more descriptor bindings. Each individual descriptor
binding is specified by a descriptor type, a count (array size) of the number of descriptors in the binding, a set of shader
stages that can access the binding, and (if using immutable samplers) an array of sampler descriptors.

Vulkan 1.0.36 - A Specification 273 / 683

Descriptor set layout objects are represented by VkDescriptorSetLayout handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSetLayout)

To create descriptor set layout objects, call:

VkResult vkCreateDescriptorSetLayout(
VkDevice device,
const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorSetLayout* pSetLayout);

• device is the logical device that creates the descriptor set layout.

• pCreateInfo is a pointer to an instance of the VkDescriptorSetLayoutCreateInfo structure specifying the
state of the descriptor set layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pSetLayout points to a VkDescriptorSetLayout handle in which the resulting descriptor set layout object is
returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkDescriptorSetLayoutCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pSetLayout must be a pointer to a VkDescriptorSetLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Information about the descriptor set layout is passed in an instance of the VkDescriptorSetLayoutCreateInfo
structure:

typedef struct VkDescriptorSetLayoutCreateInfo {
VkStructureType sType;
const void* pNext;
VkDescriptorSetLayoutCreateFlags flags;
uint32_t bindingCount;
const VkDescriptorSetLayoutBinding* pBindings;

} VkDescriptorSetLayoutCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• bindingCount is the number of elements in pBindings.

• pBindings is a pointer to an array of VkDescriptorSetLayoutBinding structures.

Valid Usage

• The VkDescriptorSetLayoutBinding::binding members of the elements of the pBindings array must
each have different values.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If bindingCount is not 0, pBindings must be a pointer to an array of bindingCount valid
VkDescriptorSetLayoutBinding structures

The VkDescriptorSetLayoutBinding structure is defined as:

typedef struct VkDescriptorSetLayoutBinding {
uint32_t binding;
VkDescriptorType descriptorType;
uint32_t descriptorCount;
VkShaderStageFlags stageFlags;
const VkSampler* pImmutableSamplers;

} VkDescriptorSetLayoutBinding;

Vulkan 1.0.36 - A Specification 275 / 683

• binding is the binding number of this entry and corresponds to a resource of the same binding number in the shader
stages.

• descriptorType is a VkDescriptorType specifying which type of resource descriptors are used for this binding.

• descriptorCount is the number of descriptors contained in the binding, accessed in a shader as an array. If
descriptorCount is zero this binding entry is reserved and the resource must not be accessed from any stage via this
binding within any pipeline using the set layout.

• stageFlags member is a bitmask of VkShaderStageFlagBits specifying which pipeline shader stages can
access a resource for this binding. VK_SHADER_STAGE_ALL is a shorthand specifying that all defined shader stages,
including any additional stages defined by extensions, can access the resource.

If a shader stage is not included in stageFlags, then a resource must not be accessed from that stage via this binding
within any pipeline using the set layout. There are no limitations on what combinations of stages can be used by a
descriptor binding, and in particular a binding can be used by both graphics stages and the compute stage.

• pImmutableSamplers affects initialization of samplers. If descriptorType specifies a VK_DESCRIPTOR_
TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
pImmutableSamplers can be used to initialize a set of immutable samplers. Immutable samplers are permanently
bound into the set layout; later binding a sampler into an immutable sampler slot in a descriptor set is not allowed. If
pImmutableSamplers is not NULL, then it is considered to be a pointer to an array of sampler handles that will be
consumed by the set layout and used for the corresponding binding. If pImmutableSamplers is NULL, then the
sampler slots are dynamic and sampler handles must be bound into descriptor sets using this layout. If
descriptorType is not one of these descriptor types, then pImmutableSamplers is ignored.

The above layout definition allows the descriptor bindings to be specified sparsely such that not all binding numbers
between 0 and the maximum binding number need to be specified in the pBindings array. Bindings that are not
specified have a descriptorCount and stageFlags of zero, and the descriptorType is treated as undefined.
However, all binding numbers between 0 and the maximum binding number in the
VkDescriptorSetLayoutCreateInfo::pBindings array may consume memory in the descriptor set layout
even if not all descriptor bindings are used, though it should not consume additional memory from the descriptor pool.

Note
The maximum binding number specified should be as compact as possible to avoid wasted memory.

Valid Usage

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, and descriptorCount is not 0 and pImmutableSamplers is not NULL,
pImmutableSamplers must be a pointer to an array of descriptorCount valid VkSampler handles

• If descriptorCount is not 0, stageFlags must be a valid combination of VkShaderStageFlagBits
values

Valid Usage (Implicit)

• descriptorType must be a valid VkDescriptorType value

The following examples show a shader snippet using two descriptor sets, and application code that creates corresponding
descriptor set layouts.

GLSL example

//
// binding to a single sampled image descriptor in set 0
//
layout (set=0, binding=0) uniform texture2D mySampledImage;

//
// binding to an array of sampled image descriptors in set 0
//
layout (set=0, binding=1) uniform texture2D myArrayOfSampledImages[12];

//
// binding to a single uniform buffer descriptor in set 1
//
layout (set=1, binding=0) uniform myUniformBuffer
{

vec4 myElement[32];
};

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %9 "mySampledImage"
OpName %14 "myArrayOfSampledImages"
OpName %18 "myUniformBuffer"
OpMemberName %18 0 "myElement"
OpName %20 ""
OpDecorate %9 DescriptorSet 0
OpDecorate %9 Binding 0
OpDecorate %14 DescriptorSet 0
OpDecorate %14 Binding 1
OpDecorate %17 ArrayStride 16
OpMemberDecorate %18 0 Offset 0
OpDecorate %18 Block
OpDecorate %20 DescriptorSet 1
OpDecorate %20 Binding 0

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeImage %6 2D 0 0 0 1 Unknown
%8 = OpTypePointer UniformConstant %7
%9 = OpVariable %8 UniformConstant
%10 = OpTypeInt 32 0
%11 = OpConstant %10 12

Vulkan 1.0.36 - A Specification 277 / 683

%12 = OpTypeArray %7 %11
%13 = OpTypePointer UniformConstant %12
%14 = OpVariable %13 UniformConstant
%15 = OpTypeVector %6 4
%16 = OpConstant %10 32
%17 = OpTypeArray %15 %16
%18 = OpTypeStruct %17
%19 = OpTypePointer Uniform %18
%20 = OpVariable %19 Uniform

...

API example

VkResult myResult;

const VkDescriptorSetLayoutBinding myDescriptorSetLayoutBinding[] =
{

// binding to a single image descriptor
{

0, // binding
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType
1, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers

},

// binding to an array of image descriptors
{

1, // binding
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, // descriptorType
12, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers

},

// binding to a single uniform buffer descriptor
{

0, // binding
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, // descriptorType
1, // descriptorCount
VK_SHADER_STAGE_FRAGMENT_BIT, // stageFlags
NULL // pImmutableSamplers

}
};

const VkDescriptorSetLayoutCreateInfo myDescriptorSetLayoutCreateInfo[] =
{

// Create info for first descriptor set with two descriptor bindings
{

VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
2, // bindingCount
&myDescriptorSetLayoutBinding[0] // pBindings

},

// Create info for second descriptor set with one descriptor binding

{
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
1, // bindingCount
&myDescriptorSetLayoutBinding[2] // pBindings

}
};

VkDescriptorSetLayout myDescriptorSetLayout[2];

//
// Create first descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(

myDevice,
&myDescriptorSetLayoutCreateInfo[0],
NULL,
&myDescriptorSetLayout[0]);

//
// Create second descriptor set layout
//
myResult = vkCreateDescriptorSetLayout(

myDevice,
&myDescriptorSetLayoutCreateInfo[1],
NULL,
&myDescriptorSetLayout[1]);

To destroy a descriptor set layout, call:

void vkDestroyDescriptorSetLayout(
VkDevice device,
VkDescriptorSetLayout descriptorSetLayout,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor set layout.

• descriptorSetLayout is the descriptor set layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• If VkAllocationCallbacks were provided when descriptorSetLayout was created, a compatible set of
callbacks must be provided here

• If no VkAllocationCallbacks were provided when descriptorSetLayout was created, pAllocator
must be NULL

Vulkan 1.0.36 - A Specification 279 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If descriptorSetLayout is not VK_NULL_HANDLE, descriptorSetLayout must be a valid
VkDescriptorSetLayout handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If descriptorSetLayout is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to descriptorSetLayout must be externally synchronized

13.2.2 Pipeline Layouts

Access to descriptor sets from a pipeline is accomplished through a pipeline layout. Zero or more descriptor set layouts
and zero or more push constant ranges are combined to form a pipeline layout object which describes the complete set of
resources that can be accessed by a pipeline. The pipeline layout represents a sequence of descriptor sets with each
having a specific layout. This sequence of layouts is used to determine the interface between shader stages and shader
resources. Each pipeline is created using a pipeline layout.

Pipeline layout objects are represented by VkPipelineLayout handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkPipelineLayout)

To create a pipeline layout, call:

VkResult vkCreatePipelineLayout(
VkDevice device,
const VkPipelineLayoutCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineLayout* pPipelineLayout);

• device is the logical device that creates the pipeline layout.

• pCreateInfo is a pointer to an instance of the VkPipelineLayoutCreateInfo structure specifying the state of
the pipeline layout object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pPipelineLayout points to a VkPipelineLayout handle in which the resulting pipeline layout object is
returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkPipelineLayoutCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pPipelineLayout must be a pointer to a VkPipelineLayout handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkPipelineLayoutCreateInfo structure is defined as:

typedef struct VkPipelineLayoutCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineLayoutCreateFlags flags;
uint32_t setLayoutCount;
const VkDescriptorSetLayout* pSetLayouts;
uint32_t pushConstantRangeCount;
const VkPushConstantRange* pPushConstantRanges;

} VkPipelineLayoutCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• setLayoutCount is the number of descriptor sets included in the pipeline layout.

• pSetLayouts is a pointer to an array of VkDescriptorSetLayout objects.

• pushConstantRangeCount is the number of push constant ranges included in the pipeline layout.

Vulkan 1.0.36 - A Specification 281 / 683

• pPushConstantRanges is a pointer to an array of VkPushConstantRange structures defining a set of push
constant ranges for use in a single pipeline layout. In addition to descriptor set layouts, a pipeline layout also describes
how many push constants can be accessed by each stage of the pipeline.

Note
Push constants represent a high speed path to modify constant data in pipelines that is expected to outperform
memory-backed resource updates.

Valid Usage

• setLayoutCount must be less than or equal to VkPhysicalDeviceLimits::maxBoundDescriptorSets

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_SAMPLER and VK_DESCRIPTOR_
TYPE_COMBINED_IMAGE_SAMPLER accessible to any given shader stage across all elements of pSetLayouts
must be less than or equal to VkPhysicalDeviceLimits::maxPerStageDescriptorSamplers

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER and VK_
DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC accessible to any given shader stage across all elements
of pSetLayouts must be less than or equal to
VkPhysicalDeviceLimits::maxPerStageDescriptorUniformBuffers

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER and VK_
DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC accessible to any given shader stage across all elements
of pSetLayouts must be less than or equal to
VkPhysicalDeviceLimits::maxPerStageDescriptorStorageBuffers

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_
DESCRIPTOR_TYPE_SAMPLED_IMAGE, and VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
accessible to any given shader stage across all elements of pSetLayouts must be less than or equal to
VkPhysicalDeviceLimits::maxPerStageDescriptorSampledImages

• The total number of descriptors of the type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, and VK_
DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER accessible to any given shader stage across all elements of
pSetLayouts must be less than or equal to
VkPhysicalDeviceLimits::maxPerStageDescriptorStorageImages

• Any two elements of pPushConstantRanges must not include the same stage in stageFlags

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If setLayoutCount is not 0, pSetLayouts must be a pointer to an array of setLayoutCount valid
VkDescriptorSetLayout handles

• If pushConstantRangeCount is not 0, pPushConstantRanges must be a pointer to an array of
pushConstantRangeCount valid VkPushConstantRange structures

The VkPushConstantRange structure is defined as:

typedef struct VkPushConstantRange {
VkShaderStageFlags stageFlags;
uint32_t offset;
uint32_t size;

} VkPushConstantRange;

• stageFlags is a set of stage flags describing the shader stages that will access a range of push constants. If a
particular stage is not included in the range, then accessing members of that range of push constants from the
corresponding shader stage will result in undefined data being read.

• offset and size are the start offset and size, respectively, consumed by the range. Both offset and size are in
units of bytes and must be a multiple of 4. The layout of the push constant variables is specified in the shader.

Valid Usage

• offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• offset must be a multiple of 4

• size must be greater than 0

• size must be a multiple of 4

• size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus offset

Valid Usage (Implicit)

• stageFlags must be a valid combination of VkShaderStageFlagBits values

• stageFlags must not be 0

Vulkan 1.0.36 - A Specification 283 / 683

Once created, pipeline layouts are used as part of pipeline creation (see Pipelines), as part of binding descriptor sets (see
Descriptor Set Binding), and as part of setting push constants (see Push Constant Updates). Pipeline creation accepts a
pipeline layout as input, and the layout may be used to map (set, binding, arrayElement) tuples to hardware resources or
memory locations within a descriptor set. The assignment of hardware resources depends only on the bindings defined in
the descriptor sets that comprise the pipeline layout, and not on any shader source.

All resource variables statically used in all shaders in a pipeline must be declared with a (set,binding,arrayElement) that
exists in the corresponding descriptor set layout and is of an appropriate descriptor type and includes the set of shader
stages it is used by in stageFlags. The pipeline layout can include entries that are not used by a particular pipeline, or
that are dead-code eliminated from any of the shaders. The pipeline layout allows the application to provide a consistent
set of bindings across multiple pipeline compiles, which enables those pipelines to be compiled in a way that the
implementation may cheaply switch pipelines without reprogramming the bindings.

Similarly, the push constant block declared in each shader (if present) must only place variables at offsets that are each
included in a push constant range with stageFlags including the bit corresponding to the shader stage that uses it. The
pipeline layout can include ranges or portions of ranges that are not used by a particular pipeline, or for which the
variables have been dead-code eliminated from any of the shaders.

There is a limit on the total number of resources of each type that can be included in bindings in all descriptor set layouts
in a pipeline layout as shown in Pipeline Layout Resource Limits. The “Total Resources Available” column gives the
limit on the number of each type of resource that can be included in bindings in all descriptor sets in the pipeline layout.
Some resource types count against multiple limits. Additionally, there are limits on the total number of each type of
resource that can be used in any pipeline stage as described in Shader Resource Limits.

Table 13.1: Pipeline Layout Resource Limits

Total Resources Available Resource Types

maxDescriptorSetSamplers
sampler
combined image sampler

maxDescriptorSetSampledImages

sampled image
combined image sampler
uniform texel buffer

maxDescriptorSetStorageImages
storage image
storage texel buffer

maxDescriptorSetUniformBuffers
uniform buffer
uniform buffer dynamic

maxDescriptorSetUniformBuffersDynamic uniform buffer dynamic

maxDescriptorSetStorageBuffers
storage buffer
storage buffer dynamic

maxDescriptorSetStorageBuffersDynamic storage buffer dynamic
maxDescriptorSetInputAttachments input attachment

To destroy a pipeline layout, call:

void vkDestroyPipelineLayout(
VkDevice device,
VkPipelineLayout pipelineLayout,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the pipeline layout.

• pipelineLayout is the pipeline layout to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• If VkAllocationCallbacks were provided when pipelineLayout was created, a compatible set of
callbacks must be provided here

• If no VkAllocationCallbacks were provided when pipelineLayout was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If pipelineLayout is not VK_NULL_HANDLE, pipelineLayout must be a valid VkPipelineLayout
handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If pipelineLayout is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to pipelineLayout must be externally synchronized

13.2.2.1 Pipeline Layout Compatibility

Two pipeline layouts are defined to be “compatible for push constants” if they were created with identical push constant
ranges. Two pipeline layouts are defined to be “compatible for set N” if they were created with matching (the same, or
identically defined) descriptor set layouts for sets zero through N, and if they were created with identical push constant
ranges.

When binding a descriptor set (see Descriptor Set Binding) to set number N, if the previously bound descriptor sets for
sets zero through N-1 were all bound using compatible pipeline layouts, then performing this binding does not disturb

Vulkan 1.0.36 - A Specification 285 / 683

any of the lower numbered sets. If, additionally, the previous bound descriptor set for set N was bound using a pipeline
layout compatible for set N, then the bindings in sets numbered greater than N are also not disturbed.

Similarly, when binding a pipeline, the pipeline can correctly access any previously bound descriptor sets which were
bound with compatible pipeline layouts, as long as all lower numbered sets were also bound with compatible layouts.

Layout compatibility means that descriptor sets can be bound to a command buffer for use by any pipeline created with a
compatible pipeline layout, and without having bound a particular pipeline first. It also means that descriptor sets can
remain valid across a pipeline change, and the same resources will be accessible to the newly bound pipeline.

Implementor’s Note

A consequence of layout compatibility is that when the implementation compiles a pipeline layout and assigns
hardware units to resources, the mechanism to assign hardware units for set N should only be a function of sets
[0..N].

Note
Place the least frequently changing descriptor sets near the start of the pipeline layout, and place the descriptor
sets representing the most frequently changing resources near the end. When pipelines are switched, only the
descriptor set bindings that have been invalidated will need to be updated and the remainder of the descriptor
set bindings will remain in place.

The maximum number of descriptor sets that can be bound to a pipeline layout is queried from physical device properties
(see maxBoundDescriptorSets in Limits).

API example

const VkDescriptorSetLayout layouts[] = { layout1, layout2 };

const VkPushConstantRange ranges[] =
{

{
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, // stageFlags
0, // offset
4 // size

},

{
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // stageFlags
4, // offset
4 // size

},
};

const VkPipelineLayoutCreateInfo createInfo =
{

VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
2, // setLayoutCount
layouts, // pSetLayouts

2, // pushConstantRangeCount
ranges // pPushConstantRanges

};

VkPipelineLayout myPipelineLayout;
myResult = vkCreatePipelineLayout(

myDevice,
&createInfo,
NULL,
&myPipelineLayout);

13.2.3 Allocation of Descriptor Sets

A descriptor pool maintains a pool of descriptors, from which descriptor sets are allocated. Descriptor pools are
externally synchronized, meaning that the application must not allocate and/or free descriptor sets from the same pool in
multiple threads simultaneously.

Descriptor pools are represented by VkDescriptorPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorPool)

To create a descriptor pool object, call:

VkResult vkCreateDescriptorPool(
VkDevice device,
const VkDescriptorPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDescriptorPool* pDescriptorPool);

• device is the logical device that creates the descriptor pool.

• pCreateInfo is a pointer to an instance of the VkDescriptorPoolCreateInfo structure specifying the state of
the descriptor pool object.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pDescriptorPool points to a VkDescriptorPool handle in which the resulting descriptor pool object is
returned.

pAllocator controls host memory allocation as described in the Memory Allocation chapter.

The created descriptor pool is returned in pDescriptorPool.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkDescriptorPoolCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pDescriptorPool must be a pointer to a VkDescriptorPool handle

Vulkan 1.0.36 - A Specification 287 / 683

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

Additional information about the pool is passed in an instance of the VkDescriptorPoolCreateInfo structure:

typedef struct VkDescriptorPoolCreateInfo {
VkStructureType sType;
const void* pNext;
VkDescriptorPoolCreateFlags flags;
uint32_t maxSets;
uint32_t poolSizeCount;
const VkDescriptorPoolSize* pPoolSizes;

} VkDescriptorPoolCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags specifies certain supported operations on the pool. Bits which can be set include:

typedef enum VkDescriptorPoolCreateFlagBits {
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT = 0x00000001,

} VkDescriptorPoolCreateFlagBits;

If flags includes VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, then descriptor sets can
return their individual allocations to the pool, i.e. all of vkAllocateDescriptorSets,
vkFreeDescriptorSets, and vkResetDescriptorPool are allowed. Otherwise, descriptor sets allocated
from the pool must not be individually freed back to the pool, i.e. only vkAllocateDescriptorSets and
vkResetDescriptorPool are allowed.

• maxSets is the maximum number of descriptor sets that can be allocated from the pool.

• poolSizeCount is the number of elements in pPoolSizes.

• pPoolSizes is a pointer to an array of VkDescriptorPoolSize structures, each containing a descriptor type and
number of descriptors of that type to be allocated in the pool.

If multiple VkDescriptorPoolSize structures appear in the pPoolSizes array then the pool will be created with
enough storage for the total number of descriptors of each type.

Fragmentation of a descriptor pool is possible and may lead to descriptor set allocation failures. A failure due to
fragmentation is defined as failing a descriptor set allocation despite the sum of all outstanding descriptor set allocations

from the pool plus the requested allocation requiring no more than the total number of descriptors requested at pool
creation. Implementations provide certain guarantees of when fragmentation must not cause allocation failure, as
described below.

If a descriptor pool has not had any descriptor sets freed since it was created or most recently reset then fragmentation
must not cause an allocation failure (note that this is always the case for a pool created without the VK_DESCRIPTOR_
POOL_CREATE_FREE_DESCRIPTOR_SET_BIT bit set). Additionally, if all sets allocated from the pool since it was
created or most recently reset use the same number of descriptors (of each type) and the requested allocation also uses
that same number of descriptors (of each type), then fragmentation must not cause an allocation failure.

If an allocation failure occurs due to fragmentation, an application can create an additional descriptor pool to perform
further descriptor set allocations.

Valid Usage

• maxSets must be greater than 0

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO

• pNext must be NULL

• flags must be a valid combination of VkDescriptorPoolCreateFlagBits values

• pPoolSizes must be a pointer to an array of poolSizeCount valid VkDescriptorPoolSize structures

• poolSizeCount must be greater than 0

The VkDescriptorPoolSize structure is defined as:

typedef struct VkDescriptorPoolSize {
VkDescriptorType type;
uint32_t descriptorCount;

} VkDescriptorPoolSize;

• type is the type of descriptor.

• descriptorCount is the number of descriptors of that type to allocate.

Vulkan 1.0.36 - A Specification 289 / 683

Valid Usage

• descriptorCount must be greater than 0

Valid Usage (Implicit)

• type must be a valid VkDescriptorType value

To destroy a descriptor pool, call:

void vkDestroyDescriptorPool(
VkDevice device,
VkDescriptorPool descriptorPool,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the descriptor pool.

• descriptorPool is the descriptor pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

When a pool is destroyed, all descriptor sets allocated from the pool are implicitly freed and become invalid. Descriptor
sets allocated from a given pool do not need to be freed before destroying that descriptor pool.

Valid Usage

• All submitted commands that refer to descriptorPool (via any allocated descriptor sets) must have completed
execution

• If VkAllocationCallbacks were provided when descriptorPool was created, a compatible set of
callbacks must be provided here

• If no VkAllocationCallbacks were provided when descriptorPool was created, pAllocator must be
NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If descriptorPool is not VK_NULL_HANDLE, descriptorPool must be a valid VkDescriptorPool
handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If descriptorPool is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

Descriptor sets are allocated from descriptor pool objects, and are represented by VkDescriptorSet handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkDescriptorSet)

To allocate descriptor sets from a descriptor pool, call:

VkResult vkAllocateDescriptorSets(
VkDevice device,
const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• pAllocateInfo is a pointer to an instance of the VkDescriptorSetAllocateInfo structure describing
parameters of the allocation.

• pDescriptorSets is a pointer to an array of VkDescriptorSet handles in which the resulting descriptor set
objects are returned. The array must be at least the length specified by the descriptorSetCount member of
pAllocateInfo.

The allocated descriptor sets are returned in pDescriptorSets.

When a descriptor set is allocated, the initial state is largely uninitialized and all descriptors are undefined. However, the
descriptor set can be bound in a command buffer without causing errors or exceptions. All entries that are statically used
by a pipeline in a drawing or dispatching command must have been populated before the descriptor set is bound for use
by that command. Entries that are not statically used by a pipeline can have uninitialized descriptors or descriptors of
resources that have been destroyed, and executing a draw or dispatch with such a descriptor set bound does not cause
undefined behavior. This means applications need not populate unused entries with dummy descriptors.

If an allocation fails due to fragmentation, an indeterminate error is returned with an unspecified error code. Any
returned error other than VK_ERROR_FRAGMENTED_POOL does not imply its usual meaning: applications should
assume that the allocation failed due to fragmentation, and create a new descriptor pool.

Vulkan 1.0.36 - A Specification 291 / 683

Note
Applications should check for a negative return value when allocating new descriptor sets, assume that any error
effectively means VK_ERROR_FRAGMENTED_POOL, and try to create a new descriptor pool. If VK_ERROR_
FRAGMENTED_POOL is the actual return value, it adds certainty to that decision.
The reason for this is that VK_ERROR_FRAGMENTED_POOL was only added in a later revision of the 1.0
specification, and so drivers may return other errors if they were written against earlier revisions. To ensure full
compatibility with earlier patch revisions, these other errors are allowed.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pAllocateInfo must be a pointer to a valid VkDescriptorSetAllocateInfo structure

• pDescriptorSets must be a pointer to an array of pAllocateInfo::descriptorSetCount VkDescriptorSet
handles

Host Synchronization

• Host access to pAllocateInfo::descriptorPool must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FRAGMENTED_POOL

The VkDescriptorSetAllocateInfo structure is defined as:

typedef struct VkDescriptorSetAllocateInfo {
VkStructureType sType;
const void* pNext;
VkDescriptorPool descriptorPool;
uint32_t descriptorSetCount;
const VkDescriptorSetLayout* pSetLayouts;

} VkDescriptorSetAllocateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• descriptorPool is the pool which the sets will be allocated from.

• descriptorSetCount determines the number of descriptor sets to be allocated from the pool.

• pSetLayouts is an array of descriptor set layouts, with each member specifying how the corresponding descriptor set
is allocated.

Valid Usage

• descriptorSetCount must not be greater than the number of sets that are currently available for allocation in
descriptorPool

• descriptorPool must have enough free descriptor capacity remaining to allocate the descriptor sets of the
specified layouts

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO

• pNext must be NULL

• descriptorPool must be a valid VkDescriptorPool handle

• pSetLayouts must be a pointer to an array of descriptorSetCount valid VkDescriptorSetLayout
handles

• descriptorSetCount must be greater than 0

• Both of descriptorPool, and the elements of pSetLayouts must have been created, allocated, or retrieved
from the same VkDevice

To free allocated descriptor sets, call:

Vulkan 1.0.36 - A Specification 293 / 683

VkResult vkFreeDescriptorSets(
VkDevice device,
VkDescriptorPool descriptorPool,
uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool from which the descriptor sets were allocated.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is an array of handles to VkDescriptorSet objects.

After a successful call to vkFreeDescriptorSets, all descriptor sets in pDescriptorSets are invalid.

Valid Usage

• All submitted commands that refer to any element of pDescriptorSets must have completed execution

• pDescriptorSets must be a pointer to an array of descriptorSetCount VkDescriptorSet handles, each
element of which must either be a valid handle or VK_NULL_HANDLE

• Each valid handle in pDescriptorSets must have been allocated from descriptorPool

• descriptorPool must have been created with the VK_DESCRIPTOR_POOL_CREATE_FREE_
DESCRIPTOR_SET_BIT flag

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• descriptorPool must be a valid VkDescriptorPool handle

• descriptorSetCount must be greater than 0

• descriptorPool must have been created, allocated, or retrieved from device

• Each element of pDescriptorSets that is a valid handle must have been created, allocated, or retrieved from
descriptorPool

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to each member of pDescriptorSets must be externally synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

To return all descriptor sets allocated from a given pool to the pool, rather than freeing individual descriptor sets, call:

VkResult vkResetDescriptorPool(
VkDevice device,
VkDescriptorPool descriptorPool,
VkDescriptorPoolResetFlags flags);

• device is the logical device that owns the descriptor pool.

• descriptorPool is the descriptor pool to be reset.

• flags is reserved for future use.

Resetting a descriptor pool recycles all of the resources from all of the descriptor sets allocated from the descriptor pool
back to the descriptor pool, and the descriptor sets are implicitly freed.

Valid Usage

• All uses of descriptorPool (via any allocated descriptor sets) must have completed execution

Vulkan 1.0.36 - A Specification 295 / 683

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• descriptorPool must be a valid VkDescriptorPool handle

• flags must be 0

• descriptorPool must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to descriptorPool must be externally synchronized

• Host access to any VkDescriptorSet objects allocated from descriptorPool must be externally
synchronized

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

13.2.4 Descriptor Set Updates

Once allocated, descriptor sets can be updated with a combination of write and copy operations. To update descriptor
sets, call:

void vkUpdateDescriptorSets(
VkDevice device,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet* pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet* pDescriptorCopies);

• device is the logical device that updates the descriptor sets.

• descriptorWriteCount is the number of elements in the pDescriptorWrites array.

• pDescriptorWrites is a pointer to an array of VkWriteDescriptorSet structures describing the descriptor
sets to write to.

• descriptorCopyCount is the number of elements in the pDescriptorCopies array.

• pDescriptorCopies is a pointer to an array of VkCopyDescriptorSet structures describing the descriptor sets
to copy between.

The operations described by pDescriptorWrites are performed first, followed by the operations described by
pDescriptorCopies. Within each array, the operations are performed in the order they appear in the array.

Each element in the pDescriptorWrites array describes an operation updating the descriptor set using descriptors for
resources specified in the structure.

Each element in the pDescriptorCopies array is a VkCopyDescriptorSet structure describing an operation
copying descriptors between sets.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If descriptorWriteCount is not 0, pDescriptorWrites must be a pointer to an array of
descriptorWriteCount valid VkWriteDescriptorSet structures

• If descriptorCopyCount is not 0, pDescriptorCopies must be a pointer to an array of
descriptorCopyCount valid VkCopyDescriptorSet structures

Host Synchronization

• Host access to pDescriptorWrites[].dstSet must be externally synchronized

• Host access to pDescriptorCopies[].dstSet must be externally synchronized

The VkWriteDescriptorSet structure is defined as:

typedef struct VkWriteDescriptorSet {
VkStructureType sType;
const void* pNext;
VkDescriptorSet dstSet;
uint32_t dstBinding;
uint32_t dstArrayElement;

Vulkan 1.0.36 - A Specification 297 / 683

uint32_t descriptorCount;
VkDescriptorType descriptorType;
const VkDescriptorImageInfo* pImageInfo;
const VkDescriptorBufferInfo* pBufferInfo;
const VkBufferView* pTexelBufferView;

} VkWriteDescriptorSet;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• dstSet is the destination descriptor set to update.

• dstBinding is the descriptor binding within that set.

• dstArrayElement is the starting element in that array.

• descriptorCount is the number of descriptors to update (the number of elements in pImageInfo, pBufferInfo,
or pTexelBufferView).

• descriptorType is a VkDescriptorType specifying the type of each descriptor in pImageInfo, pBufferInfo,
or pTexelBufferView , as described below. It must be the same type as that specified in
VkDescriptorSetLayoutBinding for dstSet at dstBinding. The type of the descriptor also controls which
array the descriptors are taken from.

• pImageInfo points to an array of VkDescriptorImageInfo structures or is ignored, as described below.

• pBufferInfo points to an array of VkDescriptorBufferInfo structures or is ignored, as described below.

• pTexelBufferView points to an array of VkBufferView handles as described in the Buffer Views section or is
ignored, as described below.

Only one of pImageInfo, pBufferInfo, or pTexelBufferView members is used according to the descriptor type
specified in the descriptorType member of the containing VkWriteDescriptorSet structure, as specified below.

If the dstBinding has fewer than descriptorCount array elements remaining starting from dstArrayElement,
then the remainder will be used to update the subsequent binding - dstBinding+1 starting at array element zero. If a
binding has a descriptorCount of zero, it is skipped. This behavior applies recursively, with the update affecting
consecutive bindings as needed to update all descriptorCount descriptors. All consecutive bindings updated via a
single VkWriteDescriptorSet structure, except those with a descriptorCount of zero, must have identical
descriptorType and stageFlags, and must all either use immutable samplers or must all not use immutable
samplers.

Valid Usage

• dstBinding must be less than or equal to the maximum value of binding of all
VkDescriptorSetLayoutBinding structures specified when dstSet’s descriptor set layout was created

• dstBinding must be a binding with a non-zero descriptorCount

• descriptorType must match the type of dstBinding within dstSet

• The sum of dstArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding specified by dstBinding, and all applicable consecutive bindings, as
described by consecutive binding updates

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_
IMAGE, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, pImageInfo must be a pointer to an array of
descriptorCount valid VkDescriptorImageInfo structures

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_
TYPE_STORAGE_TEXEL_BUFFER, pTexelBufferView must be a pointer to an array of descriptorCount
valid VkBufferView handles

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_
TYPE_STORAGE_BUFFER_DYNAMIC, pBufferInfo must be a pointer to an array of descriptorCount
valid VkDescriptorBufferInfo structures

• If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, and dstSet was not allocated with a layout that included immutable samplers for
dstBinding with descriptorType, the sampler member of any given element of pImageInfo must be a
valid VkSampler object

• If descriptorType is VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_
TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_
INPUT_ATTACHMENT, the imageView and imageLayout members of any given element of pImageInfo
must be a valid VkImageView and VkImageLayout, respectively

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_
UNIFORM_BUFFER_DYNAMIC, the offset member of any given element of pBufferInfo must be a multiple
of VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER_DYNAMIC, the offset member of any given element of pBufferInfo must be a multiple
of VkPhysicalDeviceLimits::minStorageBufferOffsetAlignment

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_
UNIFORM_BUFFER_DYNAMIC, the buffer member of any given element of pBufferInfo must have been
created with VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER_DYNAMIC, the buffer member of any given element of pBufferInfo must have been
created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_
UNIFORM_BUFFER_DYNAMIC, the range member of any given element of pBufferInfo, or the effective
range if range is VK_WHOLE_SIZE, must be less than or equal to
VkPhysicalDeviceLimits::maxUniformBufferRange

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER_DYNAMIC, the range member of any given element of pBufferInfo, or the effective
range if range is VK_WHOLE_SIZE, must be less than or equal to
VkPhysicalDeviceLimits::maxStorageBufferRange

Vulkan 1.0.36 - A Specification 299 / 683

• If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, the VkBuffer that any given
element of pTexelBufferView was created from must have been created with VK_BUFFER_USAGE_
UNIFORM_TEXEL_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, the VkBuffer that any given
element of pTexelBufferView was created from must have been created with VK_BUFFER_USAGE_
STORAGE_TEXEL_BUFFER_BIT set

• If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_IMAGE or VK_DESCRIPTOR_TYPE_INPUT_
ATTACHMENT, the imageView member of any given element of pImageInfo must have been created with the
identity swizzle

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET

• pNext must be NULL

• dstSet must be a valid VkDescriptorSet handle

• descriptorType must be a valid VkDescriptorType value

• descriptorCount must be greater than 0

• Both of dstSet, and the elements of pTexelBufferView that are valid handles must have been created,
allocated, or retrieved from the same VkDevice

The type of descriptors in a descriptor set is specified by VkWriteDescriptorSet::descriptorType, which must
be one of the values:

typedef enum VkDescriptorType {
VK_DESCRIPTOR_TYPE_SAMPLER = 0,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,

} VkDescriptorType;

If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_
BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_STORAGE_
BUFFER_DYNAMIC, the elements of the VkWriteDescriptorSet::pBufferInfo array of
VkDescriptorBufferInfo structures will be used to update the descriptors, and other arrays will be ignored.

If descriptorType is VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER or VK_DESCRIPTOR_TYPE_
STORAGE_TEXEL_BUFFER, the VkWriteDescriptorSet::pTexelBufferView array will be used to update the
descriptors, and other arrays will be ignored.

If descriptorType is VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_
SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_
DESCRIPTOR_TYPE_INPUT_ATTACHMENT, the elements of the VkWriteDescriptorSet::pImageInfo array
of VkDescriptorImageInfo structures will be used to update the descriptors, and other arrays will be ignored.

The VkDescriptorBufferInfo structure is defined as:

typedef struct VkDescriptorBufferInfo {
VkBuffer buffer;
VkDeviceSize offset;
VkDeviceSize range;

} VkDescriptorBufferInfo;

• buffer is the buffer resource.

• offset is the offset in bytes from the start of buffer. Access to buffer memory via this descriptor uses addressing
that is relative to this starting offset.

• range is the size in bytes that is used for this descriptor update, or VK_WHOLE_SIZE to use the range from offset

to the end of the buffer.

Note
When using VK_WHOLE_SIZE, the effective range must not be larger than the maximum range for the
descriptor type (maxUniformBufferRange or maxStorageBufferRange). This means that VK_WHOLE_SIZE
is not typically useful in the common case where uniform buffer descriptors are suballocated from a buffer that
is much larger than maxUniformBufferRange.

For VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC and VK_DESCRIPTOR_TYPE_STORAGE_
BUFFER_DYNAMIC descriptor types, offset is the base offset from which the dynamic offset is applied and range

is the static size used for all dynamic offsets.

Valid Usage

• offset must be less than the size of buffer

• If range is not equal to VK_WHOLE_SIZE, range must be greater than 0

• If range is not equal to VK_WHOLE_SIZE, range must be less than or equal to the size of buffer minus
offset

Vulkan 1.0.36 - A Specification 301 / 683

Valid Usage (Implicit)

• buffer must be a valid VkBuffer handle

The VkDescriptorImageInfo structure is defined as:

typedef struct VkDescriptorImageInfo {
VkSampler sampler;
VkImageView imageView;
VkImageLayout imageLayout;

} VkDescriptorImageInfo;

• sampler is a sampler handle, and is used in descriptor updates for types VK_DESCRIPTOR_TYPE_SAMPLER and
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER if the binding being updated does not use immutable
samplers.

• imageView is an image view handle, and is used in descriptor updates for types VK_DESCRIPTOR_TYPE_
SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_COMBINED_
IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

• imageLayout is the layout that the image will be in at the time this descriptor is accessed. imageLayout is used in
descriptor updates for types VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_
IMAGE, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, and VK_DESCRIPTOR_TYPE_INPUT_
ATTACHMENT.

Members of VkDescriptorImageInfo that are not used in an update (as described above) are ignored.

Valid Usage (Implicit)

• Both of imageView , and sampler that are valid handles must have been created, allocated, or retrieved from the
same VkDevice

The VkCopyDescriptorSet structure is defined as:

typedef struct VkCopyDescriptorSet {
VkStructureType sType;
const void* pNext;
VkDescriptorSet srcSet;
uint32_t srcBinding;
uint32_t srcArrayElement;
VkDescriptorSet dstSet;
uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;

} VkCopyDescriptorSet;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• srcSet, srcBinding, and srcArrayElement are the source set, binding, and array element, respectively.

• dstSet, dstBinding, and dstArrayElement are the destination set, binding, and array element, respectively.

• descriptorCount is the number of descriptors to copy from the source to destination. If descriptorCount is
greater than the number of remaining array elements in the source or destination binding, those affect consecutive
bindings in a manner similar to VkWriteDescriptorSet above.

Valid Usage

• srcBinding must be a valid binding within srcSet

• The sum of srcArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding specified by srcBinding, and all applicable consecutive bindings, as
described by consecutive binding updates

• dstBinding must be a valid binding within dstSet

• The sum of dstArrayElement and descriptorCount must be less than or equal to the number of array
elements in the descriptor set binding specified by dstBinding, and all applicable consecutive bindings, as
described by consecutive binding updates

• If srcSet is equal to dstSet, then the source and destination ranges of descriptors must not overlap, where the
ranges may include array elements from consecutive bindings as described by consecutive binding updates

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET

• pNext must be NULL

• srcSet must be a valid VkDescriptorSet handle

• dstSet must be a valid VkDescriptorSet handle

• Both of dstSet, and srcSet must have been created, allocated, or retrieved from the same VkDevice

13.2.5 Descriptor Set Binding

To bind one or more descriptor sets to a command buffer, call:

Vulkan 1.0.36 - A Specification 303 / 683

void vkCmdBindDescriptorSets(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t* pDynamicOffsets);

• commandBuffer is the command buffer that the descriptor sets will be bound to.

• pipelineBindPoint is a VkPipelineBindPoint indicating whether the descriptors will be used by graphics
pipelines or compute pipelines. There is a separate set of bind points for each of graphics and compute, so binding one
does not disturb the other.

• layout is a VkPipelineLayout object used to program the bindings.

• firstSet is the set number of the first descriptor set to be bound.

• descriptorSetCount is the number of elements in the pDescriptorSets array.

• pDescriptorSets is an array of handles to VkDescriptorSet objects describing the descriptor sets to write to.

• dynamicOffsetCount is the number of dynamic offsets in the pDynamicOffsets array.

• pDynamicOffsets is a pointer to an array of uint32_t values specifying dynamic offsets.

vkCmdBindDescriptorSets causes the sets numbered [firstSet.. firstSet+descriptorSetCount-1] to use
the bindings stored in pDescriptorSets[0..descriptorSetCount-1] for subsequent rendering commands (either
compute or graphics, according to the pipelineBindPoint). Any bindings that were previously applied via these sets
are no longer valid.

Once bound, a descriptor set affects rendering of subsequent graphics or compute commands in the command buffer until
a different set is bound to the same set number, or else until the set is disturbed as described in Pipeline Layout
Compatibility.

A compatible descriptor set must be bound for all set numbers that any shaders in a pipeline access, at the time that a
draw or dispatch command is recorded to execute using that pipeline. However, if none of the shaders in a pipeline
statically use any bindings with a particular set number, then no descriptor set need be bound for that set number, even if
the pipeline layout includes a non-trivial descriptor set layout for that set number.

If any of the sets being bound include dynamic uniform or storage buffers, then pDynamicOffsets includes one
element for each array element in each dynamic descriptor type binding in each set. Values are taken from
pDynamicOffsets in an order such that all entries for set N come before set N+1; within a set, entries are ordered by
the binding numbers in the descriptor set layouts; and within a binding array, elements are in order.
dynamicOffsetCount must equal the total number of dynamic descriptors in the sets being bound.

The effective offset used for dynamic uniform and storage buffer bindings is the sum of the relative offset taken from
pDynamicOffsets, and the base address of the buffer plus base offset in the descriptor set. The length of the dynamic
uniform and storage buffer bindings is the buffer range as specified in the descriptor set.

Each of the pDescriptorSets must be compatible with the pipeline layout specified by layout. The layout used to
program the bindings must also be compatible with the pipeline used in subsequent graphics or compute commands, as
defined in the Pipeline Layout Compatibility section.

The descriptor set contents bound by a call to vkCmdBindDescriptorSets may be consumed during host execution
of the command, or during shader execution of the resulting draws, or any time in between. Thus, the contents must not
be altered (overwritten by an update command, or freed) between when the command is recorded and when the command
completes executing on the queue. The contents of pDynamicOffsets are consumed immediately during execution of
vkCmdBindDescriptorSets. Once all pending uses have completed, it is legal to update and reuse a descriptor set.

Valid Usage

• Any given element of pDescriptorSets must have been allocated with a VkDescriptorSetLayout that
matches (is the same as, or defined identically to) the VkDescriptorSetLayout at set n in layout, where n
is the sum of firstSet and the index into pDescriptorSets

• dynamicOffsetCount must be equal to the total number of dynamic descriptors in pDescriptorSets

• The sum of firstSet and descriptorSetCount must be less than or equal to
VkPipelineLayoutCreateInfo::setLayoutCount provided when layout was created

• pipelineBindPoint must be supported by the commandBuffer’s parent VkCommandPool’s queue family

• Any given element of pDynamicOffsets must satisfy the required alignment for the corresponding descriptor
binding’s descriptor type

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pipelineBindPoint must be a valid VkPipelineBindPoint value

• layout must be a valid VkPipelineLayout handle

• pDescriptorSets must be a pointer to an array of descriptorSetCount valid VkDescriptorSet handles

• If dynamicOffsetCount is not 0, pDynamicOffsets must be a pointer to an array of dynamicOffsetCount
uint32_t values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• descriptorSetCount must be greater than 0

• Each of commandBuffer, layout, and the elements of pDescriptorSets must have been created, allocated, or
retrieved from the same VkDevice

Vulkan 1.0.36 - A Specification 305 / 683

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

13.2.6 Push Constant Updates

As described above in section Pipeline Layouts, the pipeline layout defines shader push constants which are updated via
Vulkan commands rather than via writes to memory or copy commands.

Note
Push constants represent a high speed path to modify constant data in pipelines that is expected to outperform
memory-backed resource updates.

The values of push constants are undefined at the start of a command buffer.

To update push constants, call:

void vkCmdPushConstants(
VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void* pValues);

• commandBuffer is the command buffer in which the push constant update will be recorded.

• layout is the pipeline layout used to program the push constant updates.

• stageFlags is a bitmask of VkShaderStageFlagBits specifying the shader stages that will use the push
constants in the updated range.

• offset is the start offset of the push constant range to update, in units of bytes.

• size is the size of the push constant range to update, in units of bytes.

• pValues is an array of size bytes containing the new push constant values.

Valid Usage

• stageFlags must match exactly the shader stages used in layout for the range specified by offset and size

• offset must be a multiple of 4

• size must be a multiple of 4

• offset must be less than VkPhysicalDeviceLimits::maxPushConstantsSize

• size must be less than or equal to VkPhysicalDeviceLimits::maxPushConstantsSize minus offset

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• layout must be a valid VkPipelineLayout handle

• stageFlags must be a valid combination of VkShaderStageFlagBits values

• stageFlags must not be 0

• pValues must be a pointer to an array of size bytes

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• size must be greater than 0

• Both of commandBuffer, and layout must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Vulkan 1.0.36 - A Specification 307 / 683

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

Vulkan 1.0.36 - A Specification 309 / 683

Chapter 14

Shader Interfaces

When a pipeline is created, the set of shaders specified in the corresponding Vk*PipelineCreateInfo structure are
implicitly linked at a number of different interfaces.

• Shader Input and Output Interface

• Vertex Input Interface

• Fragment Output Interface

• Fragment Input Attachment Interface

• Shader Resource Interface

14.1 Shader Input and Output Interfaces

When multiple stages are present in a pipeline, the outputs of one stage form an interface with the inputs of the next
stage. When such an interface involves a shader, shader outputs are matched against the inputs of the next stage, and
shader inputs are matched against the outputs of the previous stage.

There are two classes of variables that can be matched between shader stages, built-in variables and user-defined
variables. Each class has a different set of matching criteria. Generally, when non-shader stages are between shader
stages, the user-defined variables, and most built-in variables, form an interface between the shader stages.

The variables forming the input or output interfaces are listed as operands to the OpEntryPoint instruction and are
declared with the Input or Output storage classes, respectively, in the SPIR-V module.

Output variables of a shader stage have undefined values until the shader writes to them or uses the Initializer
operand when declaring the variable.

14.1.1 Built-in Interface Block

Shader built-in variables meeting the following requirements define the built-in interface block. They must

• be explicitly declared (there are no implicit built-ins),

• be identified with a BuiltIn decoration,

• form object types as described in the Built-in Variables section, and

• be declared in a block whose top-level members are the built-ins.

Built-ins only participate in interface matching if they are declared in such a block. They must not have any Location
or Component decorations.

There must be no more than one built-in interface block per shader per interface.

14.1.2 User-defined Variable Interface

The remaining variables listed by OpEntryPoint with the Input or Output storage class form the user-defined
variable interface. These variables must be identified with a Location decoration and can also be identified with a
Component decoration.

14.1.3 Interface Matching

A user-defined output variable is considered to match an input variable in the subsequent stage if the two variables are
declared with the same Location and Component decoration and match in type and decoration, except that
interpolation decorations are not required to match. For the purposes of interface matching, variables declared without a
Component decoration are considered to have a Component decoration of zero.

Variables or block members declared as structures are considered to match in type if and only if the structure members
match in type, decoration, number, and declaration order. Variables or block members declared as arrays are considered
to match in type only if both declarations specify the same element type and size.

Tessellation control shader per-vertex output variables and blocks, and tessellation control, tessellation evaluation, and
geometry shader per-vertex input variables and blocks are required to be declared as arrays, with each element
representing input or output values for a single vertex of a multi-vertex primitive. For the purposes of interface matching,
the outermost array dimension of such variables and blocks is ignored.

At an interface between two non-fragment shader stages, the built-in interface block must match exactly, as described
above. At an interface involving the fragment shader inputs, the presence or absence of any built-in output does not affect
the interface matching.

At an interface between two shader stages, the user-defined variable interface must match exactly, as described above.

Any input value to a shader stage is well-defined as long as the preceding stages writes to a matching output, as described
above.

Additionally, scalar and vector inputs are well-defined if there is a corresponding output satisfying all of the following
conditions:

• the input and output match exactly in decoration,

• the output is a vector with the same basic type and has at least as many components as the input, and

• the common component type of the input and output is 32-bit integer or floating-point (64-bit component types are
excluded).

In this case, the components of the input will be taken from the first components of the output, and any extra components
of the output will be ignored.

Vulkan 1.0.36 - A Specification 311 / 683

14.1.4 Location Assignment

This section describes how many locations are consumed by a given type. As mentioned above, geometry shader inputs,
tessellation control shader inputs and outputs, and tessellation evaluation inputs all have an additional level of arrayness
relative to other shader inputs and outputs. This outer array level is removed from the type before considering how many
locations the type consumes.

The Location value specifies an interface slot comprised of a 32-bit four-component vector conveyed between stages.
The Component specifies components within these vector locations. Only types with widths of 32 or 64 are supported
in shader interfaces.

Inputs and outputs of the following types consume a single interface location:

• 32-bit scalar and vector types, and

• 64-bit scalar and 2-component vector types.

64-bit three- and four-component vectors consume two consecutive locations.

If a declared input or output is an array of size n and each element takes m locations, it will be assigned m × n
consecutive locations starting with the location specified.

If the declared input or output is an n × m 32- or 64-bit matrix, it will be assigned multiple locations starting with the
location specified. The number of locations assigned for each matrix will be the same as for an n-element array of
m-component vectors.

The layout of a structure type used as an Input or Output depends on whether it is also a Block (i.e. has a Block
decoration).

If it is a not a Block, then the structure type must have a Location decoration. Its members are assigned consecutive
locations in their declaration order, with the first member assigned to the location specified for the structure type. The
members, and their nested types, must not themselves have Location decorations.

If the structure type is a Block but without a Location, then each of its members must have a Location decoration.
If it is a Block with a Location decoration, then its members are assigned consecutive locations in declaration order,
starting from the first member which is initially assigned the location specified for the Block. Any member with its own
Location decoration is assigned that location. Each remaining member is assigned the location after the immediately
preceding member in declaration order.

The locations consumed by block and structure members are determined by applying the rules above in a depth-first
traversal of the instantiated members as though the structure or block member were declared as an input or output
variable of the same type.

Any two inputs listed as operands on the same OpEntryPoint must not be assigned the same location, either
explicitly or implicitly. Any two outputs listed as operands on the same OpEntryPoint must not be assigned the same
location, either explicitly or implicitly.

The number of input and output locations available for a shader input or output interface are limited, and dependent on
the shader stage as described in Table 14.1.

Table 14.1: Shader Input and Output Locations

Shader Interface Locations Available
vertex input maxVertexInputAttributes

vertex output maxVertexOutputComponents / 4
tessellation control input maxTessellationControlPerVertexInputComponents / 4
tessellation control output maxTessellationControlPerVertexOutputComponents / 4

Table 14.1: (continued)

Shader Interface Locations Available
tessellation evaluation input maxTessellationEvaluationInputComponents / 4
tessellation evaluation output maxTessellationEvaluationOutputComponents / 4
geometry input maxGeometryInputComponents / 4
geometry output maxGeometryOutputComponents / 4
fragment input maxFragmentInputComponents / 4
fragment output maxFragmentOutputAttachments

14.1.5 Component Assignment

The Component decoration allows the Location to be more finely specified for scalars and vectors, down to the
individual components within a location that are consumed. The components within a location are 0, 1, 2, and 3. A
variable or block member starting at component N will consume components N, N+1, N+2, . . . up through its size. For
single precision types, it is invalid if this sequence of components gets larger than 3. A scalar 64-bit type will consume
two of these components in sequence, and a two-component 64-bit vector type will consume all four components
available within a location. A three- or four-component 64-bit vector type must not specify a Component decoration. A
three-component 64-bit vector type will consume all four components of the first location and components 0 and 1 of the
second location. This leaves components 2 and 3 available for other component-qualified declarations.

A scalar or two-component 64-bit data type must not specify a Component decoration of 1 or 3. A Component
decoration must not be specified for any type that is not a scalar or vector.

14.2 Vertex Input Interface

When the vertex stage is present in a pipeline, the vertex shader input variables form an interface with the vertex input
attributes. The vertex shader input variables are matched by the Location and Component decorations to the vertex
input attributes specified in the pVertexInputState member of the VkGraphicsPipelineCreateInfo
structure.

The vertex shader input variables listed by OpEntryPoint with the Input storage class form the vertex input
interface. These variables must be identified with a Location decoration and can also be identified with a
Component decoration.

For the purposes of interface matching: variables declared without a Component decoration are considered to have a
Component decoration of zero. The number of available vertex input locations is given by the
maxVertexInputAttributes member of the VkPhysicalDeviceLimits structure.

See Section 20.1.1 for details.

All vertex shader inputs declared as above must have a corresponding attribute and binding in the pipeline.

14.3 Fragment Output Interface

When the fragment stage is present in a pipeline, the fragment shader outputs form an interface with the output
attachments of the current subpass. The fragment shader output variables are matched by the Location and
Component decorations to the color attachments specified in the pColorAttachments array of the
VkSubpassDescription structure that describes the subpass that the fragment shader is executed in.

Vulkan 1.0.36 - A Specification 313 / 683

The fragment shader output variables listed by OpEntryPoint with the Output storage class form the fragment
output interface. These variables must be identified with a Location decoration. They can also be identified with a
Component decoration and/or an Index decoration. For the purposes of interface matching: variables declared
without a Component decoration are considered to have a Component decoration of zero, and variables declared
without an Index decoration are considered to have an Index decoration of zero.

A fragment shader output variable identified with a Location decoration of i is directed to the color attachment
indicated by pColorAttachments[i], after passing through the blending unit as described in Section 26.1, if enabled.
Locations are consumed as described in Location Assignment. The number of available fragment output locations is
given by the maxFragmentOutputAttachments member of the VkPhysicalDeviceLimits structure.

Components of the output variables are assigned as described in Component Assignment. Output components identified
as 0, 1, 2, and 3 will be directed to the R, G, B, and A inputs to the blending unit, respectively, or to the output
attachment if blending is disabled. If two variables are placed within the same location, they must have the same
underlying type (floating-point or integer). The input to blending or color attachment writes is undefined for components
which do not correspond to a fragment shader output.

Fragment outputs identified with an Index of zero are directed to the first input of the blending unit associated with the
corresponding Location. Outputs identified with an Index of one are directed to the second input of the
corresponding blending unit.

No component aliasing of output variables is allowed, that is there must not be two output variables which have the same
location, component, and index, either explicitly declared or implied.

Output values written by a fragment shader must be declared with either OpTypeFloat or OpTypeInt, and a Width
of 32. Composites of these types are also permitted. If the color attachment has a signed or unsigned normalized
fixed-point format, color values are assumed to be floating-point and are converted to fixed-point as described in
Section 2.8.1; otherwise no type conversion is applied. If the type of the values written by the fragment shader do not
match the format of the corresponding color attachment, the result is undefined for those components.

14.4 Fragment Input Attachment Interface

When a fragment stage is present in a pipeline, the fragment shader subpass inputs form an interface with the input
attachments of the current subpass. The fragment shader subpass input variables are matched by
InputAttachmentIndex decorations to the input attachments specified in the pInputAttachments array of the
VkSubpassDescription structure that describes the subpass that the fragment shader is executed in.

The fragment shader subpass input variables with the UniformConstant storage class and a decoration of
InputAttachmentIndex that are statically used by OpEntryPoint form the fragment input attachment interface.
These variables must be declared with a type of OpTypeImage, a Dim operand of SubpassData, and a Sampled
operand of 2.

A subpass input variable identified with an InputAttachmentIndex decoration of i reads from the input attachment
indicated by pInputAttachments[i] member of VkSubpassDescription. If the subpass input variable is declared
as an array of size N, it consumes N consecutive input attachments, starting with the index specified. There must not be
more than one input variable with the same InputAttachmentIndex whether explicitly declared or implied by an
array declaration. The number of available input attachment indices is given by the
maxPerStageDescriptorInputAttachments member of the VkPhysicalDeviceLimits structure.

Variables identified with the InputAttachmentIndex must only be used by a fragment stage. The basic data type
(floating-point, integer, unsigned integer) of the subpass input must match the basic format of the corresponding input
attachment, or the values of subpass loads from these variables are undefined.

See Section 13.1.11 for more details.

14.5 Shader Resource Interface

When a shader stage accesses buffer or image resources, as described in the Resource Descriptors section, the shader
resource variables must be matched with the pipeline layout that is provided at pipeline creation time.

The set of shader resources that form the shader resource interface for a stage are the variables statically used by
OpEntryPoint with the storage class of Uniform, UniformConstant, or PushConstant. For the fragment
shader, this includes the fragment input attachment interface.

The shader resource interface consists of two sub-interfaces: the push constant interface and the descriptor set interface.

14.5.1 Push Constant Interface

The shader variables defined with a storage class of PushConstant that are statically used by the shader entry points
for the pipeline define the push constant interface. They must be:

• typed as OpTypeStruct,

• identified with a Block decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in Offset and
Stride Assignment.

There must be no more than one push constant block statically used per shader entry point.

Each variable in a push constant block must be placed at an Offset such that the entire constant value is entirely
contained within the VkPushConstantRange for each OpEntryPoint that uses it, and the stageFlags for that
range must specify the appropriate VkShaderStageFlagBits for that stage. The Offset decoration for any
variable in a push constant block must not cause the space required for that variable to extend outside the range [0,
maxPushConstantsSize).

Any variable in a push constant block that is declared as an array must only be accessed with dynamically uniform
indices.

14.5.2 Descriptor Set Interface

The descriptor set interface is comprised of the shader variables with the storage class of Uniform or
UniformConstant (including the variables in the fragment input attachment interface) that are statically used by the
shader entry points for the pipeline.

These variables must have DescriptorSet and Binding decorations specified, which are assigned and matched
with the VkDescriptorSetLayout objects in the pipeline layout as described in DescriptorSet and Binding
Assignment.

Variables identified with the UniformConstant storage class are used only as handles to refer to opaque resources.
Such variables must be typed as OpTypeImage, OpTypeSampler, OpTypeSampledImage, or arrays of only these
types. Variables of type OpTypeImage must have a Sampled operand of 1 (sampled image) or 2 (storage image).

Any array of these types must only be indexed with constant integral expressions, except under the following conditions:

• For arrays of OpTypeImage variables with Sampled operand of 2, if the
shaderStorageImageArrayDynamicIndexing feature is enabled and the shader module declares the
StorageImageArrayDynamicIndexing capability, the array must only be indexed by dynamically uniform
expressions.

Vulkan 1.0.36 - A Specification 315 / 683

• For arrays of OpTypeSampler, OpTypeSampledImage variables, or OpTypeImage variables with Sampled
operand of 1, if the shaderSampledImageArrayDynamicIndexing feature is enabled and the shader module
declares the SampledImageArrayDynamicIndexing capability, the array must only be indexed by dynamically
uniform expressions.

The Sampled Type of an OpTypeImage declaration must match the same basic data type as the corresponding
resource, or the values obtained by reading or sampling from this image are undefined.

The Image Format of an OpTypeImage declaration must not be Unknown, for variables which are used for
OpImageRead or OpImageWrite operations, except under the following conditions:

• For OpImageWrite, if the shaderStorageImageWriteWithoutFormat feature is enabled and the shader module
declares the StorageImageWriteWithoutFormat capability.

• For OpImageRead, if the shaderStorageImageReadWithoutFormat feature is enabled and the shader module
declares the StorageImageReadWithoutFormat capability.

Variables identified with the Uniform storage class are used to access transparent buffer backed resources. Such
variables must be:

• typed as OpTypeStruct, or arrays of only this type,

• identified with a Block or BufferBlock decoration, and

• laid out explicitly using the Offset, ArrayStride, and MatrixStride decorations as specified in Offset and
Stride Assignment.

Any array of these types must only be indexed with constant integral expressions, except under the following conditions.

• For arrays of Block variables, if the shaderUniformBufferArrayDynamicIndexing feature is enabled and the
shader module declares the UniformBufferArrayDynamicIndexing capability, the array must only be
indexed by dynamically uniform expressions.

• For arrays of BufferBlock variables, if the shaderStorageBufferArrayDynamicIndexing feature is enabled
and the shader module declares the StorageBufferArrayDynamicIndexing capability, the array must only be
indexed by dynamically uniform expressions.

The Offset decoration for any variable in a Block must not cause the space required for that variable to extend
outside the range [0, maxUniformBufferRange). The Offset decoration for any variable in a BufferBlock must
not cause the space required for that variable to extend outside the range [0, maxStorageBufferRange).

Variables identified with a storage class of UniformConstant and a decoration of InputAttachmentIndex must
be declared as described in Fragment Input Attachment Interface.

Each shader variable declaration must refer to the same type of resource as is indicated by the descriptorType. See
Shader Resource and Descriptor Type Correspondence for the relationship between shader declarations and descriptor
types.

Table 14.2: Shader Resource and Descriptor Type Correspondence

Resource type Descriptor Type
sampler VK_DESCRIPTOR_TYPE_SAMPLER
sampled image VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE
storage image VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

Table 14.2: (continued)

Resource type Descriptor Type
combined image sampler VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER
uniform texel buffer VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER
storage texel buffer VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
uniform buffer VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
storage buffer VK_DESCRIPTOR_TYPE_STORAGE_BUFFER

VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
input attachment VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT

Table 14.3: Shader Resource and Storage Class Correspondence

Resource type Storage Class Type Decoration(s)1

sampler UniformConstant OpTypeSampler
sampled image UniformConstant OpTypeImage

(Sampled=1)
storage image UniformConstant OpTypeImage

(Sampled=2)
combined image
sampler

UniformConstant OpTypeSampledImage

uniform texel buffer UniformConstant OpTypeImage
(Dim=Buffer,
Sampled=1)

storage texel buffer UniformConstant OpTypeImage
(Dim=Buffer,
Sampled=2)

uniform buffer Uniform OpTypeStruct Block, Offset,
(ArrayStride),
(MatrixStride)

storage buffer Uniform OpTypeStruct BufferBlock, Offset,
(ArrayStride),
(MatrixStride)

input attachment UniformConstant OpTypeImage
(Dim=SubpassData,
Sampled=2)

InputAttachmentIndex

1
in addition to DescriptorSet and Binding

14.5.3 DescriptorSet and Binding Assignment

A variable identified with a DescriptorSet decoration of s and a Binding decoration of b indicates that this
variable is associated with the VkDescriptorSetLayoutBinding that has a binding equal to b in
pSetLayouts[s] that was specified in VkPipelineLayoutCreateInfo.

Vulkan 1.0.36 - A Specification 317 / 683

The range of descriptor sets is between zero and maxBoundDescriptorSets minus one. If a descriptor set value is
statically used by an entry point there must be an associated pSetLayout in the corresponding pipeline layout as
described in Pipeline Layouts consistency.

If the Binding decoration is used with an array, the entire array is identified with that binding value. The size of the
array declaration must be no larger than the descriptorCount of that VkDescriptorSetLayoutBinding. The
index of each element of the array is referred to as the arrayElement. For the purposes of interface matching and
descriptor set operations, if a resource variable is not an array, it is treated as if it has an arrayElement of zero.

The binding can be any 32-bit unsigned integer value, as described in Section 13.2.1. Each descriptor set has its own
binding name space.

There is a limit on the number of resources of each type that can be accessed by a pipeline stage as shown in Shader
Resource Limits. The “Resources Per Stage” column gives the limit on the number each type of resource that can be
statically used for an entry point in any given stage in a pipeline. The “Resource Types” column lists which resource
types are counted against the limit. Some resource types count against multiple limits.

If multiple entry points in the same pipeline refer to the same set and binding, all variable definitions with that
DescriptorSet and Binding must have the same basic type.

Not all descriptor sets and bindings specified in a pipeline layout need to be used in a particular shader stage or pipeline,
but if a DescriptorSet and Binding decoration is specified for a variable that is statically used in that shader there
must be a pipeline layout entry identified with that descriptor set and binding and the corresponding stageFlags must
specify the appropriate VkShaderStageFlagBits for that stage.

Table 14.4: Shader Resource Limits

Resources per Stage Resource Types

maxPerStageDescriptorSamplers
sampler
combined image sampler

maxPerStageDescriptorSampledImages

sampled image
combined image sampler
uniform texel buffer

maxPerStageDescriptorStorageImages
storage image
storage texel buffer

maxPerStageDescriptorUniformBuffers
uniform buffer
uniform buffer dynamic

maxPerStageDescriptorStorageBuffers
storage buffer
storage buffer dynamic

maxPerStageDescriptorInputAttachments input attachment1

1
Input attachments can only be used in the fragment shader stage

14.5.4 Offset and Stride Assignment

All variables with a storage class of PushConstant or Uniform must be explicitly laid out using the Offset,
ArrayStride, and MatrixStride decorations. There are two different layouts requirements depending on the
specific resources.

Standard Uniform Buffer Layout

Member variables of an OpTypeStruct with storage class of Uniform and a decoration of Block (uniform buffers)
must be laid out according to the following rules.

• The Offset Decoration must be a multiple of its base alignment, computed recursively as follows:

– a scalar of size N has a base alignment of N

– a two-component vector, with components of size N, has a base alignment of 2 N

– a three- or four-component vector, with components of size N, has a base alignment of 4 N

– an array has a base alignment equal to the base alignment of its element type, rounded up to a multiple of 16

– a structure has a base alignment equal to the largest base alignment of any of its members, rounded up to a multiple
of 16

– a row-major matrix of C columns has a base alignment equal to the base alignment of vector of C matrix components

– a column-major matrix has a base alignment equal to the base alignment of the matrix column type

• Any ArrayStride or MatrixStride decoration must be an integer multiple of the base alignment of the array or
matrix from above.

• The Offset Decoration of a member must not place it between the end of a structure or an array and the next
multiple of the base alignment of that structure or array.

• The numeric order of Offset Decorations need not follow member declaration order.

Note
The std140 layout in GLSL satisfies these rules.

Standard Storage Buffer Layout

Member variables of an OpTypeStruct with a storage class of PushConstant (push constants), or a storage class
of Uniform with a decoration of BufferBlock (storage buffers) must be laid out as above, except for array and
structure base alignment which do not need to be rounded up to a multiple of 16.

Note
The std430 layout in GLSL satisfies these rules.

14.6 Built-In Variables

Built-in variables are accessed in shaders by declaring a variable decorated with a BuiltIn decoration. The meaning of
each BuiltIn decoration is as follows. In the remainder of this section, the name of a built-in is used interchangeably
with a term equivalent to a variable decorated with that particular built-in. Built-ins that represent integer values can be
declared as either signed or unsigned 32-bit integers.

Vulkan 1.0.36 - A Specification 319 / 683

ClipDistance
Decorating a variable with the ClipDistance built-in decoration will make that variable contain the mechanism
for controlling user clipping. ClipDistance is an array such that the ith element of the array specifies the clip
distance for plane i. A clip distance of 0 means the vertex is on the plane, a positive distance means the vertex is
inside the clip half-space, and a negative distance means the point is outside the clip half-space.

The ClipDistance decoration must be used only within vertex, fragment, tessellation control, tessellation
evaluation, and geometry shaders.

In vertex shaders, any variable decorated with ClipDistance must be declared using the Output storage class.

In fragment shaders, any variable decorated with ClipDistance must be declared using the Input storage
class.

In tessellation control, tessellation evaluation, or geometry shaders, any variable decorated with ClipDistance
must not be in a storage class other than Input or Output.

Any variable decorated with ClipDistance must be declared as an array of 32-bit floating-point values.

Note
The array variable decorated with ClipDistance is explicitly sized by the shader.

Note
In the last vertex processing stage, these values will be linearly interpolated across the primitive and the portion
of the primitive with interpolated distances less than 0 will be considered outside the clip volume. If ClipDist
ance is then used by a fragment shader, ClipDistance contains these linearly interpolated values.

CullDistance
Decorating a variable with the CullDistance built-in decoration will make that variable contain the mechanism
for controlling user culling. If any member of this array is assigned a negative value for all vertices belonging to a
primitive, then the primitive is discarded before rasterization.

The CullDistance decoration must be used only within vertex, fragment, tessellation control, tessellation
evaluation, and geometry shaders.

In vertex shaders, any variable decorated with CullDistance must be declared using the Output storage class.

In fragment shaders, any variable decorated with CullDistance must be declared using the Input storage
class.

In tessellation control, tessellation evaluation, or geometry shaders, any variable decorated with CullDistance
must not be declared in a storage class other than input or output.

Any variable decorated with CullDistance must be declared as an array of 32-bit floating-point values.

Note
In fragment shaders, the values of the CullDistance array are linearly interpolated across each primitive.

Note
If CullDistance decorates an input variable, that variable will contain the corresponding value from the
CullDistance decorated output variable from the previous shader stage.

FragCoord
Decorating a variable with the FragCoord built-in decoration will make that variable contain the framebuffer
coordinate (x,y,z, 1

w) of the fragment being processed. The (x,y) coordinate (0,0) is the upper left corner of the
upper left pixel in the framebuffer.

When sample shading is enabled, the x and y components of FragCoord reflect the location of the sample
corresponding to the shader invocation.

When sample shading is not enabled, the x and y components of FragCoord reflect the location of the center of
the pixel, (0.5,0.5).

The z component of FragCoord is the interpolated depth value of the primitive.

The w component is the interpolated 1
w .

The FragCoord decoration must be used only within fragment shaders.

The variable decorated with FragCoord must be declared using the Input storage class.

The Centroid interpolation decoration is ignored on FragCoord.

The variable decorated with FragCoord must be declared as a four-component vector of 32-bit floating-point
values.

FragDepth
Decorating a variable with the FragDepth built-in decoration will make that variable contain the new depth
value for all samples covered by the fragment. This value will be used for depth testing and, if the depth test
passes, any subsequent write to the depth/stencil attachment.

To write to FragDepth, a shader must declare the DepthReplacing execution mode. If a shader declares the
DepthReplacing execution mode and there is an execution path through the shader that does not set
FragDepth, then the fragment’s depth value is undefined for executions of the shader that take that path.

The FragDepth decoration must be used only within fragment shaders.

The variable decorated with FragDepth must be declared using the Output storage class.

The variable decorated with FragDepth must be declared as a scalar 32-bit floating-point value.

FrontFacing
Decorating a variable with the FrontFacing built-in decoration will make that variable contain whether a
primitive is front or back facing. This variable is non-zero if the current fragment is considered to be part of a
front-facing primitive and is zero if the fragment is considered to be part of a back-facing primitive.

The FrontFacing decoration must be used only within fragment shaders.

The variable decorated with FrontFacing must be declared using the Input storage class.

The variable decorated with FrontFacing must be declared as a boolean.

GlobalInvocationId
Decorating a variable with the GlobalInvocationId built-in decoration will make that variable contain the
location of the current invocation within the global workgroup. Each component is equal to the index of the local
workgroup multiplied by the size of the local workgroup plus LocalInvocationId.

The GlobalInvocationId decoration must be used only within compute shaders.

The variable decorated with GlobalInvocationId must be declared using the Input storage class.

Vulkan 1.0.36 - A Specification 321 / 683

The variable decorated with GlobalInvocationId must be declared as a three-component vector of 32-bit
integers.

HelperInvocation
Decorating a variable with the HelperInvocation built-in decoration will make that variable contain whether
the current invocation is a helper invocation. This variable is non-zero if the current fragment being shaded is a
helper invocation and zero otherwise. A helper invocation is an invocation of the shader that is produced to satisfy
internal requirements such as the generation of derivatives.

The HelperInvocation decoration must be used only within fragment shaders.

The variable decorated with HelperInvocation must be declared using the Input storage class.

The variable decorated with HelperInvocation must be declared as a boolean.

Note
It is very likely that a helper invocation will have a value of SampleMask fragment shader input value that is
zero.

InvocationId
Decorating a variable with the InvocationId built-in decoration will make that variable contain the index of
the current shader invocation in a geometry shader, or the index of the output patch vertex in a tessellation control
shader.

In a geometry shader, the index of the current shader invocation ranges from zero to the number of instances
declared in the shader minus one. If the instance count of the geometry shader is one or is not specified, then
InvocationId will be zero.

The InvocationId decoration must be used only within tessellation control and geometry shaders.

The variable decorated with InvocationId must be declared using the Input storage class.

The variable decorated with InvocationId must be declared as a scalar 32-bit integer.

InstanceIndex
Decorating a variable with the InstanceIndex built-in decoration will make that variable contain the index of
the instance that is being processed by the current vertex shader invocation. InstanceIndex begins at the
firstInstance parameter to vkCmdDraw or vkCmdDrawIndexed or at the firstInstance member of a
structure consumed by vkCmdDrawIndirect or vkCmdDrawIndexedIndirect.

The InstanceIndex decoration must be used only within vertex shaders.

The variable decorated with InstanceIndex must be declared using the Input storage class.

The variable decorated with InstanceIndex must be declared as a scalar 32-bit integer.

Layer
Decorating a variable with the Layer built-in decoration will make that variable contain the select layer of a
multi-layer framebuffer attachment.

In a geometry shader, any variable decorated with Layer can be written with the framebuffer layer index to which
the primitive produced by the geometry shader will be directed. If a geometry shader entry point’s interface does
not include a variable decorated with Layer, then the first layer is used. If a geometry shader entry point’s
interface includes a variable decorated with Layer, it must write the same value to Layer for all output vertices
of a given primitive.

In a fragment shader, a variable decorated with Layer contains the layer index of the primitive that the fragment
invocation belongs to.

The Layer decoration must be used only within geometry and fragment shaders.

In a geometry shader, any variable decorated with Layer must be declared using the Output storage class.

In a fragment shader, any variable decorated with Layer must be declared using the Input storage class.

Any variable decorated with Layer must be declared as a scalar 32-bit integer.

LocalInvocationId
Decorating a variable with the LocalInvocationId built-in decoration will make that variable contain the
location of the current compute shader invocation within the local workgroup. Each component ranges from zero
through to the size of the workgroup in that dimension minus one.

The LocalInvocationId decoration must be used only within compute shaders.

The variable decorated with LocalInvocationId must be declared using the Input storage class.

The variable decorated with LocalInvocationId must be declared as a three-component vector of 32-bit
integers.

Note
If the size of the workgroup in a particular dimension is one, then the LocalInvocationId in that dimension
will be zero. If the workgroup is effectively two-dimensional, then LocalInvocationId.z will be zero. If the
workgroup is effectively one-dimensional, then both LocalInvocationId.y and LocalInvocationId.z
will be zero.

NumWorkgroups
Decorating a variable with the NumWorkgroups built-in decoration will make that variable contain the number
of local workgroups that are part of the dispatch that the invocation belongs to. Each component is equal to the
values of the parameters passed into vkCmdDispatch or read from the VkDispatchIndirectCommand
structure read through a call to vkCmdDispatchIndirect.

The NumWorkgroups decoration must be used only within compute shaders.

The variable decorated with NumWorkgroups must be declared using the Input storage class.

The variable decorated with NumWorkgroups must be declared as a three-component vector of 32-bit integers.

PatchVertices
Decorating a variable with the PatchVertices built-in decoration will make that variable contain the number
of vertices in the input patch being processed by the shader. A single tessellation control or tessellation evaluation
shader can read patches of differing sizes, so the value of the PatchVertices variable may differ between
patches.

The PatchVertices decoration must be used only within tessellation control and tessellation evaluation
shaders.

The variable decorated with PatchVertices must be declared using the Input storage class.

The variable decorated with PatchVertices must be declared as a scalar 32-bit integer.

PointCoord
Decorating a variable with the PointCoord built-in decoration will make that variable contain the coordinate of
the current fragment within the point being rasterized, normalized to the size of the point with origin in the upper
left corner of the point, as described in Basic Point Rasterization. If the primitive the fragment shader invocation
belongs to is not a point, then the variable decorated with PointCoord contains an undefined value.

The PointCoord decoration must be used only within fragment shaders.

The variable decorated with PointCoord must be declared using the Input storage class.

The variable decorated with PointCoord must be declared as two-component vector of 32-bit floating-point
values.

Vulkan 1.0.36 - A Specification 323 / 683

Note
Depending on how the point is rasterized, PointCoord may never reach (0,0) or (1,1).

PointSize
Decorating a variable with the PointSize built-in decoration will make that variable contain the size of point
primitives. The value written to the variable decorated with PointSize by the last vertex processing stage in the
pipeline is used as the framebuffer-space size of points produced by rasterization.

The PointSize decoration must be used only within vertex, tessellation control, tessellation evaluation, and
geometry shaders.

In a vertex shader, any variable decorated with PointSize must be declared using the Output storage class.

In a tessellation control, tessellation evaluation, or geometry shader, any variable decorated with PointSize
must be declared using either the Input or Output storage class.

Any variable decorated with PointSize must be declared as a scalar 32-bit floating-point value.

Note
When PointSize decorates a variable in the Input storage class, it contains the data written to the output
variable decorated with PointSize from the previous shader stage.

Position
Decorating a variable with the Position built-in decoration will make that variable contain the position of the
current vertex. In the last vertex processing stage, the value of the variable decorated with Position is used in
subsequent primitive assembly, clipping, and rasterization operations.

The Position decoration must be used only within vertex, tessellation control, tessellation evaluation, and
geometry shaders.

In a vertex shader, any variable decorated with Position must be declared using the Output storage class.

In a tessellation control, tessellation evaluation, or geometry shader, any variable decorated with Position must
not be declared in a storage class other than input or output.

Any variable decorated with Position must be declared as a four-component vector of 32-bit floating-point
values.

Note
When Position decorates a variable in the Input storage class, it contains the data written to the output
variable decorated with Position from the previous shader stage.

PrimitiveId
Decorating a variable with the PrimitiveId built-in decoration will make that variable contain the index of the
current primitive.

In tessellation control and tessellation evaluation shaders, it will contain the index of the patch within the current
set of rendering primitives that correspond to the shader invocation.

In a geometry shader, it will contain the number of primitives presented as input to the shader since the current set
of rendering primitives was started.

In a fragment shader, it will contain the primitive index written by the geometry shader if a geometry shader is
present, or with the value that would have been presented as input to the geometry shader had it been present.

If a geometry shader is present and the fragment shader reads from an input variable decorated with
PrimitiveId, then the geometry shader must write to an output variable decorated with PrimitiveId in all
execution paths.

The PrimitiveId decoration must be used only within fragment, tessellation control, tessellation evaluation,
and geometry shaders.

In a tessellation control or tessellation evaluation shader, any variable decorated with PrimitiveId must be
declared using the Output storage class.

In a geometry shader, any variable decorated with PrimitiveId must be declared using either the Input or
Output storage class.

In a fragment shader, any variable decorated with PrimitiveId must be declared using the Input storage
class, and either the Geometry or Tessellation capability must also be declared.

Any variable decorated with PrimitiveId must be declared as a scalar 32-bit integer.

Note
When the PrimitiveId decoration is applied to an output variable in the geometry shader, the resulting value
is seen through the PrimitiveId decorated input variable in the fragment shader.

SampleId
Decorating a variable with the SampleId built-in decoration will make that variable contain the zero-based index
of the sample the invocation corresponds to. SampleId ranges from zero to the number of samples in the
framebuffer minus one. If a fragment shader entry point’s interface includes an input variable decorated with
SampleId, per-sample shading is enabled for draws that use that fragment shader.

The SampleId decoration must be used only within fragment shaders.

The variable decorated with SampleId must be declared using the Input storage class.

The variable decorated with SampleId must be declared as a scalar 32-bit integer.

SampleMask
Decorating a variable with the SampleMask built-in decoration will make any variable contain the sample
coverage mask for the current fragment shader invocation.

A variable in the Input storage class decorated with SampleMask will contain a bitmask of the set of samples
covered by the primitive generating the fragment during rasterization. It has a sample bit set if and only if the
sample is considered covered for this fragment shader invocation. SampleMask[] is an array of integers. Bits are
mapped to samples in a manner where bit B of mask M (SampleMask[M]) corresponds to sample 32 ×M + B.

When state specifies multiple fragment shader invocations for a given fragment, the sample mask for any single
fragment shader invocation specifies the subset of the covered samples for the fragment that correspond to the
invocation. In this case, the bit corresponding to each covered sample will be set in exactly one fragment shader
invocation.

A variable in the Output storage class decorated with SampleMask is an array of integers forming a bit array in
a manner similar an input variable decorated with SampleMask, but where each bit represents coverage as
computed by the shader. Modifying the sample mask by writing zero to a bit of SampleMask causes the sample
to be considered uncovered. However, setting sample mask bits to one will never enable samples not covered by

Vulkan 1.0.36 - A Specification 325 / 683

the original primitive. If the fragment shader is being evaluated at any frequency other than per-fragment, bits of
the sample mask not corresponding to the current fragment shader invocation are ignored. This array must be sized
in the fragment shader either implicitly or explicitly, to be no larger than the implementation-dependent maximum
sample-mask (as an array of 32-bit elements), determined by the maximum number of samples. If a fragment
shader entry point’s interface includes an output variable decorated with SampleMask, the sample mask will be
undefined for any array elements of any fragment shader invocations that fail to assign a value. If a fragment
shader entry point’s interface does not include an output variable decorated with SampleMask, the sample mask
has no effect on the processing of a fragment.

The SampleMask decoration must be used only within fragment shaders.

Any variable decorated with SampleMask must be declared using either the Input or Output storage class.

Any variable decorated with SampleMask must be declared as an array of 32-bit integers.

SamplePosition
Decorating a variable with the SamplePosition built-in decoration will make that variable contain the
sub-pixel position of the sample being shaded. The top left of the pixel is considered to be at coordinate (0,0) and
the bottom right of the pixel is considered to be at coordinate (1,1). If a fragment shader entry point’s interface
includes an input variable decorated with SamplePosition, per-sample shading is enabled for draws that use
that fragment shader.

The SamplePosition decoration must be used only within fragment shaders.

The variable decorated with SamplePosition must be declared using the Input storage class.

The variable decorated with SamplePosition must be declared as a two-component vector of 32-bit
floating-point values.

TessCoord
Decorating a variable with the TessCoord built-in decoration will make that variable contain the
three-dimensional (u,v,w) barycentric coordinate of the tessellated vertex within the patch. u, v, and w are in the
range [0,1] and vary linearly across the primitive being subdivided. For the tessellation modes of Quads or
IsoLines, the third component is always zero.

The TessCoord decoration must be used only within tessellation evaluation shaders.

The variable decorated with TessCoord must be declared using the Input storage class.

The variable decorated with TessCoord must be declared as three-component vector of 32-bit floating-point
values.

TessLevelOuter
Decorating a variable with the TessLevelOuter built-in decoration will make that variable contain the outer
tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelOuter can be written to which controls
the tessellation factors for the resulting patch. These values are used by the tessellator to control primitive
tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelOuter can read the values written by
the tessellation control shader.

The TessLevelOuter decoration must be used only within tessellation control and tessellation evaluation
shaders.

In a tessellation control shader, any variable decorated with TessLevelOuter must be declared using the
Output storage class.

In a tessellation evaluation shader, any variable decorated with TessLevelOuter must be declared using the
Input storage class.

Any variable decorated with TessLevelOuter must be declared as an array of size four, containing 32-bit
floating-point values.

TessLevelInner
Decorating a variable with the TessLevelInner built-in decoration will make that variable contain the inner
tessellation levels for the current patch.

In tessellation control shaders, the variable decorated with TessLevelInner can be written to, which controls
the tessellation factors for the resulting patch. These values are used by the tessellator to control primitive
tessellation and can be read by tessellation evaluation shaders.

In tessellation evaluation shaders, the variable decorated with TessLevelInner can read the values written by
the tessellation control shader.

The TessLevelInner decoration must be used only within tessellation control and tessellation evaluation
shaders.

In a tessellation control shader, any variable decorated with TessLevelInner must be declared using the
Output storage class.

In a tessellation evaluation shader, any variable decorated with TessLevelInner must be declared using the
Input storage class.

Any variable decorated with TessLevelInner must be declared as an array of size two, containing 32-bit
floating-point values.

VertexIndex
Decorating a variable with the VertexIndex built-in decoration will make that variable contain the index of the
vertex that is being processed by the current vertex shader invocation. For non-indexed draws, this variable begins
at the firstVertex parameter to vkCmdDraw or the firstVertex member of a structure consumed by
vkCmdDrawIndirect and increments by one for each vertex in the draw. For indexed draws, its value is the
content of the index buffer for the vertex plus the vertexOffset parameter to vkCmdDrawIndexed or the
vertexOffset member of the structure consumed by vkCmdDrawIndexedIndirect.

The VertexIndex decoration must be used only within vertex shaders.

The variable decorated with VertexIndex must be declared using the Input storage class.

The variable decorated with VertexIndex must be declared as a scalar 32-bit integer.

Note
VertexIndex starts at the same starting value for each instance.

ViewportIndex
Decorating a variable with the ViewportIndex built-in decoration will make that variable contain the index of
the viewport.

In a geometry shader, the variable decorated with ViewportIndex can be written to with the viewport index to
which the primitive produced by the geometry shader will be directed. The selected viewport index is used to
select the viewport transform and scissor rectangle. If a geometry shader entry point’s interface does not include a
variable decorated with ViewportIndex, then the first viewport is used. If a geometry shader entry point’s
interface includes a variable decorated with ViewportIndex, it must write the same value to
ViewportIndex for all output vertices of a given primitive.

In a fragment shader, the variable decorated with ViewportIndex contains the viewport index of the primitive
that the fragment invocation belongs to.

The ViewportIndex decoration must be used only within geometry and fragment shaders.

In a geometry shader, any variable decorated with ViewportIndex must be declared using the Output storage
class.

Vulkan 1.0.36 - A Specification 327 / 683

In a fragment shader, any variable decorated with ViewportIndex must be declared using the Input storage
class.

Any variable decorated with ViewportIndex must be declared as a scalar 32-bit integer.

WorkgroupId
Decorating a variable with the WorkgroupId built-in decoration will make that variable contain the global
workgroup that the current invocation is a member of. Each component ranges from zero to the values of the
parameters passed into vkCmdDispatch or read from the VkDispatchIndirectCommand structure read
through a call to vkCmdDispatchIndirect.

The WorkgroupId decoration must be used only within compute shaders.

The variable decorated with WorkgroupId must be declared using the Input storage class.

The variable decorated with WorkgroupId must be declared as a three-component vector of 32-bit integers.

WorkgroupSize
Decorating a variable with the WorkgroupSize built-in decoration will make that variable contain the
dimensions of a local workgroup. If an object is decorated with the WorkgroupSize decoration, this must take
precedence over any execution mode set for LocalSize.

The WorkgroupSize decoration must be used only within compute shaders.

The object decorated with WorkgroupSize must be a specialization constant or a constant.

The object decorated with WorkgroupSize must be declared as a three-component vector of 32-bit integers.

Vulkan 1.0.36 - A Specification 329 / 683

Chapter 15

Image Operations

15.1 Image Operations Overview

Image Operations are steps performed by SPIR-V image instructions, where those instructions which take an
OpTypeImage (representing a VkImageView) or OpTypeSampledImage (representing a (VkImageView,
VkSampler) pair) and texel coordinates as operands, and return a value based on one or more neighboring texture
elements (texels) in the image.

Note
Texel is a term which is a combination of the words texture and element. Early interactive computer graphics
supported texture operations on textures, a small subset of the image operations on images described here.
The discrete samples remain essentially equivalent, however, so we retain the historical term texel to refer to
them.

SPIR-V Image Instructions include the following functionality:

• OpImageSample* and OpImageSparseSample* read one or more neighboring texels of the image, and filter the
texel values based on the state of the sampler.

– Instructions with ImplicitLod in the name determine the level of detail used in the sampling operation based on
the coordinates used in neighboring fragments.

– Instructions with ExplicitLod in the name determine the level of detail used in the sampling operation based on
additional coordinates.

– Instructions with Proj in the name apply homogeneous projection to the coordinates.

• OpImageFetch and OpImageSparseFetch return a single texel of the image. No sampler is used.

• OpImage*Gather and OpImageSparse*Gather read neighboring texels and return a single component of each.

• OpImageRead (and OpImageSparseRead) and OpImageWrite read and write, respectively, a texel in the
image. No sampler is used.

• Instructions with Dref in the name apply depth comparison on the texel values.

• Instructions with Sparse in the name additionally return a sparse residency code.

15.1.1 Texel Coordinate Systems

Images are addressed by texel coordinates. There are three texel coordinate systems:

• normalized texel coordinates [0.0, 1.0]

• unnormalized texel coordinates [0.0, width / height / depth)

• integer texel coordinates [0, width / height / depth)

SPIR-V OpImageFetch, OpImageSparseFetch, OpImageRead, OpImageSparseRead, and
OpImageWrite instructions use integer texel coordinates. Other image instructions can use either normalized or
unnormalized texel coordinates (selected by the unnormalizedCoordinates state of the sampler used in the
instruction), but there are limitations on what operations, image state, and sampler state is supported. Normalized
coordinates are logically converted to unnormalized as part of image operations, and certain steps are only performed on
normalized coordinates. The array layer coordinate is always treated as unnormalized even when other coordinates are
normalized.

Normalized texel coordinates are referred to as (s,t,r,q,a), with the coordinates having the following meanings:

• s: Coordinate in the first dimension of an image.

• t: Coordinate in the second dimension of an image.

• r: Coordinate in the third dimension of an image.

– (s,t,r) are interpreted as a direction vector for Cube images.

• q: Fourth coordinate, for homogeneous (projective) coordinates.

• a: Coordinate for array layer.

The coordinates are extracted from the SPIR-V operand based on the dimensionality of the image variable and type of
instruction. For Proj instructions, the components are in order (s, [t,] [r,] q) with t and r being conditionally present
based on the Dim of the image. For non-Proj instructions, the coordinates are (s [,t] [,r] [,a]), with t and r being
conditionally present based on the Dim of the image and a being conditionally present based on the Arrayed property
of the image. Projective image instructions are not supported on Arrayed images.

Unnormalized texel coordinates are referred to as (u,v,w,a), with the coordinates having the following meanings:

• u: Coordinate in the first dimension of an image.

• v: Coordinate in the second dimension of an image.

• w: Coordinate in the third dimension of an image.

• a: Coordinate for array layer.

Only the u and v coordinates are directly extracted from the SPIR-V operand, because only 1D and 2D (non-Arrayed)
dimensionalities support unnormalized coordinates. The components are in order (u [,v]), with v being conditionally
present when the dimensionality is 2D. When normalized coordinates are converted to unnormalized coordinates, all four
coordinates are used.

Integer texel coordinates are referred to as (i,j,k,l,n), and the first four in that order have the same meanings as
unnormalized texel coordinates. They are extracted from the SPIR-V operand in order (i, [,j], [,k], [,l]), with j and k

Vulkan 1.0.36 - A Specification 331 / 683

conditionally present based on the Dim of the image, and l conditionally present based on the Arrayed property of the
image. n is the sample index and is taken from the Sample image operand.

For all coordinate types, unused coordinates are assigned a value of zero.

Figure 15.1: Texel Coordinate Systems

The Texel Coordinate Systems - For the example shown of an 8x4 texel two dimensional image.

• Normalized texel coordinates:

– The s coordinate goes from 0.0 to 1.0, left to right.

– The t coordinate goes from 0.0 to 1.0, top to bottom.

• Unnormalized texel coordinates:

– The u coordinate goes from -1.0 to 9.0, left to right. The u coordinate within the range 0.0 to 8.0 is within the image,
otherwise it is within the border.

– The v coordinate goes from -1.0 to 5.0, top to bottom. The v coordinate within the range 0.0 to 4.0 is within the
image, otherwise it is within the border.

• Integer texel coordinates:

– The i coordinate goes from -1 to 8, left to right. The i coordinate within the range 0 to 7 addresses texels within the
image, otherwise it addresses a border texel.

– The j coordinate goes from -1 to 5, top to bottom. The j coordinate within the range 0 to 3 addresses texels within
the image, otherwise it addresses a border texel.

• Also shown for linear filtering:

– Given the unnormalized coordinates (u,v), the four texels selected are i0j0, i1j0, i0j1, and i1j1.

– The weights α and β .

– Given the offset ∆i and ∆j, the four texels selected by the offset are i0j’0, i1j’0, i0j’1, and i1j’1.

Figure 15.2: Texel Coordinate Systems

The Texel Coordinate Systems - For the example shown of an 8x4 texel two dimensional image.

• Texel coordinates as above. Also shown for nearest filtering:

– Given the unnormalized coordinates (u,v), the texel selected is ij.

– Given the offset ∆i and ∆j, the texel selected by the offset is ij’.

15.2 Conversion Formulas

15.2.1 RGB to Shared Exponent Conversion

An RGB color (red, green, blue) is transformed to a shared exponent color (redshared, greenshared, blueshared, expshared) as
follows:

First, the components (red, green, blue) are clamped to (redclamped, greenclamped, blueclamped) as:

Vulkan 1.0.36 - A Specification 333 / 683

redclamped = max(0, min(sharedexpmax, red))

greenclamped = max(0, min(sharedexpmax, green))

blueclamped = max(0, min(sharedexpmax, blue))

Where:

N = 9 number of mantissa bits per component
B = 15 exponent bias

Emax = 31 maximum possible biased exponent value

sharedexpmax =
(2N−1)

2N ×2(Emax−B)

Note
NaN, if supported, is handled as in IEEE 754-2008 minNum() and maxNum(). That is the result is a NaN is
mapped to zero.

The largest clamped component, maxclamped is determined:

maxclamped = max(redclamped, greenclamped, blueclamped)

A preliminary shared exponent exp’ is computed:

exp′ =

{⌊
log2(maxclamped)

⌋
+(B+1) for maxclamped > 2−(B+1)

0 for maxclamped ≤ 2−(B+1)

The shared exponent expshared is computed:

maxshared =

⌊
maxclamped

2(exp′−B−N)
+

1
2

⌋

expshared =

{
exp′ for 0≤ maxshared < 2N

exp′+1 for maxshared = 2N

Finally, three integer values in the range 0 to 2N are computed:

redshared =

⌊
redclamped

2(expshared−B−N)
+

1
2

⌋
greenshared =

⌊
greenclamped

2(expshared−B−N)
+

1
2

⌋
blueshared =

⌊
blueclamped

2(expshared−B−N)
+

1
2

⌋

15.2.2 Shared Exponent to RGB

A shared exponent color (redshared, greenshared, blueshared, expshared) is transformed to an RGB color (red, green, blue) as
follows:

red = redshared × 2(expshared - B - N)

green = greenshared × 2(expshared - B - N)

blue = blueshared × 2(expshared - B - N)

Where:

N = 9 (number of mantissa bits per component)

B = 15 (exponent bias)

15.3 Texel Input Operations

Texel input instructions are SPIR-V image instructions that read from an image. Texel input operations are a set of steps
that are performed on state, coordinates, and texel values while processing a texel input instruction, and which are
common to some or all texel input instructions. They include the following steps, which are performed in the listed order:

• Validation operations

– Instruction/Sampler/Image validation

– Coordinate validation

– Sparse validation

• Format conversion

• Texel replacement

• Depth comparison

• Conversion to RGBA

• Component swizzle

For texel input instructions involving multiple texels (for sampling or gathering), these steps are applied for each texel
that is used in the instruction. Depending on the type of image instruction, other steps are conditionally performed
between these steps or involving multiple coordinate or texel values.

15.3.1 Texel Input Validation Operations

Texel input validation operations inspect instruction/image/sampler state or coordinates, and in certain circumstances
cause the texel value to be replaced or become undefined. There are a series of validations that the texel undergoes.

Vulkan 1.0.36 - A Specification 335 / 683

15.3.1.1 Instruction/Sampler/Image Validation

There are a number of cases where a SPIR-V instruction can mismatch with the sampler, the image, or both. There are a
number of cases where the sampler can mismatch with the image. In such cases the value of the texel returned is
undefined.

These cases include:

• The sampler borderColor is an integer type and the image format is not one of the VkFormat integer types or a
stencil component of a depth/stencil format.

• The sampler borderColor is a float type and the image format is not one of the VkFormat float types or a depth
component of a depth/stencil format.

• The sampler borderColor is one of the opaque black colors (VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK or
VK_BORDER_COLOR_INT_OPAQUE_BLACK) and the image VkComponentSwizzle for any of the
VkComponentMapping components is not VK_COMPONENT_SWIZZLE_IDENTITY.

• If the instruction is OpImageRead or OpImageSparseRead and the
shaderStorageImageReadWithoutFormat feature is not enabled, or the instruction is OpImageWrite and the
shaderStorageImageWriteWithoutFormat feature is not enabled, then the SPIR-V Image Format must be
compatible with the image view’s format.

• The sampler unnormalizedCoordinates is VK_TRUE and any of the limitations of unnormalized coordinates are
violated.

• The SPIR-V instruction is one of the OpImage*Dref* instructions and the sampler compareEnable is VK_FALSE

• The SPIR-V instruction is not one of the OpImage*Dref* instructions and the sampler compareEnable is VK_
TRUE

• The SPIR-V instruction is one of the OpImage*Dref* instructions and the image format is not one of the
depth/stencil formats with a depth component, or the image aspect is not VK_IMAGE_ASPECT_DEPTH_BIT.

• The SPIR-V instruction’s image variable’s properties are not compatible with the image view:

– Rules for viewType:

* VK_IMAGE_VIEW_TYPE_1D must have Dim = 1D, Arrayed = 0, MS = 0.

* VK_IMAGE_VIEW_TYPE_2D must have Dim = 2D, Arrayed = 0.

* VK_IMAGE_VIEW_TYPE_3D must have Dim = 3D, Arrayed = 0, MS = 0.

* VK_IMAGE_VIEW_TYPE_CUBE must have Dim = Cube, Arrayed = 0, MS = 0.

* VK_IMAGE_VIEW_TYPE_1D_ARRAY must have Dim = 1D, Arrayed = 1, MS = 0.

* VK_IMAGE_VIEW_TYPE_2D_ARRAY must have Dim = 2D, Arrayed = 1.

* VK_IMAGE_VIEW_TYPE_CUBE_ARRAY must have Dim = Cube, Arrayed = 1, MS = 0.

– If the image was created with VkImageCreateInfo::samples equal to VK_SAMPLE_COUNT_1_BIT, the
instruction must have MS = 0.

– If the image was created with VkImageCreateInfo::samples not equal to VK_SAMPLE_COUNT_1_BIT, the
instruction must have MS = 1.

15.3.1.2 Integer Texel Coordinate Validation

Integer texel coordinates are validated against the size of the image level, and the number of layers and number of
samples in the image. For SPIR-V instructions that use integer texel coordinates, this is performed directly on the integer
coordinates. For instructions that use normalized or unnormalized texel coordinates, this is performed on the coordinates
that result after conversion to integer texel coordinates.

If the integer texel coordinates do not satisfy all of the conditions

0 ≤ i < ws

0 ≤ j < hs

0 ≤ k < ds

0 ≤ l < layers

0 ≤ n < samples

where:

ws = width of the image level

hs = height of the image level

ds = depth of the image level

layers = number of layers in the image

samples = number of samples per texel in the image

then the texel fails integer texel coordinate validation.

There are four cases to consider:

1. Valid Texel Coordinates

• If the texel coordinates pass validation (that is, the coordinates lie within the image),

then the texel value comes from the value in image memory.

2. Border Texel

• If the texel coordinates fail validation, and

• If the read is the result of an image sample instruction or image gather instruction, and

• If the image is not a cube image,

Vulkan 1.0.36 - A Specification 337 / 683

then the texel is a border texel and texel replacement is performed.

3. Invalid Texel

• If the texel coordinates fail validation, and

• If the read is the result of an image fetch instruction, image read instruction, or atomic instruction,

then the texel is an invalid texel and texel replacement is performed.

4. Cube Map Edge or Corner

Otherwise the texel coordinates lie on the borders along the edges and corners of a cube map image, and Cube map
edge handling is performed.

15.3.1.3 Cube Map Edge Handling

If the texel coordinates lie on the borders along the edges and corners of a cube map image, the following steps are
performed. Note that this only occurs when using VK_FILTER_LINEAR filtering within a mip level, since VK_
FILTER_NEAREST is treated as using VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

• Cube Map Edge Texel

– If the texel lies along the border in either only i or only j

then the texel lies along an edge, so the coordinates (i,j) and the array layer l are transformed to select the adjacent
texel from the appropriate neighboring face.

• Cube Map Corner Texel

– If the texel lies along the border in both i and j

then the texel lies at a corner and there is no unique neighboring face from which to read that texel. The texel should be
replaced by the average of the three values of the adjacent texels in each incident face. However, implementations may
replace the cube map corner texel by other methods, subject to the constraint that if the three available samples have
the same value, the replacement texel also has that value.

15.3.1.4 Sparse Validation

If the texel reads from an unbound region of a sparse image, the texel is a sparse unbound texel, and processing continues
with texel replacement.

15.3.2 Format Conversion

Texels undergo a format conversion from the VkFormat of the image view to a vector of either floating point or signed
or unsigned integer components, with the number of components based on the number of components present in the
format.

• Color formats have one, two, three, or four components, according to the format.

• Depth/stencil formats are one component. The depth or stencil component is selected by the aspectMask of the
image view.

Each component is converted based on its type and size (as defined in the Format Definition section for each
VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers, Unsigned 11-Bit Floating-Point
Numbers, Unsigned 10-Bit Floating-Point Numbers, Fixed-Point Data Conversion, and Shared Exponent to RGB.
Signed integer components smaller than 32 bits are sign-extended.

If the image format is sRGB, the color components are first converted as if they are UNORM, and then sRGB to linear
conversion is applied to the R, G, and B components as described in the “KHR_DF_TRANSFER_SRGB” section of the
Khronos Data Format Specification. The A component, if present, is unchanged.

If the image view format is block-compressed, then the texel value is first decoded, then converted based on the type and
number of components defined by the compressed format.

15.3.3 Texel Replacement

A texel is replaced if it is one (and only one) of:

• a border texel,

• an invalid texel, or

• a sparse unbound texel.

Border texels are replaced with a value based on the image format and the borderColor of the sampler. The border
color is:

Table 15.1: Border Color B

Sampler borderColor Corresponding Border Color
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK B = (0.0, 0.0, 0.0, 0.0)
VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK B = (0.0, 0.0, 0.0, 1.0)
VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE B = (1.0, 1.0, 1.0, 1.0)
VK_BORDER_COLOR_INT_TRANSPARENT_BLACK B = (0, 0, 0, 0)
VK_BORDER_COLOR_INT_OPAQUE_BLACK B = (0, 0, 0, 1)
VK_BORDER_COLOR_INT_OPAQUE_WHITE B = (1, 1, 1, 1)

Note
The names VK_BORDER_COLOR_*_TRANSPARENT_BLACK, VK_BORDER_COLOR_*_OPAQUE_BL
ACK, and VK_BORDER_COLOR_*_OPAQUE_WHITE are meant to describe which components are zeros and
ones in the vocabulary of compositing, and are not meant to imply that the numerical value of VK_BORDER_
COLOR_INT_OPAQUE_WHITE is a saturating value for integers.

This is substituted for the texel value by replacing the number of components in the image format

Table 15.2: Border Texel Components After Replacement

Texel Aspect or Format Component Assignment
Depth aspect D = Br
Stencil aspect S = Br

Vulkan 1.0.36 - A Specification 339 / 683

Table 15.2: (continued)

Texel Aspect or Format Component Assignment
One component color format Cr = Br
Two component color format Crg = (Br,Bg)
Three component color format Crgb = (Br,Bg,Bb)
Four component color format Crgba = (Br,Bg,Bb,Ba)

If the read operation is from a buffer resource, and the robustBufferAccess feature is enabled, an invalid texel is
replaced as described here.

If the robustBufferAccess feature is not enabled, the value of an invalid texel is undefined.

If the VkPhysicalDeviceSparseProperties property residencyNonResidentStrict is true, a sparse
unbound texel is replaced with 0 or 0.0 values for integer and floating-point components of the image format,
respectively.

If residencyNonResidentStrict is false, the read must be safe, but the value of the sparse unbound texel is
undefined.

15.3.4 Depth Compare Operation

If the image view has a depth/stencil format, the depth component is selected by the aspectMask, and the operation is a
Dref instruction, a depth comparison is performed. The value of the result D is 1.0 if the result of the compare operation
is true, and 0.0 otherwise. The compare operation is selected by the compareOp member of the sampler.

D = 1.0

Dre f ≤ D for LEQUAL
Dre f ≥ D for GEQUAL
Dre f < D for LESS
Dre f > D for GREATER
Dre f = D for EQUAL
Dre f 6= D for NOTEQUAL
true for ALWAYS
f alse for NEVER

D = 0.0 otherwise

where, in the depth comparison:

Dref = shaderOp.Dref (from optional SPIR-V operand)

D (texel depth value)

15.3.5 Conversion to RGBA

The texel is expanded from one, two, or three to four components based on the image base color:

Table 15.3: Texel Color After Conversion To RGBA

Texel Aspect or Format RGBA Color
Depth aspect Crgba = (D,0,0,one)
Stencil aspect Crgba = (S,0,0,one)
One component color format Crgba = (Cr,0,0,one)
Two component color format Crgba = (Crg,0,one)
Three component color format Crgba = (Crgb,one)
Four component color format Crgba = Crgba

where one = 1.0f for floating-point formats and depth aspects, and one = 1 for integer formats and stencil aspects.

15.3.6 Component Swizzle

All texel input instructions apply a swizzle based on the VkComponentSwizzle enums in the components member
of the VkImageViewCreateInfo structure for the image being read. The swizzle can rearrange the components of
the texel, or substitute zero and one for any components. It is defined as follows for the R component, and operates
similarly for the other components.

C′rgba[R] =

Crgba[R] for RED swizzle
Crgba[G] for GREEN swizzle
Crgba[B] for BLUE swizzle
Crgba[A] for ALPHA swizzle
0 for ZERO swizzle
one for ONE swizzle
Crgba[R] for IDENTITY swizzle

where:

Crgba[R]is the RED component
Crgba[G]is the GREEN component
Crgba[B]is the BLUE component
Crgba[A]is the ALPHA component

one = 1.0f for floating point components
one = 1 for integer components

For each component this is applied to, the VK_COMPONENT_SWIZZLE_IDENTITY swizzle selects the corresponding
component from Crgba.

If the border color is one of the VK_BORDER_COLOR_*_OPAQUE_BLACK enums and the VkComponentSwizzle
is not VK_COMPONENT_SWIZZLE_IDENTITY for all components (or the equivalent identity mapping), the value of
the texel after swizzle is undefined.

15.3.7 Sparse Residency

OpImageSparse* instructions return a structure which includes a residency code indicating whether any texels
accessed by the instruction are sparse unbound texels. This code can be interpreted by the
OpImageSparseTexelsResident instruction which converts the residency code to a boolean value.

Vulkan 1.0.36 - A Specification 341 / 683

15.4 Texel Output Operations

Texel output instructions are SPIR-V image instructions that write to an image. Texel output operations are a set of steps
that are performed on state, coordinates, and texel values while processing a texel output instruction, and which are
common to some or all texel output instructions. They include the following steps, which are performed in the listed
order:

• Validation operations

– Format validation

– Coordinate validation

– Sparse validation

• Texel output format conversion

15.4.1 Texel Output Validation Operations

Texel output validation operations inspect instruction/image state or coordinates, and in certain circumstances cause the
write to have no effect. There are a series of validations that the texel undergoes.

15.4.1.1 Texel Format Validation

If the image format of the OpTypeImage is not compatible with the VkImageView’s format, the effect of the write
on the image view’s memory is undefined, but the write must not access memory outside of the image view.

15.4.2 Integer Texel Coordinate Validation

The integer texel coordinates are validated according to the same rules as for texel input coordinate validation.

If the texel fails integer texel coordinate validation, then the write has no effect.

15.4.3 Sparse Texel Operation

If the texel attempts to write to an unbound region of a sparse image, the texel is a sparse unbound texel. In such a case, if
the VkPhysicalDeviceSparseProperties property residencyNonResidentStrict is VK_TRUE, the sparse
unbound texel write has no effect. If residencyNonResidentStrict is VK_FALSE, the effect of the write is
undefined but must be safe. In addition, the write may have a side effect that is visible to other image instructions, but
must not be written to any device memory allocation.

15.4.4 Texel Output Format Conversion

Texels undergo a format conversion from the floating point, signed, or unsigned integer type of the texel data to the
VkFormat of the image view. Any unused components are ignored.

Each component is converted based on its type and size (as defined in the Format Definition section for each
VkFormat), using the appropriate equations in 16-Bit Floating-Point Numbers and Fixed-Point Data Conversion.

15.5 Derivative Operations

SPIR-V derivative instructions include OpDPdx, OpDPdy, OpDPdxFine, OpDPdyFine, OpDPdxCoarse, and
OpDPdyCoarse. Derivative instructions are only available in a fragment shader.

Figure 15.3: Implicit Derivatives

Derivatives are computed as if there is a 2x2 neighborhood of fragments for each fragment shader invocation. These
neighboring fragments are used to compute derivatives with the assumption that the values of P in the neighborhood are
piecewise linear. It is further assumed that the values of P in the neighborhood are locally continuous, therefore
derivatives in non-uniform control flow are undefined.

dPdxi1, j0 = dPdxi0, j0 = Pi1, j0 −Pi0, j0

dPdxi1, j1 = dPdxi0, j1 = Pi1, j1 −Pi0, j1

dPdyi0, j1 = dPdyi0, j0 = Pi0, j1 −Pi0, j0

dPdyi1, j1 = dPdyi1, j0 = Pi1, j1 −Pi1, j0

Vulkan 1.0.36 - A Specification 343 / 683

The Fine derivative instructions must return the values above, for a group of fragments in a 2x2 neighborhood. Coarse
derivatives may return only two values. In this case, the values should be:

dPdx =

{
dPdxi0, j0 preferred
dPdxi0, j1

dPdy =

{
dPdyi0, j0 preferred
dPdyi1, j0

OpDPdx and OpDPdy must return the same result as either OpDPdxFine or OpDPdxCoarse and either
OpDPdyFine or OpDPdyCoarse, respectively. Implementations must make the same choice of either coarse or fine
for both OpDPdx and OpDPdy, and implementations should make the choice that is more efficient to compute.

15.6 Normalized Texel Coordinate Operations

If the image sampler instruction provides normalized texel coordinates, some of the following operations are performed.

15.6.1 Projection Operation

For Proj image operations, the normalized texel coordinates (s,t,r,q,a) and (if present) the Dref coordinate are
transformed as follows:

s =
s
q
, for 1D, 2D, or 3D image

t =
t
q
, for 2D or 3D image

r =
r
q
, for 3D image

Dre f =
Dre f

q
, if provided

15.6.2 Derivative Image Operations

Derivatives are used for level-of-detail selection. These derivatives are either implicit (in an ImplicitLod image
instruction in a fragment shader) or explicit (provided explicitly by shader to the image instruction in any shader).

For implicit derivatives image instructions, the derivatives of texel coordinates are calculated in the same manner as
derivative operations above. That is:

∂ s/∂x = dPdx(s), ∂ s/∂y = dPdy(s), for 1D, 2D, Cube, or 3D image
∂ t/∂x = dPdx(t), ∂ t/∂y = dPdy(t), for 2D, Cube, or 3D image
∂u/∂x = dPdx(u), ∂u/∂y = dPdy(u), for Cube or 3D image

Partial derivatives not defined above for certain image dimensionalities are set to zero.

For explicit level-of-detail image instructions, if the optional SPIR-V operand Grad is provided, then the operand values
are used for the derivatives. The number of components present in each derivative for a given image dimensionality
matches the number of partial derivatives computed above.

If the optional SPIR-V operand Lod is provided, then derivatives are set to zero, the cube map derivative transformation
is skipped, and the scale factor operation is skipped. Instead, the floating point scalar coordinate is directly assigned to
λ base as described in Level-of-Detail Operation.

15.6.3 Cube Map Face Selection and Transformations

For cube map image instructions, the (s,t,r) coordinates are treated as a direction vector (rx,ry,rz). The direction vector is
used to select a cube map face. The direction vector is transformed to a per-face texel coordinate system (sface,tface), The
direction vector is also used to transform the derivatives to per-face derivatives.

15.6.4 Cube Map Face Selection

The direction vector selects one of the cube map’s faces based on the largest magnitude coordinate direction (the major
axis direction). Since two or more coordinates can have identical magnitude, the implementation must have rules to
disambiguate this situation.

The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins over rx. An
implementation may choose other rules, but the rules must be deterministic and depend only on (rx,ry,rz).

The layer number (corresponding to a cube map face), the coordinate selections for sc, tc, rc, and the selection of
derivatives, are determined by the major axis direction as specified in the following two tables.

Table 15.4: Cube map face and coordinate selection

Major
Axis
Direction

Layer
Number

Cube Map
Face

sc tc rc

+rx 0 Positive X -rz -ry rx
-rx 1 Negative X +rz -ry rx
+ry 2 Positive Y +rx +rz ry
-ry 3 Negative Y +rx -rz ry
+rz 4 Positive Z +rx -ry rz
-rz 5 Negative Z -rx -ry rz

Table 15.5: Cube map derivative selection

Major
Axis Di-
rection

∂ sc / ∂x ∂ sc / ∂y ∂ tc / ∂x ∂ tc / ∂y ∂rc / ∂x ∂rc / ∂y

+rx -∂ rz / ∂x -∂ rz / ∂y -∂ ry / ∂x -∂ ry / ∂y +∂ rx / ∂x +∂ rx / ∂y
-rx +∂ rz / ∂x +∂ rz / ∂y -∂ ry / ∂x -∂ ry / ∂y -∂ rx / ∂x -∂ rx / ∂y
+ry +∂ rx / ∂x +∂ rx / ∂y +∂ rz / ∂x +∂ rz / ∂y +∂ ry / ∂x +∂ ry / ∂y
-ry +∂ rx / ∂x +∂ rx / ∂y -∂ rz / ∂x -∂ rz / ∂y -∂ ry / ∂x -∂ ry / ∂y
+rz +∂ rx / ∂x +∂ rx / ∂y -∂ ry / ∂x -∂ ry / ∂y +∂ rz / ∂x +∂ rz / ∂y
-rz -∂ rx / ∂x -∂ rx / ∂y -∂ ry / ∂x -∂ ry / ∂y -∂ rz / ∂x -∂ rz / ∂y

Vulkan 1.0.36 - A Specification 345 / 683

15.6.5 Cube Map Coordinate Transformation

s f ace =
1
2
× sc

|rc|
+

1
2

t f ace =
1
2
× tc
|rc|

+
1
2

15.6.6 Cube Map Derivative Transformation

∂ s f ace

∂x
=

∂

∂x

(
1
2
× sc

|rc|
+

1
2

)
∂ s f ace

∂x
=

1
2
× ∂

∂x

(
sc

|rc|

)
∂ s f ace

∂x
=

1
2
×

(
|rc|×∂ sc/∂x− sc×∂ rc/∂x

(rc)
2

)

∂ s f ace

∂y
=

1
2
×

(
|rc|×∂ sc/∂y− sc×∂ rc/∂y

(rc)
2

)
∂ t f ace

∂x
=

1
2
×

(
|rc|×∂ tc/∂x− tc×∂ rc/∂x

(rc)
2

)
∂ t f ace

∂y
=

1
2
×

(
|rc|×∂ tc/∂y− tc×∂ rc/∂y

(rc)
2

)

15.6.7 Scale Factor Operation, Level-of-Detail Operation and Image Level(s) Selection

Level-of-detail selection can be either explicit (provided explicitly by the image instruction) or implicit (determined from
a scale factor calculated from the derivatives).

15.6.7.1 Scale Factor Operation

The magnitude of the derivatives are calculated by:

mux = |∂ s/∂x| × wbase

mvx = |∂ t/∂x| × hbase

mwx = |∂ r/∂x| × dbase

muy = |∂ s/∂y| × wbase

mvy = |∂ t/∂y| × hbase

mwy = |∂ r/∂y| × dbase

where:

∂ t/∂x = ∂ t/∂y = 0 (for 1D images)

∂ r/∂x = ∂ r/∂y = 0 (for 1D, 2D or Cube images)

and

wbase = image.w

hbase = image.h

dbase = image.d

(for the baseMipLevel, from the image descriptor).

The scale factors (ρx, ρy) should be calculated by:

ρx =
√

m2
ux +m2

vx +m2
wx

ρy =
√

m2
uy +m2

vy +m2
wy

The ideal functions ρx and ρy may be approximated with functions fx and fy, subject to the following constraints:

fx is continuous and monotonically increasing in each of mux,mvx, and mwx

fy is continuous and monotonically increasing in each of muy,mvy, and mwy

max(|mux|, |mvx|, |mwx|) ≤ fx ≤ |mux| + |mvx| + |mwx|

max(|muy|, |mvy|, |mwy|) ≤ fy ≤ |muy| + |mvy| + |mwy|

The minimum and maximum scale factors (ρmin,ρmax) are determined by:

ρmax = max(ρx, ρy)

ρmin = min(ρx, ρy)

Vulkan 1.0.36 - A Specification 347 / 683

The sampling rate is determined by:

N = min
(⌈

ρmax

ρmin

⌉
,maxAniso

)
where:

sampler.maxAniso = maxAnisotropy (from sampler descriptor)

limits.maxAniso = maxSamplerAnisotropy (from physical device limits)

maxAniso = min(sampler.maxAniso, limits.maxAniso)

If ρmax = ρmin = 0, then all the partial derivatives are zero, the fragment’s footprint in texel space is a point, and N should
be treated as 1. If ρmax 6= 0 and ρmin = 0 then all partial derivatives along one axis are zero, the fragment’s footprint in
texel space is a line segment, and N should be treated as maxAniso. However, anytime the footprint is small in texel space
the implementation may use a smaller value of N, even when ρmin is zero or close to zero.

An implementation may round N up to the nearest supported sampling rate.

If N = 1, sampling is isotropic. If N > 1, sampling is anisotropic.

15.6.7.2 Level-of-Detail Operation

The level-of-detail parameter λ is computed as follows:

λbase(x,y) =

{
shaderOp.Lod (from optional SPIR-V operand)
log2

(
ρmax

N

)
otherwise

λ
′(x,y) = λbase + clamp(sampler.bias+ shaderOp.bias,−maxSamplerLodBias,maxSamplerLodBias)

λ =

lodmax, λ ′ > lodmax

λ ′, lodmin ≤ λ ′ ≤ lodmax

lodmin, λ ′ < lodmin

unde f ined, lodmin > lodmax

where:

sampler.bias = mipLodBias (from sampler descriptor)

shaderOp.bias =

{
Bias (from optional SPIR-V operand)
0 otherwise

sampler.lodmin = minLod (from sampler descriptor)

shaderOp.lodmin =

{
MinLod (from optional SPIR-V operand)
0 otherwise

lodmin = max(sampler.lodmin,shaderOp.lodmin)

lodmax = maxLod (from sampler descriptor)

and maxSamplerLodBias is the value of the VkPhysicalDeviceLimits feature maxSamplerLodBias.

15.6.7.3 Image Level(s) Selection

The image level(s) d, dhi, and dlo which texels are read from are selected based on the level-of-detail parameter, as
follows. If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_NEAREST, then level d is used:

d =

levelbase, λ ≤ 1

2
nearest(λ), λ > 1

2 , levelbase +λ ≤ q+ 1
2

q, λ > 1
2 , levelbase +λ > q+ 1

2

where:

nearest(λ) =

{⌈
levelbase +λ + 1

2

⌉
−1, preferred⌊

levelbase +λ + 1
2

⌋
, alternative

and

q = levelCount - 1

levelCount is taken from the subresourceRange of the image view.

If the sampler’s mipmapMode is VK_SAMPLER_MIPMAP_MODE_LINEAR, two neighboring levels are selected:

dhi =

{
q, levelbase +λ ≥ q
blevelbase +λc , otherwise

dlo =

{
q, levelbase +λ ≥ q
dhi +1, otherwise

δ = frac(λ)

is the fractional value used for linear filtering between levels.

15.6.8 (s,t,r,q,a) to (u,v,w,a) Transformation

The normalized texel coordinates are scaled by the image level dimensions and the array layer is selected. This
transformation is performed once for each level (d or dhi and dlo) used in filtering.

u(x,y) = s(x,y)×widthlevel

v(x,y) =

{
0 for 1D images
t(x,y)×heightlevel otherwise

w(x,y) =

{
0 for 2D or Cube images
r(x,y)×depthlevel otherwise

a(x,y) =

{
a(x,y) for array images
0 otherwise

Operations then proceed to Unnormalized Texel Coordinate Operations.

Vulkan 1.0.36 - A Specification 349 / 683

15.7 Unnormalized Texel Coordinate Operations

15.7.1 (u,v,w,a) to (i,j,k,l,n) Transformation And Array Layer Selection

The unnormalized texel coordinates are transformed to integer texel coordinates relative to the selected mipmap level.

The layer index l is computed as:

l = clamp(RNE(a), 0, layerCount - 1) + baseArrayLayer

where layerCount is the number of layers in the image subresource range of the image view, baseArrayLayer is the
first layer from the subresource range, and where:

RNE(a) =

{
roundTiesToEven(a) preferred, from IEEE Std 754-2008 Floating-Point Arithmetic⌊
a+ 1

2

⌋
alternative

The sample index n is assigned the value zero.

Nearest filtering (VK_FILTER_NEAREST) computes the integer texel coordinates that the unnormalized coordinates lie
within:

i = b u c

j = b v c

k = b w c

Linear filtering (VK_FILTER_LINEAR) computes a set of neighboring coordinates which bound the unnormalized
coordinates. The integer texel coordinates are combinations of i0 or i1, j0 or j1, k0 or k1, as well as weights α , β , and γ .

i0 = bu - ½c

i1 = i0 + 1

j0 = bv - ½c

j1 = j0 + 1

k0 = bw - ½c

k1 = k0 + 1

α = frac(u - ½)

β = frac(v - ½)

γ = frac(w - ½)

If the image instruction includes a ConstOffset operand, the constant offsets (∆i, ∆j, ∆k) are added to (i,j,k) components
of the integer texel coordinates.

15.8 Image Sample Operations

15.8.1 Wrapping Operation

Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip
level then VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a
mip level then sampling at the edges is performed as described earlier in the Cube map edge handling section.

The first integer texel coordinate i is transformed based on the addressModeU parameter of the sampler.

i =

imodsize for repeat
(size−1)−mirror((imod(2× size))− size) for mirrored repeat
clamp(i,0,size−1) for clamp to edge
clamp(i,−1,size) for clamp to border
clamp(mirror(i),0,size−1) for mirror clamp to edge

where:

mirror(n) =

{
n for n≥ 0
−(1+n) otherwise

j (for 2D and Cube image) and k (for 3D image) are similarly transformed based on the addressModeV and
addressModeW parameters of the sampler, respectively.

15.8.2 Texel Gathering

SPIR-V instructions with Gather in the name return a vector derived from a 2x2 rectangular region of texels in the base
level of the image view. The rules for the VK_FILTER_LINEAR minification filter are applied to identify the four
selected texels. Each texel is then converted to an RGBA value according to conversion to RGBA and then swizzled. A
four-component vector is then assembled by taking the component indicated by the Component value in the instruction
from the swizzled color value of the four texels:

τ[R] = τi0 j1[levelbase][comp]

τ[G] = τi1 j1[levelbase][comp]

τ[B] = τi1 j0[levelbase][comp]

τ[A] = τi0 j0[levelbase][comp]

where:

τ[levelbase][comp] =

τ[levelbase][R], for comp = 0
τ[levelbase][G], for comp = 1
τ[levelbase][B], for comp = 2
τ[levelbase][A], for comp = 3

comp from SPIR-V operand Component

Vulkan 1.0.36 - A Specification 351 / 683

15.8.3 Texel Filtering

If λ is less than or equal to zero, the texture is said to be magnified, and the filter mode within a mip level is selected by
the magFilter in the sampler. If λ is greater than zero, the texture is said to be minified, and the filter mode within a
mip level is selected by the minFilter in the sampler.

Within a mip level, VK_FILTER_NEAREST filtering selects a single value using the (i, j, k) texel coordinates, with all
texels taken from layer l.

τ[level] =

τi jk[level], for 3D image
τi j[level], for 2D or Cube image
τi[level], for 1D image

Within a mip level, VK_FILTER_LINEAR filtering computes a weighted average of 8 (for 3D), 4 (for 2D or Cube), or 2
(for 1D) texel values, using the weights computed earlier:

τ3D[level] = (1−α)(1−β)(1− γ)τi0 j0k0[level]

+ (α)(1−β)(1− γ)τi1 j0k0[level]

+ (1−α)(β)(1− γ)τi0 j1k0[level]

+ (α)(β)(1− γ)τi1 j1k0[level]

+ (1−α)(1−β)(γ)τi0 j0k1[level]

+ (α)(1−β)(γ)τi1 j0k1[level]

+ (1−α)(β)(γ)τi0 j1k1[level]

+ (α)(β)(γ)τi1 j1k1[level]

τ2D[level] = (1−α)(1−β)τi0 j0[level]

+ (α)(1−β)τi1 j0[level]

+ (1−α)(β)τi0 j1[level]

+ (α)(β)τi1 j1[level]

τ1D[level] = (1−α)τi0[level]

+ (α)τi1[level]

τ[level] =

τ3D[level], for 3D image
τ2D[level], for 2D or Cube image
τ1D[level], for 1D image

Finally, mipmap filtering either selects a value from one mip level or computes a weighted average between neighboring
mip levels:

τ =

{
τ[d], for mip mode BASE or NEAREST
(1−δ)τ[dhi]+δτ[dlo], for mip mode LINEAR

15.8.4 Texel Anisotropic Filtering

Anisotropic filtering is enabled by the anisotropyEnable in the sampler. When enabled, the image filtering scheme
accounts for a degree of anisotropy.

The particular scheme for anisotropic texture filtering is implementation dependent. Implementations should consider the
magFilter, minFilter and mipmapMode of the sampler to control the specifics of the anisotropic filtering scheme
used. In addition, implementations should consider minLod and maxLod of the sampler.

The following describes one particular approach to implementing anisotropic filtering for the 2D Image case,
implementations may choose other methods:

Given a magFilter, minFilter of VK_FILTER_LINEAR and a mipmapMode of VK_SAMPLER_MIPMAP_MODE_
NEAREST:

Instead of a single isotropic sample, N isotropic samples are be sampled within the image footprint of the image level d
to approximate an anisotropic filter. The sum τ2Daniso is defined using the single isotropic τ2D(u,v) at level d.

τ2Daniso =
1
N

N

∑
i=1

τ2D

(
u
(

x− 1
2
+

i
N +1

,y
)
,

(
v
(

x− 1
2
+

i
N +1

)
,y
))

, when ρx > ρy

τ2Daniso =
1
N

N

∑
i=1

τ2D

(
u
(

x,y− 1
2
+

i
N +1

)
,

(
v
(

x,y− 1
2
+

i
N +1

)))
, when ρy ≥ ρx

15.9 Image Operation Steps

Each step described in this chapter is performed by a subset of the image instructions:

• Texel Input Validation Operations, Format Conversion, Texel Replacement, Conversion to RGBA, and Component
Swizzle: Performed by all instructions except OpImageWrite.

• Depth Comparison: Performed by OpImage*Dref instructions.

• All Texel output operations: Performed by OpImageWrite.

• Projection: Performed by all OpImage*Proj instructions.

• Derivative Image Operations, Cube Map Operations, Scale Factor Operation, Level-of-Detail Operation and Image
Level(s) Selection, and Texel Anisotropic Filtering: Performed by all OpImageSample* and
OpImageSparseSample* instructions.

• (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and (u,v,w,a) to (i,j,k,l,n) Transformation And Array Layer Selection:
Performed by all OpImageSample, OpImageSparseSample, and OpImage*Gather instructions.

• Texel Gathering: Performed by OpImage*Gather instructions.

• Texel Filtering: Performed by all OpImageSample* and OpImageSparseSample* instructions.

• Sparse Residency: Performed by all OpImageSparse* instructions.

Vulkan 1.0.36 - A Specification 353 / 683

Chapter 16

Queries

Queries provide a mechanism to return information about the processing of a sequence of Vulkan commands. Query
operations are asynchronous, and as such, their results are not returned immediately. Instead, their results, and their
availability status, are stored in a Query Pool. The state of these queries can be read back on the host, or copied to a
buffer object on the device.

The supported query types are Occlusion Queries, Pipeline Statistics Queries, and Timestamp Queries.

16.1 Query Pools

Queries are managed using query pool objects. Each query pool is a collection of a specific number of queries of a
particular type.

Query pools are represented by VkQueryPool handles:

VK_DEFINE_NON_DISPATCHABLE_HANDLE(VkQueryPool)

To create a query pool, call:

VkResult vkCreateQueryPool(
VkDevice device,
const VkQueryPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkQueryPool* pQueryPool);

• device is the logical device that creates the query pool.

• pCreateInfo is a pointer to an instance of the VkQueryPoolCreateInfo structure containing the number and
type of queries to be managed by the pool.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

• pQueryPool is a pointer to a VkQueryPool handle in which the resulting query pool object is returned.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• pCreateInfo must be a pointer to a valid VkQueryPoolCreateInfo structure

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• pQueryPool must be a pointer to a VkQueryPool handle

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkQueryPoolCreateInfo structure is defined as:

typedef struct VkQueryPoolCreateInfo {
VkStructureType sType;
const void* pNext;
VkQueryPoolCreateFlags flags;
VkQueryType queryType;
uint32_t queryCount;
VkQueryPipelineStatisticFlags pipelineStatistics;

} VkQueryPoolCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• queryType is the type of queries managed by the pool, and must be one of the values

typedef enum VkQueryType {
VK_QUERY_TYPE_OCCLUSION = 0,
VK_QUERY_TYPE_PIPELINE_STATISTICS = 1,
VK_QUERY_TYPE_TIMESTAMP = 2,

} VkQueryType;

• queryCount is the number of queries managed by the pool.

Vulkan 1.0.36 - A Specification 355 / 683

• pipelineStatistics is a bitmask indicating which counters will be returned in queries on the new pool, as
described below in Section 16.4. pipelineStatistics is ignored if queryType is not VK_QUERY_TYPE_
PIPELINE_STATISTICS.

Valid Usage

• If the pipeline statistics queries feature is not enabled, queryType must not be VK_QUERY_TYPE_PIPELINE_
STATISTICS

• If queryType is VK_QUERY_TYPE_PIPELINE_STATISTICS, pipelineStatistics must be a valid
combination of VkQueryPipelineStatisticFlagBits values

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO

• pNext must be NULL

• flags must be 0

• queryType must be a valid VkQueryType value

To destroy a query pool, call:

void vkDestroyQueryPool(
VkDevice device,
VkQueryPool queryPool,
const VkAllocationCallbacks* pAllocator);

• device is the logical device that destroys the query pool.

• queryPool is the query pool to destroy.

• pAllocator controls host memory allocation as described in the Memory Allocation chapter.

Valid Usage

• All submitted commands that refer to queryPool must have completed execution

• If VkAllocationCallbacks were provided when queryPool was created, a compatible set of callbacks
must be provided here

• If no VkAllocationCallbacks were provided when queryPool was created, pAllocator must be NULL

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• If queryPool is not VK_NULL_HANDLE, queryPool must be a valid VkQueryPool handle

• If pAllocator is not NULL, pAllocator must be a pointer to a valid VkAllocationCallbacks structure

• If queryPool is a valid handle, it must have been created, allocated, or retrieved from device

Host Synchronization

• Host access to queryPool must be externally synchronized

16.2 Query Operation

The operation of queries is controlled by the commands vkCmdBeginQuery, vkCmdEndQuery,
vkCmdResetQueryPool, vkCmdCopyQueryPoolResults, and vkCmdWriteTimestamp.

In order for a VkCommandBuffer to record query management commands, the queue family for which its
VkCommandPool was created must support the appropriate type of operations (graphics, compute) suitable for the
query type of a given query pool.

Each query in a query pool has a status that is either unavailable or available, and also has state to store the numerical
results of a query operation of the type requested when the query pool was created. Resetting a query via
vkCmdResetQueryPool sets the status to unavailable and makes the numerical results undefined. Performing a
query operation with vkCmdBeginQuery and vkCmdEndQuery changes the status to available when the query
finishes, and updates the numerical results. Both the availability status and numerical results are retrieved by calling
either vkGetQueryPoolResults or vkCmdCopyQueryPoolResults.

All query commands execute in order and are guaranteed to see the effects of each other’s memory accesses, with one
significant exception: vkCmdCopyQueryPoolResults may execute before the results of vkCmdEndQuery are
available. However, if VK_QUERY_RESULT_WAIT_BIT is used, then vkCmdCopyQueryPoolResults must
reflect the result of any previously executed queries. Other sequences of commands, such as vkCmdResetQueryPool
followed by vkCmdBeginQuery, must make the effects of the first command visible to the second command.

Vulkan 1.0.36 - A Specification 357 / 683

After query pool creation, each query is in an undefined state and must be reset prior to use. Queries must also be reset
between uses. Using a query that has not been reset will result in undefined behavior.

To reset a range of queries in a query pool, call:

void vkCmdResetQueryPool(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the handle of the query pool managing the queries being reset.

• firstQuery is the initial query index to reset.

• queryCount is the number of queries to reset.

When executed on a queue, this command sets the status of query indices [firstQuery, firstQuery + queryCount -
1] to unavailable.

Valid Usage

• firstQuery must be less than the number of queries in queryPool

• The sum of firstQuery and queryCount must be less than or equal to the number of queries in queryPool

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics
compute

Once queries are reset and ready for use, query commands can be issued to a command buffer. Occlusion queries and
pipeline statistics queries count events - drawn samples and pipeline stage invocations, respectively - resulting from
commands that are recorded between a vkCmdBeginQuery command and a vkCmdEndQuery command within a
specified command buffer, effectively scoping a set of drawing and/or compute commands. Timestamp queries write
timestamps to a query pool.

A query must begin and end in the same command buffer, although if it is a primary command buffer, and the inherited
queries feature is enabled, it can execute secondary command buffers during the query operation. For a secondary
command buffer to be executed while a query is active, it must set the occlusionQueryEnable, queryFlags, and/or
pipelineStatistics members of VkCommandBufferInheritanceInfo to conservative values, as described in
the Command Buffer Recording section. A query must either begin and end inside the same subpass of a render pass
instance, or must both begin and end outside of a render pass instance (i.e. contain entire render pass instances).

To begin a query, call:

void vkCmdBeginQuery(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query,
VkQueryControlFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that will manage the results of the query.

• query is the query index within the query pool that will contain the results.

• flags is a bitmask indicating constraints on the types of queries that can be performed. Bits which can be set include:

typedef enum VkQueryControlFlagBits {
VK_QUERY_CONTROL_PRECISE_BIT = 0x00000001,

} VkQueryControlFlagBits;

Vulkan 1.0.36 - A Specification 359 / 683

If the queryType of the pool is VK_QUERY_TYPE_OCCLUSION and flags contains VK_QUERY_CONTROL_
PRECISE_BIT, an implementation must return a result that matches the actual number of samples passed. This is
described in more detail in Occlusion Queries.

After beginning a query, that query is considered active within the command buffer it was called in until that same query
is ended. Queries active in a primary command buffer when secondary command buffers are executed are considered
active for those secondary command buffers.

Valid Usage

• The query identified by queryPool and query must currently not be active

• The query identified by queryPool and query must be unavailable

• If the precise occlusion queries feature is not enabled, or the queryType used to create queryPool was not VK_
QUERY_TYPE_OCCLUSION, flags must not contain VK_QUERY_CONTROL_PRECISE_BIT

• queryPool must have been created with a queryType that differs from that of any other queries that have been
made active, and are currently still active within commandBuffer

• query must be less than the number of queries in queryPool

• If the queryType used to create queryPool was VK_QUERY_TYPE_OCCLUSION, the VkCommandPool that
commandBuffer was allocated from must support graphics operations

• If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any of
the pipelineStatistics indicate graphics operations, the VkCommandPool that commandBuffer was
allocated from must support graphics operations

• If the queryType used to create queryPool was VK_QUERY_TYPE_PIPELINE_STATISTICS and any of
the pipelineStatistics indicate compute operations, the VkCommandPool that commandBuffer was
allocated from must support compute operations

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• flags must be a valid combination of VkQueryControlFlagBits values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

To end a query after the set of desired draw or dispatch commands is executed, call:

void vkCmdEndQuery(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool that is managing the results of the query.

• query is the query index within the query pool where the result is stored.

As queries operate asynchronously, ending a query does not immediately set the query’s status to available. A query is
considered finished when the final results of the query are ready to be retrieved by vkGetQueryPoolResults and
vkCmdCopyQueryPoolResults, and this is when the query’s status is set to available.

Once a query is ended the query must finish in finite time, unless the state of the query is changed using other commands,
e.g. by issuing a reset of the query.

Valid Usage

• The query identified by queryPool and query must currently be active

• query must be less than the number of queries in queryPool

Vulkan 1.0.36 - A Specification 361 / 683

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

An application can retrieve results either by requesting they be written into application-provided memory, or by
requesting they be copied into a VkBuffer. In either case, the layout in memory is defined as follows:

• The first query’s result is written starting at the first byte requested by the command, and each subsequent query’s
result begins stride bytes later.

• Each query’s result is a tightly packed array of unsigned integers, either 32- or 64-bits as requested by the command,
storing the numerical results and, if requested, the availability status.

• If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is used, the final element of each query’s result is an integer
indicating whether the query’s result is available, with any non-zero value indicating that it is available.

• Occlusion queries write one integer value - the number of samples passed. Pipeline statistics queries write one integer
value for each bit that is enabled in the pipelineStatistics when the pool is created, and the statistics values are
written in bit order starting from the least significant bit. Timestamps write one integer value.

• If more than one query is retrieved and stride is not at least as large as the size of the array of integers corresponding
to a single query, the values written to memory are undefined.

To retrieve status and results for a set of queries, call:

VkResult vkGetQueryPoolResults(
VkDevice device,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
size_t dataSize,
void* pData,
VkDeviceSize stride,
VkQueryResultFlags flags);

• device is the logical device that owns the query pool.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries. firstQuery and queryCount together define a range of queries.

• dataSize is the size in bytes of the buffer pointed to by pData.

• pData is a pointer to a user-allocated buffer where the results will be written

• stride is the stride in bytes between results for individual queries within pData.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned. Bits which can
be set include:

typedef enum VkQueryResultFlagBits {
VK_QUERY_RESULT_64_BIT = 0x00000001,
VK_QUERY_RESULT_WAIT_BIT = 0x00000002,
VK_QUERY_RESULT_WITH_AVAILABILITY_BIT = 0x00000004,
VK_QUERY_RESULT_PARTIAL_BIT = 0x00000008,

} VkQueryResultFlagBits;

– VK_QUERY_RESULT_64_BIT indicates the results will be written as an array of 64-bit unsigned integer values. If
this bit is not set, the results will be written as an array of 32-bit unsigned integer values.

– VK_QUERY_RESULT_WAIT_BIT indicates that Vulkan will wait for each query’s status to become available
before retrieving its results.

– VK_QUERY_RESULT_WITH_AVAILABILITY_BIT indicates that the availability status accompanies the results.

– VK_QUERY_RESULT_PARTIAL_BIT indicates that returning partial results is acceptable.

If no bits are set in flags, and all requested queries are in the available state, results are written as an array of 32-bit
unsigned integer values. The behavior when not all queries are available, is described below.

If VK_QUERY_RESULT_64_BIT is not set and the result overflows a 32-bit value, the value may either wrap or
saturate. Similarly, if VK_QUERY_RESULT_64_BIT is set and the result overflows a 64-bit value, the value may either
wrap or saturate.

Vulkan 1.0.36 - A Specification 363 / 683

If VK_QUERY_RESULT_WAIT_BIT is set, Vulkan will wait for each query to be in the available state before retrieving
the numerical results for that query. In this case, vkGetQueryPoolResults is guaranteed to succeed and return VK_
SUCCESS if the queries become available in a finite time (i.e. if they have been issued and not reset). If queries will
never finish (e.g. due to being reset but not issued), then vkGetQueryPoolResults may not return in finite time.

If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are both not set then no result values
are written to pData for queries that are in the unavailable state at the time of the call, and
vkGetQueryPoolResults returns VK_NOT_READY. However, availability state is still written to pData for those
queries if VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set.

Note
Applications must take care to ensure that use of the VK_QUERY_RESULT_WAIT_BIT bit has the desired
effect.
For example, if a query has been used previously and a command buffer records the commands vkCmdRes
etQueryPool, vkCmdBeginQuery, and vkCmdEndQuery for that query, then the query will remain in
the available state until the vkCmdResetQueryPool command executes on a queue. Applications can use
fences or events to ensure that a query has already been reset before checking for its results or availability
status. Otherwise, a stale value could be returned from a previous use of the query.
The above also applies when VK_QUERY_RESULT_WAIT_BIT is used in combination with VK_QUERY_
RESULT_WITH_AVAILABILITY_BIT. In this case, the returned availability status may reflect the result of
a previous use of the query unless the vkCmdResetQueryPool command has been executed since the last
use of the query.

Note
Applications can double-buffer query pool usage, with a pool per frame, and reset queries at the end of the frame
in which they are read.

If VK_QUERY_RESULT_PARTIAL_BIT is set, VK_QUERY_RESULT_WAIT_BIT is not set, and the query’s status is
unavailable, an intermediate result value between zero and the final result value is written to pData for that query.

VK_QUERY_RESULT_PARTIAL_BIT must not be used if the pool’s queryType is VK_QUERY_TYPE_TIMESTAMP.

If VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set, the final integer value written for each query is non-zero
if the query’s status was available or zero if the status was unavailable. When VK_QUERY_RESULT_WITH_
AVAILABILITY_BIT is used, implementations must guarantee that if they return a non-zero availability value then the
numerical results must be valid, assuming the results are not reset by a subsequent command.

Note
Satisfying this guarantee may require careful ordering by the application, e.g. to read the availability status
before reading the results.

Valid Usage

• firstQuery must be less than the number of queries in queryPool

• If VK_QUERY_RESULT_64_BIT is not set in flags then pData and stride must be multiples of 4

• If VK_QUERY_RESULT_64_BIT is set in flags then pData and stride must be multiples of 8

• The sum of firstQuery and queryCount must be less than or equal to the number of queries in queryPool

• dataSize must be large enough to contain the result of each query, as described here

• If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not contain
VK_QUERY_RESULT_PARTIAL_BIT

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• queryPool must be a valid VkQueryPool handle

• pData must be a pointer to an array of dataSize bytes

• flags must be a valid combination of VkQueryResultFlagBits values

• dataSize must be greater than 0

• queryPool must have been created, allocated, or retrieved from device

Return Codes

Success

• VK_SUCCESS

• VK_NOT_READY

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

To copy query statuses and numerical results directly to buffer memory, call:

Vulkan 1.0.36 - A Specification 365 / 683

void vkCmdCopyQueryPoolResults(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize stride,
VkQueryResultFlags flags);

• commandBuffer is the command buffer into which this command will be recorded.

• queryPool is the query pool managing the queries containing the desired results.

• firstQuery is the initial query index.

• queryCount is the number of queries. firstQuery and queryCount together define a range of queries.

• dstBuffer is a VkBuffer object that will receive the results of the copy command.

• dstOffset is an offset into dstBuffer.

• stride is the stride in bytes between results for individual queries within dstBuffer. The required size of the
backing memory for dstBuffer is determined as described above for vkGetQueryPoolResults.

• flags is a bitmask of VkQueryResultFlagBits specifying how and when results are returned.

vkCmdCopyQueryPoolResults is guaranteed to see the effect of previous uses of vkCmdResetQueryPool in
the same queue, without any additional synchronization. Thus, the results will always reflect the most recent use of the
query.

flags has the same possible values described above for the flags parameter of vkGetQueryPoolResults, but the
different style of execution causes some subtle behavioral differences. Because vkCmdCopyQueryPoolResults
executes in order with respect to other query commands, there is less ambiguity about which use of a query is being
requested.

If no bits are set in flags, results for all requested queries in the available state are written as 32-bit unsigned integer
values, and nothing is written for queries in the unavailable state.

If VK_QUERY_RESULT_64_BIT is set, the results are written as an array of 64-bit unsigned integer values as
described for vkGetQueryPoolResults.

If VK_QUERY_RESULT_WAIT_BIT is set, the implementation will wait for each query’s status to be in the available
state before retrieving the numerical results for that query. This is guaranteed to reflect the most recent use of the query
on the same queue, assuming that the query is not being simultaneously used by other queues. If the query does not
become available in a finite amount of time (e.g. due to not issuing a query since the last reset), a VK_ERROR_
DEVICE_LOST error may occur.

Similarly, if VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set and VK_QUERY_RESULT_WAIT_BIT is not
set, the availability is guaranteed to reflect the most recent use of the query on the same queue, assuming that the query is
not being simultaneously used by other queues. As with vkGetQueryPoolResults, implementations must
guarantee that if they return a non-zero availability value, then the numerical results are valid.

If VK_QUERY_RESULT_PARTIAL_BIT is set, VK_QUERY_RESULT_WAIT_BIT is not set, and the query’s status is
unavailable, an intermediate result value between zero and the final result value is written for that query.

VK_QUERY_RESULT_PARTIAL_BIT must not be used if the pool’s queryType is VK_QUERY_TYPE_TIMESTAMP.

vkCmdCopyQueryPoolResults is considered to be a transfer operation, and its writes to buffer memory must be
synchronized using VK_PIPELINE_STAGE_TRANSFER_BIT and VK_ACCESS_TRANSFER_WRITE_BIT before
using the results.

Valid Usage

• dstOffset must be less than the size of dstBuffer

• firstQuery must be less than the number of queries in queryPool

• The sum of firstQuery and queryCount must be less than or equal to the number of queries in queryPool

• If VK_QUERY_RESULT_64_BIT is not set in flags then dstOffset and stride must be multiples of 4

• If VK_QUERY_RESULT_64_BIT is set in flags then dstOffset and stride must be multiples of 8

• dstBuffer must have enough storage, from dstOffset, to contain the result of each query, as described here

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• If the queryType used to create queryPool was VK_QUERY_TYPE_TIMESTAMP, flags must not contain
VK_QUERY_RESULT_PARTIAL_BIT

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• queryPool must be a valid VkQueryPool handle

• dstBuffer must be a valid VkBuffer handle

• flags must be a valid combination of VkQueryResultFlagBits values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• This command must only be called outside of a render pass instance

• Each of commandBuffer, dstBuffer, and queryPool must have been created, allocated, or retrieved from the
same VkDevice

Vulkan 1.0.36 - A Specification 367 / 683

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics
compute

Transfer

Rendering operations such as clears, MSAA resolves, attachment load/store operations, and blits may count towards the
results of queries. This behavior is implementation-dependent and may vary depending on the path used within an
implementation. For example, some implementations have several types of clears, some of which may include vertices
and some not.

16.3 Occlusion Queries

Occlusion queries track the number of samples that pass the per-fragment tests for a set of drawing commands. As such,
occlusion queries are only available on queue families supporting graphics operations. The application can then use these
results to inform future rendering decisions. An occlusion query is begun and ended by calling vkCmdBeginQuery
and vkCmdEndQuery, respectively. When an occlusion query begins, the count of passing samples always starts at
zero. For each drawing command, the count is incremented as described in Sample Counting. If flags does not contain
VK_QUERY_CONTROL_PRECISE_BIT an implementation may generate any non-zero result value for the query if the
count of passing samples is non-zero.

Note
Not setting VK_QUERY_CONTROL_PRECISE_BIT mode may be more efficient on some implementations,
and should be used where it is sufficient to know a boolean result on whether any samples passed the per-
fragment tests. In this case, some implementations may only return zero or one, indifferent to the actual number
of samples passing the per-fragment tests.

When an occlusion query finishes, the result for that query is marked as available. The application can then either copy
the result to a buffer (via vkCmdCopyQueryPoolResults) or request it be put into host memory (via
vkGetQueryPoolResults).

Note
If occluding geometry is not drawn first, samples can pass the depth test, but still not be visible in a final image.

16.4 Pipeline Statistics Queries

Pipeline statistics queries allow the application to sample a specified set of VkPipeline counters. These counters are
accumulated by Vulkan for a set of either draw or dispatch commands while a pipeline statistics query is active. As such,
pipeline statistics queries are available on queue families supporting either graphics or compute operations. Further, the
availability of pipeline statistics queries is indicated by the pipelineStatisticsQuery member of the
VkPhysicalDeviceFeatures object (see vkGetPhysicalDeviceFeatures and vkCreateDevice for
detecting and requesting this query type on a VkDevice).

A pipeline statistics query is begun and ended by calling vkCmdBeginQuery and vkCmdEndQuery, respectively.
When a pipeline statistics query begins, all statistics counters are set to zero. While the query is active, the pipeline type
determines which set of statistics are available, but these must be configured on the query pool when it is created. If a
statistic counter is issued on a command buffer that does not support the corresponding operation, that counter is
undefined after the query has finished. At least one statistic counter relevant to the operations supported on the recording
command buffer must be enabled.

The pipeline statistic counters are individually enabled for query pools with
VkQueryPoolCreateInfo::pipelineStatistics, and for secondary command buffers with
VkCommandBufferInheritanceInfo::pipelineStatistics.

Bits which can be set in pipelineStatistics include:

typedef enum VkQueryPipelineStatisticFlagBits {
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT = 0x00000001,
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT = 0x00000002,
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT = 0x00000004,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT = 0x00000008,
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT = 0x00000010,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT = 0x00000020,
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT = 0x00000040,
VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT = 0x00000080,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT = 0x00000100,
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT = 0 ←↩

x00000200,
VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT = 0x00000400,

} VkQueryPipelineStatisticFlagBits;

These bits have the following meanings:

• If VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT is set, queries managed by the
pool will count the number of vertices processed by the input assembly stage. Vertices corresponding to incomplete
primitives may contribute to the count.

• If VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT is set, queries managed by the
pool will count the number of primitives processed by the input assembly stage. If primitive restart is enabled,
restarting the primitive topology has no effect on the count. Incomplete primitives may be counted.

• If VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT is set, queries managed by the
pool will count the number of vertex shader invocations. This counter’s value is incremented each time a vertex shader
is invoked.

• If VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT is set, queries managed by
the pool will count the number of geometry shader invocations. This counter’s value is incremented each time a
geometry shader is invoked. In the case of instanced geometry shaders, the geometry shader invocations count is
incremented for each separate instanced invocation.

Vulkan 1.0.36 - A Specification 369 / 683

• If VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT is set, queries managed by
the pool will count the number of primitives generated by geometry shader invocations. The counter’s value is
incremented each time the geometry shader emits a primitive. Restarting primitive topology using the SPIR-V
instructions OpEndPrimitive or OpEndStreamPrimitive has no effect on the geometry shader output
primitives count.

• If VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT is set, queries managed by the pool
will count the number of primitives processed by the Primitive Clipping stage of the pipeline. The counter’s value is
incremented each time a primitive reaches the primitive clipping stage.

• If VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT is set, queries managed by the pool will
count the number of primitives output by the Primitive Clipping stage of the pipeline. The counter’s value is
incremented each time a primitive passes the primitive clipping stage. The actual number of primitives output by the
primitive clipping stage for a particular input primitive is implementation-dependent but must satisfy the following
conditions:

– If at least one vertex of the input primitive lies inside the clipping volume, the counter is incremented by one or
more.

– Otherwise, the counter is incremented by zero or more.

• If VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT is set, queries managed by
the pool will count the number of fragment shader invocations. The counter’s value is incremented each time the
fragment shader is invoked.

• If VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT is set, queries
managed by the pool will count the number of patches processed by the tessellation control shader. The counter’s value
is incremented once for each patch for which a tessellation control shader is invoked.

• If VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT is
set, queries managed by the pool will count the number of invocations of the tessellation evaluation shader. The
counter’s value is incremented each time the tessellation evaluation shader is invoked.

• If VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT is set, queries managed by
the pool will count the number of compute shader invocations. The counter’s value is incremented every time the
compute shader is invoked. Implementations may skip the execution of certain compute shader invocations or execute
additional compute shader invocations for implementation-dependent reasons as long as the results of rendering
otherwise remain unchanged.

These values are intended to measure relative statistics on one implementation. Various device architectures will count
these values differently. Any or all counters may be affected by the issues described in Query Operation.

Note
For example, tile-based rendering devices may need to replay the scene multiple times, affecting some of the
counts.

If a pipeline has rasterizerDiscardEnable enabled, implementations may discard primitives after the final vertex
processing stage. As a result, if rasterizerDiscardEnable is enabled, the clipping input and output primitives
counters may not be incremented.

When a pipeline statistics query finishes, the result for that query is marked as available. The application can copy the
result to a buffer (via vkCmdCopyQueryPoolResults), or request it be put into host memory (via
vkGetQueryPoolResults).

16.5 Timestamp Queries

Timestamps provide applications with a mechanism for timing the execution of commands. A timestamp is an integer
value generated by the VkPhysicalDevice. Unlike other queries, timestamps do not operate over a range, and so do
not use vkCmdBeginQuery or vkCmdEndQuery. The mechanism is built around a set of commands that allow the
application to tell the VkPhysicalDevice to write timestamp values to a query pool and then either read timestamp
values on the host (using vkGetQueryPoolResults) or copy timestamp values to a VkBuffer (using
vkCmdCopyQueryPoolResults). The application can then compute differences between timestamps to determine
execution time.

The number of valid bits in a timestamp value is determined by the
VkQueueFamilyProperties::timestampValidBits property of the queue on which the timestamp is written.
Timestamps are supported on any queue which reports a non-zero value for timestampValidBits via
vkGetPhysicalDeviceQueueFamilyProperties. If the timestampComputeAndGraphics limit is VK_TRUE,
timestamps are supported by every queue family that supports either graphics or compute operations (see
VkQueueFamilyProperties).

The number of nanoseconds it takes for a timestamp value to be incremented by 1 can be obtained from
VkPhysicalDeviceLimits::timestampPeriod after a call to vkGetPhysicalDeviceProperties.

To request a timestamp, call:

void vkCmdWriteTimestamp(
VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool,
uint32_t query);

• commandBuffer is the command buffer into which the command will be recorded.

• pipelineStage is one of the VkPipelineStageFlagBits, specifying a stage of the pipeline.

• queryPool is the query pool that will manage the timestamp.

• query is the query within the query pool that will contain the timestamp.

vkCmdWriteTimestamp latches the value of the timer when all previous commands have completed executing as far
as the specified pipeline stage, and writes the timestamp value to memory. When the timestamp value is written, the
availability status of the query is set to available.

Note
If an implementation is unable to detect completion and latch the timer at any specific stage of the pipeline, it
may instead do so at any logically later stage.

vkCmdCopyQueryPoolResults can then be called to copy the timestamp value from the query pool into buffer
memory, with ordering and synchronization behavior equivalent to how other queries operate. Timestamp values can also
be retrieved from the query pool using vkGetQueryPoolResults. As with other queries, the query must be reset
using vkCmdResetQueryPool before requesting the timestamp value be written to it.

While vkCmdWriteTimestamp can be called inside or outside of a render pass instance,
vkCmdCopyQueryPoolResults must only be called outside of a render pass instance.

Vulkan 1.0.36 - A Specification 371 / 683

Valid Usage

• The query identified by queryPool and query must be unavailable

• The command pool’s queue family must support a non-zero timestampValidBits

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pipelineStage must be a valid VkPipelineStageFlagBits value

• queryPool must be a valid VkQueryPool handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• Both of commandBuffer, and queryPool must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics
compute

Transfer

Vulkan 1.0.36 - A Specification 373 / 683

Chapter 17

Clear Commands

17.1 Clearing Images Outside A Render Pass Instance

Color and depth/stencil images can be cleared outside a render pass instance using vkCmdClearColorImage or
vkCmdClearDepthStencilImage, respectively. These commands are only allowed outside of a render pass
instance.

To clear one or more subranges of a color image, call:

void vkCmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imageLayout,
const VkClearColorValue* pColor,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and must be VK_IMAGE_
LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pColor is a pointer to a VkClearColorValue structure that contains the values the image subresource ranges will
be cleared to (see Section 17.3 below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges points to an array of VkImageSubresourceRange structures that describe a range of mipmap levels,
array layers, and aspects to be cleared, as described in Image Views. The aspectMask of all image subresource
ranges must only include VK_IMAGE_ASPECT_COLOR_BIT.

Each specified range in pRanges is cleared to the value specified by pColor.

Valid Usage

• image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• imageLayout must specify the layout of the image subresource ranges of image specified in pRanges at the
time this command is executed on a VkDevice

• imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_
GENERAL

• The image range of any given element of pRanges must be an image subresource range that is contained within
image

• image must not have a compressed or depth/stencil format

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• image must be a valid VkImage handle

• imageLayout must be a valid VkImageLayout value

• pColor must be a pointer to a valid VkClearColorValue union

• pRanges must be a pointer to an array of rangeCount valid VkImageSubresourceRange structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• This command must only be called outside of a render pass instance

• rangeCount must be greater than 0

• Both of commandBuffer, and image must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Vulkan 1.0.36 - A Specification 375 / 683

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics
compute

Transfer

To clear one or more subranges of a depth/stencil image, call:

void vkCmdClearDepthStencilImage(
VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imageLayout,
const VkClearDepthStencilValue* pDepthStencil,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges);

• commandBuffer is the command buffer into which the command will be recorded.

• image is the image to be cleared.

• imageLayout specifies the current layout of the image subresource ranges to be cleared, and must be VK_IMAGE_
LAYOUT_GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.

• pDepthStencil is a pointer to a VkClearDepthStencilValue structure that contains the values the depth and
stencil image subresource ranges will be cleared to (see Section 17.3 below).

• rangeCount is the number of image subresource range structures in pRanges.

• pRanges points to an array of VkImageSubresourceRange structures that describe a range of mipmap levels,
array layers, and aspects to be cleared, as described in Image Views. The aspectMask of each image subresource
range in pRanges can include VK_IMAGE_ASPECT_DEPTH_BIT if the image format has a depth component, and
VK_IMAGE_ASPECT_STENCIL_BIT if the image format has a stencil component. pDepthStencil is a pointer to
a VkClearDepthStencilValue structure that contains the values the image subresource ranges will be cleared to
(see Section 17.3 below).

Valid Usage

• image must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• imageLayout must specify the layout of the image subresource ranges of image specified in pRanges at the
time this command is executed on a VkDevice

• imageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_LAYOUT_
GENERAL

• The image range of any given element of pRanges must be an image subresource range that is contained within
image

• image must have a depth/stencil format

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• image must be a valid VkImage handle

• imageLayout must be a valid VkImageLayout value

• pDepthStencil must be a pointer to a valid VkClearDepthStencilValue structure

• pRanges must be a pointer to an array of rangeCount valid VkImageSubresourceRange structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called outside of a render pass instance

• rangeCount must be greater than 0

• Both of commandBuffer, and image must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics Transfer

Vulkan 1.0.36 - A Specification 377 / 683

Clears outside render pass instances are treated as transfer operations for the purposes of memory barriers.

17.2 Clearing Images Inside A Render Pass Instance

To clear one or more regions of color and depth/stencil attachments inside a render pass instance, call:

void vkCmdClearAttachments(
VkCommandBuffer commandBuffer,
uint32_t attachmentCount,
const VkClearAttachment* pAttachments,
uint32_t rectCount,
const VkClearRect* pRects);

• commandBuffer is the command buffer into which the command will be recorded.

• attachmentCount is the number of entries in the pAttachments array.

• pAttachments is a pointer to an array of VkClearAttachment structures defining the attachments to clear and
the clear values to use.

• rectCount is the number of entries in the pRects array.

• pRects points to an array of VkClearRect structures defining regions within each selected attachment to clear.

vkCmdClearAttachments can clear multiple regions of each attachment used in the current subpass of a render pass
instance. This command must be called only inside a render pass instance, and implicitly selects the images to clear
based on the current framebuffer attachments and the command parameters.

Valid Usage

• If the aspectMask member of any given element of pAttachments contains VK_IMAGE_ASPECT_COLOR_
BIT, the colorAttachment member of those elements must refer to a valid color attachment in the current
subpass

• The rectangular region specified by a given element of pRects must be contained within the render area of the
current render pass instance

• The layers specified by a given element of pRects must be contained within every attachment that
pAttachments refers to

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pAttachments must be a pointer to an array of attachmentCount valid VkClearAttachment structures

• pRects must be a pointer to an array of rectCount VkClearRect structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

• attachmentCount must be greater than 0

• rectCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Inside Graphics Graphics

The VkClearRect structure is defined as:

typedef struct VkClearRect {
VkRect2D rect;
uint32_t baseArrayLayer;
uint32_t layerCount;

} VkClearRect;

• rect is the two-dimensional region to be cleared.

Vulkan 1.0.36 - A Specification 379 / 683

• baseArrayLayer is the first layer to be cleared.

• layerCount is the number of layers to clear.

The layers [baseArrayLayer, baseArrayLayer + layerCount) counting from the base layer of the attachment
image view are cleared.

The VkClearAttachment structure is defined as:

typedef struct VkClearAttachment {
VkImageAspectFlags aspectMask;
uint32_t colorAttachment;
VkClearValue clearValue;

} VkClearAttachment;

• aspectMask is a mask selecting the color, depth and/or stencil aspects of the attachment to be cleared. aspectMask
can include VK_IMAGE_ASPECT_COLOR_BIT for color attachments, VK_IMAGE_ASPECT_DEPTH_BIT for
depth/stencil attachments with a depth component, and VK_IMAGE_ASPECT_STENCIL_BIT for depth/stencil
attachments with a stencil component. If the subpass’s depth/stencil attachment is VK_ATTACHMENT_UNUSED, then
the clear has no effect.

• colorAttachment is only meaningful if VK_IMAGE_ASPECT_COLOR_BIT is set in aspectMask, in which case it
is an index to the pColorAttachments array in the VkSubpassDescription structure of the current subpass
which selects the color attachment to clear. If colorAttachment is VK_ATTACHMENT_UNUSED then the clear has
no effect.

• clearValue is the color or depth/stencil value to clear the attachment to, as described in Clear Values below.

No memory barriers are needed between vkCmdClearAttachments and preceding or subsequent draw or
attachment clear commands in the same subpass.

The vkCmdClearAttachments command is not affected by the bound pipeline state.

Attachments can also be cleared at the beginning of a render pass instance by setting loadOp (or stencilLoadOp) of
VkAttachmentDescription to VK_ATTACHMENT_LOAD_OP_CLEAR, as described for
vkCreateRenderPass.

Valid Usage

• If aspectMask includes VK_IMAGE_ASPECT_COLOR_BIT, it must not include VK_IMAGE_ASPECT_
DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• aspectMask must not include VK_IMAGE_ASPECT_METADATA_BIT

• clearValue must be a valid VkClearValue union

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

17.3 Clear Values

The VkClearColorValue structure is defined as:

typedef union VkClearColorValue {
float float32[4];
int32_t int32[4];
uint32_t uint32[4];

} VkClearColorValue;

• float32 are the color clear values when the format of the image or attachment is one of the formats in the
Interpretation of Numeric Format table other than signed integer (SINT) or unsigned integer (UINT). Floating point
values are automatically converted to the format of the image, with the clear value being treated as linear if the image
is sRGB.

• int32 are the color clear values when the format of the image or attachment is signed integer (SINT). Signed integer
values are converted to the format of the image by casting to the smaller type (with negative 32-bit values mapping to
negative values in the smaller type). If the integer clear value is not representable in the target type (e.g. would
overflow in conversion to that type), the clear value is undefined.

• uint32 are the color clear values when the format of the image or attachment is unsigned integer (UINT). Unsigned
integer values are converted to the format of the image by casting to the integer type with fewer bits.

The four array elements of the clear color map to R, G, B, and A components of image formats, in order.

If the image has more than one sample, the same value is written to all samples for any pixels being cleared.

The VkClearDepthStencilValue structure is defined as:

typedef struct VkClearDepthStencilValue {
float depth;
uint32_t stencil;

} VkClearDepthStencilValue;

• depth is the clear value for the depth aspect of the depth/stencil attachment. It is a floating-point value which is
automatically converted to the attachment’s format.

• stencil is the clear value for the stencil aspect of the depth/stencil attachment. It is a 32-bit integer value which is
converted to the attachment’s format by taking the appropriate number of LSBs.

Vulkan 1.0.36 - A Specification 381 / 683

Valid Usage

• depth must be between 0.0 and 1.0, inclusive

The VkClearValue union is defined as:

typedef union VkClearValue {
VkClearColorValue color;
VkClearDepthStencilValue depthStencil;

} VkClearValue;

• color specifies the color image clear values to use when clearing a color image or attachment.

• depthStencil specifies the depth and stencil clear values to use when clearing a depth/stencil image or attachment.

This union is used where part of the API requires either color or depth/stencil clear values, depending on the attachment,
and defines the initial clear values in the VkRenderPassBeginInfo structure.

Valid Usage

• depthStencil must be a valid VkClearDepthStencilValue structure

17.4 Filling Buffers

To clear buffer data, call:

void vkCmdFillBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize size,
uint32_t data);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is the buffer to be filled.

• dstOffset is the byte offset into the buffer at which to start filling, and must be a multiple of 4.

• size is the number of bytes to fill, and must be either a multiple of 4, or VK_WHOLE_SIZE to fill the range from
offset to the end of the buffer. If VK_WHOLE_SIZE is used and the remaining size of the buffer is not a multiple of
4, then the nearest smaller multiple is used.

• data is the 4-byte word written repeatedly to the buffer to fill size bytes of data. The data word is written to memory
according to the host endianness.

vkCmdFillBuffer is treated as “transfer” operation for the purposes of synchronization barriers. The VK_BUFFER_
USAGE_TRANSFER_DST_BIT must be specified in usage of VkBufferCreateInfo in order for the buffer to be
compatible with vkCmdFillBuffer.

Valid Usage

• dstOffset must be less than the size of dstBuffer

• dstOffset must be a multiple of 4

• If size is not equal to VK_WHOLE_SIZE, size must be greater than 0

• If size is not equal to VK_WHOLE_SIZE, size must be less than or equal to the size of dstBuffer minus
dstOffset

• If size is not equal to VK_WHOLE_SIZE, size must be a multiple of 4

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• dstBuffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics, or compute operations

• This command must only be called outside of a render pass instance

• Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Vulkan 1.0.36 - A Specification 383 / 683

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics
compute

Transfer

17.5 Updating Buffers

To update buffer data inline in a command buffer, call:

void vkCmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const void* pData);

• commandBuffer is the command buffer into which the command will be recorded.

• dstBuffer is a handle to the buffer to be updated.

• dstOffset is the byte offset into the buffer to start updating, and must be a multiple of 4.

• dataSize is the number of bytes to update, and must be a multiple of 4.

• pData is a pointer to the source data for the buffer update, and must be at least dataSize bytes in size.

dataSize must be less than or equal to 65536 bytes. For larger updates, applications can use buffer to buffer copies.

The source data is copied from the user pointer to the command buffer when the command is called.

vkCmdUpdateBuffer is only allowed outside of a render pass. This command is treated as “transfer” operation, for
the purposes of synchronization barriers. The VK_BUFFER_USAGE_TRANSFER_DST_BIT must be specified in
usage of VkBufferCreateInfo in order for the buffer to be compatible with vkCmdUpdateBuffer.

Valid Usage

• dstOffset must be less than the size of dstBuffer

• dataSize must be less than or equal to the size of dstBuffer minus dstOffset

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

• dstOffset must be a multiple of 4

• dataSize must be less than or equal to 65536

• dataSize must be a multiple of 4

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• dstBuffer must be a valid VkBuffer handle

• pData must be a pointer to an array of dataSize bytes

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

• This command must only be called outside of a render pass instance

• dataSize must be greater than 0

• Both of commandBuffer, and dstBuffer must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Transfer
graphics
compute

Transfer

Vulkan 1.0.36 - A Specification 385 / 683

Note
The pData parameter was of type uint32_t*` instead of void* prior to revision 1.0.19 of the Specification
and VK_HEADER_VERSION 19 of vulkan.h. This was a historical anomaly, as the source data may be of
other types.

Vulkan 1.0.36 - A Specification 387 / 683

Chapter 18

Copy Commands

An application can copy buffer and image data using several methods depending on the type of data transfer. Data can be
copied between buffer objects with vkCmdCopyBuffer and a portion of an image can be copied to another image with
vkCmdCopyImage. Image data can also be copied to and from buffer memory using vkCmdCopyImageToBuffer
and vkCmdCopyBufferToImage. Image data can be blitted (with or without scaling and filtering) with
vkCmdBlitImage. Multisampled images can be resolved to a non-multisampled image with
vkCmdResolveImage.

18.1 Common Operation

Some rules for valid operation are common to all copy commands:

• Copy commands must be recorded outside of a render pass instance.

• For non-sparse resources, the union of the source regions in a given buffer or image must not overlap the union of the
destination regions in the same buffer or image.

• For sparse resources, the set of bytes used by all the source regions must not intersect the set of bytes used by all the
destination regions.

• Copy regions must be non-empty.

• Regions must not extend outside the bounds of the buffer or image level, except that regions of compressed images can
extend as far as the dimension of the image level rounded up to a complete compressed texel block.

• Source image subresources must be in either the VK_IMAGE_LAYOUT_GENERAL or VK_IMAGE_LAYOUT_
TRANSFER_SRC_OPTIMAL layout. Destination image subresources must be in either the VK_IMAGE_LAYOUT_
GENERAL or VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout. As a consequence, if an image subresource
is used as both source and destination of a copy, it must be in the VK_IMAGE_LAYOUT_GENERAL layout.

• Source images must have been created with the VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage bit enabled and
destination images must have been created with the VK_IMAGE_USAGE_TRANSFER_DST_BIT usage bit enabled.

• Source buffers must have been created with the VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage bit enabled and
destination buffers must have been created with the VK_BUFFER_USAGE_TRANSFER_DST_BIT usage bit enabled.

All copy commands are treated as “transfer” operations for the purposes of synchronization barriers.

18.2 Copying Data Between Buffers

To copy data between buffer objects, call:

void vkCmdCopyBuffer(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferCopy structures specifying the regions to copy.

Each region in pRegions is copied from the source buffer to the same region of the destination buffer. srcBuffer and
dstBuffer can be the same buffer or alias the same memory, but the result is undefined if the copy regions overlap in
memory.

Valid Usage

• The size member of a given element of pRegions must be greater than 0

• The srcOffset member of a given element of pRegions must be less than the size of srcBuffer

• The dstOffset member of a given element of pRegions must be less than the size of dstBuffer

• The size member of a given element of pRegions must be less than or equal to the size of srcBuffer minus
srcOffset

• The size member of a given element of pRegions must be less than or equal to the size of dstBuffer minus
dstOffset

• The union of the source regions, and the union of the destination regions, specified by the elements of pRegions,
must not overlap in memory

• srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

Vulkan 1.0.36 - A Specification 389 / 683

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcBuffer must be a valid VkBuffer handle

• dstBuffer must be a valid VkBuffer handle

• pRegions must be a pointer to an array of regionCount VkBufferCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstBuffer, and srcBuffer must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Transfer
graphics
compute

Transfer

The VkBufferCopy structure is defined as:

typedef struct VkBufferCopy {
VkDeviceSize srcOffset;
VkDeviceSize dstOffset;
VkDeviceSize size;

} VkBufferCopy;

• srcOffset is the starting offset in bytes from the start of srcBuffer.

• dstOffset is the starting offset in bytes from the start of dstBuffer.

• size is the number of bytes to copy.

18.3 Copying Data Between Images

vkCmdCopyImage performs image copies in a similar manner to a host memcpy. It does not perform general-purpose
conversions such as scaling, resizing, blending, color-space conversion, or format conversions. Rather, it simply copies
raw image data. vkCmdCopyImage can copy between images with different formats, provided the formats are
compatible as defined below.

To copy data between image objects, call:

void vkCmdCopyImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the current layout of the source image subresource.

• dstImage is the destination image.

• dstImageLayout is the current layout of the destination image subresource.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the source image to the same region of the destination image. srcImage and
dstImage can be the same image or alias the same memory.

Copies are done layer by layer starting with baseArrayLayer member of srcSubresource for the source and
dstSubresource for the destination. layerCount layers are copied to the destination image.

The formats of srcImage and dstImage must be compatible. Formats are considered compatible if their element size is
the same between both formats. For example, VK_FORMAT_R8G8B8A8_UNORM is compatible with VK_FORMAT_
R32_UINT because both texels are 4 bytes in size. Depth/stencil formats must match exactly.

vkCmdCopyImage allows copying between size-compatible compressed and uncompressed internal formats. Formats
are size-compatible if the element size of the uncompressed format is equal to the element size (compressed texel block
size) of the compressed format. Such a copy does not perform on-the-fly compression or decompression. When copying
from an uncompressed format to a compressed format, each texel of uncompressed data of the source image is copied as
a raw value to the corresponding compressed texel block of the destination image. When copying from a compressed
format to an uncompressed format, each compressed texel block of the source image is copied as a raw value to the
corresponding texel of uncompressed data in the destination image. Thus, for example, it is legal to copy between a

Vulkan 1.0.36 - A Specification 391 / 683

128-bit uncompressed format and a compressed format which has a 128-bit sized compressed texel block representing
4x4 texels (using 8 bits per texel), or between a 64-bit uncompressed format and a compressed format which has a 64-bit
sized compressed texel block representing 4x4 texels (using 4 bits per texel).

When copying between compressed and uncompressed formats the extent members represent the texel dimensions of
the source image and not the destination. When copying from a compressed image to an uncompressed image the image
texel dimensions written to the uncompressed image will be source extent divided by the compressed texel block
dimensions. When copying from an uncompressed image to a compressed image the image texel dimensions written to
the compressed image will be the source extent multiplied by the compressed texel block dimensions. In both cases the
number of bytes read and the number of bytes written will be identical.

Copying to or from block-compressed images is typically done in multiples of the compressed texel block size. For this
reason the extent must be a multiple of the compressed texel block dimension. There is one exception to this rule
which is required to handle compressed images created with dimensions that are not a multiple of the compressed texel
block dimensions: if the srcImage is compressed, then:

• If extent.width is not a multiple of the compressed texel block width, then (extent.width + srcOffset.x) must
equal the image subresource width.

• If extent.height is not a multiple of the compressed texel block height, then (extent.height + srcOffset.y)
must equal the image subresource height.

• If extent.depth is not a multiple of the compressed texel block depth, then (extent.depth + srcOffset.z) must
equal the image subresource depth.

Similarly, if the dstImage is compressed, then:

• If extent.width is not a multiple of the compressed texel block width, then (extent.width + dstOffset.x) must
equal the image subresource width.

• If extent.height is not a multiple of the compressed texel block height, then (extent.height + dstOffset.y)
must equal the image subresource height.

• If extent.depth is not a multiple of the compressed texel block depth, then (extent.depth + dstOffset.z) must
equal the image subresource depth.

This allows the last compressed texel block of the image in each non-multiple dimension to be included as a source or
destination of the copy.

vkCmdCopyImage can be used to copy image data between multisample images, but both images must have the same
number of samples.

Valid Usage

• The source region specified by a given element of pRegions must be a region that is contained within srcImage

• The destination region specified by a given element of pRegions must be a region that is contained within
dstImage

• The union of all source regions, and the union of all destination regions, specified by the elements of pRegions,
must not overlap in memory

• srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• srcImageLayout must specify the layout of the image subresources of srcImage specified in pRegions at the
time this command is executed on a VkDevice

• srcImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• dstImageLayout must specify the layout of the image subresources of dstImage specified in pRegions at the
time this command is executed on a VkDevice

• dstImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• The VkFormat of each of srcImage and dstImage must be compatible, as defined below

• The sample count of srcImage and dstImage must match

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkImageCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

Vulkan 1.0.36 - A Specification 393 / 683

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Transfer
graphics
compute

Transfer

The VkImageCopy structure is defined as:

typedef struct VkImageCopy {
VkImageSubresourceLayers srcSubresource;
VkOffset3D srcOffset;
VkImageSubresourceLayers dstSubresource;
VkOffset3D dstOffset;
VkExtent3D extent;

} VkImageCopy;

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the image
subresources of the images used for the source and destination image data, respectively.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source and
destination image data.

• extent is the size in texels of the source image to copy in width, height and depth.

Valid Usage

• The aspectMask member of srcSubresource and dstSubresource must match

• The layerCount member of srcSubresource and dstSubresource must match

• If either of the calling command’s srcImage or dstImage parameters are of VkImageType VK_IMAGE_
TYPE_3D, the baseArrayLayer and layerCount members of both srcSubresource and dstSubresource

must be 0 and 1, respectively

• The aspectMask member of srcSubresource must specify aspects present in the calling command’s
srcImage

• The aspectMask member of dstSubresource must specify aspects present in the calling command’s
dstImage

• srcOffset.x and (extent.width + srcOffset.x) must both be greater than or equal to 0 and less than or
equal to the source image subresource width

• srcOffset.y and (extent.height + srcOffset.y) must both be greater than or equal to 0 and less than or
equal to the source image subresource height

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D, then srcOffset.y must be 0 and
extent.height must be 1.

• srcOffset.z and (extent.depth + srcOffset.z) must both be greater than or equal to 0 and less than or
equal to the source image subresource depth

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
srcOffset.z must be 0 and extent.depth must be 1.

• dstOffset.x and (extent.width + dstOffset.x) must both be greater than or equal to 0 and less than or
equal to the destination image subresource width

• dstOffset.y and (extent.height + dstOffset.y) must both be greater than or equal to 0 and less than or
equal to the destination image subresource height

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D, then dstOffset.y must be 0 and
extent.height must be 1.

• dstOffset.z and (extent.depth + dstOffset.z) must both be greater than or equal to 0 and less than or
equal to the destination image subresource depth

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
dstOffset.z must be 0 and extent.depth must be 1.

• If the calling command’s srcImage is a compressed format image:

– all members of srcOffset must be a multiple of the corresponding dimensions of the compressed texel block

– extent.width must be a multiple of the compressed texel block width or (extent.width + srcOffset.x)
must equal the source image subresource width

– extent.height must be a multiple of the compressed texel block height or (extent.height + srcOffset.

y) must equal the source image subresource height

– extent.depth must be a multiple of the compressed texel block depth or (extent.depth + srcOffset.z)
must equal the source image subresource depth

• If the calling command’s dstImage is a compressed format image:

– all members of dstOffset must be a multiple of the corresponding dimensions of the compressed texel block

– extent.width must be a multiple of the compressed texel block width or (extent.width + dstOffset.x)
must equal the destination image subresource width

– extent.height must be a multiple of the compressed texel block height or (extent.height + dstOffset.

y) must equal the destination image subresource height

Vulkan 1.0.36 - A Specification 395 / 683

– extent.depth must be a multiple of the compressed texel block depth or (extent.depth + dstOffset.z)
must equal the destination image subresource depth

• srcOffset, dstOffset, and extent must respect the image transfer granularity requirements of the queue
family that it will be submitted against, as described in Physical Device Enumeration

Valid Usage (Implicit)

• srcSubresource must be a valid VkImageSubresourceLayers structure

• dstSubresource must be a valid VkImageSubresourceLayers structure

The VkImageSubresourceLayers structure is defined as:

typedef struct VkImageSubresourceLayers {
VkImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t baseArrayLayer;
uint32_t layerCount;

} VkImageSubresourceLayers;

• aspectMask is a combination of VkImageAspectFlagBits, selecting the color, depth and/or stencil aspects to
be copied.

• mipLevel is the mipmap level to copy from.

• baseArrayLayer and layerCount are the starting layer and number of layers to copy.

Valid Usage

• If aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of VK_IMAGE_
ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT

• aspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT

• mipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created

• (baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in
VkImageCreateInfo when the image was created

Valid Usage (Implicit)

• aspectMask must be a valid combination of VkImageAspectFlagBits values

• aspectMask must not be 0

18.4 Copying Data Between Buffers and Images

To copy data from a buffer object to an image object, call:

void vkCmdCopyBufferToImage(
VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcBuffer is the source buffer.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the copy.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the specified region of the source buffer to the specified region of the
destination image.

Valid Usage

• The buffer region specified by a given element of pRegions must be a region that is contained within srcBuffer

• The image region specified by a given element of pRegions must be a region that is contained within dstImage

• The union of all source regions, and the union of all destination regions, specified by the elements of pRegions,
must not overlap in memory

• srcBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_SRC_BIT usage flag

Vulkan 1.0.36 - A Specification 397 / 683

• dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• dstImageLayout must specify the layout of the image subresources of dstImage specified in pRegions at the
time this command is executed on a VkDevice

• dstImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcBuffer must be a valid VkBuffer handle

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkBufferImageCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcBuffer must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Transfer
graphics
compute

Transfer

To copy data from an image object to a buffer object, call:

void vkCmdCopyImageToBuffer(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkBuffer dstBuffer,
uint32_t regionCount,
const VkBufferImageCopy* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the copy.

• dstBuffer is the destination buffer.

• regionCount is the number of regions to copy.

• pRegions is a pointer to an array of VkBufferImageCopy structures specifying the regions to copy.

Each region in pRegions is copied from the specified region of the source image to the specified region of the
destination buffer.

Valid Usage

• The image region specified by a given element of pRegions must be a region that is contained within srcImage

• The buffer region specified by a given element of pRegions must be a region that is contained within dstBuffer

• The union of all source regions, and the union of all destination regions, specified by the elements of pRegions,
must not overlap in memory

• srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• srcImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• srcImageLayout must specify the layout of the image subresources of srcImage specified in pRegions at the
time this command is executed on a VkDevice

Vulkan 1.0.36 - A Specification 399 / 683

• srcImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• dstBuffer must have been created with VK_BUFFER_USAGE_TRANSFER_DST_BIT usage flag

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstBuffer must be a valid VkBuffer handle

• pRegions must be a pointer to an array of regionCount valid VkBufferImageCopy structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support transfer, graphics, or compute
operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstBuffer, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Transfer
graphics
compute

Transfer

For both vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer, each element of pRegions is a
structure defined as:

typedef struct VkBufferImageCopy {
VkDeviceSize bufferOffset;
uint32_t bufferRowLength;
uint32_t bufferImageHeight;
VkImageSubresourceLayers imageSubresource;
VkOffset3D imageOffset;
VkExtent3D imageExtent;

} VkBufferImageCopy;

• bufferOffset is the offset in bytes from the start of the buffer object where the image data is copied from or to.

• bufferRowLength and bufferImageHeight specify the data in buffer memory as a subregion of a larger two- or
three-dimensional image, and control the addressing calculations of data in buffer memory. If either of these values is
zero, that aspect of the buffer memory is considered to be tightly packed according to the imageExtent.

• imageSubresource is a VkImageSubresourceLayers used to specify the specific image subresources of the
image used for the source or destination image data.

• imageOffset selects the initial x, y, z offsets in texels of the sub-region of the source or destination image data.

• imageExtent is the size in texels of the image to copy in width, height and depth.

When copying to or from a depth or stencil aspect, the data in buffer memory uses a layout that is a (mostly) tightly
packed representation of the depth or stencil data. Specifically:

• data copied to or from the stencil aspect of any depth/stencil format is tightly packed with one VK_FORMAT_S8_
UINT value per texel.

• data copied to or from the depth aspect of a VK_FORMAT_D16_UNORM or VK_FORMAT_D16_UNORM_S8_UINT
format is tightly packed with one VK_FORMAT_D16_UNORM value per texel.

• data copied to or from the depth aspect of a VK_FORMAT_D32_SFLOAT or VK_FORMAT_D32_SFLOAT_S8_
UINT format is tightly packed with one VK_FORMAT_D32_SFLOAT value per texel.

• data copied to or from the depth aspect of a VK_FORMAT_X8_D24_UNORM_PACK32 or VK_FORMAT_D24_
UNORM_S8_UINT format is packed with one 32-bit word per texel with the D24 value in the LSBs of the word, and
undefined values in the eight MSBs.

Note
To copy both the depth and stencil aspects of a depth/stencil format, two entries in pRegions can be used,
where one specifies the depth aspect in imageSubresource, and the other specifies the stencil aspect.

Vulkan 1.0.36 - A Specification 401 / 683

Because depth or stencil aspect buffer to image copies may require format conversions on some implementations, they
are not supported on queues that do not support graphics. When copying to a depth aspect, the data in buffer memory
must be in the the range [0,1] or undefined results occur.

Copies are done layer by layer starting with image layer baseArrayLayer member of imageSubresource.
layerCount layers are copied from the source image or to the destination image.

Valid Usage

• bufferOffset must be a multiple of the calling command’s VkImage parameter’s format’s element size

• bufferOffset must be a multiple of 4

• bufferRowLength must be 0, or greater than or equal to the width member of imageExtent

• bufferImageHeight must be 0, or greater than or equal to the height member of imageExtent

• imageOffset.x and (imageExtent.width + imageOffset.x) must both be greater than or equal to 0 and
less than or equal to the image subresource width

• imageOffset.y and (imageExtent.height + imageOffset.y) must both be greater than or equal to 0 and less
than or equal to the image subresource height

• If the calling command’s srcImage (vkCmdCopyImageToBuffer) or dstImage
(vkCmdCopyBufferToImage) is of type VK_IMAGE_TYPE_1D, then imageOffset.y must be 0 and
imageExtent.height must be 1.

• imageOffset.z and (imageExtent.depth + imageOffset.z) must both be greater than or equal to 0 and less
than or equal to the image subresource depth

• If the calling command’s srcImage (vkCmdCopyImageToBuffer) or dstImage
(vkCmdCopyBufferToImage) is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
imageOffset.z must be 0 and imageExtent.depth must be 1.

• If the calling command’s VkImage parameter is a compressed format image:

– bufferRowLength must be a multiple of the compressed texel block width

– bufferImageHeight must be a multiple of the compressed texel block height

– all members of imageOffset must be a multiple of the corresponding dimensions of the compressed texel
block

– bufferOffset must be a multiple of the compressed texel block size in bytes

– imageExtent.width must be a multiple of the compressed texel block width or (imageExtent.width +
imageOffset.x) must equal the image subresource width

– imageExtent.height must be a multiple of the compressed texel block height or (imageExtent.height +
imageOffset.y) must equal the image subresource height

– imageExtent.depth must be a multiple of the compressed texel block depth or (imageExtent.depth +
imageOffset.z) must equal the image subresource depth

• bufferOffset, bufferRowLength, bufferImageHeight and all members of imageOffset and
imageExtent must respect the image transfer granularity requirements of the queue family that it will be
submitted against, as described in Physical Device Enumeration

• The aspectMask member of imageSubresource must specify aspects present in the calling command’s
VkImage parameter

• The aspectMask member of imageSubresource must only have a single bit set

• If the calling command’s VkImage parameter is of VkImageType VK_IMAGE_TYPE_3D, the
baseArrayLayer and layerCount members of imageSubresource must be 0 and 1, respectively

• When copying to the depth aspect of an image subresource, the data in the source buffer must be in the range [0,1]

Valid Usage (Implicit)

• imageSubresource must be a valid VkImageSubresourceLayers structure

Pseudocode for image/buffer addressing is:

rowLength = region->bufferRowLength;
if (rowLength == 0)

rowLength = region->imageExtent.width;

imageHeight = region->bufferImageHeight;
if (imageHeight == 0)

imageHeight = region->imageExtent.height;

elementSize = <element size of the format of the src/dstImage>;

address of (x,y,z) = region->bufferOffset + (((z * imageHeight) + y) * rowLength + x) ←↩
* elementSize;

where x,y,z range from (0,0,0) to region->imageExtent.{width,height,depth}.

Note that imageOffset does not affect addressing calculations for buffer memory. Instead, bufferOffset can be used
to select the starting address in buffer memory.

For block-compression formats, all parameters are still specified in texels rather than compressed texel blocks, but the
addressing math operates on whole compressed texel blocks. Pseudocode for compressed copy addressing is:

rowLength = region->bufferRowLength;
if (rowLength == 0)

rowLength = region->imageExtent.width;

imageHeight = region->bufferImageHeight;
if (imageHeight == 0)

imageHeight = region->imageExtent.height;

compressedTexelBlockSizeInBytes = <compressed texel block size taken from the src/ ←↩
dstImage>;

rowLength /= compressedTexelBlockWidth;

Vulkan 1.0.36 - A Specification 403 / 683

imageHeight /= compressedTexelBlockHeight;

address of (x,y,z) = region->bufferOffset + (((z * imageHeight) + y) * rowLength + x) ←↩
* compressedTexelBlockSizeInBytes;

where x,y,z range from (0,0,0) to region->imageExtent.{width/compressedTexelBlockWidth ←↩
,height/compressedTexelBlockHeight,depth/compressedTexelBlockDepth}.

Copying to or from block-compressed images is typically done in multiples of the compressed texel block size. For this
reason the imageExtent must be a multiple of the compressed texel block dimension. There is one exception to this
rule which is required to handle compressed images created with dimensions that are not a multiple of the compressed
texel block dimensions:

• If imageExtent.width is not a multiple of the compressed texel block width, then (imageExtent.width +
imageOffset.x) must equal the image subresource width.

• If imageExtent.height is not a multiple of the compressed texel block height, then (imageExtent.height +
imageOffset.y) must equal the image subresource height.

• If imageExtent.depth is not a multiple of the compressed texel block depth, then (imageExtent.depth +
imageOffset.z) must equal the image subresource depth.

This allows the last compressed texel block of the image in each non-multiple dimension to be included as a source or
destination of the copy.

18.5 Image Copies with Scaling

To copy regions of a source image into a destination image, potentially performing format conversion, arbitrary scaling,
and filtering, call:

void vkCmdBlitImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageBlit* pRegions,
VkFilter filter);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the blit.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the blit.

• regionCount is the number of regions to blit.

• pRegions is a pointer to an array of VkImageBlit structures specifying the regions to blit.

• filter is a VkFilter specifying the filter to apply if the blits require scaling.

vkCmdBlitImage must not be used for multisampled source or destination images. Use vkCmdResolveImage for
this purpose.

As the sizes of the source and destination extents can differ in any dimension, texels in the source extent are scaled and
filtered to the destination extent. Scaling occurs via the following operations:

• For each destination texel, the integer coordinate of that texel is converted to an unnormalized texture coordinate, using
the effective inverse of the equations described in unnormalized to integer conversion:

ubase = i + ½

vbase = j + ½

wbase = k + ½

• These base coordinates are then offset by the first destination offset:

uoffset = ubase - xdst0

voffset = vbase - ydst0

woffset = wbase - zdst0

aoffset = a - baseArrayCountdst

• The scale is determined from the source and destination regions, and applied to the offset coordinates:

scale_u = (xsrc1 - xsrc0) / (xdst1 - xdst0)

scale_v = (ysrc1 - ysrc0) / (ydst1 - ydst0)

scale_w = (zsrc1 - zsrc0) / (zdst1 - zdst0)

uscaled = uoffset * scaleu

vscaled = voffset * scalev

wscaled = woffset * scalew

• Finally the source offset is added to the scaled coordinates, to determine the final unnormalized coordinates used to
sample from srcImage:

u = uscaled + xsrc0

v = vscaled + ysrc0

Vulkan 1.0.36 - A Specification 405 / 683

w = wscaled + zsrc0

q = mipLevel

a = aoffset + baseArrayCountsrc

These coordinates are used to sample from the source image, as described in Image Operations chapter, with the filter
mode equal to that of filter, a mipmap mode of VK_SAMPLER_MIPMAP_MODE_NEAREST and an address mode of
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE. Implementations must clamp at the edge of the source image,
and may additionally clamp to the edge of the source region.

Note
Due to allowable rounding errors in the generation of the source texture coordinates, it is not always possible to
guarantee exactly which source texels will be sampled for a given blit. As rounding errors are implementation
dependent, the exact results of a blitting operation are also implementation dependent.

Blits are done layer by layer starting with the baseArrayLayer member of srcSubresource for the source and
dstSubresource for the destination. layerCount layers are blitted to the destination image.

3D textures are blitted slice by slice. Slices in the source region bounded by srcOffsets[0].z and srcOffsets[1].z
are copied to slices in the destination region bounded by dstOffsets[0].z and dstOffsets[1].z. For each destination
slice, a source z coordinate is linearly interpolated between srcOffsets[0].z and srcOffsets[1].z. If the filter
parameter is VK_FILTER_LINEAR then the value sampled from the source image is taken by doing linear filtering
using the interpolated z coordinate. If filter parameter is VK_FILTER_NEAREST then value sampled from the
source image is taken from the single nearest slice (with undefined rounding mode).

The following filtering and conversion rules apply:

• Integer formats can only be converted to other integer formats with the same signedness.

• No format conversion is supported between depth/stencil images. The formats must match.

• Format conversions on unorm, snorm, unscaled and packed float formats of the copied aspect of the image are
performed by first converting the pixels to float values.

• For sRGB source formats, nonlinear RGB values are converted to linear representation prior to filtering.

• After filtering, the float values are first clamped and then cast to the destination image format. In case of sRGB
destination format, linear RGB values are converted to nonlinear representation before writing the pixel to the image.

Signed and unsigned integers are converted by first clamping to the representable range of the destination format, then
casting the value.

Valid Usage

• The source region specified by a given element of pRegions must be a region that is contained within srcImage

• The destination region specified by a given element of pRegions must be a region that is contained within
dstImage

• The union of all destination regions, specified by the elements of pRegions, must not overlap in memory with
any texel that may be sampled during the blit operation

• srcImage must use a format that supports VK_FORMAT_FEATURE_BLIT_SRC_BIT, which is indicated by
VkFormatProperties::linearTilingFeatures (for linear tiled images) or
VkFormatProperties::optimalTilingFeatures (for optimally tiled images) - as returned by
vkGetPhysicalDeviceFormatProperties

• srcImage must have been created with VK_IMAGE_USAGE_TRANSFER_SRC_BIT usage flag

• srcImageLayout must specify the layout of the image subresources of srcImage specified in pRegions at the
time this command is executed on a VkDevice

• srcImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• dstImage must use a format that supports VK_FORMAT_FEATURE_BLIT_DST_BIT, which is indicated by
VkFormatProperties::linearTilingFeatures (for linear tiled images) or
VkFormatProperties::optimalTilingFeatures (for optimally tiled images) - as returned by
vkGetPhysicalDeviceFormatProperties

• dstImage must have been created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage flag

• dstImageLayout must specify the layout of the image subresources of dstImage specified in pRegions at the
time this command is executed on a VkDevice

• dstImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• The sample count of srcImage and dstImage must both be equal to VK_SAMPLE_COUNT_1_BIT

• If either of srcImage or dstImage was created with a signed integer VkFormat, the other must also have been
created with a signed integer VkFormat

• If either of srcImage or dstImage was created with an unsigned integer VkFormat, the other must also have
been created with an unsigned integer VkFormat

• If either of srcImage or dstImage was created with a depth/stencil format, the other must have exactly the same
format

• If srcImage was created with a depth/stencil format, filter must be VK_FILTER_NEAREST

• srcImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• dstImage must have been created with a samples value of VK_SAMPLE_COUNT_1_BIT

• If filter is VK_FILTER_LINEAR, srcImage must be of a format which supports linear filtering, as specified
by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT flag in
VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Vulkan 1.0.36 - A Specification 407 / 683

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkImageBlit structures

• filter must be a valid VkFilter value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics Transfer

The VkImageBlit structure is defined as:

typedef struct VkImageBlit {
VkImageSubresourceLayers srcSubresource;
VkOffset3D srcOffsets[2];
VkImageSubresourceLayers dstSubresource;
VkOffset3D dstOffsets[2];

} VkImageBlit;

• srcSubresource is the subresource to blit from.

• srcOffsets is an array of two VkOffset3D structures specifying the bounds of the source region within
srcSubresource.

• dstSubresource is the subresource to blit into.

• dstOffsets is an array of two VkOffset3D structures specifying the bounds of the destination region within
dstSubresource.

For each element of the pRegions array, a blit operation is performed the specified source and destination regions.

Valid Usage

• The aspectMask member of srcSubresource and dstSubresource must match

• The layerCount member of srcSubresource and dstSubresource must match

• If either of the calling command’s srcImage or dstImage parameters are of VkImageType VK_IMAGE_
TYPE_3D, the baseArrayLayer and layerCount members of both srcSubresource and dstSubresource

must be 0 and 1, respectively

• The aspectMask member of srcSubresource must specify aspects present in the calling command’s
srcImage

• The aspectMask member of dstSubresource must specify aspects present in the calling command’s
dstImage

• The layerCount member of dstSubresource must be equal to the layerCount member of
srcSubresource

• srcOffset[0].x and srcOffset[1].x must both be greater than or equal to 0 and less than or equal to the source
image subresource width

• srcOffset[0].y and srcOffset[1].y must both be greater than or equal to 0 and less than or equal to the source
image subresource height

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D, then srcOffset[0].y must be 0 and
srcOffset[1].y must be 1.

• srcOffset[0].z and srcOffset[1].z must both be greater than or equal to 0 and less than or equal to the source
image subresource depth

Vulkan 1.0.36 - A Specification 409 / 683

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
srcOffset[0].z must be 0 and srcOffset[1].z must be 1.

• dstOffset[0].x and dstOffset[1].x must both be greater than or equal to 0 and less than or equal to the
destination image subresource width

• dstOffset[0].y and dstOffset[1].y must both be greater than or equal to 0 and less than or equal to the
destination image subresource height

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D, then dstOffset[0].y must be 0 and
dstOffset[1].y must be 1.

• dstOffset[0].z and dstOffset[1].z must both be greater than or equal to 0 and less than or equal to the
destination image subresource depth

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
dstOffset[0].z must be 0 and dstOffset[1].z must be 1.

Valid Usage (Implicit)

• srcSubresource must be a valid VkImageSubresourceLayers structure

• dstSubresource must be a valid VkImageSubresourceLayers structure

18.6 Resolving Multisample Images

To resolve a multisample image to a non-multisample image, call:

void vkCmdResolveImage(
VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount,
const VkImageResolve* pRegions);

• commandBuffer is the command buffer into which the command will be recorded.

• srcImage is the source image.

• srcImageLayout is the layout of the source image subresources for the resolve.

• dstImage is the destination image.

• dstImageLayout is the layout of the destination image subresources for the resolve.

• regionCount is the number of regions to resolve.

• pRegions is a pointer to an array of VkImageResolve structures specifying the regions to resolve.

During the resolve the samples corresponding to each pixel location in the source are converted to a single sample before
being written to the destination. If the source formats are floating-point or normalized types, the sample values for each
pixel are resolved in an implementation-dependent manner. If the source formats are integer types, a single sample’s
value is selected for each pixel.

srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source and destination
image data. extent is the size in texels of the source image to resolve in width, height and depth.

Resolves are done layer by layer starting with baseArrayLayer member of srcSubresource for the source and
dstSubresource for the destination. layerCount layers are resolved to the destination image.

Valid Usage

• The source region specified by a given element of pRegions must be a region that is contained within srcImage

• The destination region specified by a given element of pRegions must be a region that is contained within
dstImage

• The union of all source regions, and the union of all destination regions, specified by the elements of pRegions,
must not overlap in memory

• srcImage must have a sample count equal to any valid sample count value other than VK_SAMPLE_COUNT_1_
BIT

• dstImage must have a sample count equal to VK_SAMPLE_COUNT_1_BIT

• srcImageLayout must specify the layout of the image subresources of srcImage specified in pRegions at the
time this command is executed on a VkDevice

• srcImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• dstImageLayout must specify the layout of the image subresources of dstImage specified in pRegions at the
time this command is executed on a VkDevice

• dstImageLayout must be either of VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL or VK_IMAGE_
LAYOUT_GENERAL

• If dstImage was created with tiling equal to VK_IMAGE_TILING_LINEAR, dstImage must have been
created with a format that supports being a color attachment, as specified by the VK_FORMAT_FEATURE_
COLOR_ATTACHMENT_BIT flag in VkFormatProperties::linearTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

• If dstImage was created with tiling equal to VK_IMAGE_TILING_OPTIMAL, dstImage must have been
created with a format that supports being a color attachment, as specified by the VK_FORMAT_FEATURE_
COLOR_ATTACHMENT_BIT flag in VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties

Vulkan 1.0.36 - A Specification 411 / 683

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• srcImage must be a valid VkImage handle

• srcImageLayout must be a valid VkImageLayout value

• dstImage must be a valid VkImage handle

• dstImageLayout must be a valid VkImageLayout value

• pRegions must be a pointer to an array of regionCount valid VkImageResolve structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called outside of a render pass instance

• regionCount must be greater than 0

• Each of commandBuffer, dstImage, and srcImage must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Graphics Transfer

The VkImageResolve structure is defined as:

typedef struct VkImageResolve {
VkImageSubresourceLayers srcSubresource;
VkOffset3D srcOffset;
VkImageSubresourceLayers dstSubresource;
VkOffset3D dstOffset;
VkExtent3D extent;

} VkImageResolve;

• srcSubresource and dstSubresource are VkImageSubresourceLayers structures specifying the image
subresources of the images used for the source and destination image data, respectively. Resolve of depth/stencil
images is not supported.

• srcOffset and dstOffset select the initial x, y, and z offsets in texels of the sub-regions of the source and
destination image data.

• extent is the size in texels of the source image to resolve in width, height and depth.

Valid Usage

• The aspectMask member of srcSubresource and dstSubresource must only contain VK_IMAGE_
ASPECT_COLOR_BIT

• The layerCount member of srcSubresource and dstSubresource must match

• If either of the calling command’s srcImage or dstImage parameters are of VkImageType VK_IMAGE_
TYPE_3D, the baseArrayLayer and layerCount members of both srcSubresource and dstSubresource

must be 0 and 1, respectively

• srcOffset.x and (extent.width + srcOffset.x) must both be greater than or equal to 0 and less than or
equal to the source image subresource width

• srcOffset.y and (extent.height + srcOffset.y) must both be greater than or equal to 0 and less than or
equal to the source image subresource height

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D, then srcOffset.y must be 0 and
extent.height must be 1.

• srcOffset.z and (extent.depth + srcOffset.z) must both be greater than or equal to 0 and less than or
equal to the source image subresource depth

• If the calling command’s srcImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
srcOffset.z must be 0 and extent.depth must be 1.

• dstOffset.x and (extent.width + dstOffset.x) must both be greater than or equal to 0 and less than or
equal to the destination image subresource width

• dstOffset.y and (extent.height + dstOffset.y) must both be greater than or equal to 0 and less than or
equal to the destination image subresource height

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D, then dstOffset.y must be 0 and
extent.height must be 1.

Vulkan 1.0.36 - A Specification 413 / 683

• dstOffset.z and (extent.depth + dstOffset.z) must both be greater than or equal to 0 and less than or
equal to the destination image subresource depth

• If the calling command’s dstImage is of type VK_IMAGE_TYPE_1D or VK_IMAGE_TYPE_2D, then
dstOffset.z must be 0 and extent.depth must be 1.

Valid Usage (Implicit)

• srcSubresource must be a valid VkImageSubresourceLayers structure

• dstSubresource must be a valid VkImageSubresourceLayers structure

Vulkan 1.0.36 - A Specification 415 / 683

Chapter 19

Drawing Commands

Drawing commands (commands with Draw in the name) provoke work in a graphics pipeline. Drawing commands are
recorded into a command buffer and when executed by a queue, will produce work which executes according to the
currently bound graphics pipeline. A graphics pipeline must be bound to a command buffer before any drawing
commands are recorded in that command buffer.

Each draw is made up of zero or more vertices and zero or more instances, which are processed by the device and result
in the assembly of primitives. Primitives are assembled according to the pInputAssemblyState member of the
VkGraphicsPipelineCreateInfo structure, which is of type
VkPipelineInputAssemblyStateCreateInfo:

typedef struct VkPipelineInputAssemblyStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineInputAssemblyStateCreateFlags flags;
VkPrimitiveTopology topology;
VkBool32 primitiveRestartEnable;

} VkPipelineInputAssemblyStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• topology is a VkPrimitiveTopology defining the primitive topology, as described below.

• primitiveRestartEnable controls whether a special vertex index value is treated as restarting the assembly of
primitives. This enable only applies to indexed draws (vkCmdDrawIndexed and
vkCmdDrawIndexedIndirect), and the special index value is either 0xFFFFFFFF when the indexType
parameter of vkCmdBindIndexBuffer is equal to VK_INDEX_TYPE_UINT32, or 0xFFFF when indexType is
equal to VK_INDEX_TYPE_UINT16. Primitive restart is not allowed for “list” topologies.

Restarting the assembly of primitives discards the most recent index values if those elements formed an incomplete
primitive, and restarts the primitive assembly using the subsequent indices, but only assembling the immediately
following element through the end of the originally specified elements. The primitive restart index value comparison is
performed before adding the vertexOffset value to the index value.

Valid Usage

• If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_
ADJACENCY, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_
TOPOLOGY_PATCH_LIST, primitiveRestartEnable must be VK_FALSE

• If the geometry shaders feature is not enabled, topology must not be any of VK_PRIMITIVE_TOPOLOGY_
LINE_LIST_WITH_ADJACENCY, VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_
PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP_WITH_ADJACENCY

• If the tessellation shaders feature is not enabled, topology must not be VK_PRIMITIVE_TOPOLOGY_
PATCH_LIST

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• topology must be a valid VkPrimitiveTopology value

19.1 Primitive Topologies

Primitive topology determines how consecutive vertices are organized into primitives, and determines the type of
primitive that is used at the beginning of the graphics pipeline. The effective topology for later stages of the pipeline is
altered by tessellation or geometry shading (if either is in use) and depends on the execution modes of those shaders.
Supported topologies are defined by VkPrimitiveTopology and include:

typedef enum VkPrimitiveTopology {
VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,

} VkPrimitiveTopology;

Vulkan 1.0.36 - A Specification 417 / 683

Each primitive topology, and its construction from a list of vertices, is summarized below.

Note
The terminology “the vertex i ” means “the vertex with index i in the ordered list of vertices defining this primi-
tive”.

19.1.1 Points

A series of individual points are specified with topology VK_PRIMITIVE_TOPOLOGY_POINT_LIST. Each vertex
defines a separate point.

19.1.2 Separate Lines

Individual line segments, each defined by a pair of vertices, are specified with topology VK_PRIMITIVE_
TOPOLOGY_LINE_LIST. The first two vertices define the first segment, with subsequent pairs of vertices each defining
one more segment. If the number of vertices is odd, then the last vertex is ignored.

19.1.3 Line Strips

A series of one or more connected line segments are specified with topology VK_PRIMITIVE_TOPOLOGY_LINE_
STRIP. In this case, the first vertex specifies the first segment’s start point while the second vertex specifies the first
segment’s endpoint and the second segment’s start point. In general, vertex i (for i > 0) specifies the beginning of the ith
segment and the end of the previous segment. The last vertex specifies the end of the last segment. If only one vertex is
specified, then no primitive is generated.

19.1.4 Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and is specified with topology VK_PRIMITIVE_
TOPOLOGY_TRIANGLE_STRIP. In this case, the first three vertices define the first triangle, and their order is
significant. Each subsequent vertex defines a new triangle using that point along with the last two vertices from the
previous triangle, as shown in figure Figure 19.1. If fewer than three vertices are specified, no primitive is produced. The
order of vertices in successive triangles changes as shown in the figure, so that all triangle faces have the same
orientation.

0

1

2

3

4 0

1
2

3

4
0

1

2

3

4

5

Figure 19.1: Triangle strips, fans, and lists

Caption

In the Triangle strips, fans, and lists diagram, the sub-sections represent:

• (a) A triangle strip.

• (b) A triangle fan.

• (c) Independent triangles.

The numbers give the sequencing of the vertices in order within the vertex arrays. Note that in (a) and (b) triangle
edge ordering is determined by the first triangle, while in (c) the order of each triangle’s edges is independent of the
other triangles.

19.1.5 Triangle Fans

A triangle fan is specified with topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN. It is similar to a triangle
strip, but changes the vertex replaced from the previous triangle as shown in figure Figure 19.1, so that all triangles in the
fan share a common vertex.

19.1.6 Separate Triangles

Separate triangles are specified with topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, as shown in figure
Figure 19.1. In this case, vertices 3 i, 3 i + 1, and 3 i + 2 (in that order) determine a triangle for each i = 0, 1, . . . , n-1,
where there are 3 n + k vertices drawn. k is either 0, 1, or 2; if k is not zero, the final k vertices are ignored.

19.1.7 Lines With Adjacency

Lines with adjacency are specified with topology VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_
ADJACENCY, and are independent line segments where each endpoint has a corresponding adjacent vertex that is
accessible in a geometry shader. If a geometry shader is not active, the adjacent vertices are ignored.

A line segment is drawn from vertex 4 i + 1 to vertex 4 i + 2 for each i = 0, 1, . . . , n-1, where there are 4 n + k vertices. k
is either 0, 1, 2, or 3; if k is not zero, the final k vertices are ignored. For line segment i, vertices 4 i and 4 i + 3 vertices
are considered adjacent to vertices 4 i + 1 and 4 i + 2, respectively, as shown in figure Figure 19.2.

Vulkan 1.0.36 - A Specification 419 / 683

0 1 2 3

4 5 6 7

(a)

0 1 2 3 4 5

(b)

Figure 19.2: Lines with adjacency

Caption

In the Lines with adjacency diagram, the sub-sections represent:

• (a) Lines with adjacency.

• (b) Line strips with adjacency.

The vertices connected with solid lines belong to the main primitives. The vertices connected by dashed lines are the
adjacent vertices that are accessible in a geometry shader.

19.1.8 Line Strips With Adjacency

Line strips with adjacency are specified with topology VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_
ADJACENCY and are similar to line strips, except that each line segment has a pair of adjacent vertices that are
accessible in a geometry shader. If a geometry shader is not active, the adjacent vertices are ignored.

A line segment is drawn from vertex i + 1 vertex to vertex i + 2 for each i = 0, 1, . . . , n-1, where there are n + 3 vertices.
If there are fewer than four vertices, all vertices are ignored. For line segment i, vertices i and i + 3 are considered
adjacent to vertices i + 1 and i + 2, respectively, as shown in figure Figure 19.2.

19.1.9 Triangle List With Adjacency

Triangles with adjacency are specified with topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_
ADJACENCY, and are similar to separate triangles except that each triangle edge has an adjacent vertex that is accessible
in a geometry shader. If a geometry shader is not active, the adjacent vertices are ignored.

Vertices 6 i, 6 i + 2, and 6 i + 4 (in that order) determine a triangle for each i = 0, 1, . . . , n-1, where there are 6 n+k
vertices. k is either 0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i, vertices 6 i + 1, 6 i +
3, and 6 i + 5 vertices are considered adjacent to edges from vertex 6 i to 6 i + 2, from 6 i + 2 to 6 i + 4, and from 6 i + 4
to 6 i vertices, respectively, as shown in figure Figure 19.3.

0

21

5

4

3

6

87

11

10

9

Figure 19.3: Triangles with adjacency

Caption

In the Triangles with adjacency diagram, the vertices connected with solid lines belong to the main primitive. The
vertices connected by dashed lines are the adjacent vertices that are accessible in a geometry shader.

19.1.10 Triangle Strips With Adjacency

Triangle strips with adjacency are specified with topology VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_
WITH_ADJACENCY, and are similar to triangle strips except that each triangle edge has an adjacent vertex that is
accessible in a geometry shader. If a geometry shader is not active, the adjacent vertices are ignored.

Vulkan 1.0.36 - A Specification 421 / 683

0

21

5

3 7

4

6

9

8

10

110

21

5

3 7

4

6

8

9

0

21

5

3

4

6

70

21

3

4

5

Figure 19.4: Triangle strips with adjacency

Caption

In the Triangle strips with adjacency diagram, the vertices connected with solid lines belong to the main primitive;
the vertices connected by dashed lines are the adjacent vertices that are accessible in a geometry shader.

In triangle strips with adjacency, n triangles are drawn where there are 2 (n + 2) + k vertices. k is either 0 or 1; if k is 1,
the final vertex is ignored. If there are fewer than 6 vertices, the entire primitive is ignored. Table Table 19.1 describes
the vertices and order used to draw each triangle, and which vertices are considered adjacent to each edge of the triangle,
as shown in figure Figure 19.4.

Table 19.1: Triangles generated by triangle strips with adjacency.

Primitive Vertices Adjacent Vertices
Primitive 1st 2nd 3rd 1/2 2/3 3/1
only (i = 0, n = 1) 0 2 4 1 5 3
first (i = 0) 0 2 4 1 6 3
middle (i odd) 2 i + 2 2 i 2 i + 4 2 i-2 2 i + 3 2 i + 6

Table 19.1: (continued)

Primitive Vertices Adjacent Vertices
middle (i even) 2 i 2 i + 2 2 i + 4 2 i-2 2 i + 6 2 i + 3
last (i=n-1, i odd) 2 i + 2 2 i 2 i + 4 2 i-2 2 i + 3 2 i + 5
last (i=n-1, i even) 2 i 2 i + 2 2 i + 4 2 i-2 2 i + 5 2 i + 3

Caption

In the Triangles generated by triangle strips with adjacency table, each triangle is drawn using the vertices whose
numbers are in the 1st, 2nd, and 3rd columns under Primitive Vertices, in that order. The vertices in the 1/2, 2/3,
and 3/1 columns under Adjacent Vertices are considered adjacent to the edges from the first to the second, from the
second to the third, and from the third to the first vertex of the triangle, respectively. The six rows correspond to six
cases: the first and only triangle (i = 0, n = 1), the first triangle of several (i = 0, n > 0), odd middle triangles (i = 1, 3,
5 . . .), even middle triangles (i = 2, 4, 6, . . .), and special cases for the last triangle, when i is either even or odd. For
the purposes of this table, both the first vertex and first triangle are numbered 0.

19.1.11 Separate Patches

Separate patches are specified with topology VK_PRIMITIVE_TOPOLOGY_PATCH_LIST. A patch is an ordered
collection of vertices used for primitive tessellation. The vertices comprising a patch have no implied geometric ordering,
and are used by tessellation shaders and the fixed-function tessellator to generate new point, line, or triangle primitives.

Each patch in the series has a fixed number of vertices, specified by the patchControlPoints member of the
VkPipelineTessellationStateCreateInfo structure passed to vkCreateGraphicsPipelines. Once
assembled and vertex shaded, these patches are provided as input to the tessellation control shader stage.

If the number of vertices in a patch is given by v, vertices v × i through v × i + v - 1 (in that order) determine a patch for
each i = 0, 1, . . . , n-1, where there are v × n + k vertices. k is in the range [0, v - 1]; if k is not zero, the final k vertices
are ignored.

19.1.12 General Considerations For Polygon Primitives

Depending on the polygon mode, a polygon primitive generated from a drawing command with topology VK_
PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_
PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_
ADJACENCY, or VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY is rendered in one of
several ways, such as outlining its border or filling its interior. The order of vertices in such a primitive is significant
during polygon rasterization and fragment shading.

19.2 Programmable Primitive Shading

Once primitives are assembled, they proceed to the vertex shading stage of the pipeline. If the draw includes multiple
instances, then the set of primitives is sent to the vertex shading stage multiple times, once for each instance.

Vulkan 1.0.36 - A Specification 423 / 683

It is undefined whether vertex shading occurs on vertices that are discarded as part of incomplete primitives, but if it does
occur then it operates as if they were vertices in complete primitives and such invocations can have side effects.

Vertex shading receives two per-vertex inputs from the primitive assembly stage - the vertexIndex and the
instanceIndex. How these values are generated is defined below, with each command.

Drawing commands fall roughly into two categories:

• Non-indexed drawing commands present a sequential vertexIndex to the vertex shader. The sequential index is
generated automatically by the device (see Fixed-Function Vertex Processing for details on both specifying the vertex
attributes indexed by vertexIndex, as well as binding vertex buffers containing those attributes to a command
buffer). These commands are:

– vkCmdDraw

– vkCmdDrawIndirect

• Indexed drawing commands read index values from an index buffer and use this to compute the vertexIndex value
for the vertex shader. These commands are:

– vkCmdDrawIndexed

– vkCmdDrawIndexedIndirect

To bind an index buffer to a command buffer, call:

void vkCmdBindIndexBuffer(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer being bound.

• offset is the starting offset in bytes within buffer used in index buffer address calculations.

• indexType selects whether indices are treated as 16 bits or 32 bits. Possible values include:

typedef enum VkIndexType {
VK_INDEX_TYPE_UINT16 = 0,
VK_INDEX_TYPE_UINT32 = 1,

} VkIndexType;

Valid Usage

• offset must be less than the size of buffer

• The sum of offset and the address of the range of VkDeviceMemory object that is backing buffer, must be a
multiple of the type indicated by indexType

• buffer must have been created with the VK_BUFFER_USAGE_INDEX_BUFFER_BIT flag

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• indexType must be a valid VkIndexType value

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

The parameters for each drawing command are specified directly in the command or read from buffer memory,
depending on the command. Drawing commands that source their parameters from buffer memory are known as indirect
drawing commands.

All drawing commands interact with the Robust Buffer Access feature.

Primitives assembled by draw commands are considered to have an API order, which defines the order their fragments
affect the framebuffer. When a draw command includes multiple instances, the lower numbered instances are earlier in
API order. For non-indexed draws, primitives with lower numbered vertexIndex values are earlier in API order. For
indexed draws, primitives assembled from lower index buffer addresses are earlier in API order.

To record a non-indexed draw, call:

Vulkan 1.0.36 - A Specification 425 / 683

void vkCmdDraw(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and vertexCount

consecutive vertex indices with the first vertexIndex value equal to firstVertex. The primitives are drawn
instanceCount times with instanceIndex starting with firstInstance and increasing sequentially for each
instance. The assembled primitives execute the currently bound graphics pipeline.

Valid Usage

• The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_POINT_
GRAPHICS, a descriptor set must have been bound to n at VK_PIPELINE_BIND_POINT_GRAPHICS, with a
VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current
VkPipeline, as described in Section 13.2.2.1

• For each push constant that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_
POINT_GRAPHICS, a push constant value must have been set for VK_PIPELINE_BIND_POINT_GRAPHICS,
with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to
create the current VkPipeline, as described in Section 13.2.2.1

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are
statically used by the currently bound VkPipeline object, specified via vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex shader entry point’s interface
must have valid buffers bound

• For a given vertex buffer binding, any attribute data fetched must be entirely contained within the corresponding
vertex buffer binding, as described in Section 20.2

• A valid graphics pipeline must be bound to the current command buffer with VK_PIPELINE_BIND_POINT_
GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any
dynamic state, that state must have been set on the current command buffer

• Every input attachment used by the current subpass must be bound to the pipeline via a descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to sample from any
VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj
in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset
values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must be of a format
which supports linear filtering, as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_
LINEAR_BIT flag in VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

Vulkan 1.0.36 - A Specification 427 / 683

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Inside Graphics Graphics

To record an indexed draw, call:

void vkCmdDrawIndexed(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance);

• commandBuffer is the command buffer into which the command is recorded.

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

When the command is executed, primitives are assembled using the current primitive topology and indexCount vertices
whose indices are retrieved from the index buffer. The index buffer is treated as an array of tightly packed unsigned
integers of size defined by the vkCmdBindIndexBuffer::indexType parameter with which the buffer was bound.

The first vertex index is at an offset of firstIndex * indexSize + offset within the currently bound index buffer,
where offset is the offset specified by vkCmdBindIndexBuffer and indexSize is the byte size of the type
specified by indexType. Subsequent index values are retrieved from consecutive locations in the index buffer. Indices
are first compared to the primitive restart value, then zero extended to 32 bits (if the indexType is VK_INDEX_
TYPE_UINT16) and have vertexOffset added to them, before being supplied as the vertexIndex value.

The primitives are drawn instanceCount times with instanceIndex starting with firstInstance and increasing
sequentially for each instance. The assembled primitives execute the currently bound graphics pipeline.

Valid Usage

• The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_POINT_
GRAPHICS, a descriptor set must have been bound to n at VK_PIPELINE_BIND_POINT_GRAPHICS, with a
VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current
VkPipeline, as described in Section 13.2.2.1

• For each push constant that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_
POINT_GRAPHICS, a push constant value must have been set for VK_PIPELINE_BIND_POINT_GRAPHICS,
with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to
create the current VkPipeline, as described in Section 13.2.2.1

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are
statically used by the currently bound VkPipeline object, specified via vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex shader entry point’s interface
must have valid buffers bound

• For a given vertex buffer binding, any attribute data fetched must be entirely contained within the corresponding
vertex buffer binding, as described in Section 20.2

• A valid graphics pipeline must be bound to the current command buffer with VK_PIPELINE_BIND_POINT_
GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any
dynamic state, that state must have been set on the current command buffer

• (indexSize * (firstIndex + indexCount) + offset) must be less than or equal to the size of the currently
bound index buffer, with indexSize being based on the type specified by indexType, where the index buffer,
indexType, and offset are specified via vkCmdBindIndexBuffer

• Every input attachment used by the current subpass must be bound to the pipeline via a descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to sample from any
VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj
in their name, in any shader stage

Vulkan 1.0.36 - A Specification 429 / 683

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset
values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must be of a format
which supports linear filtering, as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_
LINEAR_BIT flag in VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Inside Graphics Graphics

To record a non-indexed indirect draw, call:

void vkCmdDrawIndirect(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndirect behaves similarly to vkCmdDraw except that the parameters are read by the device from a
buffer during execution. drawCount draws are executed by the command, with parameters taken from buffer starting
at offset and increasing by stride bytes for each successive draw. The parameters of each draw are encoded in an
array of VkDrawIndirectCommand structures. If drawCount is less than or equal to one, stride is ignored.

Valid Usage

• offset must be a multiple of 4

• If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDrawIndirectCommand)

• If the multi-draw indirect feature is not enabled, drawCount must be 0 or 1

• If the drawIndirectFirstInstance feature is not enabled, all the firstInstance members of the
VkDrawIndirectCommand structures accessed by this command must be 0

• The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

Vulkan 1.0.36 - A Specification 431 / 683

• For each set n that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_POINT_
GRAPHICS, a descriptor set must have been bound to n at VK_PIPELINE_BIND_POINT_GRAPHICS, with a
VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current
VkPipeline, as described in Section 13.2.2.1

• For each push constant that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_
POINT_GRAPHICS, a push constant value must have been set for VK_PIPELINE_BIND_POINT_GRAPHICS,
with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to
create the current VkPipeline, as described in Section 13.2.2.1

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are
statically used by the currently bound VkPipeline object, specified via vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex shader entry point’s interface
must have valid buffers bound

• A valid graphics pipeline must be bound to the current command buffer with VK_PIPELINE_BIND_POINT_
GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any
dynamic state, that state must have been set on the current command buffer

• If drawCount is equal to 1, (offset + sizeof(VkDrawIndirectCommand)) must be less than or equal to the
size of buffer

• If drawCount is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawIndirectCommand)) must be less than or equal to the size of buffer

• drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• Every input attachment used by the current subpass must be bound to the pipeline via a descriptor set

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to sample from any
VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj
in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset
values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must be of a format
which supports linear filtering, as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_
LINEAR_BIT flag in VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Inside Graphics Graphics

The VkDrawIndirectCommand structure is defined as:

Vulkan 1.0.36 - A Specification 433 / 683

typedef struct VkDrawIndirectCommand {
uint32_t vertexCount;
uint32_t instanceCount;
uint32_t firstVertex;
uint32_t firstInstance;

} VkDrawIndirectCommand;

• vertexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstVertex is the index of the first vertex to draw.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndirectCommand have the same meaning as the similarly named parameters of
vkCmdDraw.

Valid Usage

• For a given vertex buffer binding, any attribute data fetched must be entirely contained within the corresponding
vertex buffer binding, as described in Section 20.2

• If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

To record an indexed indirect draw, call:

void vkCmdDrawIndexedIndirect(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride);

• commandBuffer is the command buffer into which the command is recorded.

• buffer is the buffer containing draw parameters.

• offset is the byte offset into buffer where parameters begin.

• drawCount is the number of draws to execute, and can be zero.

• stride is the byte stride between successive sets of draw parameters.

vkCmdDrawIndexedIndirect behaves similarly to vkCmdDrawIndexed except that the parameters are read by
the device from a buffer during execution. drawCount draws are executed by the command, with parameters taken from
buffer starting at offset and increasing by stride bytes for each successive draw. The parameters of each draw are

encoded in an array of VkDrawIndexedIndirectCommand structures. If drawCount is less than or equal to one,
stride is ignored.

Valid Usage

• offset must be a multiple of 4

• If drawCount is greater than 1, stride must be a multiple of 4 and must be greater than or equal to
sizeof(VkDrawIndexedIndirectCommand)

• If the multi-draw indirect feature is not enabled, drawCount must be 0 or 1

• If the drawIndirectFirstInstance feature is not enabled, all the firstInstance members of the
VkDrawIndexedIndirectCommand structures accessed by this command must be 0

• The current render pass must be compatible with the renderPass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• The subpass index of the current render pass must be equal to the subpass member of the
VkGraphicsPipelineCreateInfo structure specified when creating the VkPipeline currently bound to
VK_PIPELINE_BIND_POINT_GRAPHICS.

• For each set n that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_POINT_
GRAPHICS, a descriptor set must have been bound to n at VK_PIPELINE_BIND_POINT_GRAPHICS, with a
VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current
VkPipeline, as described in Section 13.2.2.1

• For each push constant that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_
POINT_GRAPHICS, a push constant value must have been set for VK_PIPELINE_BIND_POINT_GRAPHICS,
with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to
create the current VkPipeline, as described in Section 13.2.2.1

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are
statically used by the currently bound VkPipeline object, specified via vkCmdBindPipeline

• All vertex input bindings accessed via vertex input variables declared in the vertex shader entry point’s interface
must have valid buffers bound

• A valid graphics pipeline must be bound to the current command buffer with VK_PIPELINE_BIND_POINT_
GRAPHICS

• If the VkPipeline object currently bound to VK_PIPELINE_BIND_POINT_GRAPHICS requires any
dynamic state, that state must have been set on the current command buffer

• If drawCount is equal to 1, (offset + sizeof(VkDrawIndexedIndirectCommand)) must be less than or
equal to the size of buffer

• If drawCount is greater than 1, (stride × (drawCount - 1) + offset +
sizeof(VkDrawIndexedIndirectCommand)) must be less than or equal to the size of buffer

• drawCount must be less than or equal to VkPhysicalDeviceLimits::maxDrawIndirectCount

• Every input attachment used by the current subpass must be bound to the pipeline via a descriptor set

Vulkan 1.0.36 - A Specification 435 / 683

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used to sample from any
VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj
in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_GRAPHICS uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset
values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a uniform buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_GRAPHICS accesses a storage buffer, it must not access values
outside of the range of that buffer specified in the currently bound descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must be of a format
which supports linear filtering, as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_
LINEAR_BIT flag in VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• This command must only be called inside of a render pass instance

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Inside Graphics Graphics

The VkDrawIndexedIndirectCommand structure is defined as:

typedef struct VkDrawIndexedIndirectCommand {
uint32_t indexCount;
uint32_t instanceCount;
uint32_t firstIndex;
int32_t vertexOffset;
uint32_t firstInstance;

} VkDrawIndexedIndirectCommand;

• indexCount is the number of vertices to draw.

• instanceCount is the number of instances to draw.

• firstIndex is the base index within the index buffer.

• vertexOffset is the value added to the vertex index before indexing into the vertex buffer.

• firstInstance is the instance ID of the first instance to draw.

The members of VkDrawIndexedIndirectCommand have the same meaning as the similarly named parameters of
vkCmdDrawIndexed.

Valid Usage

• For a given vertex buffer binding, any attribute data fetched must be entirely contained within the corresponding
vertex buffer binding, as described in Section 20.2

Vulkan 1.0.36 - A Specification 437 / 683

• (indexSize * (firstIndex + indexCount) + offset) must be less than or equal to the size of the currently
bound index buffer, with indexSize being based on the type specified by indexType, where the index buffer,
indexType, and offset are specified via vkCmdBindIndexBuffer

• If the drawIndirectFirstInstance feature is not enabled, firstInstance must be 0

Vulkan 1.0.36 - A Specification 439 / 683

Chapter 20

Fixed-Function Vertex Processing

Some implementations have specialized fixed-function hardware for fetching and format-converting vertex input data
from buffers, rather than performing the fetch as part of the vertex shader. Vulkan includes a vertex attribute fetch stage
in the graphics pipeline in order to take advantage of this.

20.1 Vertex Attributes

Vertex shaders can define input variables, which receive vertex attribute data transferred from one or more VkBuffer(s)
by drawing commands. Vertex shader input variables are bound to buffers via an indirect binding where the vertex shader
associates a vertex input attribute number with each variable, vertex input attributes are associated to vertex input
bindings on a per-pipeline basis, and vertex input bindings are associated with specific buffers on a per-draw basis via the
vkCmdBindVertexBuffers command. Vertex input attribute and vertex input binding descriptions also contain
format information controlling how data is extracted from buffer memory and converted to the format expected by the
vertex shader.

There are VkPhysicalDeviceLimits::maxVertexInputAttributes number of vertex input attributes and
VkPhysicalDeviceLimits::maxVertexInputBindings number of vertex input bindings (each referred to by
zero-based indices), where there are at least as many vertex input attributes as there are vertex input bindings.
Applications can store multiple vertex input attributes interleaved in a single buffer, and use a single vertex input binding
to access those attributes.

In GLSL, vertex shaders associate input variables with a vertex input attribute number using the location layout
qualifier. The component layout qualifier associates components of a vertex shader input variable with components of
a vertex input attribute.

GLSL example

// Assign location M to variableName
layout (location=M, component=2) in vec2 variableName;

// Assign locations [N,N+L) to the array elements of variableNameArray
layout (location=N) in vec4 variableNameArray[L];

In SPIR-V, vertex shaders associate input variables with a vertex input attribute number using the Location
decoration. The Component decoration associates components of a vertex shader input variable with components of a
vertex input attribute. The Location and Component decorations are specified via the OpDecorate instruction.

SPIR-V example

...
%1 = OpExtInstImport "GLSL.std.450"

...
OpName %9 "variableName"
OpName %15 "variableNameArray"
OpDecorate %18 Builtin VertexIndex
OpDecorate %19 Builtin InstanceIndex
OpDecorate %9 Location M
OpDecorate %9 Component 2
OpDecorate %15 Location N
...

%2 = OpTypeVoid
%3 = OpTypeFunction %2
%6 = OpTypeFloat 32
%7 = OpTypeVector %6 2
%8 = OpTypePointer Input %7
%9 = OpVariable %8 Input
%10 = OpTypeVector %6 4
%11 = OpTypeInt 32 0
%12 = OpConstant %11 L
%13 = OpTypeArray %10 %12
%14 = OpTypePointer Input %13
%15 = OpVariable %14 Input

...

20.1.1 Attribute Location and Component Assignment

Vertex shaders allow Location and Component decorations on input variable declarations. The Location
decoration specifies which vertex input attribute is used to read and interpret the data that a variable will consume. The
Component decoration allows the location to be more finely specified for scalars and vectors, down to the individual
components within a location that are consumed. The components within a location are 0, 1, 2, and 3. A variable starting
at component N will consume components N, N+1, N+2, . . . up through its size. For single precision types, it is invalid
if the sequence of components gets larger than 3.

When a vertex shader input variable declared using a scalar or vector 32-bit data type is assigned a location, its value(s)
are taken from the components of the input attribute specified with the corresponding
VkVertexInputAttributeDescription::location. The components used depend on the type of variable and
the Component decoration specified in the variable declaration, as identified in Table 20.1. Any 32-bit scalar or vector
input will consume a single location. For 32-bit data types, missing components are filled in with default values as
described below.

Table 20.1: Input attribute components accessed by 32-bit input variables

32-bit data type Component
decoration

Components
consumed

scalar 0 or unspecified (x, o, o, o)
scalar 1 (o, y, o, o)
scalar 2 (o, o, z, o)
scalar 3 (o, o, o, w)
two-component vector 0 or unspecified (x, y, o, o)
two-component vector 1 (o, y, z, o)
two-component vector 2 (o, o, z, w)

Vulkan 1.0.36 - A Specification 441 / 683

Table 20.1: (continued)

32-bit data type Component
decoration

Components
consumed

three-component vector 0 or unspecified (x, y, z, o)
three-component vector 1 (o, y, z, w)
four-component vector 0 or unspecified (x, y, z, w)

Components indicated by ‘o’ are available for use by other input variables which are sourced from the same attribute,
and if used, are either filled with the corresponding component from the input format (if present), or the default value.

When a vertex shader input variable declared using a 32-bit floating point matrix type is assigned a location i, its values
are taken from consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. Such matrices are treated as an array of column vectors
with values taken from the input attributes identified in Table 20.2. The
VkVertexInputAttributeDescription::format must be specified with a VkFormat that corresponds to the
appropriate type of column vector. The Component decoration must not be used with matrix types.

Table 20.2: Input attributes accessed by 32-bit input matrix variables

Data type Column vector type Locations consumed Components consumed
mat2 two-component vector i, i+1 (x, y, o, o), (x, y, o, o)
mat2x3 three-component vector i, i+1 (x, y, z, o), (x, y, z, o)
mat2x4 four-component vector i, i+1 (x, y, z, w), (x, y, z, w)
mat3x2 two-component vector i, i+1, i+2 (x, y, o, o), (x, y, o, o), (x, y, o, o)
mat3 three-component vector i, i+1, i+2 (x, y, z, o), (x, y, z, o), (x, y, z, o)
mat3x4 four-component vector i, i+1, i+2 (x, y, z, w), (x, y, z, w), (x, y, z, w)
mat4x2 two-component vector i, i+1, i+2, i+3 (x, y, o, o), (x, y, o, o), (x, y, o, o), (x, y, o, o)
mat4x3 three-component vector i, i+1, i+2, i+3 (x, y, z, o), (x, y, z, o), (x, y, z, o), (x, y, z, o)
mat4 four-component vector i, i+1, i+2, i+3 (x, y, z, w), (x, y, z, w), (x, y, z, w), (x, y, z, w)

Components indicated by ‘o’ are available for use by other input variables which are sourced from the same attribute,
and if used, are either filled with the corresponding component from the input (if present), or the default value.

When a vertex shader input variable declared using a scalar or vector 64-bit data type is assigned a location i, its values
are taken from consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. The locations and components used depend on the type of
variable and the Component decoration specified in the variable declaration, as identified in Table 20.3. For 64-bit data
types, no default attribute values are provided. Input variables must not use more components than provided by the
attribute. Input attributes which have one- or two-component 64-bit formats will consume a single location. Input
attributes which have three- or four-component 64-bit formats will consume two consecutive locations. A 64-bit scalar
data type will consume two components, and a 64-bit two-component vector data type will consume all four components
available within a location. A three- or four-component 64-bit data type must not specify a component. A
three-component 64-bit data type will consume all four components of the first location and components 0 and 1 of the
second location. This leaves components 2 and 3 available for other component-qualified declarations. A
four-component 64-bit data type will consume all four components of the first location and all four components of the
second location. It is invalid for a scalar or two-component 64-bit data type to specify a component of 1 or 3.

Table 20.3: Input attribute locations and components accessed by 64-bit
input variables

Input format Locations
consumed

64-bit data type Location
decoration

Component
decoration

32-bit
components
consumed

R64 i scalar i 0 or unspecified (x, y, -, -)

R64G64 i
scalar i 0 or unspecified (x, y, o, o)
scalar i 2 (o, o, z, w)
two-component vector i 0 or unspecified (x, y, z, w)

R64G64B64 i, i+1

scalar i 0 or unspecified (x, y, o, o),
(o, o, -, -)

scalar i 2 (o, o, z, w),
(o, o, -, -)

scalar i+1 0 or unspecified (o, o, o, o),
(x, y, -, -)

two-component vector i 0 or unspecified (x, y, z, w),
(o, o, -, -)

three-component vector i unspecified (x, y, z, w),
(x, y, -, -)

R64G64B64A64 i, i+1

scalar i 0 or unspecified (x, y, o, o),
(o, o, o, o)

scalar i 2 (o, o, z, w),
(o, o, o, o)

scalar i+1 0 or unspecified (o, o, o, o),
(x, y, o, o)

scalar i+1 2 (o, o, o, o),
(o, o, z, w)

two-component vector i 0 or unspecified (x, y, z, w),
(o, o, o, o)

two-component vector i+1 0 or unspecified (o, o, o, o),
(x, y, z, w)

three-component vector i unspecified (x, y, z, w),
(x, y, o, o)

four-component vector i unspecified (x, y, z, w),
(x, y, z, w)

Components indicated by ‘o’ are available for use by other input variables which are sourced from the same attribute.
Components indicated by ‘-’ are not available for input variables as there are no default values provided for 64-bit data
types, and there is no data provided by the input format.

When a vertex shader input variable declared using a 64-bit floating-point matrix type is assigned a location i, its values
are taken from consecutive input attribute locations. Such matrices are treated as an array of column vectors with values
taken from the input attributes as shown in Table 20.3. Each column vector starts at the location immediately following
the last location of the previous column vector. The number of attributes and components assigned to each matrix is
determined by the matrix dimensions and ranges from two to eight locations.

When a vertex shader input variable declared using an array type is assigned a location, its values are taken from
consecutive input attributes starting with the corresponding
VkVertexInputAttributeDescription::location. The number of attributes and components assigned to
each element are determined according to the data type of the array elements and Component decoration (if any)

Vulkan 1.0.36 - A Specification 443 / 683

specified in the declaration of the array, as described above. Each element of the array, in order, is assigned to
consecutive locations, but all at the same specified component within each location.

Only input variables declared with the data types and component decorations as specified above are supported. Location
aliasing is causing two variables to have the same location number. Component aliasing is assigning the same (or
overlapping) component number for two location aliases. Location aliasing is allowed only if it does not cause
component aliasing. Further, when location aliasing, the aliases sharing the location must all have the same SPIR-V
floating-point component type or all have the same width integer-type components.

20.2 Vertex Input Description

Applications specify vertex input attribute and vertex input binding descriptions as part of graphics pipeline creation.
The VkGraphicsPipelineCreateInfo::pVertexInputState points to a structure of type
VkPipelineVertexInputStateCreateInfo.

The VkPipelineVertexInputStateCreateInfo structure is defined as:

typedef struct VkPipelineVertexInputStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineVertexInputStateCreateFlags flags;
uint32_t vertexBindingDescriptionCount;
const VkVertexInputBindingDescription* pVertexBindingDescriptions;
uint32_t vertexAttributeDescriptionCount;
const VkVertexInputAttributeDescription* pVertexAttributeDescriptions;

} VkPipelineVertexInputStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• vertexBindingDescriptionCount is the number of vertex binding descriptions provided in
pVertexBindingDescriptions.

• pVertexBindingDescriptions is a pointer to an array of VkVertexInputBindingDescription structures.

• vertexAttributeDescriptionCount is the number of vertex attribute descriptions provided in
pVertexAttributeDescriptions.

• pVertexAttributeDescriptions is a pointer to an array of VkVertexInputAttributeDescription
structures.

Valid Usage

• vertexBindingDescriptionCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindings

• vertexAttributeDescriptionCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputAttributes

• For every binding specified by any given element of pVertexAttributeDescriptions, a
VkVertexInputBindingDescription must exist in pVertexBindingDescriptions with the same
value of binding

• All elements of pVertexBindingDescriptions must describe distinct binding numbers

• All elements of pVertexAttributeDescriptions must describe distinct attribute locations

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If vertexBindingDescriptionCount is not 0, pVertexBindingDescriptions must be a pointer to an
array of vertexBindingDescriptionCount valid VkVertexInputBindingDescription structures

• If vertexAttributeDescriptionCount is not 0, pVertexAttributeDescriptions must be a pointer to
an array of vertexAttributeDescriptionCount valid VkVertexInputAttributeDescription
structures

Each vertex input binding is specified by an instance of the VkVertexInputBindingDescription structure.

The VkVertexInputBindingDescription structure is defined as:

typedef struct VkVertexInputBindingDescription {
uint32_t binding;
uint32_t stride;
VkVertexInputRate inputRate;

} VkVertexInputBindingDescription;

• binding is the binding number that this structure describes.

• stride is the distance in bytes between two consecutive elements within the buffer.

• inputRate specifies whether vertex attribute addressing is a function of the vertex index or of the instance index.
Possible values include:

typedef enum VkVertexInputRate {
VK_VERTEX_INPUT_RATE_VERTEX = 0,
VK_VERTEX_INPUT_RATE_INSTANCE = 1,

} VkVertexInputRate;

Vulkan 1.0.36 - A Specification 445 / 683

– VK_VERTEX_INPUT_RATE_VERTEX indicates that vertex attribute addressing is a function of the vertex index.

– VK_VERTEX_INPUT_RATE_INSTANCE indicates that vertex attribute addressing is a function of the instance
index.

Valid Usage

• binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• stride must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputBindingStride

Valid Usage (Implicit)

• inputRate must be a valid VkVertexInputRate value

Each vertex input attribute is specified by an instance of the VkVertexInputAttributeDescription structure.

The VkVertexInputAttributeDescription structure is defined as:

typedef struct VkVertexInputAttributeDescription {
uint32_t location;
uint32_t binding;
VkFormat format;
uint32_t offset;

} VkVertexInputAttributeDescription;

• location is the shader binding location number for this attribute.

• binding is the binding number which this attribute takes its data from.

• format is the size and type of the vertex attribute data.

• offset is a byte offset of this attribute relative to the start of an element in the vertex input binding.

Valid Usage

• location must be less than VkPhysicalDeviceLimits::maxVertexInputAttributes

• binding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• offset must be less than or equal to VkPhysicalDeviceLimits::maxVertexInputAttributeOffset

• format must be allowed as a vertex buffer format, as specified by the VK_FORMAT_FEATURE_VERTEX_
BUFFER_BIT flag in VkFormatProperties::bufferFeatures returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• format must be a valid VkFormat value

To bind vertex buffers to a command buffer for use in subsequent draw commands, call:

void vkCmdBindVertexBuffers(
VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer* pBuffers,
const VkDeviceSize* pOffsets);

• commandBuffer is the command buffer into which the command is recorded.

• firstBinding is the index of the first vertex input binding whose state is updated by the command.

• bindingCount is the number of vertex input bindings whose state is updated by the command.

• pBuffers is a pointer to an array of buffer handles.

• pOffsets is a pointer to an array of buffer offsets.

The values taken from elements i of pBuffers and pOffsets replace the current state for the vertex input binding
firstBinding + i, for i in [0, bindingCount). The vertex input binding is updated to start at the offset indicated by
pOffsets[i] from the start of the buffer pBuffers[i]. All vertex input attributes that use each of these bindings will use
these updated addresses in their address calculations for subsequent draw commands.

Valid Usage

• firstBinding must be less than VkPhysicalDeviceLimits::maxVertexInputBindings

• The sum of firstBinding and bindingCount must be less than or equal to
VkPhysicalDeviceLimits::maxVertexInputBindings

• All elements of pOffsets must be less than the size of the corresponding element in pBuffers

• All elements of pBuffers must have been created with the VK_BUFFER_USAGE_VERTEX_BUFFER_BIT flag

Vulkan 1.0.36 - A Specification 447 / 683

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pBuffers must be a pointer to an array of bindingCount valid VkBuffer handles

• pOffsets must be a pointer to an array of bindingCount VkDeviceSize values

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• bindingCount must be greater than 0

• Both of commandBuffer, and the elements of pBuffers must have been created, allocated, or retrieved from the
same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

The address of each attribute for each vertexIndex and instanceIndex is calculated as follows:

• Let attribDesc be the member of
VkPipelineVertexInputStateCreateInfo::pVertexAttributeDescriptions with
VkVertexInputAttributeDescription::location equal to the vertex input attribute number.

• Let bindingDesc be the member of
VkPipelineVertexInputStateCreateInfo::pVertexBindingDescriptions with
VkVertexInputAttributeDescription::binding equal to attribDesc.binding.

• Let vertexIndex be the index of the vertex within the draw (a value between firstVertex and
firstVertex+vertexCount for vkCmdDraw, or a value taken from the index buffer for vkCmdDrawIndexed),
and let instanceIndex be the instance number of the draw (a value between firstInstance and
firstInstance+instanceCount).

bufferBindingAddress = buffer[binding].baseAddress + offset[binding];

if (bindingDesc.inputRate == VK_VERTEX_INPUT_RATE_VERTEX)
vertexOffset = vertexIndex * bindingDesc.stride;

else
vertexOffset = instanceIndex * bindingDesc.stride;

attribAddress = bufferBindingAddress + vertexOffset + attribDesc.offset;

For each attribute, raw data is extracted starting at attribAddress and is converted from the
VkVertexInputAttributeDescription’s format to either to floating-point, unsigned integer, or signed
integer based on the base type of the format; the base type of the format must match the base type of the input variable in
the shader. If format is a packed format, attribAddress must be a multiple of the size in bytes of the whole
attribute data type as described in Packed Formats. Otherwise, attribAddress must be a multiple of the size in bytes
of the component type indicated by format (see Formats). If the format does not include G, B, or A components, then
those are filled with (0,0,1) as needed (using either 1.0f or integer 1 based on the format) for attributes that are not 64-bit
data types. The number of components in the vertex shader input variable need not exactly match the number of
components in the format. If the vertex shader has fewer components, the extra components are discarded.

20.3 Example

To create a graphics pipeline that uses the following vertex description:

struct Vertex
{

float x, y, z, w;
uint8_t u, v;

};

The application could use the following set of structures:

const VkVertexInputBindingDescription binding =
{

0, // binding
sizeof(Vertex), // stride
VK_VERTEX_INPUT_RATE_VERTEX // inputRate

};

const VkVertexInputAttributeDescription attributes[] =
{

{
0, // location
binding.binding, // binding
VK_FORMAT_R32G32B32A32_SFLOAT, // format
0 // offset

},
{

1, // location

Vulkan 1.0.36 - A Specification 449 / 683

binding.binding, // binding
VK_FORMAT_R8G8_UNORM, // format
4 * sizeof(float) // offset

}
};

const VkPipelineVertexInputStateCreateInfo viInfo =
{

VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType
NULL, // pNext
0, // flags
1, // vertexBindingDescriptionCount
&binding, // pVertexBindingDescriptions
2, // vertexAttributeDescriptionCount
&attributes[0] // pVertexAttributeDescriptions

};

Vulkan 1.0.36 - A Specification 451 / 683

Chapter 21

Tessellation

Tessellation involves three pipeline stages. First, a tessellation control shader transforms control points of a patch and
can produce per-patch data. Second, a fixed-function tessellator generates multiple primitives corresponding to a
tessellation of the patch in (u,v) or (u,v,w) parameter space. Third, a tessellation evaluation shader transforms the vertices
of the tessellated patch, for example to compute their positions and attributes as part of the tessellated surface. The
tessellator is enabled when the pipeline contains both a tessellation control shader and a tessellation evaluation shader.

21.1 Tessellator

If a pipeline includes both tessellation shaders (control and evaluation), the tessellator consumes each input patch (after
vertex shading) and produces a new set of independent primitives (points, lines, or triangles). These primitives are
logically produced by subdividing a geometric primitive (rectangle or triangle) according to the per-patch outer and inner
tessellation levels written by the tessellation control shader. These levels are specified using the built-in variables
TessLevelOuter and TessLevelInner, respectively. This subdivision is performed in an
implementation-dependent manner. If no tessellation shaders are present in the pipeline, the tessellator is disabled and
incoming primitives are passed through without modification.

The type of subdivision performed by the tessellator is specified by an OpExecutionMode instruction in the
tessellation evaluation or tessellation control shader using one of execution modes Triangles, Quads, and
IsoLines. Other tessellation-related execution modes can also be specified in either the tessellation control or
tessellation evaluation shaders, and if they are specified in both then the modes must be the same.

Tessellation execution modes include:

• Triangles, Quads, and IsoLines. These control the type of subdivision and topology of the output primitives.
One mode must be set in at least one of the tessellation shader stages.

• VertexOrderCw and VertexOrderCcw. These control the orientation of triangles generated by the tessellator.
One mode must be set in at least one of the tessellation shader stages.

• PointMode. Controls generation of points rather than triangles or lines. This functionality defaults to disabled, and is
enabled if either shader stage includes the execution mode.

• SpacingEqual, SpacingFractionalEven, and SpacingFractionalOdd. Controls the spacing of
segments on the edges of tessellated primitives. One mode must be set in at least one of the tessellation shader stages.

• OutputVertices. Controls the size of the output patch of the tessellation control shader. One value must be set in
at least one of the tessellation shader stages.

For triangles, the tessellator subdivides a triangle primitive into smaller triangles. For quads, the tessellator subdivides a
rectangle primitive into smaller triangles. For isolines, the tessellator subdivides a rectangle primitive into a collection of
line segments arranged in strips stretching across the rectangle in the u dimension (i.e. the coordinates in TessCoord
are of the form (0,x) through (1,x) for all tessellation evaluation shader invocations that share a line).

Each vertex produced by the tessellator has an associated (u,v,w) or (u,v) position in a normalized parameter space, with
parameter values in the range [0,1], as illustrated in figure Figure 21.1.

IL1

IL0

OL0 OL2

OL3

OL1

Quads

IL0

OL0

OL1

OL2

Triangles

Isolines

OL1

(no edge)

OL0

(0,0) (1,0)

(0,1) (1,1)

(0,0) (1,0)

(0,1) (1,1)

(0,0,1)

(0,1,0)

(1,0,0)

Figure 21.1: Domain parameterization for tessellation primitive modes

Caption

In the Domain parameterization diagram, the coordinates illustrate the value of TessCoord at the corners of the
domain. The labels on the edges indicate the inner (IL0 and IL1) and outer (OL0 through OL3) tessellation level
values used to control the number of subdivisions along each edge of the domain.

For triangles, the vertex’s position is a barycentric coordinate (u,v,w), where u + v + w = 1.0, and indicates the relative
influence of the three vertices of the triangle on the position of the vertex. For quads and isolines, the position is a (u,v)
coordinate indicating the relative horizontal and vertical position of the vertex relative to the subdivided rectangle. The
subdivision process is explained in more detail in subsequent sections.

Vulkan 1.0.36 - A Specification 453 / 683

21.2 Tessellator Patch Discard

A patch is discarded by the tessellator if any relevant outer tessellation level is less than or equal to zero.

Patches will also be discarded if any relevant outer tessellation level corresponds to a floating-point NaN (not a number)
in implementations supporting NaN.

No new primitives are generated and the tessellation evaluation shader is not executed for patches that are discarded. For
Quads, all four outer levels are relevant. For Triangles and IsoLines, only the first three or two outer levels,
respectively, are relevant. Negative inner levels will not cause a patch to be discarded; they will be clamped as described
below.

21.3 Tessellator Spacing

Each of the tessellation levels is used to determine the number and spacing of segments used to subdivide a
corresponding edge. The method used to derive the number and spacing of segments is specified by an
OpExecutionMode in the tessellation control or tessellation evaluation shader using one of the identifiers
SpacingEqual, SpacingFractionalEven, or SpacingFractionalOdd.

If SpacingEqual is used, the floating-point tessellation level is first clamped to [1, maxLevel], where maxLevel is
the implementation-dependent maximum tessellation level
(VkPhysicalDeviceLimits::maxTessellationGenerationLevel). The result is rounded up to the nearest
integer n, and the corresponding edge is divided into n segments of equal length in (u,v) space.

If SpacingFractionalEven is used, the tessellation level is first clamped to [2, maxLevel] and then rounded up to
the nearest even integer n. If SpacingFractionalOdd is used, the tessellation level is clamped to [1, maxLevel - 1]
and then rounded up to the nearest odd integer n. If n is one, the edge will not be subdivided. Otherwise, the
corresponding edge will be divided into n - 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional segments relative to the others will
decrease monotonically with n - f, where f is the clamped floating-point tessellation level. When n - f is zero, the
additional segments will have equal length to the other segments. As n - f approaches 2.0, the relative length of the
additional segments approaches zero. The two additional segments must be placed symmetrically on opposite sides of
the subdivided edge. The relative location of these two segments is implementation-dependent, but must be identical for
any pair of subdivided edges with identical values of f.

When the tessellator produces triangles (in the Triangles or Quads modes), the orientation of all triangles is
specified with an OpExecutionMode of VertexOrderCw or VertexOrderCcw in the tessellation control or
tessellation evaluation shaders. If the order is VertexOrderCw, the vertices of all generated triangles will have
clockwise ordering in (u,v) or (u,v,w) space. If the order is VertexOrderCcw, the vertices will have
counter-clockwise ordering.

The vertices of a triangle have counter-clockwise ordering if

a = u0 v1 - u1 v0 + u1 v2 - u2 v1 + u2 v0 - u0 v2

is positive, and clockwise ordering if a is negative. ui and vi are the u and v coordinates in normalized parameter space of
the ith vertex of the triangle.

Note
The value a is proportional (with a positive factor) to the signed area of the triangle.
In Triangles mode, even though the vertex coordinates have a w value, it does not participate directly in the
computation of a, being an affine combination of u and v.

For all primitive modes, the tessellator is capable of generating points instead of lines or triangles. If the tessellation
control or tessellation evaluation shader specifies the OpExecutionMode PointMode, the primitive generator will
generate one point for each distinct vertex produced by tessellation. Otherwise, the tessellator will produce a collection
of line segments or triangles according to the primitive mode. When tessellating triangles or quads in point mode with
fractional odd spacing, the tessellator may produce interior vertices that are positioned on the edge of the patch if an
inner tessellation level is less than or equal to one. Such vertices are considered distinct from vertices produced by
subdividing the outer edge of the patch, even if there are pairs of vertices with identical coordinates.

The points, lines, or triangles produced by the tessellator are passed to subsequent pipeline stages in an
implementation-dependent order.

21.4 Triangle Tessellation

If the tessellation primitive mode is Triangles, an equilateral triangle is subdivided into a collection of triangles
covering the area of the original triangle. First, the original triangle is subdivided into a collection of concentric
equilateral triangles. The edges of each of these triangles are subdivided, and the area between each triangle pair is filled
by triangles produced by joining the vertices on the subdivided edges. The number of concentric triangles and the
number of subdivisions along each triangle except the outermost is derived from the first inner tessellation level. The
edges of the outermost triangle are subdivided independently, using the first, second, and third outer tessellation levels to
control the number of subdivisions of the u = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively. The second
inner tessellation level and the fourth outer tessellation level have no effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are exactly one after clamping and rounding, only
a single triangle with (u,v,w) coordinates of (0,0,1), (1,0,0), and (0,1,0) is generated. If the inner tessellation level is one
and any of the outer tessellation levels is greater than one, the inner tessellation level is treated as though it were
originally specified as 1 + ε and will result in a two- or three-segment subdivision depending on the tessellation spacing.
When used with fractional odd spacing, the three-segment subdivision may produce inner vertices positioned on the edge
of the triangle.

If any tessellation level is greater than one, tessellation begins by producing a set of concentric inner triangles and
subdividing their edges. First, the three outer edges are temporarily subdivided using the clamped and rounded first inner
tessellation level and the specified tessellation spacing, generating n segments. For the outermost inner triangle, the inner
triangle is degenerate — a single point at the center of the triangle — if n is two. Otherwise, for each corner of the outer
triangle, an inner triangle corner is produced at the intersection of two lines extended perpendicular to the corner’s two
adjacent edges running through the vertex of the subdivided outer edge nearest that corner. If n is three, the edges of the
inner triangle are not subdivided and is the final triangle in the set of concentric triangles. Otherwise, each edge of the
inner triangle is divided into n - 2 segments, with the n - 1 vertices of this subdivision produced by intersecting the inner
edge with lines perpendicular to the edge running through the n - 1 innermost vertices of the subdivision of the outer
edge. Once the outermost inner triangle is subdivided, the previous subdivision process repeats itself, using the generated
triangle as an outer triangle. This subdivision process is illustrated in Inner Triangle Tessellation.

Vulkan 1.0.36 - A Specification 455 / 683

(a)

(b)

(0,0,1)

(0,1,0)

(1,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

Figure 21.2: Inner Triangle Tessellation

Caption

In the Inner Triangle Tessellation diagram, inner tessellation levels of (a) five and (b) four are shown (not to scale).
Solid black circles depict vertices along the edges of the concentric triangles. The edges of inner triangles are
subdivided by intersecting the edge with segments perpendicular to the edge passing through each inner vertex of
the subdivided outer edge. Dotted lines depict edges connecting corresponding vertices on the inner and outer
triangle edges.

Once all the concentric triangles are produced and their edges are subdivided, the area between each pair of adjacent
inner triangles is filled completely with a set of non-overlapping triangles. In this subdivision, two of the three vertices of
each triangle are taken from adjacent vertices on a subdivided edge of one triangle; the third is one of the vertices on the
corresponding edge of the other triangle. If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle with the center point. If the innermost
triangle is not degenerate, that triangle is added to the set of generated triangles as-is.

After the area corresponding to any inner triangles is filled, the tessellator generates triangles to cover the area between
the outermost triangle and the outermost inner triangle. To do this, the temporary subdivision of the outer triangle edge
above is discarded. Instead, the u = 0, v = 0, and w = 0 edges are subdivided according to the first, second, and third outer
tessellation levels, respectively, and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by non-overlapping triangles as
described above. If the first (and only) inner triangle is degenerate, a set of triangles is produced by connecting each
vertex on the outer triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is assigned a barycentric (u,v,w) coordinate based
on its location relative to the three vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u,v,w) space into individual triangles is
implementation-dependent. However, the set of triangles produced will completely cover the domain, and no portion of
the domain will be covered by multiple triangles. The order in which the generated triangles passed to subsequent
pipeline stages and the order of the vertices in those triangles are both implementation-dependent. However, when
depicted in a manner similar to Inner Triangle Tessellation, the order of the vertices in the generated triangles will be
either all clockwise or all counter-clockwise, according to the vertex order layout declaration.

21.5 Quad Tessellation

If the tessellation primitive mode is Quads, a rectangle is subdivided into a collection of triangles covering the area of
the original rectangle. First, the original rectangle is subdivided into a regular mesh of rectangles, where the number of
rectangles along the u = 0 and u = 1 (vertical) and v = 0 and v = 1 (horizontal) edges are derived from the first and second
inner tessellation levels, respectively. All rectangles, except those adjacent to one of the outer rectangle edges, are
decomposed into triangle pairs. The outermost rectangle edges are subdivided independently, using the first, second,
third, and fourth outer tessellation levels to control the number of subdivisions of the u = 0 (left), v = 0 (bottom), u = 1
(right), and v = 1 (top) edges, respectively. The area between the inner rectangles of the mesh and the outer rectangle
edges are filled by triangles produced by joining the vertices on the subdivided outer edges to the vertices on the edge of
the inner rectangle mesh.

If both clamped inner tessellation levels and all four clamped outer tessellation levels are exactly one, only a single
triangle pair covering the outer rectangle is generated. Otherwise, if either clamped inner tessellation level is one, that
tessellation level is treated as though it were originally specified as 1 + ε and will result in a two- or three-segment

Vulkan 1.0.36 - A Specification 457 / 683

subdivision depending on the tessellation spacing. When used with fractional odd spacing, the three-segment subdivision
may produce inner vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing the u = 0 and u = 1 edges of the outer
rectangle into m segments using the clamped and rounded first inner tessellation level and the tessellation spacing. The v
= 0 and v = 1 edges are subdivided into n segments using the second inner tessellation level. Each vertex on the u = 0 and
v = 0 edges are joined with the corresponding vertex on the u = 1 and v = 1 edges to produce a set of vertical and
horizontal lines that divide the rectangle into a grid of smaller rectangles. The primitive generator emits a pair of
non-overlapping triangles covering each such rectangle not adjacent to an edge of the outer rectangle. The boundary of
the region covered by these triangles forms an inner rectangle, the edges of which are subdivided by the grid vertices that
lie on the edge. If either m or n is two, the inner rectangle is degenerate, and one or both of the rectangle’s edges consist
of a single point. This subdivision is illustrated in Figure Inner Quad Tessellation.

(0,1)

(0,0)

(1,1)

(1,0)

(0,1)

(0,0)

(1,1)

(1,0)
(a)

(b)

Figure 21.3: Inner Quad Tessellation

Caption

In the Inner Quad Tessellation diagram, inner quad tessellation levels of (a) (4,2) and (b) (7,4) are shown. Gray
regions in figure (b) depict the 10 inner rectangles, each of which will be subdivided into two triangles. Solid black
circles depict vertices on the boundary of the outer and inner rectangles, where the inner rectangle on the top figure
is degenerate (a single line segment). Dotted lines depict the horizontal and vertical edges connecting corresponding
vertices on the inner and outer rectangle edges.

After the area corresponding to the inner rectangle is filled, the tessellator must produce triangles to cover the area
between the inner and outer rectangles. To do this, the subdivision of the outer rectangle edge above is discarded. Instead,
the u = 0, v = 0, u = 1, and v = 1 edges are subdivided according to the first, second, third, and fourth outer tessellation
levels, respectively, and the tessellation spacing. The original subdivision of the inner rectangle is retained. The area
between the outer and inner rectangles is completely filled by non-overlapping triangles. Two of the three vertices of each
triangle are adjacent vertices on a subdivided edge of one rectangle; the third is one of the vertices on the corresponding
edge of the other triangle. If either edge of the innermost rectangle is degenerate, the area near the corresponding outer
edges is filled by connecting each vertex on the outer edge with the single vertex making up the inner edge.

The algorithm used to subdivide the rectangular domain in (u,v) space into individual triangles is
implementation-dependent. However, the set of triangles produced will completely cover the domain, and no portion of
the domain will be covered by multiple triangles. The order in which the generated triangles passed to subsequent
pipeline stages and the order of the vertices in those triangles are both implementation-dependent. However, when
depicted in a manner similar to Inner Quad Tessellation, the order of the vertices in the generated triangles will be either
all clockwise or all counter-clockwise, according to the vertex order layout declaration.

21.6 Isoline Tessellation

If the tessellation primitive mode is IsoLines, a set of independent horizontal line segments is drawn. The segments
are arranged into connected strips called isolines, where the vertices of each isoline have a constant v coordinate and u
coordinates covering the full range [0,1]. The number of isolines generated is derived from the first outer tessellation
level; the number of segments in each isoline is derived from the second outer tessellation level. Both inner tessellation
levels and the third and fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle. The u = 0 and u = 1 edges of the rectangle
are subdivided according to the first outer tessellation level. For the purposes of this subdivision, the tessellation spacing
mode is ignored and treated as equal_spacing. An isoline is drawn connecting each vertex on the u = 0 rectangle edge to
the corresponding vertex on the u = 1 rectangle edge, except that no line is drawn between (0,1) and (1,1). If the number
of isolines on the subdivided u = 0 and u = 1 edges is n, this process will result in n equally spaced lines with constant v
coordinates of 0, 1

n ,
2
n , . . . ,

n−1
n .

Each of the n isolines is then subdivided according to the second outer tessellation level and the tessellation spacing,
resulting in m line segments. Each segment of each line is emitted by the tessellator.

The order in which the generated line segments are passed to subsequent pipeline stages and the order of the vertices in
each generated line segment are both implementation-dependent.

21.7 Tessellation Pipeline State

The pTessellationState member of VkGraphicsPipelineCreateInfo points to a structure of type
VkPipelineTessellationStateCreateInfo.

The VkPipelineTessellationStateCreateInfo structure is defined as:

Vulkan 1.0.36 - A Specification 459 / 683

typedef struct VkPipelineTessellationStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineTessellationStateCreateFlags flags;
uint32_t patchControlPoints;

} VkPipelineTessellationStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• patchControlPoints number of control points per patch.

Valid Usage

• patchControlPoints must be greater than zero and less than or equal to
VkPhysicalDeviceLimits::maxTessellationPatchSize

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

Vulkan 1.0.36 - A Specification 461 / 683

Chapter 22

Geometry Shading

The geometry shader operates on a group of vertices and their associated data assembled from a single input primitive,
and emits zero or more output primitives and the group of vertices and their associated data required for each output
primitive. Geometry shading is enabled when a geometry shader is included in the pipeline.

22.1 Geometry Shader Input Primitives

Each geometry shader invocation has access to all vertices in the primitive (and their associated data), which are
presented to the shader as an array of inputs. The input primitive type expected by the geometry shader is specified with
an OpExecutionMode instruction in the geometry shader, and must be compatible with the primitive topology used
by primitive assembly (if tessellation is not in use) or must match the type of primitive generated by the tessellation
primitive generator (if tessellation is in use). Compatibility is defined below, with each input primitive type. The input
primitive types accepted by a geometry shader are:

Points
Geometry shaders that operate on points use an OpExecutionMode instruction specifying the InputPoints
input mode. Such a shader is valid only when the pipeline primitive topology is VK_PRIMITIVE_TOPOLOGY_
POINT_LIST (if tessellation is not in use) or if tessellation is in use and the tessellation evaluation shader uses
PointMode. There is only a single input vertex available for each geometry shader invocation. However, inputs
to the geometry shader are still presented as an array, but this array has a length of one.

Lines
Geometry shaders that operate on line segments are generated by including an OpExecutionMode instruction
with the InputLines mode. Such a shader is valid only for the VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
and VK_PRIMITIVE_TOPOLOGY_LINE_STRIP primitive topologies (if tessellation is not in use) or if
tessellation is in use and the tessellation mode is Isolines. There are two input vertices available for each
geometry shader invocation. The first vertex refers to the vertex at the beginning of the line segment and the
second vertex refers to the vertex at the end of the line segment.

Lines with Adjacency
Geometry shaders that operate on line segments with adjacent vertices are generated by including an
OpExecutionMode instruction with the InputLinesAdjacency mode. Such a shader is valid only for the
VK_PRIMITIVE_TOPOLOGY_LINES_WITH_ADJACENCY and VK_PRIMITIVE_TOPOLOGY_LINE_
STRIP_WITH_ADJACENCY primitive topologies and must not be used when tessellation is in use.

In this mode, there are four vertices available for each geometry shader invocation. The second vertex refers to
attributes of the vertex at the beginning of the line segment and the third vertex refers to the vertex at the end of the

line segment. The first and fourth vertices refer to the vertices adjacent to the beginning and end of the line
segment, respectively.

Triangles
Geometry shaders that operate on triangles are created by including an OpExecutionMode instruction with the
Triangles mode. Such a shader is valid when the pipeline topology is VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, or VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_FAN (if tessellation is not in use) or when tessellation is in use and the tessellation mode is
Triangles or Quads.

In this mode, there are three vertices available for each geometry shader invocation. The first, second, and third
vertices refer to attributes of the first, second, and third vertex of the triangle, respectively.

Triangles with Adjacency
Geometry shaders that operate on triangles with adjacent vertices are created by including an
OpExecutionMode instruction with the InputTrianglesAdjacency mode. Such a shader is valid when
the pipeline topology is VK_PRIMITIVE_TOPOLOGY_TRIANGLES_WITH_ADJACENCY or VK_
PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, and must not be used when tessellation is
in use.

In this mode, there are six vertices available for each geometry shader invocation. The first, third and fifth vertices
refer to attributes of the first, second and third vertex of the triangle, respectively. The second, fourth and sixth
vertices refer to attributes of the vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

22.2 Geometry Shader Output Primitives

A geometry shader generates primitives in one of three output modes: points, line strips, or triangle strips. The primitive
mode is specified in the shader using an OpExecutionMode instruction with the OutputPoints,
OutputLineStrip or OutputTriangleStrip modes, respectively. Each geometry shader must include exactly
one output primitive mode.

The vertices output by the geometry shader are assembled into points, lines, or triangles based on the output primitive
type and the resulting primitives are then further processed as described in Chapter 24. If the number of vertices emitted
by the geometry shader is not sufficient to produce a single primitive, vertices corresponding to incomplete primitives are
not processed by subsequent pipeline stages. The number of vertices output by the geometry shader is limited to a
maximum count specified in the shader.

The maximum output vertex count is specified in the shader using an OpExecutionMode instruction with the mode
set to OutputVertices and the maximum number of vertices that will be produced by the geometry shader specified
as a literal. Each geometry shader must specify a maximum output vertex count.

22.3 Multiple Invocations of Geometry Shaders

Geometry shaders can be invoked more than one time for each input primitive. This is known as geometry shader
instancing and is requested by including an OpExecutionMode instruction with mode specified as Invocations
and the number of invocations specified as an integer literal.

In this mode, the geometry shader will execute n times for each input primitive, where n is the number of invocations
specified in the OpExecutionMode instruction. The instance number is available to each invocation as a built-in input
using InvocationId.

Vulkan 1.0.36 - A Specification 463 / 683

22.4 Geometry Shader Primitive Ordering

Limited guarantees are provided for the relative ordering of primitives produced by a geometry shader.

• For instanced geometry shaders, the output primitives generated from each input primitive are passed to subsequent
pipeline stages using the invocation number to order the primitives, from least to greatest.

• All output primitives generated from a given input primitive are passed to subsequent pipeline stages before any output
primitives generated from subsequent input primitives.

Vulkan 1.0.36 - A Specification 465 / 683

Chapter 23

Fixed-Function Vertex Post-Processing

After programmable vertex processing, the following fixed-function operations are applied to vertices of the resulting
primitives:

• Flatshading (see Flatshading).

• Primitive clipping, including client-defined half-spaces (see Primitive Clipping).

• Shader output attribute clipping (see Clipping Shader Outputs).

• Perspective division on clip coordinates (see Coordinate Transformations).

• Viewport mapping, including depth range scaling (see Controlling the Viewport).

• Front face determination for polygon primitives (see Basic Polygon Rasterization).

Next, rasterization is performed on primitives as described in chapter Rasterization.

23.1 Flat Shading

Flat shading a vertex output attribute means to assign all vertices of the primitive the same value for that output.

The output values assigned are those of the provoking vertex of the primitive. The provoking vertex depends on the
primitive topology, and is generally the “first” vertex of the primitive. For primitives not processed by tessellation or
geometry shaders, the provoking vertex is selected from the input vertices according to the following table.

Table 23.1: Provoking vertex selection

Primitive type of primitive i Provoking vertex number
VK_PRIMITIVE_TOPOLOGY_POINT_LIST i
VK_PRIMITIVE_TOPOLOGY_LINE_LIST 2 i
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP i
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST 3 i
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP i
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN i + 1
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY 4 i + 1
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY i + 1
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY 6 i
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY 2 i

Caption

The Provoking vertex selection table defines the output values used for flat shading the ith primitive generated by
drawing commands with the indicated primitive type, derived from the corresponding values of the vertex whose
index is shown in the table. Primitives and vertices are numbered starting from zero.

Flat shading is applied to those vertex attributes that match fragment input attributes which are decorated as Flat.

If a geometry shader is active, the output primitive topology is either points, line strips, or triangle strips, and the
selection of the provoking vertex behaves according to the corresponding row of the table. If a tessellation evaluation
shader is active and a geometry shader is not active, the provoking vertex is undefined but must be one of the vertices of
the primitive.

23.2 Primitive Clipping

Primitives are culled against the cull volume and then clipped to the clip volume. In clip coordinates, the view volume is
defined by:

−wc ≤ xc ≤ wc
−wc ≤ yc ≤ wc

0≤ zc ≤ wc

This view volume can be further restricted by as many as VkPhysicalDeviceLimits::maxClipDistances
client-defined half-spaces.

The cull volume is the intersection of up to VkPhysicalDeviceLimits::maxCullDistances client-defined
half-spaces (if no client-defined cull half-spaces are enabled, culling against the cull volume is skipped).

A shader must write a single cull distance for each enabled cull half-space to elements of the CullDistance array. If
the cull distance for any enabled cull half-space is negative for all of the vertices of the primitive under consideration, the
primitive is discarded. Otherwise the primitive is clipped against the clip volume as defined below.

The clip volume is the intersection of up to VkPhysicalDeviceLimits::maxClipDistances client-defined
half-spaces with the view volume (if no client-defined clip half-spaces are enabled, the clip volume is the view volume).

Vulkan 1.0.36 - A Specification 467 / 683

A shader must write a single clip distance for each enabled clip half-space to elements of the ClipDistance array.
Clip half-space i is then given by the set of points satisfying the inequality

ci(P) ≥ 0

where ci(P) is the clip distance i at point P. For point primitives, ci(P) is simply the clip distance for the vertex in
question. For line and triangle primitives, per-vertex clip distances are interpolated using a weighted mean, with weights
derived according to the algorithms described in sections Basic Line Segment Rasterization and Basic Polygon
Rasterization, using the perspective interpolation equations.

The number of client-defined clip and cull half-spaces that are enabled is determined by the explicit size of the built-in
arrays ClipDistance and CullDistance, respectively, declared as an output in the interface of the entry point of
the final shader stage before clipping.

Depth clamping is enabled or disabled via the depthClampEnable enable of the
VkPipelineRasterizationStateCreateInfo structure. If depth clamping is enabled, the plane equation

0 ≤ zc ≤ wc

(see the clip volume definition above) is ignored by view volume clipping (effectively, there is no near or far plane
clipping).

If the primitive under consideration is a point, then clipping passes it unchanged if it lies within the clip volume;
otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies entirely within the clip volume, and discards it
if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the line segment is clipped and new vertex
coordinates are computed for one or both vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the coordinates of a clipped vertex are P and the
original vertices’ coordinates are P1 and P2, then t is given by

P = t P1 + (1-t) P2.

t is used to clip vertex output attributes as described in Clipping Shader Outputs.

If the primitive is a polygon, it passes unchanged if every one of its edges lie entirely inside the clip volume, and it is
discarded if every one of its edges lie entirely outside the clip volume. If the edges of the polygon intersect the boundary
of the clip volume, the intersecting edges are reconnected by new edges that lie along the boundary of the clip volume -
in some cases requiring the introduction of new vertices into a polygon.

If a polygon intersects an edge of the clip volume’s boundary, the clipped polygon must include a point on this boundary
edge.

Primitives rendered with user-defined half-spaces must satisfy a complementarity criterion. Suppose a series of
primitives is drawn where each vertex i has a single specified clip distance di (or a number of similarly specified clip
distances, if multiple half-spaces are enabled). Next, suppose that the same series of primitives are drawn again with
each such clip distance replaced by -di (and the graphics pipeline is otherwise the same). In this case, primitives must not
be missing any pixels, and pixels must not be drawn twice in regions where those primitives are cut by the clip planes.

23.3 Clipping Shader Outputs

Next, vertex output attributes are clipped. The output values associated with a vertex that lies within the clip volume are
unaffected by clipping. If a primitive is clipped, however, the output values assigned to vertices produced by clipping are
clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped edge be c1 and c2. The value of t (see
Primitive Clipping) for a clipped point P is used to obtain the output value associated with P as

c = t c1 + (1-t) c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w by the scalar.)

Since this computation is performed in clip space before division by wc, clipped output values are perspective-correct.

Polygon clipping creates a clipped vertex along an edge of the clip volume’s boundary. This situation is handled by
noting that polygon clipping proceeds by clipping against one half-space at a time. Output value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges (possibly already clipped) with the
clip volume’s boundary.

For vertex output attributes whose matching fragment input attributes are decorated with NoPerspective, the value
of t used to obtain the output value associated with P will be adjusted to produce results that vary linearly in framebuffer
space.

Output attributes of integer or unsigned integer type must always be flat shaded. Flat shaded attributes are constant over
the primitive being rasterized (see Basic Line Segment Rasterization and Basic Polygon Rasterization), and no
interpolation is performed. The output value c is taken from either c1 or c2, since flat shading has already occurred and
the two values are identical.

23.4 Coordinate Transformations

Clip coordinates for a vertex result from shader execution, which yields a vertex coordinate Position.

Perspective division on clip coordinates yields normalized device coordinates, followed by a viewport transformation
(see Controlling the Viewport) to convert these coordinates into framebuffer coordinates.

If a vertex in clip coordinates has a position given by
xc
yc
zc
wc

then the vertex’s normalized device coordinates are xd

yd
zd

=

 xc
wcyc
wczc
wc

23.5 Controlling the Viewport

The viewport transformation is determined by the selected viewport’s width and height in pixels, px and py, respectively,
and its center (ox, oy) (also in pixels), as well as its depth range min and max determining a depth range scale value pz
and a depth range bias value oz (defined below). The vertex’s framebuffer coordinates (xf, yf, zf) are given by

Vulkan 1.0.36 - A Specification 469 / 683

xf = (px / 2) xd + ox

yf = (py / 2) yd + oy

zf = pz × zd + oz

Multiple viewports are available, numbered zero up to VkPhysicalDeviceLimits::maxViewports minus one.
The number of viewports used by a pipeline is controlled by the viewportCount member of the
VkPipelineViewportStateCreateInfo structure used in pipeline creation.

The VkPipelineViewportStateCreateInfo structure is defined as:

typedef struct VkPipelineViewportStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineViewportStateCreateFlags flags;
uint32_t viewportCount;
const VkViewport* pViewports;
uint32_t scissorCount;
const VkRect2D* pScissors;

} VkPipelineViewportStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• viewportCount is the number of viewports used by the pipeline.

• pViewports is a pointer to an array of VkViewport structures, defining the viewport transforms. If the viewport
state is dynamic, this member is ignored.

• scissorCount is the number of scissors and must match the number of viewports.

• pScissors is a pointer to an array of VkRect2D structures which define the rectangular bounds of the scissor for the
corresponding viewport. If the scissor state is dynamic, this member is ignored.

Valid Usage

• If the multiple viewports feature is not enabled, viewportCount must be 1

• If the multiple viewports feature is not enabled, scissorCount must be 1

• viewportCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• scissorCount must be between 1 and VkPhysicalDeviceLimits::maxViewports, inclusive

• scissorCount and viewportCount must be identical

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• viewportCount must be greater than 0

• scissorCount must be greater than 0

If a geometry shader is active and has an output variable decorated with ViewportIndex, the viewport transformation
uses the viewport corresponding to the value assigned to ViewportIndex taken from an implementation-dependent
vertex of each primitive. If ViewportIndex is outside the range zero to viewportCount minus one for a primitive,
or if the geometry shader did not assign a value to ViewportIndex for all vertices of a primitive due to flow control,
the results of the viewport transformation of the vertices of such primitives are undefined. If no geometry shader is
active, or if the geometry shader does not have an output decorated with ViewportIndex, the viewport numbered zero
is used by the viewport transformation.

A single vertex can be used in more than one individual primitive, in primitives such as VK_PRIMITIVE_TOPOLOGY_
TRIANGLE_STRIP. In this case, the viewport transformation is applied separately for each primitive.

If the bound pipeline state object was not created with the VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled,
viewport transformation parameters are specified using the pViewports member of
VkPipelineViewportStateCreateInfo in the pipeline state object. If the pipeline state object was created with
the VK_DYNAMIC_STATE_VIEWPORT dynamic state enabled, the viewport transformation parameters are
dynamically set and changed with the command:

void vkCmdSetViewport(
VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport* pViewports);

• commandBuffer is the command buffer into which the command will be recorded.

• firstViewport is the index of the first viewport whose parameters are updated by the command.

• viewportCount is the number of viewports whose parameters are updated by the command.

• pViewports is a pointer to an array of VkViewport structures specifying viewport parameters.

The viewport parameters taken from element i of pViewports replace the current state for the viewport index
firstViewport + i, for i in [0, viewportCount).

Vulkan 1.0.36 - A Specification 471 / 683

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_VIEWPORT
dynamic state enabled

• firstViewport must be less than VkPhysicalDeviceLimits::maxViewports

• The sum of firstViewport and viewportCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• pViewports must be a pointer to an array of viewportCount valid VkViewport structures

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• viewportCount must be greater than 0

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

Both VkPipelineViewportStateCreateInfo and vkCmdSetViewport use VkViewport to set the
viewport transformation parameters.

The VkViewport structure is defined as:

typedef struct VkViewport {
float x;
float y;
float width;
float height;
float minDepth;
float maxDepth;

} VkViewport;

• x and y are the viewport’s upper left corner (x,y).

• width and height are the viewport’s width and height, respectively.

• minDepth and maxDepth are the depth range for the viewport. It is valid for minDepth to be greater than or equal to
maxDepth.

The framebuffer depth coordinate zf may be represented using either a fixed-point or floating-point representation.
However, a floating-point representation must be used if the depth/stencil attachment has a floating-point depth
component. If an m-bit fixed-point representation is used, we assume that it represents each value k

2m−1 , where k ∈ { 0,
1, . . . , 2m-1 }, as k (e.g. 1.0 is represented in binary as a string of all ones).

The viewport parameters shown in the above equations are found from these values as

ox = x + width / 2

oy = y + height / 2

oz = minDepth

px = width

py = height

pz = maxDepth - minDepth.

The width and height of the implementation-dependent maximum viewport dimensions must be greater than or equal to
the width and height of the largest image which can be created and attached to a framebuffer.

The floating-point viewport bounds are represented with an implementation-dependent precision.

Vulkan 1.0.36 - A Specification 473 / 683

Valid Usage

• width must be greater than 0.0 and less than or equal to
VkPhysicalDeviceLimits::maxViewportDimensions[0]

• height must be greater than 0.0 and less than or equal to
VkPhysicalDeviceLimits::maxViewportDimensions[1]

• x and y must each be between viewportBoundsRange[0] and viewportBoundsRange[1], inclusive

• x + width must be less than or equal to viewportBoundsRange[1]

• y + height must be less than or equal to viewportBoundsRange[1]

• minDepth must be between 0.0 and 1.0, inclusive

• maxDepth must be between 0.0 and 1.0, inclusive

Vulkan 1.0.36 - A Specification 475 / 683

Chapter 24

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional image. Each point of this image
contains associated data such as depth, color, or other attributes.

Rasterizing a primitive begins by determining which squares of an integer grid in framebuffer coordinates are occupied
by the primitive, and assigning one or more depth values to each such square. This process is described below for points,
lines, and polygons.

A grid square, including its (x,y) framebuffer coordinates, z (depth), and associated data added by fragment shaders, is
called a fragment. A fragment is located by its upper left corner, which lies on integer grid coordinates.

Rasterization operations also refer to a fragment’s sample locations, which are offset by subpixel fractional values from
its upper left corner. The rasterization rules for points, lines, and triangles involve testing whether each sample location is
inside the primitive. Fragments need not actually be square, and rasterization rules are not affected by the aspect ratio of
fragments. Display of non-square grids, however, will cause rasterized points and line segments to appear fatter in one
direction than the other.

We assume that fragments are square, since it simplifies antialiasing and texturing. After rasterization, fragments are
processed by the early per-fragment tests, if enabled.

Several factors affect rasterization, including the members of VkPipelineRasterizationStateCreateInfo
and VkPipelineMultisampleStateCreateInfo.

The VkPipelineRasterizationStateCreateInfo structure is defined as:

typedef struct VkPipelineRasterizationStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineRasterizationStateCreateFlags flags;
VkBool32 depthClampEnable;
VkBool32 rasterizerDiscardEnable;
VkPolygonMode polygonMode;
VkCullModeFlags cullMode;
VkFrontFace frontFace;
VkBool32 depthBiasEnable;
float depthBiasConstantFactor;
float depthBiasClamp;
float depthBiasSlopeFactor;
float lineWidth;

} VkPipelineRasterizationStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• depthClampEnable controls whether to clamp the fragment’s depth values instead of clipping primitives to the z
planes of the frustum, as described in Primitive Clipping.

• rasterizerDiscardEnable controls whether primitives are discarded immediately before the rasterization stage.

• polygonMode is the triangle rendering mode. See VkPolygonMode.

• cullMode is the triangle facing direction used for primitive culling. See VkCullModeFlagBits.

• frontFace is the front-facing triangle orientation to be used for culling. See VkFrontFace.

• depthBiasEnable controls whether to bias fragment depth values.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

• lineWidth is the width of rasterized line segments.

Valid Usage

• If the depth clamping feature is not enabled, depthClampEnable must be VK_FALSE

• If the non-solid fill modes feature is not enabled, polygonMode must be VK_POLYGON_MODE_FILL

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• polygonMode must be a valid VkPolygonMode value

• cullMode must be a valid combination of VkCullModeFlagBits values

• frontFace must be a valid VkFrontFace value

The VkPipelineMultisampleStateCreateInfo structure is defined as:

Vulkan 1.0.36 - A Specification 477 / 683

typedef struct VkPipelineMultisampleStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineMultisampleStateCreateFlags flags;
VkSampleCountFlagBits rasterizationSamples;
VkBool32 sampleShadingEnable;
float minSampleShading;
const VkSampleMask* pSampleMask;
VkBool32 alphaToCoverageEnable;
VkBool32 alphaToOneEnable;

} VkPipelineMultisampleStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• rasterizationSamples is a VkSampleCountFlagBits specifying the number of samples per pixel used in
rasterization.

• sampleShadingEnable specifies that fragment shading executes per-sample if VK_TRUE, or per-fragment if VK_
FALSE, as described in Sample Shading.

• minSampleShading is the minimum fraction of sample shading, as described in Sample Shading.

• pSampleMask is a bitmask of static coverage information that is ANDed with the coverage information generated
during rasterization, as described in Sample Mask.

• alphaToCoverageEnable controls whether a temporary coverage value is generated based on the alpha component
of the fragment’s first color output as specified in the Multisample Coverage section.

• alphaToOneEnable controls whether the alpha component of the fragment’s first color output is replaced with one as
described in Multisample Coverage.

Valid Usage

• If the sample rate shading feature is not enabled, sampleShadingEnable must be VK_FALSE

• If the alpha to one feature is not enabled, alphaToOneEnable must be VK_FALSE

• minSampleShading must be in the range [0,1]

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• rasterizationSamples must be a valid VkSampleCountFlagBits value

• If pSampleMask is not NULL, pSampleMask must be a pointer to an array of d rasterizationSamples
32 e

VkSampleMask values

Rasterization only produces fragments corresponding to pixels in the framebuffer. Fragments which would be produced
by application of any of the primitive rasterization rules described below but which lie outside the framebuffer are not
produced, nor are they processed by any later stage of the pipeline, including any of the early per-fragment tests
described in Early Per-Fragment Tests.

Surviving fragments are processed by fragment shaders. Fragment shaders determine associated data for fragments, and
can also modify or replace their assigned depth values.

If the subpass for which this pipeline is being created uses color and/or depth/stencil attachments, then
rasterizationSamples must be the same as the sample count for those subpass attachments. Otherwise,
rasterizationSamples must follow the rules for a zero-attachment subpass.

24.1 Discarding Primitives Before Rasterization

Primitives are discarded before rasterization if the rasterizerDiscardEnable member of
VkPipelineRasterizationStateCreateInfo is enabled. When enabled, primitives are discarded after they
are processed by the last active shader stage in the pipeline before rasterization.

24.2 Rasterization Order

Within a subpass of a render pass instance, for a given (x,y,layer,sample) sample location, the following stages are
guaranteed to execute in rasterization order for each separate primitive that includes that sample location:

• depth bounds test

• stencil test, stencil op and stencil write

• depth test and depth write

• occlusion queries

• blending, logic op and color write

Each of these operations is atomically executed for each primitive and sample location.

Execution of these operations for each primitive in a subpass occurs in API order.

Vulkan 1.0.36 - A Specification 479 / 683

24.3 Multisampling

Multisampling is a mechanism to antialias all Vulkan primitives: points, lines, and polygons. The technique is to sample
all primitives multiple times at each pixel. Each sample in each framebuffer attachment has storage for a color, depth,
and/or stencil value, such that per-fragment operations apply to each sample independently. The color sample values can
be later resolved to a single color (see Resolving Multisample Images and the Render Pass chapter for more details on
how to resolve multisample images to non-multisample images).

Vulkan defines rasterization rules for single-sample modes in a way that is equivalent to a multisample mode with a
single sample in the center of each pixel.

Each fragment includes a coverage value with rasterizationSamples bits (see Sample Mask). Each fragment
includes rasterizationSamples depth values and sets of associated data. An implementation may choose to assign
the same associated data to more than one sample. The location for evaluating such associated data may be anywhere
within the pixel including the pixel center or any of the sample locations. When rasterizationSamples is VK_
SAMPLE_COUNT_1_BIT, the pixel center must be used. The different associated data values need not all be evaluated
at the same location. Each pixel fragment thus consists of integer x and y grid coordinates, rasterizationSamples
depth values and sets of associated data, and a coverage value with rasterizationSamples bits.

It is understood that each pixel has rasterizationSamples locations associated with it. These locations are exact
positions, rather than regions or areas, and each is referred to as a sample point. The sample points associated with a
pixel must be located inside or on the boundary of the unit square that is considered to bound the pixel. Furthermore, the
relative locations of sample points may be identical for each pixel in the framebuffer, or they may differ. If the current
pipeline includes a fragment shader with one or more variables in its interface decorated with Sample and Input, the
data associated with those variables will be assigned independently for each sample. The values for each sample must be
evaluated at the location of the sample. The data associated with any other variables not decorated with Sample and
Input need not be evaluated independently for each sample.

If the standardSampleLocations member of VkPhysicalDeviceLimits is VK_TRUE, then the sample counts
VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_2_BIT, VK_SAMPLE_COUNT_4_BIT, VK_SAMPLE_
COUNT_8_BIT, and VK_SAMPLE_COUNT_16_BIT have sample locations as listed in the following table, with the ith
entry in the table corresponding to bit i in the sample masks. VK_SAMPLE_COUNT_32_BIT and VK_SAMPLE_
COUNT_64_BIT do not have standard sample locations. Locations are defined relative to an origin in the upper left
corner of the pixel.

Table 24.1: Standard sample locations

VK_SAMPLE_
COUNT_1_BIT

VK_SAMPLE_
COUNT_2_BIT

VK_SAMPLE_
COUNT_4_BIT

VK_SAMPLE_
COUNT_8_BIT

VK_SAMPLE_
COUNT_16_BIT

(0.5,0.5) (0.25,0.25)
(0.75,0.75)

(0.375, 0.125)
(0.875, 0.375)
(0.125, 0.625)
(0.625, 0.875)

(0.5625, 0.3125)
(0.4375, 0.6875)
(0.8125, 0.5625)
(0.3125, 0.1875)
(0.1875, 0.8125)
(0.0625, 0.4375)
(0.6875, 0.9375)
(0.9375, 0.0625)

(0.5625, 0.5625)
(0.4375, 0.3125)
(0.3125, 0.625)
(0.75, 0.4375)
(0.1875, 0.375)
(0.625, 0.8125)
(0.8125, 0.6875)
(0.6875, 0.1875)
(0.375, 0.875)
(0.5, 0.0625)
(0.25, 0.125)
(0.125, 0.75)
(0.0, 0.5)
(0.9375, 0.25)
(0.875, 0.9375)
(0.0625, 0.0)

24.4 Sample Shading

Sample shading can be used to specify a minimum number of unique samples to process for each fragment. Sample
shading is controlled by the sampleShadingEnable member of VkPipelineMultisampleStateCreateInfo.
If sampleShadingEnable is VK_FALSE, sample shading is considered disabled and has no effect. Otherwise, an
implementation must provide a minimum of max(d minSampleShading × rasterizationSamples e, 1) unique
associated data for each fragment, where minSampleShading is the minimum fraction of sample shading and
rasterizationSamples is the number of samples requested in VkPipelineMultisampleStateCreateInfo.
These are associated with the samples in an implementation-dependent manner. When the sample shading fraction is 1.0,
a separate set of associated data are evaluated for each sample, and each set of values is evaluated at the sample location.

24.5 Points

A point is drawn by generating a set of fragments in the shape of a square centered around the vertex of the point. Each
vertex has an associated point size that controls the width/height of that square. The point size is taken from the
(potentially clipped) shader built-in PointSize written by:

• the geometry shader, if active;

• the tessellation evaluation shader, if active and no geometry shader is active;

• the tessellation control shader, if active and no geometry or tessellation evaluation shader is active; or

• the vertex shader, otherwise

and clamped to the implementation-dependent point size range [pointSizeRange[0],pointSizeRange[1]]. If the
value written to PointSize is less than or equal to zero, or if no value was written to PointSize, results are
undefined.

Vulkan 1.0.36 - A Specification 481 / 683

Not all point sizes need be supported, but the size 1.0 must be supported. The range of supported sizes and the size of
evenly-spaced gradations within that range are implementation-dependent. The range and gradations are obtained from
the pointSizeRange and pointSizeGranularity members of VkPhysicalDeviceLimits. If, for instance, the
size range is from 0.1 to 2.0 and the gradation size is 0.1, then the size 0.1, 0.2, . . . , 1.9, 2.0 are supported. Additional
point sizes may also be supported. There is no requirement that these sizes be equally spaced. If an unsupported size is
requested, the nearest supported size is used instead.

24.5.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel with one or more sample points that intersect a region
centered at the point’s (xf,yf). This region is a square with side equal to the current point size. Coverage bits that
correspond to sample points that intersect the region are 1, other coverage bits are 0.

All fragments produced in rasterizing a point are assigned the same associated data, which are those of the vertex
corresponding to the point. However, the fragment shader built-in PointCoord contains point sprite texture
coordinates. The s and t point sprite texture coordinates vary from zero to one across the point horizontally left-to-right
and top-to-bottom, respectively. The following formulas are used to evaluate s and t:

s =
1
2
+

(
xp− x f

)
size

t =
1
2
+

(
yp− y f

)
size

.

where size is the point’s size, (xp,yp) is the location at which the point sprite coordinates are evaluated - this may be the
framebuffer coordinates of the pixel center (i.e. at the half-integer) or the location of a sample, and (xf,yf) is the exact,
unrounded framebuffer coordinate of the vertex for the point. When rasterizationSamples is VK_SAMPLE_
COUNT_1_BIT, the pixel center must be used.

24.6 Line Segments

A line is drawn by generating a set of fragments overlapping a rectangle centered on the line segment. Each line segment
has an associated width that controls the width of that rectangle.

The line width is set by the lineWidth property of VkPipelineRasterizationStateCreateInfo in the
currently active pipeline if the pipeline was not created with VK_DYNAMIC_STATE_LINE_WIDTH enabled.
Otherwise, the line width is set by calling vkCmdSetLineWidth:

void vkCmdSetLineWidth(
VkCommandBuffer commandBuffer,
float lineWidth);

• commandBuffer is the command buffer into which the command will be recorded.

• lineWidth is the width of rasterized line segments.

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_LINE_WIDTH
dynamic state enabled

• If the wide lines feature is not enabled, lineWidth must be 1.0

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

Not all line widths need be supported for line segment rasterization, but width 1.0 antialiased segments must be provided.
The range and gradations are obtained from the lineWidthRange and lineWidthGranularity members of
VkPhysicalDeviceLimits. If, for instance, the size range is from 0.1 to 2.0 and the gradation size is 0.1, then the
size 0.1, 0.2, . . . , 1.9, 2.0 are supported. Additional line widths may also be supported. There is no requirement that these
widths be equally spaced. If an unsupported width is requested, the nearest supported width is used instead.

Vulkan 1.0.36 - A Specification 483 / 683

24.6.1 Basic Line Segment Rasterization

Rasterized line segments produce fragments which intersect a rectangle centered on the line segment. Two of the edges
are parallel to the specified line segment; each is at a distance of one-half the current width from that segment in
directions perpendicular to the direction of the line. The other two edges pass through the line endpoints and are
perpendicular to the direction of the specified line segment. Coverage bits that correspond to sample points that intersect
the rectangle are 1, other coverage bits are 0.

Next we specify how the data associated with each rasterized fragment are obtained. Let pr = (xd, yd) be the framebuffer
coordinates at which associated data are evaluated. This may be the pixel center of a fragment or the location of a sample
within the fragment. When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center must be used.
Let pa = (xa, ya) and pb = (xb,yb) be initial and final endpoints of the line segment, respectively. Set

t =
(pr−pa) · (pb−pa)

‖pb−pa‖2

(Note that t = 0 at p_a and t = 1 at pb. Also note that this calculation projects the vector from pa to pr onto the line, and
thus computes the normalized distance of the fragment along the line.)

The value of an associated datum f for the fragment, whether it be a shader output or the clip w coordinate, must be
determined using perspective interpolation:

f =
(1− t) fa/wa + t fb/wb

(1− t)/wa + t/wb

where fa and fb are the data associated with the starting and ending endpoints of the segment, respectively; wa and wb are
the clip w coordinates of the starting and ending endpoints of the segments, respectively.

Depth values for lines must be determined using linear interpolation:

z = (1 - t) za + t zb

where za and zb are the depth values of the starting and ending endpoints of the segment, respectively.

The NoPerspective and Flat interpolation decorations can be used with fragment shader inputs to declare how
they are interpolated. When neither decoration is applied, perspective interpolation is performed as described above.
When the NoPerspective decoration is used, linear interpolation is performed in the same fashion as for depth
values, as described above. When the Flat decoration is used, no interpolation is performed, and outputs are taken from
the corresponding input value of the provoking vertex corresponding to that primitive.

The above description documents the preferred method of line rasterization, and must be used when the implementation
advertises the strictLines limit in VkPhysicalDeviceLimits as VK_TRUE.

When strictLines is VK_FALSE, the edges of the lines are generated as a parallelogram surrounding the original line.
The major axis is chosen by noting the axis in which there is the greatest distance between the line start and end points.
If the difference is equal in both directions then the X axis is chosen as the major axis. Edges 2 and 3 are aligned to the
minor axis and are centered on the endpoints of the line as in Figure 24.1, and each is lineWidth long. Edges 0 and 1
are parallel to the line and connect the endpoints of edges 2 and 3. Coverage bits that correspond to sample points that
intersect the parallelogram are 1, other coverage bits are 0.

Samples that fall exactly on the edge of the parallelogram follow the polygon rasterization rules.

Interpolation occurs as if the parallelogram was decomposed into two triangles where each pair of vertices at each end of
the line has identical attributes.

Xa, Ya, Za

Xb, Yb, Zb

Minor axis

Major axis

Edge 0

Edge 1

Edge 3

Edge 2

Line width

Orig
inal lin

e

Figure 24.1: Non strict lines

24.7 Polygons

A polygon results from the decomposition of a triangle strip, triangle fan or a series of independent triangles. Like points
and line segments, polygon rasterization is controlled by several variables in the
VkPipelineRasterizationStateCreateInfo structure.

24.7.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine whether the triangle is back-facing or front-facing. This
determination is made based on the sign of the (clipped or unclipped) polygon’s area computed in framebuffer
coordinates. One way to compute this area is:

a =−1
2

n−1

∑
i=0

xi
f yi⊕1

f − xi⊕1
f yi

f

where xi
f and yi

f are the x and y framebuffer coordinates of the ith vertex of the n-vertex polygon (vertices are numbered
starting at zero for the purposes of this computation) and i ⊕ 1 is (i + 1) mod n.

The interpretation of the sign of a is determined by the
VkPipelineRasterizationStateCreateInfo::frontFace property of the currently active pipeline, which
takes the following values:

typedef enum VkFrontFace {
VK_FRONT_FACE_COUNTER_CLOCKWISE = 0,
VK_FRONT_FACE_CLOCKWISE = 1,

} VkFrontFace;

If frontFace is set to VK_FRONT_FACE_COUNTER_CLOCKWISE, a triangle with positive area is considered
front-facing. If it is set to VK_FRONT_FACE_CLOCKWISE, a triangle with negative area is considered front-facing.
Any triangle which is not front-facing is back-facing, including zero-area triangles.

Vulkan 1.0.36 - A Specification 485 / 683

Once the orientation of triangles is determined, they are culled according to the setting of the
VkPipelineRasterizationStateCreateInfo::cullMode property of the currently active pipeline, which
takes the following values:

typedef enum VkCullModeFlagBits {
VK_CULL_MODE_NONE = 0,
VK_CULL_MODE_FRONT_BIT = 0x00000001,
VK_CULL_MODE_BACK_BIT = 0x00000002,
VK_CULL_MODE_FRONT_AND_BACK = 0x00000003,

} VkCullModeFlagBits;

If the cullMode is set to VK_CULL_MODE_NONE no triangles are discarded, if it is set to VK_CULL_MODE_FRONT_
BIT front-facing triangles are discarded, if it is set to VK_CULL_MODE_BACK_BIT then back-facing triangles are
discarded and if it is set to VK_CULL_MODE_FRONT_AND_BACK then all triangles are discarded. Following culling,
fragments are produced for any triangles which have not been discarded.

The rule for determining which fragments are produced by polygon rasterization is called point sampling. The
two-dimensional projection obtained by taking the x and y framebuffer coordinates of the polygon’s vertices is formed.
Fragments are produced for any pixels for which any sample points lie inside of this polygon. Coverage bits that
correspond to sample points that satisfy the point sampling criteria are 1, other coverage bits are 0. Special treatment is
given to a sample whose sample location lies on a polygon edge. In such a case, if two polygons lie on either side of a
common edge (with identical endpoints) on which a sample point lies, then exactly one of the polygons must result in a
covered sample for that fragment during rasterization. As for the data associated with each fragment produced by
rasterizing a polygon, we begin by specifying how these values are produced for fragments in a triangle. Define
barycentric coordinates for a triangle. Barycentric coordinates are a set of three numbers, a, b, and c, each in the range
[0,1], with a + b + c = 1. These coordinates uniquely specify any point p within the triangle or on the triangle’s boundary
as

p = a pa + b pb + c pc

where pa, pb, and pc are the vertices of the triangle. a, b, and c are determined by:

a =
A(ppb pc)

A(pa pb pc)
, b =

A(ppa pc)

A(pa pb pc)
, c =

A(ppa pb)

A(pa pb pc)
,

where A(lmn) denotes the area in framebuffer coordinates of the triangle with vertices l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively.

The value of an associated datum f for a fragment produced by rasterizing a triangle, whether it be a shader output or the
clip w coordinate, must be determined using perspective interpolation:

f =
a fa/wa +b fb/wb + c fc/wc

a/wa +b/wb + c/wc

where wa, wb, and wc are the clip w coordinates of pa, pb, and pc, respectively. a, b, and c are the barycentric coordinates
of the location at which the data are produced - this must be a pixel center or the location of a sample. When
rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, the pixel center must be used.

Depth values for triangles must be determined using linear interpolation:

z = a za + b zb + c zc

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.

The NoPerspective and Flat interpolation decorations can be used with fragment shader inputs to declare how
they are interpolated. When neither decoration is applied, perspective interpolation is performed as described above.
When the NoPerspective decoration is used, linear interpolation is performed in the same fashion as for depth
values, as described above. When the Flat decoration is used, no interpolation is performed, and outputs are taken from
the corresponding input value of the provoking vertex corresponding to that primitive.

For a polygon with more than three edges, such as are produced by clipping a triangle, a convex combination of the
values of the datum at the polygon’s vertices must be used to obtain the value assigned to each fragment produced by the
rasterization algorithm. That is, it must be the case that at every fragment

f =
n

∑
i=1

ai fi

where n is the number of vertices in the polygon and fi is the value of f at vertex i. For each i, 0 ≤ ai ≤ 1 and ∑
n
i=1 ai = 1.

The values of ai may differ from fragment to fragment, but at vertex i, ai = 1 and aj = 0 for j 6= i.

Note
One algorithm that achieves the required behavior is to triangulate a polygon (without adding any vertices) and
then treat each triangle individually as already discussed. A scan-line rasterizer that linearly interpolates data
along each edge and then linearly interpolates data across each horizontal span from edge to edge also satisfies
the restrictions (in this case, the numerator and denominator of equation [?simpara] are iterated independently
and a division performed for each fragment).

24.7.2 Polygon Mode

The method of rasterization for polygons is determined by the
VkPipelineRasterizationStateCreateInfo::polygonMode property of the currently active pipeline, which
takes the following values:

typedef enum VkPolygonMode {
VK_POLYGON_MODE_FILL = 0,
VK_POLYGON_MODE_LINE = 1,
VK_POLYGON_MODE_POINT = 2,

} VkPolygonMode;

The polygonMode selects which method of rasterization is used for polygons. If polygonMode is VK_POLYGON_
MODE_POINT, then the vertices of polygons are treated, for rasterization purposes, as if they had been drawn as points.
VK_POLYGON_MODE_LINE causes polygon edges to be drawn as line segments. VK_POLYGON_MODE_FILL causes
polygons to render using the polygon rasterization rules in this section.

Note that these modes affect only the final rasterization of polygons: in particular, a polygon’s vertices are shaded and
the polygon is clipped and possibly culled before these modes are applied.

24.7.3 Depth Bias

The depth values of all fragments generated by the rasterization of a polygon can be offset by a single value that is
computed for that polygon. This behavior is controlled by the depthBiasEnable, depthBiasConstantFactor,
depthBiasClamp, and depthBiasSlopeFactor members of
VkPipelineRasterizationStateCreateInfo, or by the corresponding parameters to the
vkCmdSetDepthBias command if depth bias state is dynamic.

Vulkan 1.0.36 - A Specification 487 / 683

void vkCmdSetDepthBias(
VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor);

• commandBuffer is the command buffer into which the command will be recorded.

• depthBiasConstantFactor is a scalar factor controlling the constant depth value added to each fragment.

• depthBiasClamp is the maximum (or minimum) depth bias of a fragment.

• depthBiasSlopeFactor is a scalar factor applied to a fragment’s slope in depth bias calculations.

If depthBiasEnable is VK_FALSE, no depth bias is applied and the fragment’s depth values are unchanged.

depthBiasSlopeFactor scales the maximum depth slope of the polygon, and depthBiasConstantFactor scales
an implementation-dependent constant that relates to the usable resolution of the depth buffer. The resulting values are
summed to produce the depth bias value which is then clamped to a minimum or maximum value specified by
depthBiasClamp. depthBiasSlopeFactor, depthBiasConstantFactor, and depthBiasClamp can each be
positive, negative, or zero.

The maximum depth slope m of a triangle is

m =

√(
∂ z f

∂x f

)2

+

(
∂ z f

∂y f

)2

(24.1)

where (xf, yf, zf) is a point on the triangle. m may be approximated as

m = max
(∣∣∣∣∂ z f

∂x f

∣∣∣∣ , ∣∣∣∣∂ z f

∂y f

∣∣∣∣) . (24.2)

The minimum resolvable difference r is an implementation-dependent parameter that depends on the depth buffer
representation. It is the smallest difference in framebuffer coordinate z values that is guaranteed to remain distinct
throughout polygon rasterization and in the depth buffer. All pairs of fragments generated by the rasterization of two
polygons with otherwise identical vertices, but zf values that differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range of the entire depth buffer. For
floating-point depth buffers, there is no single minimum resolvable difference. In this case, the minimum resolvable
difference for a given polygon is dependent on the maximum exponent, e, in the range of z values spanned by the
primitive. If n is the number of bits in the floating-point mantissa, the minimum resolvable difference, r, for the given
primitive is defined as

r = 2e-n

If no depth buffer is present, r is undefined.

The bias value o for a polygon is

o=

m×depthBiasSlopeFactor+ r×depthBiasConstantFactor depthBiasClamp = 0 or NaN
min(m×depthBiasSlopeFactor+ r×depthBiasConstantFactor,depthBiasClamp) depthBiasClamp > 0
max(m×depthBiasSlopeFactor+ r×depthBiasConstantFactor,depthBiasClamp) depthBiasClamp < 0

(24.3)

m is computed as described above. If the depth buffer uses a fixed-point representation, m is a function of depth values in
the range [0,1], and o is applied to depth values in the same range.

For fixed-point depth buffers, fragment depth values are always limited to the range [0,1] by clamping after depth bias
addition is performed. Fragment depth values are clamped even when the depth buffer uses a floating-point
representation.

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_DEPTH_BIAS
dynamic state enabled

• If the depth bias clamping feature is not enabled, depthBiasClamp must be 0.0

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

Vulkan 1.0.36 - A Specification 489 / 683

Chapter 25

Fragment Operations

25.1 Early Per-Fragment Tests

Once fragments are produced by rasterization, a number of per-fragment operations are performed prior to fragment
shader execution. If a fragment is discarded during any of these operations, it will not be processed by any subsequent
stage, including fragment shader execution.

Two fragment operations are performed in the following order:

• the scissor test (see Scissor Test)

• multisample fragment operations (see Sample Mask)

If early per-fragment operations are enabled by the fragment shader, these tests are also performed in the following order:

• the depth bounds tests (see Depth Bounds Tests)

• the stencil test (see Stencil Test)

• the depth test (see Depth Test)

• sample counting (see Sample Counting)

25.2 Scissor Test

The scissor test determines if a fragment’s framebuffer coordinates (xf,yf) lie within the scissor rectangle corresponding
to the viewport index (see Controlling the Viewport) used by the primitive that generated the fragment. If the pipeline
state object is created without VK_DYNAMIC_STATE_SCISSOR enabled then the scissor rectangles are set by the
VkPipelineViewportStateCreateInfo state of the pipeline state object. Otherwise, to dynamically set the
scissor rectangles call:

void vkCmdSetScissor(
VkCommandBuffer commandBuffer,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D* pScissors);

• commandBuffer is the command buffer into which the command will be recorded.

• firstScissor is the index of the first scissor whose state is updated by the command.

• scissorCount is the number of scissors whose rectangles are updated by the command.

• pScissors is a pointer to an array of VkRect2D structures defining scissor rectangles.

The scissor rectangles taken from element i of pScissors replace the current state for the scissor index firstScissor

+ i, for i in [0, scissorCount).

Each scissor rectangle is described by a VkRect2D structure, with the offset.x and offset.y values determining
the upper left corner of the scissor rectangle, and the extent.width and extent.height values determining the size
in pixels.

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_SCISSOR
dynamic state enabled

• firstScissor must be less than VkPhysicalDeviceLimits::maxViewports

• The sum of firstScissor and scissorCount must be between 1 and
VkPhysicalDeviceLimits::maxViewports, inclusive

• The x and y members of offset must be greater than or equal to 0

• Evaluation of (offset.x + extent.width) must not cause a signed integer addition overflow

• Evaluation of (offset.y + extent.height) must not cause a signed integer addition overflow

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• pScissors must be a pointer to an array of scissorCount VkRect2D structures

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

• scissorCount must be greater than 0

Vulkan 1.0.36 - A Specification 491 / 683

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

If offset.x ≤ xf < offset.x + extent.width and offset.y ≤ yf < offset.y + extent.height for the
selected scissor rectangle, then the scissor test passes. Otherwise, the test fails and the fragment is discarded. For points,
lines, and polygons, the scissor rectangle for a primitive is selected in the same manner as the viewport (see Controlling
the Viewport). The scissor rectangles only apply to drawing commands, not to other commands like clears or copies.

It is legal for offset.x + extent.width or offset.y + extent.height to exceed the dimensions of the
framebuffer - the scissor test still applies as defined above. Rasterization does not produce fragments outside of the
framebuffer, so such fragments never have the scissor test performed on them.

The scissor test is always performed. Applications can effectively disable the scissor test by specifying a scissor
rectangle that encompasses the entire framebuffer.

25.3 Sample Mask

This step modifies fragment coverage values based on the values in the pSampleMask array member of
VkPipelineMultisampleStateCreateInfo, as described previously in section Section 9.2.

pSampleMask contains an array of static coverage information that is ANDed with the coverage information generated
during rasterization. Bits that are zero disable coverage for the corresponding sample. Bit B of mask word M
corresponds to sample 32 ×M + B. The array is sized to a length of d rasterizationSamples / 32 e words. If
pSampleMask is NULL, it is treated as if the mask has all bits enabled, i.e. no coverage is removed from fragments.

The elements of the sample mask array are of type VkSampleMask, each representing 32 bits of coverage information:

typedef uint32_t VkSampleMask;

25.4 Early Fragment Test Mode

The depth bounds test, stencil test, depth test, and occlusion query sample counting are performed before fragment
shading if and only if early fragment tests are enabled by the fragment shader (see Early Fragment Tests). When early

per-fragment operations are enabled, these operations are performed prior to fragment shader execution, and the stencil
buffer, depth buffer, and occlusion query sample counts will be updated accordingly; these operations will not be
performed again after fragment shader execution.

If a pipeline’s fragment shader has early fragment tests disabled, these operations are performed only after fragment
program execution, in the order described below. If a pipeline does not contain a fragment shader, these operations are
performed only once.

If early fragment tests are enabled, any depth value computed by the fragment shader has no effect. Additionally, the
depth test (including depth writes), stencil test (including stencil writes) and sample counting operations are performed
even for fragments or samples that would be discarded after fragment shader execution due to per-fragment operations
such as alpha-to-coverage tests, or due to the fragment being discarded by the shader itself.

25.5 Late Per-Fragment Tests

After programmable fragment processing, per-fragment operations are performed before blending and color output to the
framebuffer.

A fragment is produced by rasterization with framebuffer coordinates of (xf,yf) and depth z, as described in
Rasterization. The fragment is then modified by programmable fragment processing, which adds associated data as
described in Shaders. The fragment is then further modified, and possibly discarded by the late per-fragment operations
described in this chapter. Finally, if the fragment was not discarded, it is used to update the framebuffer at the fragment’s
framebuffer coordinates for any samples that remain covered.

The depth bounds test, stencil test, and depth test are performed for each pixel sample, rather than just once for each
fragment. Stencil and depth operations are performed for a pixel sample only if that sample’s fragment coverage bit is a
value of 1 when the fragment executes the corresponding stage of the graphics pipeline. If the corresponding coverage
bit is 0, no operations are performed for that sample. Failure of the depth bounds, stencil, or depth test results in
termination of the processing of that sample by means of disabling coverage for that sample, rather than discarding of the
fragment. If, at any point, a fragment’s coverage becomes zero for all samples, then the fragment is discarded. All
operations are performed on the depth and stencil values stored in the depth/stencil attachment of the framebuffer. The
contents of the color attachments are not modified at this point.

The depth bounds test, stencil test, depth test, and occlusion query operations described in Depth Bounds Test, Stencil
Test, Depth Test, Sample Counting are instead performed prior to fragment processing, as described in Early Fragment
Test Mode, if requested by the fragment shader.

25.6 Multisample Coverage

If a fragment shader is active and its entry point’s interface includes a built-in output variable decorated with
SampleMask, the fragment coverage is ANDed with the bits of the sample mask to generate a new fragment coverage
value. If such a fragment shader did not assign a value to SampleMask due to flow of control, the value ANDed with
the fragment coverage is undefined. If no fragment shader is active, or if the active fragment shader does not include
SampleMask in its interface, the fragment coverage is not modified.

Next, the fragment alpha and coverage values are modified based on the alphaToCoverageEnable and
alphaToOneEnable members of the VkPipelineMultisampleStateCreateInfo structure.

All alpha values in this section refer only to the alpha component of the fragment shader output that has a Location
and Index decoration of zero (see the Fragment Output Interface section). If that shader output has an integer or
unsigned integer type, then these operations are skipped.

Vulkan 1.0.36 - A Specification 493 / 683

If alphaToCoverageEnable is enabled, a temporary coverage value is generated where each bit is determined by the
fragment’s alpha value. The temporary coverage value is then ANDed with the fragment coverage value to generate a
new fragment coverage value.

No specific algorithm is specified for converting the alpha value to a temporary coverage mask. It is intended that the
number of 1’s in this value be proportional to the alpha value (clamped to [0,1]), with all 1’s corresponding to a value of
1.0 and all 0’s corresponding to 0.0. The algorithm may be different at different pixel locations.

Note
Using different algorithms at different pixel location may help to avoid artifacts caused by regular coverage
sample locations.

Next, if alphaToOneEnable is enabled, each alpha value is replaced by the maximum representable alpha value for
fixed-point color buffers, or by 1.0 for floating-point buffers. Otherwise, the alpha values are not changed.

25.7 Depth and Stencil Operations

Pipeline state controlling the depth bounds tests, stencil test, and depth test is specified through the members of the
VkPipelineDepthStencilStateCreateInfo structure.

The VkPipelineDepthStencilStateCreateInfo structure is defined as:

typedef struct VkPipelineDepthStencilStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineDepthStencilStateCreateFlags flags;
VkBool32 depthTestEnable;
VkBool32 depthWriteEnable;
VkCompareOp depthCompareOp;
VkBool32 depthBoundsTestEnable;
VkBool32 stencilTestEnable;
VkStencilOpState front;
VkStencilOpState back;
float minDepthBounds;
float maxDepthBounds;

} VkPipelineDepthStencilStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• depthTestEnable controls whether depth testing is enabled.

• depthWriteEnable controls whether depth writes are enabled.

• depthCompareOp is the comparison operator used in the depth test.

• depthBoundsTestEnable controls whether depth bounds testing is enabled.

• stencilTestEnable controls whether stencil testing is enabled.

• front and back control the parameters of the stencil test.

• minDepthBounds and maxDepthBounds define the range of values used in the depth bounds test.

Valid Usage

• If the depth bounds testing feature is not enabled, depthBoundsTestEnable must be VK_FALSE

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• depthCompareOp must be a valid VkCompareOp value

• front must be a valid VkStencilOpState structure

• back must be a valid VkStencilOpState structure

25.8 Depth Bounds Test

The depth bounds test conditionally disables coverage of a sample based on the outcome of a comparison between the
value za in the depth attachment at location (xf,yf) (for the appropriate sample) and a range of values. The test is enabled
or disabled by the depthBoundsTestEnable member of VkPipelineDepthStencilStateCreateInfo: If
the pipeline state object is created without the VK_DYNAMIC_STATE_DEPTH_BOUNDS dynamic state enabled then the
range of values used in the depth bounds test are defined by the minDepthBounds and maxDepthBounds members of
the VkPipelineDepthStencilStateCreateInfo structure. Otherwise, to dynamically set the depth bounds
range values call:

void vkCmdSetDepthBounds(
VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds);

• commandBuffer is the command buffer into which the command will be recorded.

• minDepthBounds is the lower bound of the range of depth values used in the depth bounds test.

• maxDepthBounds is the upper bound of the range.

Vulkan 1.0.36 - A Specification 495 / 683

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_DEPTH_
BOUNDS dynamic state enabled

• minDepthBounds must be between 0.0 and 1.0, inclusive

• maxDepthBounds must be between 0.0 and 1.0, inclusive

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

If minDepthBounds ≤ za ≤ maxDepthBounds}, then the depth bounds test passes. Otherwise, the test fails and the
sample’s coverage bit is cleared in the fragment. If there is no depth framebuffer attachment or if the depth bounds test is
disabled, it is as if the depth bounds test always passes.

25.9 Stencil Test

The stencil test conditionally disables coverage of a sample based on the outcome of a comparison between the stencil
value in the depth/stencil attachment at location (xf,yf) (for the appropriate sample) and a reference value. The stencil
test also updates the value in the stencil attachment, depending on the test state, the stencil value and the stencil write
masks. The test is enabled or disabled by the stencilTestEnable member of
VkPipelineDepthStencilStateCreateInfo.

When disabled, the stencil test and associated modifications are not made, and the sample’s coverage is not modified.

The stencil test is controlled with the front and back members of
VkPipelineDepthStencilStateCreateInfo which are of type VkStencilOpState.

The VkStencilOpState structure is defined as:

typedef struct VkStencilOpState {
VkStencilOp failOp;
VkStencilOp passOp;
VkStencilOp depthFailOp;
VkCompareOp compareOp;
uint32_t compareMask;
uint32_t writeMask;
uint32_t reference;

} VkStencilOpState;

• failOp is the action performed on samples that fail the stencil test.

• passOp is the action performed on samples that pass both the depth and stencil tests.

• depthFailOp is the action performed on samples that pass the stencil test and fail the depth test.

• compareOp is the comparison operator used in the stencil test.

• compareMask selects the bits of the unsigned integer stencil values participating in the stencil test.

• writeMask selects the bits of the unsigned integer stencil values updated by the stencil test in the stencil framebuffer
attachment.

• reference is an integer reference value that is used in the unsigned stencil comparison.

Valid Usage (Implicit)

• failOp must be a valid VkStencilOp value

• passOp must be a valid VkStencilOp value

• depthFailOp must be a valid VkStencilOp value

• compareOp must be a valid VkCompareOp value

Vulkan 1.0.36 - A Specification 497 / 683

There are two sets of stencil-related state, the front stencil state set and the back stencil state set. Stencil tests and writes
use the front set of stencil state when processing fragments rasterized from non-polygon primitives (points and lines) and
front-facing polygon primitives while the back set of stencil state is used when processing fragments rasterized from
back-facing polygon primitives. For the purposes of stencil testing, a primitive is still considered a polygon even if the
polygon is to be rasterized as points or lines due to the current VkPolygonMode. Whether a polygon is front- or
back-facing is determined in the same manner used for face culling (see Basic Polygon Rasterization).

The operation of the stencil test is also affected by the compareMask, writeMask, and reference members of
VkStencilOpState set in the pipeline state object if the pipeline state object is created without the VK_DYNAMIC_
STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, and VK_DYNAMIC_
STATE_STENCIL_REFERENCE dynamic states enabled, respectively.

If the pipeline state object is created with the VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK dynamic state
enabled, then to dynamically set the stencil compare mask call:

void vkCmdSetStencilCompareMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask specifying the set of stencil state for which to update the compare mask. Bits which can be set
include:

typedef enum VkStencilFaceFlagBits {
VK_STENCIL_FACE_FRONT_BIT = 0x00000001,
VK_STENCIL_FACE_BACK_BIT = 0x00000002,
VK_STENCIL_FRONT_AND_BACK = 0x00000003,

} VkStencilFaceFlagBits;

– VK_STENCIL_FACE_FRONT_BIT indicates that only the front set of stencil state is updated.

– VK_STENCIL_FACE_BACK_BIT indicates that only the back set of stencil state is updated.

– VK_STENCIL_FRONT_AND_BACK is the combination of VK_STENCIL_FACE_FRONT_BIT and VK_
STENCIL_FACE_BACK_BIT and indicates that both sets of stencil state are updated.

• compareMask is the new value to use as the stencil compare mask.

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_STENCIL_
COMPARE_MASK dynamic state enabled

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• faceMask must be a valid combination of VkStencilFaceFlagBits values

• faceMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

If the pipeline state object is created with the VK_DYNAMIC_STATE_STENCIL_WRITE_MASK dynamic state
enabled, then to dynamically set the stencil write mask call:

void vkCmdSetStencilWriteMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to update the
write mask, as described above for vkCmdSetStencilCompareMask.

• writeMask is the new value to use as the stencil write mask.

Vulkan 1.0.36 - A Specification 499 / 683

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_STENCIL_
WRITE_MASK dynamic state enabled

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• faceMask must be a valid combination of VkStencilFaceFlagBits values

• faceMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

If the pipeline state object is created with the VK_DYNAMIC_STATE_STENCIL_REFERENCE dynamic state enabled,
then to dynamically set the stencil reference value call:

void vkCmdSetStencilReference(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference);

• commandBuffer is the command buffer into which the command will be recorded.

• faceMask is a bitmask of VkStencilFaceFlagBits specifying the set of stencil state for which to update the
reference value, as described above for vkCmdSetStencilCompareMask.

• reference is the new value to use as the stencil reference value.

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_STENCIL_
REFERENCE dynamic state enabled

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• faceMask must be a valid combination of VkStencilFaceFlagBits values

• faceMask must not be 0

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Vulkan 1.0.36 - A Specification 501 / 683

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

reference is an integer reference value that is used in the unsigned stencil comparison. Stencil comparison clamps the
reference value to [0,2s-1], where s is the number of bits in the stencil framebuffer attachment. The s least significant bits
of compareMask are bitwise ANDed with both the reference and the stored stencil value, and the resulting masked
values are those that participate in the comparison controlled by compareOp. Let R be the masked reference value and S
be the masked stored stencil value.

compareOp is a symbolic constant that determines the stencil comparison function:

typedef enum VkCompareOp {
VK_COMPARE_OP_NEVER = 0,
VK_COMPARE_OP_LESS = 1,
VK_COMPARE_OP_EQUAL = 2,
VK_COMPARE_OP_LESS_OR_EQUAL = 3,
VK_COMPARE_OP_GREATER = 4,
VK_COMPARE_OP_NOT_EQUAL = 5,
VK_COMPARE_OP_GREATER_OR_EQUAL = 6,
VK_COMPARE_OP_ALWAYS = 7,

} VkCompareOp;

• VK_COMPARE_OP_NEVER: the test never passes.

• VK_COMPARE_OP_LESS: the test passes when R < S.

• VK_COMPARE_OP_EQUAL: the test passes when R = S.

• VK_COMPARE_OP_LESS_OR_EQUAL: the test passes when R ≤ S.

• VK_COMPARE_OP_GREATER: the test passes when R > S.

• VK_COMPARE_OP_NOT_EQUAL: the test passes when R 6= S.

• VK_COMPARE_OP_GREATER_OR_EQUAL: the test passes when R ≥ S.

• VK_COMPARE_OP_ALWAYS: the test always passes.

As described earlier, the failOp, passOp, and depthFailOp members of VkStencilOpState indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass. Each enum is of type VkStencilOp,
which is defined as:

typedef enum VkStencilOp {
VK_STENCIL_OP_KEEP = 0,
VK_STENCIL_OP_ZERO = 1,
VK_STENCIL_OP_REPLACE = 2,
VK_STENCIL_OP_INCREMENT_AND_CLAMP = 3,
VK_STENCIL_OP_DECREMENT_AND_CLAMP = 4,
VK_STENCIL_OP_INVERT = 5,

VK_STENCIL_OP_INCREMENT_AND_WRAP = 6,
VK_STENCIL_OP_DECREMENT_AND_WRAP = 7,

} VkStencilOp;

The possible values are:

• VK_STENCIL_OP_KEEP keeps the current value.

• VK_STENCIL_OP_ZERO sets the value to 0.

• VK_STENCIL_OP_REPLACE sets the value to reference.

• VK_STENCIL_OP_INCREMENT_AND_CLAMP increments the current value and clamps to the maximum
representable unsigned value.

• VK_STENCIL_OP_DECREMENT_AND_CLAMP decrements the current value and clamps to 0.

• VK_STENCIL_OP_INVERT bitwise-inverts the current value.

• VK_STENCIL_OP_INCREMENT_AND_WRAP increments the current value and wraps to 0 when the maximum value
would have been exceeded.

• VK_STENCIL_OP_DECREMENT_AND_WRAP decrements the current value and wraps to the maximum possible
value when the value would go below 0.

For purposes of increment and decrement, the stencil bits are considered as an unsigned integer.

If the stencil test fails, the sample’s coverage bit is cleared in the fragment. If there is no stencil framebuffer attachment,
stencil modification cannot occur, and it is as if the stencil tests always pass.

If the stencil test passes, the writeMask member of the VkStencilOpState structures controls how the updated
stencil value is written to the stencil framebuffer attachment.

The least significant s bits of writeMask, where s is the number of bits in the stencil framebuffer attachment, specify an
integer mask. Where a 1 appears in this mask, the corresponding bit in the stencil value in the depth/stencil attachment is
written; where a 0 appears, the bit is not written. The writeMask value uses either the front-facing or back-facing state
based on the facing-ness of the fragment. Fragments generated by front-facing primitives use the front mask and
fragments generated by back-facing primitives use the back mask.

25.10 Depth Test

The depth test conditionally disables coverage of a sample based on the outcome of a comparison between the fragment’s
depth value at the sample location and the sample’s depth value in the depth/stencil attachment at location (xf,yf). The
comparison is enabled or disabled with the depthTestEnable member of the
VkPipelineDepthStencilStateCreateInfo structure. When disabled, the depth comparison and subsequent
possible updates to the value of the depth component of the depth/stencil attachment are bypassed and the fragment is
passed to the next operation. The stencil value, however, can be modified as indicated above as if the depth test passed. If
enabled, the comparison takes place and the depth/stencil attachment value can subsequently be modified.

The comparison is specified with the depthCompareOp member of
VkPipelineDepthStencilStateCreateInfo. Let zf be the incoming fragment’s depth value for a sample, and
let za be the depth/stencil attachment value in memory for that sample. The depth test passes under the following
conditions:

• VK_COMPARE_OP_NEVER: the test never passes.

Vulkan 1.0.36 - A Specification 503 / 683

• VK_COMPARE_OP_LESS: the test passes when zf < za.

• VK_COMPARE_OP_EQUAL: the test passes when zf = za.

• VK_COMPARE_OP_LESS_OR_EQUAL: the test passes when zf ≤ za.

• VK_COMPARE_OP_GREATER: the test passes when zf > za.

• VK_COMPARE_OP_NOT_EQUAL: the test passes when zf 6= za.

• VK_COMPARE_OP_GREATER_OR_EQUAL: the test passes when zf ≥ za.

• VK_COMPARE_OP_ALWAYS: the test always passes.

If depth clamping (see Primitive Clipping) is enabled, before the incoming fragment’s zf is compared to za, zf is
clamped to [min(n,f),max(n,f)], where n and f are the minDepth and maxDepth depth range values of the viewport used
by this fragment, respectively.

If the depth test fails, the sample’s coverage bit is cleared in the fragment. The stencil value at the sample’s location is
updated according to the function currently in effect for depth test failure.

If the depth test passes, the sample’s (possibly clamped) zf value is conditionally written to the depth framebuffer
attachment based on the depthWriteEnable member of VkPipelineDepthStencilStateCreateInfo. If
depthWriteEnable is VK_TRUE the value is written, and if it is VK_FALSE the value is not written. The stencil value
at the sample’s location is updated according to the function currently in effect for depth test success.

If there is no depth framebuffer attachment, it is as if the depth test always passes.

25.11 Sample Counting

Occlusion queries use query pool entries to track the number of samples that pass all the per-fragment tests. The
mechanism of collecting an occlusion query value is described in Occlusion Queries.

The occlusion query sample counter increments by one for each sample with a coverage value of 1 in each fragment that
survives all the per-fragment tests, including scissor, sample mask, alpha to coverage, stencil, and depth tests.

Vulkan 1.0.36 - A Specification 505 / 683

Chapter 26

The Framebuffer

26.1 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with the destination R, G, B, and A values of
each sample stored in the framebuffer at the fragment’s (xf,yf) location. Blending is performed for each pixel sample,
rather than just once for each fragment.

Source and destination values are combined according to the blend operation, quadruplets of source and destination
weighting factors determined by the blend factors, and a blend constant, to obtain a new set of R, G, B, and A values, as
described below.

Blending is computed and applied separately to each color attachment used by the subpass, with separate controls for
each attachment.

Prior to performing the blend operation, signed and unsigned normalized fixed-point color components undergo an
implied conversion to floating-point as specified by Conversion from Normalized Fixed-Point to Floating-Point.
Blending computations are treated as if carried out in floating-point, and will be performed with a precision and dynamic
range no lower than that used to represent destination components.

Blending applies only to fixed-point and floating-point color attachments. If the color attachment has an integer format,
blending is not applied.

The pipeline blend state is included in the VkPipelineColorBlendStateCreateInfo structure during graphics
pipeline creation:

The VkPipelineColorBlendStateCreateInfo structure is defined as:

typedef struct VkPipelineColorBlendStateCreateInfo {
VkStructureType sType;
const void* pNext;
VkPipelineColorBlendStateCreateFlags flags;
VkBool32 logicOpEnable;
VkLogicOp logicOp;
uint32_t attachmentCount;
const VkPipelineColorBlendAttachmentState* pAttachments;
float blendConstants[4];

} VkPipelineColorBlendStateCreateInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• flags is reserved for future use.

• logicOpEnable controls whether to apply Logical Operations.

• logicOp selects which logical operation to apply.

• attachmentCount is the number of VkPipelineColorBlendAttachmentState elements in
pAttachments. This value must equal the colorAttachmentCount for the subpass in which this pipeline is used.

• pAttachments: is a pointer to array of per target attachment states.

• blendConstants is an array of four values used as the R, G, B, and A components of the blend constant that are used
in blending, depending on the blend factor.

Each element of the pAttachments array is a VkPipelineColorBlendAttachmentState structure specifying
per-target blending state for each individual color attachment. If the independent blending feature is not enabled on the
device, all VkPipelineColorBlendAttachmentState elements in the pAttachments array must be identical.

Valid Usage

• If the independent blending feature is not enabled, all elements of pAttachments must be identical

• If the logic operations feature is not enabled, logicOpEnable must be VK_FALSE

• If logicOpEnable is VK_TRUE, logicOp must be a valid VkLogicOp value

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO

• pNext must be NULL

• flags must be 0

• If attachmentCount is not 0, pAttachments must be a pointer to an array of attachmentCount valid
VkPipelineColorBlendAttachmentState structures

The VkPipelineColorBlendAttachmentState structure is defined as:

typedef struct VkPipelineColorBlendAttachmentState {
VkBool32 blendEnable;
VkBlendFactor srcColorBlendFactor;
VkBlendFactor dstColorBlendFactor;
VkBlendOp colorBlendOp;

Vulkan 1.0.36 - A Specification 507 / 683

VkBlendFactor srcAlphaBlendFactor;
VkBlendFactor dstAlphaBlendFactor;
VkBlendOp alphaBlendOp;
VkColorComponentFlags colorWriteMask;

} VkPipelineColorBlendAttachmentState;

• blendEnable controls whether blending is enabled for the corresponding color attachment. If blending is not
enabled, the source fragment’s color for that attachment is passed through unmodified.

• srcColorBlendFactor selects which blend factor is used to determine the source factors (Sr,Sg,Sb).

• dstColorBlendFactor selects which blend factor is used to determine the destination factors (Dr,Dg,Db).

• colorBlendOp selects which blend operation is used to calculate the RGB values to write to the color attachment.

• srcAlphaBlendFactor selects which blend factor is used to determine the source factor Sa.

• dstAlphaBlendFactor selects which blend factor is used to determine the destination factor Da.

• alphaBlendOp selects which blend operation is use to calculate the alpha values to write to the color attachment.

• colorWriteMask is a bitmask selecting which of the R, G, B, and/or A components are enabled for writing, as
described later in this chapter.

Valid Usage

• If the dual source blending feature is not enabled, srcColorBlendFactor must not be VK_BLEND_FACTOR_
SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• If the dual source blending feature is not enabled, dstColorBlendFactor must not be VK_BLEND_FACTOR_
SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• If the dual source blending feature is not enabled, srcAlphaBlendFactor must not be VK_BLEND_FACTOR_
SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

• If the dual source blending feature is not enabled, dstAlphaBlendFactor must not be VK_BLEND_FACTOR_
SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, or
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA

Valid Usage (Implicit)

• srcColorBlendFactor must be a valid VkBlendFactor value

• dstColorBlendFactor must be a valid VkBlendFactor value

• colorBlendOp must be a valid VkBlendOp value

• srcAlphaBlendFactor must be a valid VkBlendFactor value

• dstAlphaBlendFactor must be a valid VkBlendFactor value

• alphaBlendOp must be a valid VkBlendOp value

• colorWriteMask must be a valid combination of VkColorComponentFlagBits values

26.1.1 Blend Factors

The source and destination color and alpha blending factors are selected from the enum:

typedef enum VkBlendFactor {
VK_BLEND_FACTOR_ZERO = 0,
VK_BLEND_FACTOR_ONE = 1,
VK_BLEND_FACTOR_SRC_COLOR = 2,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR = 3,
VK_BLEND_FACTOR_DST_COLOR = 4,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR = 5,
VK_BLEND_FACTOR_SRC_ALPHA = 6,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA = 7,
VK_BLEND_FACTOR_DST_ALPHA = 8,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA = 9,
VK_BLEND_FACTOR_CONSTANT_COLOR = 10,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR = 11,
VK_BLEND_FACTOR_CONSTANT_ALPHA = 12,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA = 13,
VK_BLEND_FACTOR_SRC_ALPHA_SATURATE = 14,
VK_BLEND_FACTOR_SRC1_COLOR = 15,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR = 16,
VK_BLEND_FACTOR_SRC1_ALPHA = 17,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA = 18,

} VkBlendFactor;

The semantics of each enum value is described in the table below:

Table 26.1: Blend Factors

VkBlendFactor RGB Blend Factors
(Sr,Sg,Sb) or (Dr,Dg,Db)

Alpha Blend
Factor (Sa or
Da)

VK_BLEND_FACTOR_ZERO (0,0,0) 0
VK_BLEND_FACTOR_ONE (1,1,1) 1
VK_BLEND_FACTOR_SRC_COLOR (Rs0,Gs0,Bs0) As0
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR (1-Rs0,1-Gs0,1-Bs0) 1-As0
VK_BLEND_FACTOR_DST_COLOR (Rd,Gd,Bd) Ad
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR (1-Rd,1-Gd,1-Bd) 1-Ad
VK_BLEND_FACTOR_SRC_ALPHA (As0,As0,As0) As0

Vulkan 1.0.36 - A Specification 509 / 683

Table 26.1: (continued)

VkBlendFactor RGB Blend Factors
(Sr,Sg,Sb) or (Dr,Dg,Db)

Alpha Blend
Factor (Sa or
Da)

VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA (1-As0,1-As0,1-As0) 1-As0
VK_BLEND_FACTOR_DST_ALPHA (Ad,Ad,Ad) Ad
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA (1-Ad,1-Ad,1-Ad) 1-Ad
VK_BLEND_FACTOR_CONSTANT_COLOR (Rc,Gc,Bc) Ac
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR (1-Rc,1-Gc,1-Bc) 1-Ac
VK_BLEND_FACTOR_CONSTANT_ALPHA (Ac,Ac,Ac) Ac
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA (1-Ac,1-Ac,1-Ac) 1-Ac
VK_BLEND_FACTOR_SRC_ALPHA_SATURATE (f,f,f); f = min(As0,1-Ad) 1
VK_BLEND_FACTOR_SRC1_COLOR (Rs1,Gs1,Bs1) As1
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR (1-Rs1,1-Gs1,1-Bs1) 1-As1
VK_BLEND_FACTOR_SRC1_ALPHA (As1,As1,As1) As1
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA (1-As1,1-As1,1-As1) 1-As1

In this table, the following conventions are used:

• Rs0,Gs0,Bs0 and As0 represent the first source color R, G, B, and A components, respectively, for the fragment output
location corresponding to the color attachment being blended.

• Rs1,Gs1,Bs1 and As1 represent the second source color R, G, B, and A components, respectively, used in dual source
blending modes, for the fragment output location corresponding to the color attachment being blended.

• Rd,Gd,Bd and Ad represent the R, G, B, and A components of the destination color. That is, the color currently in the
corresponding color attachment for this fragment/sample.

• Rc,Gc,Bc and Ac represent the blend constant R, G, B, and A components, respectively.

If the pipeline state object is created without the VK_DYNAMIC_STATE_BLEND_CONSTANTS dynamic state enabled
then the blend constant (Rc,Gc,Bc,Ac) is specified via the blendConstants member of
VkPipelineColorBlendStateCreateInfo.

Otherwise, to dynamically set and change the blend constant, call:

void vkCmdSetBlendConstants(
VkCommandBuffer commandBuffer,
const float blendConstants[4]);

• commandBuffer is the command buffer into which the command will be recorded.

• blendConstants is an array of four values specifying the R, G, B, and A components of the blend constant color
used in blending, depending on the blend factor.

Valid Usage

• The currently bound graphics pipeline must have been created with the VK_DYNAMIC_STATE_BLEND_
CONSTANTS dynamic state enabled

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support graphics operations

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Both Graphics

26.1.2 Dual-Source Blending

Blend factors that use the secondary color input (Rs1,Gs1,Bs1,As1) (VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_
FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, and VK_BLEND_FACTOR_ONE_
MINUS_SRC1_ALPHA) may consume hardware resources that could otherwise be used for rendering to multiple color
attachments. Therefore, the number of color attachments that can be used in a framebuffer may be lower when using
dual-source blending.

Vulkan 1.0.36 - A Specification 511 / 683

Dual-source blending is only supported if the dualSrcBlend feature is enabled.

The maximum number of color attachments that can be used in a subpass when using dual-source blending functions is
implementation-dependent and is reported as the maxFragmentDualSrcAttachments member of
VkPhysicalDeviceLimits.

When using a fragment shader with dual-source blending functions, the color outputs are bound to the first and second
inputs of the blender using the Index decoration, as described in Fragment Output Interface. If the second color input to
the blender is not written in the shader, or if no output is bound to the second input of a blender, the result of the blending
operation is not defined.

26.1.3 Blend Operations

Once the source and destination blend factors have been selected, they along with the source and destination components
are passed to the blending operation. The blending operations are selected from the following enum, with RGB and alpha
components potentially using different blend operations:

typedef enum VkBlendOp {
VK_BLEND_OP_ADD = 0,
VK_BLEND_OP_SUBTRACT = 1,
VK_BLEND_OP_REVERSE_SUBTRACT = 2,
VK_BLEND_OP_MIN = 3,
VK_BLEND_OP_MAX = 4,

} VkBlendOp;

The semantics of each enum value is described in the table below:

Table 26.2: Blend Operations

VkBlendOp RGB Components Alpha Component
VK_BLEND_OP_ADD R = Rs0 × Sr + Rd × Dr

G = Gs0 × Sg + Gd × Dg
B = Bs0 × Sb + Bd × Db

A = As0 × Sa + Ad × Da

VK_BLEND_OP_SUBTRACT R = Rs0 × Sr - Rd × Dr
G = Gs0 × Sg - Gd × Dg
B = Bs0 × Sb - Bd × Db

A = As0 × Sa - Ad × Da

VK_BLEND_OP_REVERSE_SUBTRACT R = Rd × Dr - Rs0 × Sr
G = Gd × Dg - Gs0 × Sg
B = Bd × Db - Bs0 × Sb

A = Ad × Da - As0 × Sa

VK_BLEND_OP_MIN R = min(Rs0,Rd)
G = min(Gs0,Gd)
B = min(Bs0,Bd)

A = min(As0,Ad)

VK_BLEND_OP_MAX R = max(Rs0,Rd)
G = max(Gs0,Gd)
B = max(Bs0,Bd)

A = max(As0,Ad)

In this table, the following conventions are used:

• Rs0, Gs0, Bs0 and As0 represent the first source color R, G, B, and A components, respectively.

• Rd, Gd, Bd and Ad represent the R, G, B, and A components of the destination color. That is, the color currently in the
corresponding color attachment for this fragment/sample.

• Sr, Sg, Sb and Sa represent the source blend factor R, G, B, and A components, respectively.

• Dr, Dg, Db and Da represent the destination blend factor R, G, B, and A components, respectively.

The blending operation produces a new set of values R, G, B and A, which are written to the framebuffer attachment. If
blending is not enabled for this attachment, then R, G, B and A are assigned Rs0, Gs0, Bs0 and As0, respectively.

If the color attachment is fixed-point, the components of the source and destination values and blend factors are each
clamped to [0,1] or [-1,1] respectively for an unsigned normalized or signed normalized color attachment prior to
evaluating the blend operations. If the color attachment is floating-point, no clamping occurs.

The colorWriteMask member of VkPipelineColorBlendAttachmentState determines whether the final
color values R, G, B and A are written to the framebuffer attachment. colorWriteMask is any combination of the
following bits:

typedef enum VkColorComponentFlagBits {
VK_COLOR_COMPONENT_R_BIT = 0x00000001,
VK_COLOR_COMPONENT_G_BIT = 0x00000002,
VK_COLOR_COMPONENT_B_BIT = 0x00000004,
VK_COLOR_COMPONENT_A_BIT = 0x00000008,

} VkColorComponentFlagBits;

If VK_COLOR_COMPONENT_R_BIT is set, then the R value is written to color attachment for the appropriate sample,
otherwise the value in memory is unmodified. The VK_COLOR_COMPONENT_G_BIT, VK_COLOR_COMPONENT_B_

Vulkan 1.0.36 - A Specification 513 / 683

BIT, and VK_COLOR_COMPONENT_A_BIT bits similarly control writing of the G, B, and A values. The
colorWriteMask is applied regardless of whether blending is enabled.

If the numeric format of a framebuffer attachment uses sRGB encoding, the R, G, and B destination color values (after
conversion from fixed-point to floating-point) are considered to be encoded for the sRGB color space and hence are
linearized prior to their use in blending. Each R, G, and B component is converted from nonlinear to linear as described
in the “KHR_DF_TRANSFER_SRGB” section of the Khronos Data Format Specification. If the format is not sRGB, no
linearization is performed.

If the numeric format of a framebuffer attachment uses sRGB encoding, then the final R, G and B values are converted
into the nonlinear sRGB representation before being written to the framebuffer attachment as described in the “KHR_
DF_TRANSFER_SRGB” section of the Khronos Data Format Specification.

If the framebuffer color attachment numeric format is not sRGB encoded then the resulting cs values for R, G and B are
unmodified. The value of A is never sRGB encoded. That is, the alpha component is always stored in memory as linear.

If the framebuffer color attachment is VK_ATTACHMENT_UNUSED, no writes are performed through that attachment.
Framebuffer color attachments greater than or equal to VkSubpassDescription::colorAttachmentCount
perform no writes.

26.2 Logical Operations

The application can enable a logical operation between the fragment’s color values and the existing value in the
framebuffer attachment. This logical operation is applied prior to updating the framebuffer attachment. Logical
operations are applied only for signed and unsigned integer and normalized integer framebuffers. Logical operations are
not applied to floating-point or sRGB format color attachments.

Logical operations are controlled by the logicOpEnable and logicOp members of
VkPipelineColorBlendStateCreateInfo. If logicOpEnable is VK_TRUE, then a logical operation selected
by logicOp is applied between each color attachment and the fragment’s corresponding output value, and blending of
all attachments is treated as if it were disabled. Any attachments using color formats for which logical operations are not
supported simply pass through the color values unmodified. The logical operation is applied independently for each of
the red, green, blue, and alpha components. The logicOp is selected from the following operations:

typedef enum VkLogicOp {
VK_LOGIC_OP_CLEAR = 0,
VK_LOGIC_OP_AND = 1,
VK_LOGIC_OP_AND_REVERSE = 2,
VK_LOGIC_OP_COPY = 3,
VK_LOGIC_OP_AND_INVERTED = 4,
VK_LOGIC_OP_NO_OP = 5,
VK_LOGIC_OP_XOR = 6,
VK_LOGIC_OP_OR = 7,
VK_LOGIC_OP_NOR = 8,
VK_LOGIC_OP_EQUIVALENT = 9,
VK_LOGIC_OP_INVERT = 10,
VK_LOGIC_OP_OR_REVERSE = 11,
VK_LOGIC_OP_COPY_INVERTED = 12,
VK_LOGIC_OP_OR_INVERTED = 13,
VK_LOGIC_OP_NAND = 14,
VK_LOGIC_OP_SET = 15,

} VkLogicOp;

The logical operations supported by Vulkan are summarized in the following table in which

• ¬ is bitwise invert,

• ∧ is bitwise and,

• ∨ is bitwise or,

• ⊕ is bitwise exclusive or,

• s is the fragment’s Rs0, Gs0, Bs0 or As0 component value for the fragment output corresponding to the color attachment
being updated, and

• d is the color attachment’s R, G, B or A component value:

Table 26.3: Logical Operations

Mode Operation
VK_LOGIC_OP_CLEAR 0
VK_LOGIC_OP_AND s ∧ d
VK_LOGIC_OP_AND_REVERSE s ∧ ¬ d
VK_LOGIC_OP_COPY s
VK_LOGIC_OP_AND_INVERTED ¬ s ∧ d
VK_LOGIC_OP_NO_OP d
VK_LOGIC_OP_XOR s ⊕ d
VK_LOGIC_OP_OR s ∨ d
VK_LOGIC_OP_NOR ¬ (s ∨ d)
VK_LOGIC_OP_EQUIVALENT ¬ (s ⊕ d)
VK_LOGIC_OP_INVERT ¬ d
VK_LOGIC_OP_OR_REVERSE s ∨ ¬ d
VK_LOGIC_OP_COPY_INVERTED ¬ s
VK_LOGIC_OP_OR_INVERTED ¬ s ∨ d
VK_LOGIC_OP_NAND ¬ (s ∧ d)
VK_LOGIC_OP_SET all 1s

The result of the logical operation is then written to the color attachment as controlled by the component write mask,
described in Blend Operations.

Vulkan 1.0.36 - A Specification 515 / 683

Chapter 27

Dispatching Commands

Dispatching commands (commands with Dispatch in the name) provoke work in a compute pipeline. Dispatching
commands are recorded into a command buffer and when executed by a queue, will produce work which executes
according to the currently bound compute pipeline. A compute pipeline must be bound to a command buffer before any
dispatch commands are recorded in that command buffer.

To record a dispatch, call:

void vkCmdDispatch(
VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z);

• commandBuffer is the command buffer into which the command will be recorded.

• x is the number of local workgroups to dispatch in the X dimension.

• y is the number of local workgroups to dispatch in the Y dimension.

• z is the number of local workgroups to dispatch in the Z dimension.

When the command is executed, a global workgroup consisting of x × y × z local workgroups is assembled.

Valid Usage

• x must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• y must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• z must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

• For each set n that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_POINT_
COMPUTE, a descriptor set must have been bound to n at VK_PIPELINE_BIND_POINT_COMPUTE, with a
VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current
VkPipeline, as described in Section 13.2.2.1

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are
statically used by the currently bound VkPipeline object, specified via vkCmdBindPipeline

• A valid compute pipeline must be bound to the current command buffer with VK_PIPELINE_BIND_POINT_
COMPUTE

• For each push constant that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_
POINT_COMPUTE, a push constant value must have been set for VK_PIPELINE_BIND_POINT_COMPUTE,
with a VkPipelineLayout that is compatible for push constants with the one used to create the current
VkPipeline, as described in Section 13.2.2.1

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used to sample from any
VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj
in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset
values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a uniform buffer, it must not access values outside
of the range of that buffer specified in the currently bound descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a storage buffer, it must not access values outside
of the range of that buffer specified in the currently bound descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must be of a format
which supports linear filtering, as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_
LINEAR_BIT flag in VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support compute operations

Vulkan 1.0.36 - A Specification 517 / 683

• This command must only be called outside of a render pass instance

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Compute Compute

To record an indirect command dispatch, call:

void vkCmdDispatchIndirect(
VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset);

• commandBuffer is the command buffer into which the command will be recorded.

• buffer is the buffer containing dispatch parameters.

• offset is the byte offset into buffer where parameters begin.

vkCmdDispatchIndirect behaves similarly to vkCmdDispatch except that the parameters are read by the
device from a buffer during execution. The parameters of the dispatch are encoded in a
VkDispatchIndirectCommand structure taken from buffer starting at offset.

Valid Usage

• For each set n that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_POINT_
COMPUTE, a descriptor set must have been bound to n at VK_PIPELINE_BIND_POINT_COMPUTE, with a
VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current
VkPipeline, as described in Section 13.2.2.1

• Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are
statically used by the currently bound VkPipeline object, specified via vkCmdBindPipeline

• A valid compute pipeline must be bound to the current command buffer with VK_PIPELINE_BIND_POINT_
COMPUTE

• buffer must have been created with the VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT bit set

• offset must be a multiple of 4

• The sum of offset and the size of VkDispatchIndirectCommand must be less than or equal to the size of
buffer

• For each push constant that is statically used by the VkPipeline currently bound to VK_PIPELINE_BIND_
POINT_COMPUTE, a push constant value must have been set for VK_PIPELINE_BIND_POINT_COMPUTE,
with a VkPipelineLayout that is compatible for push constants with the one used to create the current
VkPipeline, as described in Section 13.2.2.1

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used to sample from any
VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj
in their name, in any shader stage

• If any VkSampler object that is accessed from a shader by the VkPipeline currently bound to VK_
PIPELINE_BIND_POINT_COMPUTE uses unnormalized coordinates, it must not be used with any of the
SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset
values, in any shader stage

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a uniform buffer, it must not access values outside
of the range of that buffer specified in the currently bound descriptor set

• If the robust buffer access feature is not enabled, and any shader stage in the VkPipeline object currently
bound to VK_PIPELINE_BIND_POINT_COMPUTE accesses a storage buffer, it must not access values outside
of the range of that buffer specified in the currently bound descriptor set

• Any VkImageView being sampled with VK_FILTER_LINEAR as a result of this command must be of a format
which supports linear filtering, as specified by the VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_
LINEAR_BIT flag in VkFormatProperties::linearTilingFeatures (for a linear image) or
VkFormatProperties::optimalTilingFeatures(for an optimally tiled image) returned by
vkGetPhysicalDeviceFormatProperties

Vulkan 1.0.36 - A Specification 519 / 683

Valid Usage (Implicit)

• commandBuffer must be a valid VkCommandBuffer handle

• buffer must be a valid VkBuffer handle

• commandBuffer must be in the recording state

• The VkCommandPool that commandBuffer was allocated from must support compute operations

• This command must only be called outside of a render pass instance

• Both of buffer, and commandBuffer must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization

• Host access to commandBuffer must be externally synchronized

• Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

Primary
Secondary

Outside Compute Compute

The VkDispatchIndirectCommand structure is defined as:

typedef struct VkDispatchIndirectCommand {
uint32_t x;
uint32_t y;
uint32_t z;

} VkDispatchIndirectCommand;

• x is the number of local workgroups to dispatch in the X dimension.

• y is the number of local workgroups to dispatch in the Y dimension.

• z is the number of local workgroups to dispatch in the Z dimension.

The members of VkDispatchIndirectCommand structure have the same meaning as the similarly named
parameters of vkCmdDispatch.

Valid Usage

• x must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

• y must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

• z must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

Vulkan 1.0.36 - A Specification 521 / 683

Chapter 28

Sparse Resources

As documented in Resource Memory Association, VkBuffer and VkImage resources in Vulkan must be bound
completely and contiguously to a single VkDeviceMemory object. This binding must be done before the resource is
used, and the binding is immutable for the lifetime of the resource.

Sparse resources relax these restrictions and provide these additional features:

• Sparse resources can be bound non-contiguously to one or more VkDeviceMemory allocations.

• Sparse resources can be re-bound to different memory allocations over the lifetime of the resource.

• Sparse resources can have descriptors generated and used orthogonally with memory binding commands.

28.1 Sparse Resource Features

Sparse resources have several features that must be enabled explicitly at resource creation time. The features are enabled
by including bits in the flags parameter of VkImageCreateInfo or VkBufferCreateInfo. Each feature also
has one or more corresponding feature enables specified in VkPhysicalDeviceFeatures.

• Sparse binding is the base feature, and provides the following capabilities:

– Resources can be bound at some defined (sparse block) granularity.

– The entire resource must be bound to memory before use regardless of regions actually accessed.

– No specific mapping of image region to memory offset is defined, i.e. the location that each texel corresponds to in
memory is implementation-dependent.

– Sparse buffers have a well-defined mapping of buffer range to memory range, where an offset into a range of the
buffer that is bound to a single contiguous range of memory corresponds to an identical offset within that range of
memory.

– Requested via the VK_IMAGE_CREATE_SPARSE_BINDING_BIT and VK_BUFFER_CREATE_SPARSE_
BINDING_BIT bits.

– A sparse image created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (but not VK_IMAGE_CREATE_
SPARSE_RESIDENCY_BIT) supports all formats that non-sparse usage supports, and supports both VK_IMAGE_
TILING_OPTIMAL and VK_IMAGE_TILING_LINEAR tiling.

• Sparse Residency builds on (and requires) the sparseBinding feature. It includes the following capabilities:

– Resources do not have to be completely bound to memory before use on the device.
– Images have a prescribed sparse image block layout, allowing specific rectangular regions of the image to be bound

to specific offsets in memory allocations.
– Consistency of access to unbound regions of the resource is defined by the absence or presence of
VkPhysicalDeviceSparseProperties::residencyNonResidentStrict. If this property is present,
accesses to unbound regions of the resource are well defined and behave as if the data bound is populated with all
zeros; writes are discarded. When this property is absent, accesses are considered safe, but reads will return
undefined values.

– Requested via the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT and VK_BUFFER_CREATE_SPARSE_
RESIDENCY_BIT bits.

– is advertised on a finer grain via the following features:

* sparseResidencyBuffer: Support for creating VkBuffer objects with the VK_BUFFER_CREATE_SPARSE_
RESIDENCY_BIT.

* sparseResidencyImage2D: Support for creating 2D single-sampled VkImage objects with VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

* sparseResidencyImage3D: Support for creating 3D VkImage objects with VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT.

* sparseResidency2Samples: Support for creating 2D VkImage objects with 2 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

* sparseResidency4Samples: Support for creating 2D VkImage objects with 4 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

* sparseResidency8Samples: Support for creating 2D VkImage objects with 8 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

* sparseResidency16Samples: Support for creating 2D VkImage objects with 16 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

Implementations supporting sparseResidencyImage2D are only required to support sparse 2D, single-sampled
images. Support is not required for sparse 3D and MSAA images and is enabled via sparseResidencyImage3D,
sparseResidency2Samples, sparseResidency4Samples, sparseResidency8Samples, and
sparseResidency16Samples.

– A sparse image created using VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT supports all non-compressed
color formats with power-of-two element size that non-sparse usage supports. Additional formats may also be
supported and can be queried via vkGetPhysicalDeviceSparseImageFormatProperties. VK_
IMAGE_TILING_LINEAR tiling is not supported.

• Sparse aliasing provides the following capability that can be enabled per resource:

Allows physical memory ranges to be shared between multiple locations in the same sparse resource or between
multiple sparse resources, with each binding of a memory location observing a consistent interpretation of the memory
contents.

See Sparse Memory Aliasing for more information.

28.2 Sparse Buffers and Fully-Resident Images

Both VkBuffer and VkImage objects created with the VK_IMAGE_CREATE_SPARSE_BINDING_BIT or VK_
BUFFER_CREATE_SPARSE_BINDING_BIT bits can be thought of as a linear region of address space. In the
VkImage case if VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not used, this linear region is entirely opaque,
meaning that there is no application-visible mapping between pixel location and memory offset.

Unless VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT or VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT
are also used, the entire resource must be bound to one or more VkDeviceMemory objects before use.

Vulkan 1.0.36 - A Specification 523 / 683

28.2.1 Sparse Buffer and Fully-Resident Image Block Size

The sparse block size in bytes for sparse buffers and fully-resident images is reported as
VkMemoryRequirements::alignment. alignment represents both the memory alignment requirement and the
binding granularity (in bytes) for sparse resources.

28.3 Sparse Partially-Resident Buffers

VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT bit allow the buffer to be
made only partially resident. Partially resident VkBuffer objects are allocated and bound identically to VkBuffer
objects using only the VK_BUFFER_CREATE_SPARSE_BINDING_BIT feature. The only difference is the ability for
some regions of the buffer to be unbound during device use.

28.4 Sparse Partially-Resident Images

VkImage objects created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT bit allow specific rectangular
regions of the image called sparse image blocks to be bound to specific ranges of memory. This allows the application to
manage residency at either image subresource or sparse image block granularity. Each image subresource (outside of the
mip tail) starts on a sparse block boundary and has dimensions that are integer multiples of the corresponding dimensions
of the sparse image block.

Note
Applications can use these types of images to control level-of-detail based on total memory consumption. If
memory pressure becomes an issue the application can unbind and disable specific mipmap levels of images
without having to recreate resources or modify pixel data of unaffected levels.
The application can also use this functionality to access subregions of the image in a “megatexture” fashion.
The application can create a large image and only populate the region of the image that is currently being used
in the scene.

28.4.1 Accessing Unbound Regions

The following member of VkPhysicalDeviceSparseProperties affects how data in unbound regions of sparse
resources are handled by the implementation:

• residencyNonResidentStrict

If this property is not present, reads of unbound regions of the image will return undefined values. Both reads and writes
are still considered safe and will not affect other resources or populated regions of the image.

If this property is present, all reads of unbound regions of the image will behave as if the region was bound to memory
populated with all zeros; writes will be discarded.

Formatted accesses to unbound memory may still alter some component values in the natural way for those accesses, e.g.
substituting a value of one for alpha in formats that do not have an alpha component.

Example: Reading the alpha component of an unbacked VK_FORMAT_R8_UNORM image will return a value of 1.0f.

See Physical Device Enumeration for instructions for retrieving physical device properties.

Implementor’s Note

For hardware that cannot natively handle access to unbound regions of a resource, the implementation may allocate
and bind memory to the unbound regions. Reads and writes to unbound regions will access the
implementation-managed memory instead of causing a hardware fault.

Given that reads of unbound regions are undefined in this scenario, implementations may use the same physical
memory for unbound regions of multiple resources within the same process.

28.4.2 Mip Tail Regions

Sparse images created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (without also using VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT) have no specific mapping of image region or image subresource to memory
offset defined, so the entire image can be thought of as a linear opaque address region. However, images created with
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT do have a prescribed sparse image block layout, and hence each
image subresource must start on a sparse block boundary. Within each array layer, the set of mip levels that have a
smaller size than the sparse block size in bytes are grouped together into a mip tail region.

If the VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT flag is present in the flags member of
VkSparseImageFormatProperties, for the image’s format, then any mip level which has dimensions that are
not integer multiples of the corresponding dimensions of the sparse image block, and all subsequent mip levels, are also
included in the mip tail region.

The following member of VkPhysicalDeviceSparseProperties may affect how the implementation places
mip levels in the mip tail region:

• residencyAlignedMipSize

Each mip tail region is bound to memory as an opaque region (i.e. must be bound using a
VkSparseImageOpaqueMemoryBindInfo structure) and may be of a size greater than or equal to the sparse block
size in bytes. This size is guaranteed to be an integer multiple of the sparse block size in bytes.

An implementation may choose to allow each array-layer’s mip tail region to be bound to memory independently or
require that all array-layer’s mip tail regions be treated as one. This is dictated by VK_SPARSE_IMAGE_FORMAT_
SINGLE_MIPTAIL_BIT in VkSparseImageMemoryRequirements::flags.

The following diagrams depict how VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and VK_SPARSE_
IMAGE_FORMAT_SINGLE_MIPTAIL_BIT alter memory usage and requirements.

Vulkan 1.0.36 - A Specification 525 / 683

Arrayed Sparse Image

Mip Level 0

Mip Level 1

Mip Level 2

Mip Level 3

Mip Tail

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 28.1: Sparse Image

In the absence of VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and VK_SPARSE_IMAGE_
FORMAT_SINGLE_MIPTAIL_BIT, each array layer contains a mip tail region containing pixel data for all mip levels
smaller than the sparse image block in any dimension.

Mip levels that are as large or larger than a sparse image block in all dimensions can be bound individually. Right-edges
and bottom-edges of each level are allowed to have partially used sparse blocks. Any bound partially-used-sparse-blocks
must still have their full sparse block size in bytes allocated in memory.

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Level 0

Mip Level 1

Mip Level 2

Mip Level 3

Mip Tail

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT

Arrayed Sparse Image

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 28.2: Sparse Image with Single Mip Tail

When VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is present all array layers will share a single mip tail
region.

Vulkan 1.0.36 - A Specification 527 / 683

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Level 0

Mip Level 1

Mip Tail

VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT

Arrayed Sparse Image

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 28.3: Sparse Image with Aligned Mip Size

Note
The mip tail regions are presented here in 2D arrays simply for figure size reasons. Each mip tail is logically a
single array of sparse blocks with an implementation-dependent mapping of pixels to sparse blocks.

When VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is present the first mip level that would contain
partially used sparse blocks begins the mip tail region. This level and all subsequent levels are placed in the mip tail.
Only the first N mip levels whose dimensions are an exact multiple of the sparse image block dimensions can be bound
and unbound on a sparse block basis.

Array Layer 0 Array Layer 1 Array Layer 2 Array Layer 3

Mip Level 0

Mip Level 1

Mip Tail

VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT

Arrayed Sparse Image

VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 28.4: Sparse Image with Aligned Mip Size and Single Mip Tail

Note
The mip tail region is presented here in a 2D array simply for figure size reasons. It is logically a single array of
sparse blocks with an implementation-dependent mapping of pixels to sparse blocks.

When both VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT and VK_SPARSE_IMAGE_FORMAT_
SINGLE_MIPTAIL_BIT are present the constraints from each of these flags are in effect.

28.4.3 Standard Sparse Image Block Shapes

Standard sparse image block shapes define a standard set of dimensions for sparse image blocks that depend on the
format of the image. Layout of pixels within a sparse image block is implementation dependent. All currently defined
standard sparse image block shapes are 64 KB in size.

For block-compressed formats (e.g. VK_FORMAT_BC5_UNORM_BLOCK), the pixel size is the size of the compressed
texel block (128-bit for BC5) thus the dimensions of the standard sparse image block shapes apply in terms of
compressed texel blocks.

Vulkan 1.0.36 - A Specification 529 / 683

Note
For block-compressed formats, the dimensions of a sparse image block in terms of texels can be calculated by
multiplying the sparse image block dimensions by the compressed texel block dimensions.

Table 28.1: Standard Sparse Image Block Shapes (Single Sample)

PIXEL SIZE (bits) Block Shape (2D) Block Shape (3D)
8-Bit 256 × 256 × 1 64 × 32 × 32
16-Bit 256 × 128 × 1 32 × 32 × 32
32-Bit 128 × 128 × 1 32 × 32 × 16
64-Bit 128 × 64 × 1 32 × 16 × 16
128-Bit 64 × 64 × 1 16 × 16 × 16

Table 28.2: Standard Sparse Image Block Shapes (MSAA)

PIXEL SIZE (bits) Block Shape (2X) Block Shape (4X) Block Shape (8X) Block Shape (16X)
8-Bit 128 × 256 × 1 128 × 128 × 1 64 × 128 × 1 64 × 64 × 1
16-Bit 128 × 128 × 1 128 × 64 × 1 64 × 64 × 1 64 × 32 × 1
32-Bit 64 × 128 × 1 64 × 64 × 1 32 × 64 × 1 32 × 32 × 1
64-Bit 64 × 64 × 1 64 × 32 × 1 32 × 32 × 1 32 × 16 × 1
128-Bit 32 × 64 × 1 32 × 32 × 1 16 × 32 × 1 16 × 16 × 1

Implementations that support the standard sparse image block shape for all applicable formats may advertise the
following VkPhysicalDeviceSparseProperties:

• residencyStandard2DBlockShape

• residencyStandard2DMultisampleBlockShape

• residencyStandard3DBlockShape

Reporting each of these features does not imply that all possible image types are supported as sparse. Instead, this
indicates that no supported sparse image of the corresponding type will use custom sparse image block dimensions for
any formats that have a corresponding standard sparse image block shape.

28.4.4 Custom Sparse Image Block Shapes

An implementation that does not support a standard image block shape for a particular sparse partially-resident image
may choose to support a custom sparse image block shape for it instead. The dimensions of such a custom sparse image
block shape are reported in VkSparseImageFormatProperties::imageGranularity. As with standard sparse
image block shapes, the size in bytes of the custom sparse image block shape will be reported in
VkMemoryRequirements::alignment.

Custom sparse image block dimensions are reported through
vkGetPhysicalDeviceSparseImageFormatProperties and
vkGetImageSparseMemoryRequirements.

An implementation must not support both the standard sparse image block shape and a custom sparse image block shape
for the same image. The standard sparse image block shape must be used if it is supported.

Vulkan 1.0.36 - A Specification 531 / 683

28.4.5 Multiple Aspects

Partially resident images are allowed to report separate sparse properties for different aspects of the image. One example
is for depth/stencil images where the implementation separates the depth and stencil data into separate planes. Another
reason for multiple aspects is to allow the application to manage memory allocation for implementation-private metadata
associated with the image. See the figure below:

Multiple Aspect Sparse Image

Mip Level 0

Mip Level 1

Depth Aspect Stencil Aspect Metadata Aspect

Mip Level 2

Mip Tail

Mip TailMip Level 3

Mip Tail

Mip Tail Data

Image Pixel Data

Sparse Memory Block

Figure 28.5: Multiple Aspect Sparse Image

Note
The mip tail regions are presented here in 2D arrays simply for figure size reasons. Each mip tail is logically a
single array of sparse blocks with an implementation-dependent mapping of pixels to sparse blocks.

In the figure above the depth, stencil, and metadata aspects all have unique sparse properties. The per-pixel stencil data is
¼ the size of the depth data, hence the stencil sparse blocks include 4 × the number of pixels. The sparse block size in
bytes for all of the aspects is identical and defined by VkMemoryRequirements::alignment.

28.4.5.1 Metadata

The metadata aspect of an image has the following constraints:

• All metadata is reported in the mip tail region of the metadata aspect.

• All metadata must be bound prior to device use of the sparse image.

28.5 Sparse Memory Aliasing

By default sparse resources have the same aliasing rules as non-sparse resources. See Memory Aliasing for more
information.

VkDevice objects that have the sparseResidencyAliased feature enabled are able to use the VK_BUFFER_CREATE_
SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags for resource creation. These
flags allow resources to access physical memory bound into multiple locations within one or more sparse resources in a
data consistent fashion. This means that reading physical memory from multiple aliased locations will return the same
value.

Care must be taken when performing a write operation to aliased physical memory. Memory dependencies must be used
to separate writes to one alias from reads or writes to another alias. Writes to aliased memory that are not properly
guarded against accesses to different aliases will have undefined results for all accesses to the aliased memory.

Applications that wish to make use of data consistent sparse memory aliasing must abide by the following guidelines:

• All sparse resources that are bound to aliased physical memory must be created with the VK_BUFFER_CREATE_
SPARSE_ALIASED_BIT / VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flag.

• All resources that access aliased physical memory must interpret the memory in the same way. This implies the
following:

– Buffers and images cannot alias the same physical memory in a data consistent fashion. The physical memory
ranges must be used exclusively by buffers or used exclusively by images for data consistency to be guaranteed.

– Memory in sparse image mip tail regions cannot access aliased memory in a data consistent fashion.

– Sparse images that alias the same physical memory must have compatible formats and be using the same sparse
image block shape in order to access aliased memory in a data consistent fashion.

Failure to follow any of the above guidelines will require the application to abide by the normal, non-sparse resource
aliasing rules. In this case memory cannot be accessed in a data consistent fashion.

Note
Enabling sparse resource memory aliasing can be a way to lower physical memory use, but it may reduce
performance on some implementations. An application developer can test on their target HW and balance the
memory / performance trade-offs measured.

28.6 Sparse Resource Implementation Guidelines

This section is Informative. It is included to aid in implementors’ understanding of sparse resources.

Device Virtual Address The basic sparseBinding feature allows the resource to reserve its own device virtual
address range at resource creation time rather than relying on a bind operation to set this. Without any other creation
flags, no other constraints are relaxed compared to normal resources. All pages must be bound to physical memory
before the device accesses the resource.

Vulkan 1.0.36 - A Specification 533 / 683

The sparse residency features allow sparse resources to be used even when not all pages are bound to memory.
Hardware that supports access to unbound pages without causing a fault may support
residencyNonResidentStrict.

Not faulting on access to unbound pages is not enough to support sparseResidencyNonResidentStrict. An
implementation must also guarantee that reads after writes to unbound regions of the resource always return data for
the read as if the memory contains zeros. Depending on the cache implementation of the hardware this may not
always be possible.

Hardware that does not fault, but does not guarantee correct read values will not require dummy pages, but also must
not support sparseResidencyNonResidentStrict.

Hardware that cannot access unbound pages without causing a fault will require the implementation to bind the
entire device virtual address range to physical memory. Any pages that the application does not bind to memory
may be bound to one (or more) “dummy” physical page(s) allocated by the implementation. Given the following
properties:

• A process must not access memory from another process

• Reads return undefined values

It is sufficient for each host process to allocate these dummy pages and use them for all resources in that process.
Implementations may allocate more often (per instance, per device, or per resource).

Binding Memory The byte size reported in VkMemoryRequirements::size must be greater than or equal to the
amount of physical memory required to fully populate the resource. Some hardware requires “holes” in the device
virtual address range that are never accessed. These holes may be included in the size reported for the resource.

Including or not including the device virtual address holes in the resource size will alter how the implementation
provides support for VkSparseImageOpaqueMemoryBindInfo. This operation must be supported for all
sparse images, even ones created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT.

• If the holes are included in the size, this bind function becomes very easy. In most cases the resourceOffset is
simply a device virtual address offset and the implementation does not require any sophisticated logic to
determine what device virtual address to bind. The cost is that the application can allocate more physical memory
for the resource than it needs.

• If the holes are not included in the size, the application can allocate less physical memory than otherwise for the
resource. However, in this case the implementation must account for the holes when mapping resourceOffset

to the actual device virtual address intended to be mapped.

Note
If the application always uses VkSparseImageMemoryBindInfo to bind memory for the non-tail mip
levels, any holes that are present in the resource size may never be bound.
Since VkSparseImageMemoryBindInfo uses pixel locations to determine which device virtual ad-
dresses to bind, it is impossible to bind device virtual address holes with this operation.

Binding Metadata Memory All metadata for sparse images have their own sparse properties and are embedded in
the mip tail region for said properties. See the Multiaspect section for details.

Given that metadata is in a mip tail region, and the mip tail region must be reported as contiguous (either globally or
per-array-layer), some implementations will have to resort to complicated offset→ device virtual address mapping
for handling VkSparseImageOpaqueMemoryBindInfo.

To make this easier on the implementation, the VK_SPARSE_MEMORY_BIND_METADATA_BIT explicitly
denotes when metadata is bound with VkSparseImageOpaqueMemoryBindInfo. When this flag is not
present, the resourceOffset may be treated as a strict device virtual address offset.

When VK_SPARSE_MEMORY_BIND_METADATA_BIT is present, the resourceOffset must have been derived
explicitly from the imageMipTailOffset in the sparse resource properties returned for the metadata aspect. By
manipulating the value returned for imageMipTailOffset, the resourceOffset does not have to correlate
directly to a device virtual address offset, and may instead be whatever values makes it easiest for the
implementation to derive the correct device virtual address.

28.7 Sparse Resource API

The APIs related to sparse resources are grouped into the following categories:

• Physical Device Features

• Physical Device Sparse Properties

• Sparse Image Format Properties

• Sparse Resource Creation

• Sparse Resource Memory Requirements

• Binding Resource Memory

28.7.1 Physical Device Features

Some sparse-resource related features are reported and enabled in VkPhysicalDeviceFeatures. These features
must be supported and enabled on the VkDevice object before applications can use them. See Physical Device Features
for information on how to get and set enabled device features, and for more detailed explanations of these features.

28.7.1.1 Sparse Physical Device Features

• sparseBinding: Support for creating VkBuffer and VkImage objects with the VK_BUFFER_CREATE_
SPARSE_BINDING_BIT and VK_IMAGE_CREATE_SPARSE_BINDING_BIT flags, respectively.

• sparseResidencyBuffer: Support for creating VkBuffer objects with the VK_BUFFER_CREATE_SPARSE_
RESIDENCY_BIT flag.

• sparseResidencyImage2D: Support for creating 2D single-sampled VkImage objects with VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyImage3D: Support for creating 3D VkImage objects with VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT.

• sparseResidency2Samples: Support for creating 2D VkImage objects with 2 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency4Samples: Support for creating 2D VkImage objects with 4 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

Vulkan 1.0.36 - A Specification 535 / 683

• sparseResidency8Samples: Support for creating 2D VkImage objects with 8 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidency16Samples: Support for creating 2D VkImage objects with 16 samples and VK_IMAGE_
CREATE_SPARSE_RESIDENCY_BIT.

• sparseResidencyAliased: Support for creating VkBuffer and VkImage objects with the VK_BUFFER_
CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_CREATE_SPARSE_ALIASED_BIT flags, respectively.

28.7.2 Physical Device Sparse Properties

Some features of the implementation are not possible to disable, and are reported to allow applications to alter their
sparse resource usage accordingly. These read-only capabilities are reported in the
VkPhysicalDeviceProperties::sparseProperties member, which is a structure of type
VkPhysicalDeviceSparseProperties.

The VkPhysicalDeviceSparseProperties structure is defined as:

typedef struct VkPhysicalDeviceSparseProperties {
VkBool32 residencyStandard2DBlockShape;
VkBool32 residencyStandard2DMultisampleBlockShape;
VkBool32 residencyStandard3DBlockShape;
VkBool32 residencyAlignedMipSize;
VkBool32 residencyNonResidentStrict;

} VkPhysicalDeviceSparseProperties;

• residencyStandard2DBlockShape is VK_TRUE if the physical device will access all single-sample 2D sparse
resources using the standard sparse image block shapes (based on image format), as described in the Standard Sparse
Image Block Shapes (Single Sample) table. If this property is not supported the value returned in the
imageGranularity member of the VkSparseImageFormatProperties structure for single-sample 2D
images is not required to match the standard sparse image block dimensions listed in the table.

• residencyStandard2DMultisampleBlockShape is VK_TRUE if the physical device will access all multisample
2D sparse resources using the standard sparse image block shapes (based on image format), as described in the
Standard Sparse Image Block Shapes (MSAA) table. If this property is not supported, the value returned in the
imageGranularity member of the VkSparseImageFormatProperties structure for multisample 2D images
is not required to match the standard sparse image block dimensions listed in the table.

• residencyStandard3DBlockShape is VK_TRUE if the physical device will access all 3D sparse resources using
the standard sparse image block shapes (based on image format), as described in the Standard Sparse Image Block
Shapes (Single Sample) table. If this property is not supported, the value returned in the imageGranularity member
of the VkSparseImageFormatProperties structure for 3D images is not required to match the standard sparse
image block dimensions listed in the table.

• residencyAlignedMipSize is VK_TRUE if images with mip level dimensions that are not integer multiples of the
corresponding dimensions of the sparse image block may be placed in the mip tail. If this property is not reported, only
mip levels with dimensions smaller than the imageGranularity member of the
VkSparseImageFormatProperties structure will be placed in the mip tail. If this property is reported the
implementation is allowed to return VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT in the flags
member of VkSparseImageFormatProperties, indicating that mip level dimensions that are not integer
multiples of the corresponding dimensions of the sparse image block will be placed in the mip tail.

• residencyNonResidentStrict specifies whether the physical device can consistently access non-resident regions
of a resource. If this property is VK_TRUE, access to non-resident regions of resources will be guaranteed to return
values as if the resource were populated with 0; writes to non-resident regions will be discarded.

28.7.3 Sparse Image Format Properties

Given that certain aspects of sparse image support, including the sparse image block dimensions, may be
implementation-dependent, vkGetPhysicalDeviceSparseImageFormatProperties can be used to query
for sparse image format properties prior to resource creation. This command is used to check whether a given set of
sparse image parameters is supported and what the sparse image block shape will be.

28.7.3.1 Sparse Image Format Properties API

The VkSparseImageFormatProperties structure is defined as:

typedef struct VkSparseImageFormatProperties {
VkImageAspectFlags aspectMask;
VkExtent3D imageGranularity;
VkSparseImageFormatFlags flags;

} VkSparseImageFormatProperties;

• aspectMask is a bitmask of VkImageAspectFlagBits specifying which aspects of the image the properties
apply to.

• imageGranularity is the width, height, and depth of the sparse image block in texels or compressed texel blocks.

• flags is a bitmask specifying additional information about the sparse resource. Bits which can be set include:

typedef enum VkSparseImageFormatFlagBits {
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT = 0x00000001,
VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT = 0x00000002,
VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT = 0x00000004,

} VkSparseImageFormatFlagBits;

– If VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is set, the image uses a single mip tail region for all
array layers.

– If VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is set, the first mip level whose dimensions are
not integer multiples of the corresponding dimensions of the sparse image block begins the mip tail region.

– If VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT is set, the image uses non-standard
sparse image block dimensions, and the imageGranularity values do not match the standard sparse image block
dimensions for the given pixel format.

vkGetPhysicalDeviceSparseImageFormatProperties returns an array of
VkSparseImageFormatProperties. Each element will describe properties for one set of image aspects that are
bound simultaneously in the image. This is usually one element for each aspect in the image, but for interleaved
depth/stencil images there is only one element describing the combined aspects.

void vkGetPhysicalDeviceSparseImageFormatProperties(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkImageType type,
VkSampleCountFlagBits samples,
VkImageUsageFlags usage,
VkImageTiling tiling,
uint32_t* pPropertyCount,
VkSparseImageFormatProperties* pProperties);

Vulkan 1.0.36 - A Specification 537 / 683

• physicalDevice is the physical device from which to query the sparse image capabilities.

• format is the image format.

• type is the dimensionality of image.

• samples is the number of samples per pixel as defined in VkSampleCountFlagBits.

• usage is a bitmask describing the intended usage of the image.

• tiling is the tiling arrangement of the data elements in memory.

• pPropertyCount is a pointer to an integer related to the number of sparse format properties available or queried, as
described below.

• pProperties is either NULL or a pointer to an array of VkSparseImageFormatProperties structures.

If pProperties is NULL, then the number of sparse format properties available is returned in pPropertyCount.
Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the pProperties
array, and on return the variable is overwritten with the number of structures actually written to pProperties. If
pPropertyCount is less than the number of sparse format properties available, at most pPropertyCount structures
will be written.

If VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT is not supported for the given arguments, pPropertyCount
will be set to zero upon return, and no data will be written to pProperties.

Multiple aspects are returned for depth/stencil images that are implemented as separate planes by the implementation.
The depth and stencil data planes each have unique VkSparseImageFormatProperties data.

Depth/stencil images with depth and stencil data interleaved into a single plane will return a single
VkSparseImageFormatProperties structure with the aspectMask set to VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT.

Valid Usage

• samples must be a bit value that is set in VkImageFormatProperties::sampleCounts returned by
vkGetPhysicalDeviceImageFormatProperties with format, type, tiling, and usage equal to
those in this command and flags equal to the value that is set in VkImageCreateInfo::flags when the
image is created

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• format must be a valid VkFormat value

• type must be a valid VkImageType value

• samples must be a valid VkSampleCountFlagBits value

• usage must be a valid combination of VkImageUsageFlagBits values

• usage must not be 0

• tiling must be a valid VkImageTiling value

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties must be a
pointer to an array of pPropertyCount VkSparseImageFormatProperties structures

28.7.4 Sparse Resource Creation

Sparse resources require that one or more sparse feature flags be specified (as part of the
VkPhysicalDeviceFeatures structure described previously in the Physical Device Features section) at
CreateDevice time. When the appropriate device features are enabled, the VK_BUFFER_CREATE_SPARSE_* and VK_
IMAGE_CREATE_SPARSE_* flags can be used. See vkCreateBuffer and vkCreateImage for details of the
resource creation APIs.

Note
Specifying VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT or VK_IMAGE_CREATE_SPARSE_RESI
DENCY_BIT requires specifying VK_BUFFER_CREATE_SPARSE_BINDING_BIT or VK_IMAGE_CREA
TE_SPARSE_BINDING_BIT, respectively, as well. This means that resources must be created with the
appropriate *_SPARSE_BINDING_BIT to be used with the sparse binding command (vkQueueBindSpa
rse).

28.7.5 Sparse Resource Memory Requirements

Sparse resources have specific memory requirements related to binding sparse memory. These memory requirements are
reported differently for VkBuffer objects and VkImage objects.

28.7.5.1 Buffer and Fully-Resident Images

Buffers (both fully and partially resident) and fully-resident images can be bound to memory using only the data from
VkMemoryRequirements. For all sparse resources the VkMemoryRequirements::alignment member denotes
both the bindable sparse block size in bytes and required alignment of VkDeviceMemory.

28.7.5.2 Partially Resident Images

Partially resident images have a different method for binding memory. As with buffers and fully resident images, the
VkMemoryRequirements::alignment field denotes the bindable sparse block size in bytes for the image.

Requesting sparse memory requirements for VkImage objects using vkGetImageSparseMemoryRequirements
will return an array of one or more VkSparseImageMemoryRequirements structures. Each structure describes
the sparse memory requirements for a group of aspects of the image.

The sparse image must have been created using the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag to retrieve
valid sparse image memory requirements.

Vulkan 1.0.36 - A Specification 539 / 683

28.7.5.3 Sparse Image Memory Requirements

The VkSparseImageMemoryRequirements structure is defined as:

typedef struct VkSparseImageMemoryRequirements {
VkSparseImageFormatProperties formatProperties;
uint32_t imageMipTailFirstLod;
VkDeviceSize imageMipTailSize;
VkDeviceSize imageMipTailOffset;
VkDeviceSize imageMipTailStride;

} VkSparseImageMemoryRequirements;

• formatProperties.aspectMask is the set of aspects of the image that this sparse memory requirement applies to.
This will usually have a single aspect specified. However, depth/stencil images may have depth and stencil data
interleaved in the same sparse block, in which case both VK_IMAGE_ASPECT_DEPTH_BIT and VK_IMAGE_
ASPECT_STENCIL_BIT would be present.

• formatProperties.imageGranularity describes the dimensions of a single bindable sparse image block in pixel
units. For aspect VK_IMAGE_ASPECT_METADATA_BIT, all dimensions will be zero pixels. All metadata is located
in the mip tail region.

• formatProperties.flags is a bitmask of VkSparseImageFormatFlagBits:

– If VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT is set the image uses a single mip tail region for all
array layers.

– If VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT is set the dimensions of mip levels must be
integer multiples of the corresponding dimensions of the sparse image block for levels not located in the mip tail.

– If VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT is set the image uses non-standard
sparse image block dimensions. The formatProperties.imageGranularity values do not match the standard
sparse image block dimension corresponding to the image’s pixel format.

• imageMipTailFirstLod is the first mip level at which image subresources are included in the mip tail region.

• imageMipTailSize is the memory size (in bytes) of the mip tail region. If formatProperties.flags contains
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, this is the size of the whole mip tail, otherwise this is
the size of the mip tail of a single array layer. This value is guaranteed to be a multiple of the sparse block size in bytes.

• imageMipTailOffset is the opaque memory offset used with VkSparseImageOpaqueMemoryBindInfo to
bind the mip tail region(s).

• imageMipTailStride is the offset stride between each array-layer’s mip tail, if formatProperties.flags does
not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT (otherwise the value is undefined).

To query sparse memory requirements for an image, call:

void vkGetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements* pSparseMemoryRequirements);

• device is the logical device that owns the image.

• image is the VkImage object to get the memory requirements for.

• pSparseMemoryRequirementCount is a pointer to an integer related to the number of sparse memory requirements
available or queried, as described below.

• pSparseMemoryRequirements is either NULL or a pointer to an array of
VkSparseImageMemoryRequirements structures.

If pSparseMemoryRequirements is NULL, then the number of sparse memory requirements available is returned in
pSparseMemoryRequirementCount. Otherwise, pSparseMemoryRequirementCount must point to a variable set
by the user to the number of elements in the pSparseMemoryRequirements array, and on return the variable is
overwritten with the number of structures actually written to pSparseMemoryRequirements. If
pSparseMemoryRequirementCount is less than the number of sparse memory requirements available, at most
pSparseMemoryRequirementCount structures will be written.

If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then
pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written to.

Note
It is legal for an implementation to report a larger value in VkMemoryRequirements::size than would
be obtained by adding together memory sizes for all VkSparseImageMemoryRequirements returned
by vkGetImageSparseMemoryRequirements. This may occur when the hardware requires unused
padding in the address range describing the resource.

Valid Usage (Implicit)

• device must be a valid VkDevice handle

• image must be a valid VkImage handle

• pSparseMemoryRequirementCount must be a pointer to a uint32_t value

• If the value referenced by pSparseMemoryRequirementCount is not 0, and pSparseMemoryRequirements

is not NULL, pSparseMemoryRequirements must be a pointer to an array of
pSparseMemoryRequirementCount VkSparseImageMemoryRequirements structures

• image must have been created, allocated, or retrieved from device

28.7.6 Binding Resource Memory

Non-sparse resources are backed by a single physical allocation prior to device use (via vkBindImageMemory or
vkBindBufferMemory), and their backing must not be changed. On the other hand, sparse resources can be bound to
memory non-contiguously and these bindings can be altered during the lifetime of the resource.

Vulkan 1.0.36 - A Specification 541 / 683

Note
It is important to note that freeing a VkDeviceMemory object with vkFreeMemory will not cause resources
(or resource regions) bound to the memory object to become unbound. Access to resources that are bound to
memory objects that have been freed will result in undefined behavior, potentially including application termina-
tion.
Implementations must ensure that no access to physical memory owned by the system or another process will
occur in this scenario. In other words, accessing resources bound to freed memory may result in application
termination, but must not result in system termination or in reading non-process-accessible memory.

Sparse memory bindings execute on a queue that includes the VK_QUEUE_SPARSE_BINDING_BIT bit. Applications
must use synchronization primitives to guarantee that other queues do not access ranges of memory concurrently with a
binding change. Accessing memory in a range while it is being rebound results in undefined behavior. It is valid to
access other ranges of the same resource while a bind operation is executing.

Note
Implementations must provide a guarantee that simultaneously binding sparse blocks while another queue ac-
cesses those same sparse blocks via a sparse resource must not access memory owned by another process or
otherwise corrupt the system.

While some implementations may include VK_QUEUE_SPARSE_BINDING_BIT support in queue families that also
include graphics and compute support, other implementations may only expose a VK_QUEUE_SPARSE_BINDING_
BIT-only queue family. In either case, applications must use synchronization primitives to explicitly request any
ordering dependencies between sparse memory binding operations and other graphics/compute/transfer operations, as
sparse binding operations are not automatically ordered against command buffer execution, even within a single queue.

When binding memory explicitly for the VK_IMAGE_ASPECT_METADATA_BIT the application must use the VK_
SPARSE_MEMORY_BIND_METADATA_BIT in the VkSparseMemoryBind::flags field when binding memory.
Binding memory for metadata is done the same way as binding memory for the mip tail, with the addition of the VK_
SPARSE_MEMORY_BIND_METADATA_BIT flag.

Binding the mip tail for any aspect must only be performed using VkSparseImageOpaqueMemoryBindInfo. If
formatProperties.flags contains VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, then it can be
bound with a single VkSparseMemoryBind structure, with resourceOffset = imageMipTailOffset and size =
imageMipTailSize.

If formatProperties.flags does not contain VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT then the
offset for the mip tail in each array layer is given as:

arrayMipTailOffset = imageMipTailOffset + arrayLayer * imageMipTailStride;

and the mip tail can be bound with layerCount VkSparseMemoryBind structures, each using size =
imageMipTailSize and resourceOffset = arrayMipTailOffset as defined above.

Sparse memory binding is handled by the following APIs and related data structures.

28.7.6.1 Sparse Memory Binding Functions

The VkSparseMemoryBind structure is defined as:

typedef struct VkSparseMemoryBind {
VkDeviceSize resourceOffset;

VkDeviceSize size;
VkDeviceMemory memory;
VkDeviceSize memoryOffset;
VkSparseMemoryBindFlags flags;

} VkSparseMemoryBind;

• resourceOffset is the offset into the resource.

• size is the size of the memory region to be bound.

• memory is the VkDeviceMemory object that the range of the resource is bound to. If memory is VK_NULL_
HANDLE, the range is unbound.

• memoryOffset is the offset into the VkDeviceMemory object to bind the resource range to. If memory is VK_
NULL_HANDLE, this value is ignored.

• flags is a bitmask specifying usage of the binding operation. Bits which can be set include:

typedef enum VkSparseMemoryBindFlagBits {
VK_SPARSE_MEMORY_BIND_METADATA_BIT = 0x00000001,

} VkSparseMemoryBindFlagBits;

– VK_SPARSE_MEMORY_BIND_METADATA_BIT indicates that the memory being bound is only for the metadata
aspect.

The binding range [resourceOffset, resourceOffset + size) has different constraints based on flags. If flags
contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the mip tail region of the
metadata aspect. This metadata region is defined by:

metadataRegion = [base, base + imageMipTailSize)

base = imageMipTailOffset + imageMipTailStride × n

and imageMipTailOffset, imageMipTailSize, and imageMipTailStride values are from the
VkSparseImageMemoryRequirements corresponding to the metadata aspect of the image, and n is a valid array
layer index for the image,

imageMipTailStride is considered to be zero for aspects where
VkSparseImageMemoryRequirements::formatProperties.flags contains VK_SPARSE_IMAGE_
FORMAT_SINGLE_MIPTAIL_BIT.

If flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range must be within the
range [0,VkMemoryRequirements::size).

Valid Usage

• If memory is not VK_NULL_HANDLE, memory and memoryOffset must match the memory requirements of the
resource, as described in section Section 11.6

Vulkan 1.0.36 - A Specification 543 / 683

• If memory is not VK_NULL_HANDLE, memory must not have been created with a memory type that reports VK_
MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit set

• size must be greater than 0

• resourceOffset must be less than the size of the resource

• size must be less than or equal to the size of the resource minus resourceOffset

• memoryOffset must be less than the size of memory

• size must be less than or equal to the size of memory minus memoryOffset

Valid Usage (Implicit)

• If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• flags must be a valid combination of VkSparseMemoryBindFlagBits values

Memory is bound to VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_BINDING_BIT flag using
the following structure:

typedef struct VkSparseBufferMemoryBindInfo {
VkBuffer buffer;
uint32_t bindCount;
const VkSparseMemoryBind* pBinds;

} VkSparseBufferMemoryBindInfo;

• buffer is the VkBuffer object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to array of VkSparseMemoryBind structures.

Valid Usage (Implicit)

• buffer must be a valid VkBuffer handle

• pBinds must be a pointer to an array of bindCount valid VkSparseMemoryBind structures

• bindCount must be greater than 0

Memory is bound to opaque regions of VkImage objects created with the VK_IMAGE_CREATE_SPARSE_
BINDING_BIT flag using the following structure:

typedef struct VkSparseImageOpaqueMemoryBindInfo {
VkImage image;
uint32_t bindCount;
const VkSparseMemoryBind* pBinds;

} VkSparseImageOpaqueMemoryBindInfo;

• image is the VkImage object to be bound.

• bindCount is the number of VkSparseMemoryBind structures in the pBinds array.

• pBinds is a pointer to array of VkSparseMemoryBind structures.

Valid Usage

• For any given element of pBinds, if the flags member of that element contains VK_SPARSE_MEMORY_BIND_
METADATA_BIT, the binding range defined must be within the mip tail region of the metadata aspect of image

Valid Usage (Implicit)

• image must be a valid VkImage handle

• pBinds must be a pointer to an array of bindCount valid VkSparseMemoryBind structures

• bindCount must be greater than 0

Note
This operation is normally used to bind memory to fully-resident sparse images or for mip tail regions of partially
resident images. However, it can also be used to bind memory for the entire binding range of partially resident
images.
In case flags does not contain VK_SPARSE_MEMORY_BIND_METADATA_BIT, the resourceOffset is
in the range [0, VkMemoryRequirements::size), This range includes data from all aspects of the image,
including metadata. For most implementations this will probably mean that the resourceOffset is a simple
device address offset within the resource. It is possible for an application to bind a range of memory that includes
both resource data and metadata. However, the application would not know what part of the image the memory
is used for, or if any range is being used for metadata.
When flags contains VK_SPARSE_MEMORY_BIND_METADATA_BIT, the binding range specified must be
within the mip tail region of the metadata aspect. In this case the resourceOffset is not required to be
a simple device address offset within the resource. However, it is defined to be within [imageMipTailOffset,
imageMipTailOffset + imageMipTailSize) for the metadata aspect. See VkSparseMemoryBind for the full
constraints on binding region with this flag present.

Vulkan 1.0.36 - A Specification 545 / 683

Memory can be bound to sparse image blocks of VkImage objects created with the VK_IMAGE_CREATE_SPARSE_
RESIDENCY_BIT flag using the following structure:

typedef struct VkSparseImageMemoryBindInfo {
VkImage image;
uint32_t bindCount;
const VkSparseImageMemoryBind* pBinds;

} VkSparseImageMemoryBindInfo;

• image is the VkImage object to be bound

• bindCount is the number of VkSparseImageMemoryBind structures in pBinds array

• pBinds is a pointer to array of VkSparseImageMemoryBind structures

Valid Usage (Implicit)

• image must be a valid VkImage handle

• pBinds must be a pointer to an array of bindCount valid VkSparseImageMemoryBind structures

• bindCount must be greater than 0

The VkSparseImageMemoryBind structure is defined as:

typedef struct VkSparseImageMemoryBind {
VkImageSubresource subresource;
VkOffset3D offset;
VkExtent3D extent;
VkDeviceMemory memory;
VkDeviceSize memoryOffset;
VkSparseMemoryBindFlags flags;

} VkSparseImageMemoryBind;

• subresource is the aspectMask and region of interest in the image.

• offset are the coordinates of the first texel within the image subresource to bind.

• extent is the size in texels of the region within the image subresource to bind. The extent must be a multiple of the
sparse image block dimensions, except when binding sparse image blocks along the edge of an image subresource it
can instead be such that any coordinate of offset + extent equals the corresponding dimensions of the image
subresource.

• memory is the VkDeviceMemory object that the sparse image blocks of the image are bound to. If memory is VK_
NULL_HANDLE, the sparse image blocks are unbound.

• memoryOffset is an offset into VkDeviceMemory object. If memory is VK_NULL_HANDLE, this value is ignored.

• flags are sparse memory binding flags.

Valid Usage

• If the sparse aliased residency feature is not enabled, and if any other resources are bound to ranges of memory,
the range of memory being bound must not overlap with those bound ranges

• memory and memoryOffset must match the memory requirements of the calling command’s image, as
described in section Section 11.6

• subresource must be a valid image subresource for image (see Section 11.5)

• offset.x must be a multiple of the sparse image block width
(VkSparseImageFormatProperties::imageGranularity.width) of the image

• extent.width must either be a multiple of the sparse image block width of the image, or else extent.width +
offset.x must equal the width of the image subresource

• offset.y must be a multiple of the sparse image block height
(VkSparseImageFormatProperties::imageGranularity.height) of the image

• extent.height must either be a multiple of the sparse image block height of the image, or else extent.
height + offset.y must equal the height of the image subresource

• offset.z must be a multiple of the sparse image block depth
(VkSparseImageFormatProperties::imageGranularity.depth) of the image

• extent.depth must either be a multiple of the sparse image block depth of the image, or else extent.depth +
offset.z must equal the depth of the image subresource

Valid Usage (Implicit)

• subresource must be a valid VkImageSubresource structure

• If memory is not VK_NULL_HANDLE, memory must be a valid VkDeviceMemory handle

• flags must be a valid combination of VkSparseMemoryBindFlagBits values

To submit sparse binding operations to a queue, call:

VkResult vkQueueBindSparse(
VkQueue queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence fence);

• queue is the queue that the sparse binding operations will be submitted to.

Vulkan 1.0.36 - A Specification 547 / 683

• bindInfoCount is the number of elements in the pBindInfo array.

• pBindInfo is an array of VkBindSparseInfo structures, each specifying a sparse binding submission batch.

• fence is an optional handle to a fence to be signaled. If fence is not VK_NULL_HANDLE, it defines a fence signal
operation.

vkQueueBindSparse is a queue submission command, with each batch defined by an element of pBindInfo as an
instance of the VkBindSparseInfo structure. Batches begin execution in the order they appear in pBindInfo, but
may complete out of order.

Within a batch, a given range of a resource must not be bound more than once. Across batches, if a range is to be bound
to one allocation and offset and then to another allocation and offset, then the application must guarantee (usually using
semaphores) that the binding operations are executed in the correct order, as well as to order binding operations against
the execution of command buffer submissions.

As no operation to vkQueueBindSparse causes any pipeline stage to access memory, synchronization primitives
used in this command effectively only define execution dependencies.

Additional information about fence and semaphore operation is described in the synchronization chapter.

Valid Usage

• fence must be unsignaled

• fence must not be associated with any other queue command that has not yet completed execution on that queue

Valid Usage (Implicit)

• queue must be a valid VkQueue handle

• If bindInfoCount is not 0, pBindInfo must be a pointer to an array of bindInfoCount valid
VkBindSparseInfo structures

• If fence is not VK_NULL_HANDLE, fence must be a valid VkFence handle

• The queue must support sparse binding operations

• Both of fence, and queue that are valid handles must have been created, allocated, or retrieved from the same
VkDevice

Host Synchronization

• Host access to queue must be externally synchronized

• Host access to pBindInfo[].pWaitSemaphores[] must be externally synchronized

• Host access to pBindInfo[].pSignalSemaphores[] must be externally synchronized

• Host access to pBindInfo[].pBufferBinds[].buffer must be externally synchronized

• Host access to pBindInfo[].pImageOpaqueBinds[].image must be externally synchronized

• Host access to pBindInfo[].pImageBinds[].image must be externally synchronized

• Host access to fence must be externally synchronized

Command Properties

Command Buffer
Levels

Render Pass Scope Supported Queue
Types

Pipeline Type

- - SPARSE_BINDING -

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_DEVICE_LOST

The VkBindSparseInfo structure is defined as:

typedef struct VkBindSparseInfo {
VkStructureType sType;
const void* pNext;
uint32_t waitSemaphoreCount;
const VkSemaphore* pWaitSemaphores;
uint32_t bufferBindCount;

Vulkan 1.0.36 - A Specification 549 / 683

const VkSparseBufferMemoryBindInfo* pBufferBinds;
uint32_t imageOpaqueBindCount;
const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
uint32_t imageBindCount;
const VkSparseImageMemoryBindInfo* pImageBinds;
uint32_t signalSemaphoreCount;
const VkSemaphore* pSignalSemaphores;

} VkBindSparseInfo;

• sType is the type of this structure.

• pNext is NULL or a pointer to an extension-specific structure.

• waitSemaphoreCount is the number of semaphores upon which to wait before executing the sparse binding
operations for the batch.

• pWaitSemaphores is a pointer to an array of semaphores upon which to wait on before the sparse binding operations
for this batch begin execution. If semaphores to wait on are provided, they define a semaphore wait operation.

• bufferBindCount is the number of sparse buffer bindings to perform in the batch.

• pBufferBinds is a pointer to an array of VkSparseBufferMemoryBindInfo structures.

• imageOpaqueBindCount is the number of opaque sparse image bindings to perform.

• pImageOpaqueBinds is a pointer to an array of VkSparseImageOpaqueMemoryBindInfo structures,
indicating opaque sparse image bindings to perform.

• imageBindCount is the number of sparse image bindings to perform.

• pImageBinds is a pointer to an array of VkSparseImageMemoryBindInfo structures, indicating sparse image
bindings to perform.

• signalSemaphoreCount is the number of semaphores to be signaled once the sparse binding operations specified by
the structure have completed execution.

• pSignalSemaphores is a pointer to an array of semaphores which will be signaled when the sparse binding
operations for this batch have completed execution. If semaphores to be signaled are provided, they define a
semaphore signal operation.

Valid Usage (Implicit)

• sType must be VK_STRUCTURE_TYPE_BIND_SPARSE_INFO

• pNext must be NULL

• If waitSemaphoreCount is not 0, pWaitSemaphores must be a pointer to an array of waitSemaphoreCount
valid VkSemaphore handles

• If bufferBindCount is not 0, pBufferBinds must be a pointer to an array of bufferBindCount valid
VkSparseBufferMemoryBindInfo structures

• If imageOpaqueBindCount is not 0, pImageOpaqueBinds must be a pointer to an array of
imageOpaqueBindCount valid VkSparseImageOpaqueMemoryBindInfo structures

• If imageBindCount is not 0, pImageBinds must be a pointer to an array of imageBindCount valid
VkSparseImageMemoryBindInfo structures

• If signalSemaphoreCount is not 0, pSignalSemaphores must be a pointer to an array of
signalSemaphoreCount valid VkSemaphore handles

• Both of the elements of pSignalSemaphores, and the elements of pWaitSemaphores that are valid handles
must have been created, allocated, or retrieved from the same VkDevice

28.8 Examples

The following examples illustrate basic creation of sparse images and binding them to physical memory.

28.8.1 Basic Sparse Resources

This basic example creates a normal VkImage object but uses fine-grained memory allocation to back the resource with
multiple memory ranges.

VkDevice device;
VkQueue queue;
VkImage sparseImage;
VkMemoryRequirements memoryRequirements = {};
VkDeviceSize offset = 0;
VkSparseMemoryBind binds[MAX_CHUNKS] = {}; // MAX_CHUNKS is NOT part of Vulkan
uint32_t bindCount = 0;

// ...

// Allocate image object
const VkImageCreateInfo sparseImageInfo =
{

VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
NULL, // pNext
VK_IMAGE_CREATE_SPARSE_BINDING_BIT | ..., // flags
...

};
vkCreateImage(device, &sparseImageInfo, &sparseImage);

// Get memory requirements
vkGetImageMemoryRequirements(

device,
sparseImage,
&memoryRequirements);

// Bind memory in fine-grained fashion, find available memory ranges
// from potentially multiple VkDeviceMemory pools.
// (Illustration purposes only, can be optimized for perf)
while (memoryRequirements.size && bindCount < MAX_CHUNKS)

Vulkan 1.0.36 - A Specification 551 / 683

{
VkSparseMemoryBind* pBind = &binds[bindCount];
pBind->resourceOffset = offset;

AllocateOrGetMemoryRange(
device,
&memoryRequirements,
&pBind->memory,
&pBind->memoryOffset,
&pBind->size);

// memory ranges must be sized as multiples of the alignment
assert(IsMultiple(pBind->size, memoryRequirements.alignment));
assert(IsMultiple(pBind->memoryOffset, memoryRequirements.alignment));

memoryRequirements.size -= pBind->size;
offset += pBind->size;
bindCount++;

}

// Ensure all image has backing
if (memoryRequirements.size)
{

// Error condition - too many chunks
}

const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo =
{

sparseImage, // image
bindCount, // bindCount
binds // pBinds

};

const VkBindSparseInfo bindSparseInfo =
{

VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, // sType
NULL, // pNext
...
1, // imageOpaqueBindCount
&opaqueBindInfo, // pImageOpaqueBinds
...

};

// vkQueueBindSparse is application synchronized per queue object.
AcquireQueueOwnership(queue);

// Actually bind memory
vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE);

ReleaseQueueOwnership(queue);

28.8.2 Advanced Sparse Resources

This more advanced example creates an arrayed color attachment / texture image and binds only LOD zero and the
required metadata to physical memory.

VkDevice device;
VkQueue queue;
VkImage sparseImage;
VkMemoryRequirements memoryRequirements = {};
uint32_t sparseRequirementsCount = 0;
VkSparseImageMemoryRequirements* pSparseReqs = NULL;
VkSparseMemoryBind binds[MY_IMAGE_ARRAY_SIZE] = {};
VkSparseImageMemoryBind imageBinds[MY_IMAGE_ARRAY_SIZE] = {};
uint32_t bindCount = 0;

// Allocate image object (both renderable and sampleable)
const VkImageCreateInfo sparseImageInfo =
{

VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
NULL, // pNext
VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | ..., // flags
...
VK_FORMAT_R8G8B8A8_UNORM, // format
...
MY_IMAGE_ARRAY_SIZE, // arrayLayers
...
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT, // usage
...

};
vkCreateImage(device, &sparseImageInfo, &sparseImage);

// Get memory requirements
vkGetImageMemoryRequirements(

device,
sparseImage,
&memoryRequirements);

// Get sparse image aspect properties
vkGetImageSparseMemoryRequirements(

device,
sparseImage,
&sparseRequirementsCount,
NULL);

pSparseReqs = (VkSparseImageMemoryRequirements*)
malloc(sparseRequirementsCount * sizeof(VkSparseImageMemoryRequirements));

vkGetImageSparseMemoryRequirements(
device,
sparseImage,
&sparseRequirementsCount,
pSparseReqs);

// Bind LOD level 0 and any required metadata to memory
for (uint32_t i = 0; i < sparseRequirementsCount; ++i)
{

if (pSparseReqs[i].formatProperties.aspectMask &
VK_IMAGE_ASPECT_METADATA_BIT)

{
// Metadata must not be combined with other aspects

Vulkan 1.0.36 - A Specification 553 / 683

assert(pSparseReqs[i].formatProperties.aspectMask ==
VK_IMAGE_ASPECT_METADATA_BIT);

if (pSparseReqs[i].formatProperties.flags &
VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)

{
VkSparseMemoryBind* pBind = &binds[bindCount];
pBind->memorySize = pSparseReqs[i].imageMipTailSize;
bindCount++;

// ... Allocate memory range

pBind->resourceOffset = pSparseReqs[i].imageMipTailOffset;
pBind->memoryOffset = /* allocated memoryOffset */;
pBind->memory = /* allocated memory */;
pBind->flags = VK_SPARSE_MEMORY_BIND_METADATA_BIT;

}
else
{

// Need a mip tail region per array layer.
for (uint32_t a = 0; a < sparseImageInfo.arrayLayers; ++a)
{

VkSparseMemoryBind* pBind = &binds[bindCount];
pBind->memorySize = pSparseReqs[i].imageMipTailSize;
bindCount++;

// ... Allocate memory range

pBind->resourceOffset = pSparseReqs[i].imageMipTailOffset +
(a * pSparseReqs[i].imageMipTailStride);

pBind->memoryOffset = /* allocated memoryOffset */;
pBind->memory = /* allocated memory */
pBind->flags = VK_SPARSE_MEMORY_BIND_METADATA_BIT;

}
}

}
else
{

// resource data
VkExtent3D lod0BlockSize =
{

AlignedDivide(
sparseImageInfo.extent.width,
pSparseReqs[i].formatProperties.imageGranularity.width);

AlignedDivide(
sparseImageInfo.extent.height,
pSparseReqs[i].formatProperties.imageGranularity.height);

AlignedDivide(
sparseImageInfo.extent.depth,
pSparseReqs[i].formatProperties.imageGranularity.depth);

}
size_t totalBlocks =

lod0BlockSize.width *
lod0BlockSize.height *
lod0BlockSize.depth;

VkDeviceSize lod0MemSize = totalBlocks * memoryRequirements.alignment;

// Allocate memory for each array layer
for (uint32_t a = 0; a < sparseImageInfo.arrayLayers; ++a)
{

// ... Allocate memory range

VkSparseImageMemoryBind* pBind = &imageBinds[a];
pBind->subresource.aspectMask = pSparseReqs[i].formatProperties.aspectMask ←↩

;
pBind->subresource.mipLevel = 0;
pBind->subresource.arrayLayer = a;

pBind->offset = (VkOffset3D){0, 0, 0};
pBind->extent = sparseImageInfo.extent;
pBind->memoryOffset = /* allocated memoryOffset */;
pBind->memory = /* allocated memory */;
pBind->flags = 0;

}
}

free(pSparseReqs);
}

const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo =
{

sparseImage, // image
bindCount, // bindCount
binds // pBinds

};

const VkSparseImageMemoryBindInfo imageBindInfo =
{

sparseImage, // image
sparseImageInfo.arrayLayers, // bindCount
imageBinds // pBinds

};

const VkBindSparseInfo bindSparseInfo =
{

VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, // sType
NULL, // pNext
...
1, // imageOpaqueBindCount
&opaqueBindInfo, // pImageOpaqueBinds
1, // imageBindCount
&imageBindInfo, // pImageBinds
...

};

// vkQueueBindSparse is application synchronized per queue object.
AcquireQueueOwnership(queue);

// Actually bind memory
vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE);

Vulkan 1.0.36 - A Specification 555 / 683

ReleaseQueueOwnership(queue);

Vulkan 1.0.36 - A Specification 557 / 683

Chapter 29

Extended Functionality

Additional functionality may be provided by layers or extensions. A layer cannot add or modify Vulkan commands,
while an extension may do so.

The set of layers to enable is specified when creating an instance, and those layers are able to intercept any Vulkan
command dispatched to that instance or any of its child objects.

Extensions can operate at either the instance or device extension scope. Enabled instance extensions are able to affect the
operation of the instance and any of its child objects, while device extensions may only be available on a subset of
physical devices, must be individually enabled per-device, and only affect the operation of the devices where they are
enabled.

Examples of these might be:

• Whole API validation is an example of a layer.

• Debug capabilities might make a good instance extension.

• A layer that provides hardware-specific performance telemetry and analysis could be a layer that is only active for
devices created from compatible physical devices.

• Functions to allow an application to use additional hardware features beyond the core would be a good candidate for a
device extension.

29.1 Layers

When a layer is enabled, it inserts itself into the call chain for Vulkan commands the layer is interested in. A common
use of layers is to validate application behavior during development. For example, the implementation will not check that
Vulkan enums used by the application fall within allowed ranges. Instead, a validation layer would do those checks and
flag issues. This avoids a performance penalty during production use of the application because those layers would not
be enabled in production.

Vulkan layers may wrap object handles (i.e. return a different handle value to the application than that generated by the
implementation). This is generally discouraged, as it increases the probability of incompatibilities with new extensions.
The validation layers wrap handles in order to track the proper use and destruction of each object. See the "Vulkan
Loader Specification and Architecture Overview" document for additional information.

To query the available layers, call:

VkResult vkEnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties);

• pPropertyCount is a pointer to an integer related to the number of layer properties available or queried, as described
below.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount. Otherwise,
pPropertyCount must point to a variable set by the user to the number of elements in the pProperties array, and on
return the variable is overwritten with the number of structures actually written to pProperties. If pPropertyCount
is less than the number of layer properties available, at most pPropertyCount structures will be written. If
pPropertyCount is smaller than the number of layers available, VK_INCOMPLETE will be returned instead of VK_
SUCCESS, to indicate that not all the available layer properties were returned.

The list of available layers may change at any time due to actions outside of the Vulkan implementation, so two calls to
vkEnumerateInstanceLayerProperties with the same parameters may return different results, or retrieve
different pPropertyCount values or pProperties contents. Once an instance has been created, the layers enabled for
that instance will continue to be enabled and valid for the lifetime of that instance, even if some of them become
unavailable for future instances.

Valid Usage (Implicit)

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties must be a
pointer to an array of pPropertyCount VkLayerProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The VkLayerProperties structure is defined as:

Vulkan 1.0.36 - A Specification 559 / 683

typedef struct VkLayerProperties {
char layerName[VK_MAX_EXTENSION_NAME_SIZE];
uint32_t specVersion;
uint32_t implementationVersion;
char description[VK_MAX_DESCRIPTION_SIZE];

} VkLayerProperties;

• layerName is a null-terminated UTF-8 string specifying the name of the layer. Use this name in the
ppEnabledLayerNames array passed in the VkInstanceCreateInfo structure to enable this layer for an
instance.

• specVersion is the Vulkan version the layer was written to, encoded as described in the API Version Numbers and
Semantics section.

• implementationVersion is the version of this layer. It is an integer, increasing with backward compatible changes.

• description is a null-terminated UTF-8 string providing additional details that can be used by the application to
identify the layer.

To enable a layer, the name of the layer should be added to the ppEnabledLayerNames member of
VkInstanceCreateInfo when creating a VkInstance.

Loader implementations may provide mechanisms outside the Vulkan API for enabling specific layers. Layers enabled
through such a mechanism are implicitly enabled, while layers enabled by including the layer name in the
ppEnabledLayerNames member of VkInstanceCreateInfo are explicitly enabled. Except where otherwise
specified, implicitly enabled and explicitly enabled layers differ only in the way they are enabled. Explicitly enabling a
layer that is implicitly enabled has no additional effect.

29.1.1 Device Layer Deprecation

Previous versions of this specification distinguished between instance and device layers. Instance layers were only able
to intercept commands that operate on VkInstance and VkPhysicalDevice, except they were not able to intercept
vkCreateDevice. Device layers were enabled for individual devices when they were created, and could only
intercept commands operating on that device or its child objects.

Device-only layers are now deprecated, and this specification no longer distinguishes between instance and device layers.
Layers are enabled during instance creation, and are able to intercept all commands operating on that instance or any of
its child objects. At the time of deprecation there were no known device-only layers and no compelling reason to create
one.

In order to maintain compatibility with implementations released prior to device-layer deprecation, applications should
still enumerate and enable device layers. The behavior of vkEnumerateDeviceLayerProperties and valid
usage of the ppEnabledLayerNames member of VkDeviceCreateInfo maximizes compatibility with applications
written to work with the previous requirements.

To enumerate device layers, call:

VkResult vkEnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkLayerProperties* pProperties);

• pPropertyCount is a pointer to an integer related to the number of layer properties available or queried.

• pProperties is either NULL or a pointer to an array of VkLayerProperties structures.

If pProperties is NULL, then the number of layer properties available is returned in pPropertyCount. Otherwise,
pPropertyCount must point to a variable set by the user to the number of elements in the pProperties array, and on
return the variable is overwritten with the number of structures actually written to pProperties. If pPropertyCount
is less than the number of layer properties available, at most pPropertyCount structures will be written. If
pPropertyCount is smaller than the number of layers available, VK_INCOMPLETE will be returned instead of VK_
SUCCESS, to indicate that not all the available layer properties were returned.

The list of layers enumerated by vkEnumerateDeviceLayerProperties must be exactly the sequence of layers
enabled for the instance. The members of VkLayerProperties for each enumerated layer must be the same as the
properties when the layer was enumerated by vkEnumerateInstanceLayerProperties.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties must be a
pointer to an array of pPropertyCount VkLayerProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and
their values must be ignored by implementations. However, for compatibility, only an empty list of layers or a list that
exactly matches the sequence enabled at instance creation time are valid, and validation layers should issue diagnostics
for other cases.

Regardless of the enabled layer list provided in VkDeviceCreateInfo, the sequence of layers active for a device will
be exactly the sequence of layers enabled when the parent instance was created.

Vulkan 1.0.36 - A Specification 561 / 683

29.2 Extensions

Extensions may define new Vulkan commands, structures, and enumerants. For compilation purposes, the interfaces
defined by registered extensions, including new structures and enumerants as well as function pointer types for new
commands, are defined in the Khronos-supplied vulkan.h together with the core API. However, commands defined by
extensions may not be available for static linking - in which case function pointers to these commands should be queried
at runtime as described in Section 3.1. Extensions may be provided by layers as well as by a Vulkan implementation.

Because extensions may extend or change the behavior of the Vulkan API, extension authors should add support for their
extensions to the Khronos validation layers. This is especially important for new commands whose parameters have been
wrapped by the validation layers. See the "Vulkan Loader Specification and Architecture Overview" document for
additional information.

To query the available instance extensions, call:

VkResult vkEnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties);

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to retrieve extensions
from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available or queried, as
described below.

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by implicitly
enabled layers are returned. When pLayerName is the name of a layer, the instance extensions provided by that layer are
returned.

If pProperties is NULL, then the number of extensions properties available is returned in pPropertyCount.
Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the pProperties
array, and on return the variable is overwritten with the number of structures actually written to pProperties. If
pPropertyCount is less than the number of extension properties available, at most pPropertyCount structures will be
written. If pPropertyCount is smaller than the number of extensions available, VK_INCOMPLETE will be returned
instead of VK_SUCCESS, to indicate that not all the available properties were returned.

Because the list of available layers may change externally between calls to
vkEnumerateInstanceExtensionProperties, two calls may retrieve different results if a pLayerName is available
in one call but not in another. The extensions supported by a layer may also change between two calls, e.g. if the layer
implementation is replaced by a different version between those calls.

Valid Usage

• If pLayerName is not NULL, it must be the name of a layer returned by
vkEnumerateInstanceLayerProperties

Valid Usage (Implicit)

• If pLayerName is not NULL, pLayerName must be a null-terminated string

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties must be a
pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

To enable an instance extension, the name of the extension should be added to the ppEnabledExtensionNames
member of VkInstanceCreateInfo when creating a VkInstance.

Enabling an extension does not change behavior of functionality exposed by the core Vulkan API or any other extension,
other than making valid the use of the commands, enums and structures defined by that extension.

To query the extensions available to a given physical device, call:

VkResult vkEnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties);

• physicalDevice is the physical device that will be queried.

• pLayerName is either NULL or a pointer to a null-terminated UTF-8 string naming the layer to retrieve extensions
from.

• pPropertyCount is a pointer to an integer related to the number of extension properties available or queried, and is
treated in the same fashion as the vkEnumerateInstanceExtensionProperties::pPropertyCount
parameter.

Vulkan 1.0.36 - A Specification 563 / 683

• pProperties is either NULL or a pointer to an array of VkExtensionProperties structures.

When pLayerName parameter is NULL, only extensions provided by the Vulkan implementation or by implicitly
enabled layers are returned. When pLayerName is the name of a layer, the device extensions provided by that layer are
returned.

Valid Usage

• If pLayerName is not NULL, it must be the name of a layer returned by
vkEnumerateDeviceLayerProperties

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• If pLayerName is not NULL, pLayerName must be a null-terminated string

• pPropertyCount must be a pointer to a uint32_t value

• If the value referenced by pPropertyCount is not 0, and pProperties is not NULL, pProperties must be a
pointer to an array of pPropertyCount VkExtensionProperties structures

Return Codes

Success

• VK_SUCCESS

• VK_INCOMPLETE

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_LAYER_NOT_PRESENT

The VkExtensionProperties structure is defined as:

typedef struct VkExtensionProperties {
char extensionName[VK_MAX_EXTENSION_NAME_SIZE];
uint32_t specVersion;

} VkExtensionProperties;

• extensionName is a null-terminated string specifying the name of the extension.

• specVersion is the version of this extension. It is an integer, incremented with backward compatible changes.

29.2.1 Instance Extensions and Device Extensions

Because an instance extension can affect the operation of an instance and any of its child objects, the decision to expose
functionality as an instance extension or as a device extension is not always clear. This section provides some guidelines
and rules for when to expose new functionality as an instance extension, device extension, or both.

The decision is influenced by whether extension functionality affects instance-level objects (e.g. instances and physical
devices) and commands, or device-level objects (e.g. logical devices, queues, and command buffers) and commands, or
both.

In some cases, the decision is clear:

• Functionality that is restricted to the instance-level must be implemented as an instance extension.

• Functionality that is restricted to the device-level must be implemented as a device extension.

In other cases, the decision is not so clear:

• Global functionality that affects the entire Vulkan API, including instance and device-level objects and commands,
should be an instance extension.

• Device-level functionality that contains physical-device queries, can be implemented as an instance extension. If some
part of an instance extension’s functionality might not be available on all physical devices, the extension should
provide a query to determine which physical devices provide the functionality.

• For a set of global functionality that provides new instance-level and device-level commands, and can be enabled for a
subset of devices, it is recommended that the functionality be partitioned across two extensions—one for the
instance-level functionality, and one for the device-specific functionality. In this latter case, it is generally
recommended that the two extensions have unique names.

Examples of instance extensions include:

• Logging of debug messages by any enabled layers for all Vulkan commands.

• Functionality creating new objects which are direct children of an instance.

• Functionality creating new objects which are direct children of a physical device and intended to work with any logical
device created from the physical device.

• Functionality adding new instance-level Vulkan commands that do not affect any device-level commands.

Note
Instance extensions generally require support in the Vulkan loader. This is especially true for commands that
are dispatched from instances and physical devices. Additional information about supporting instance-level
commands may be found in the Vulkan Loader Specification and Architecture Overview document.
Please see the "Architectural overview of layers and loader" section for information about how both instance-level
and device-level commands are supported and dispatched.

Vulkan 1.0.36 - A Specification 565 / 683

Chapter 30

Features, Limits, and Formats

Vulkan is designed to support a wide range of hardware and as such there are a number of features, limits, and formats
which are not supported on all hardware. Features describe functionality that is not required and which must be explicitly
enabled. Limits describe implementation-dependent minimums, maximums, and other device characteristics that an
application may need to be aware of. Supported buffer and image formats may vary across implementations. A minimum
set of format features are guaranteed, but others must be explicitly queried before use to ensure they are supported by the
implementation.

Note on extensibility
The features and limits are reported via basic structures (that is VkPhysicalDeviceFeatures and VkP
hysicalDeviceLimits). It is expected that when new features or limits are added in a future Vulkan
version, new structure(s) and entry point(s) will be added as necessary to query these. New functionality added
by extensions is not expected to modify the core feature and limit structures.

30.1 Features

The Specification defines a set of fine-grained features that are not required, but may be supported by a Vulkan
implementation. Support for features is reported and enabled on a per-feature basis. Features are properties of the
physical device.

To query supported features, call:

void vkGetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures);

• physicalDevice is the physical device from which to query the supported features.

• pFeatures is a pointer to a VkPhysicalDeviceFeatures structure in which the physical device features are
returned. For each feature, a value of VK_TRUE indicates that the feature is supported on this physical device, and
VK_FALSE indicates that the feature is not supported.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• pFeatures must be a pointer to a VkPhysicalDeviceFeatures structure

Fine-grained features used by a logical device must be enabled at VkDevice creation time. If a feature is enabled that
the physical device does not support, VkDevice creation will fail. If an application uses a feature without enabling it at
VkDevice creation time, the device behavior is undefined. The validation layer will warn if features are used without
being enabled.

The fine-grained features are enabled by passing a pointer to the VkPhysicalDeviceFeatures structure via the
pEnabledFeatures member of the VkDeviceCreateInfo structure that is passed into the vkCreateDevice
call. If a member of pEnabledFeatures is set to VK_TRUE or VK_FALSE, then the device will be created with the
indicated feature enabled or disabled, respectively.

If an application wishes to enable all features supported by a device, it can simply pass in the
VkPhysicalDeviceFeatures structure that was previously returned by vkGetPhysicalDeviceFeatures.
To disable an individual feature, the application can set the desired member to VK_FALSE in the same structure. Setting
pEnabledFeatures to NULL is equivalent to setting all members of the structure to VK_FALSE.

Note
Some features, such as robustBufferAccess, may incur a run-time performance cost. Application writers
should carefully consider the implications of enabling all supported features.

The VkPhysicalDeviceFeatures structure is defined as:

typedef struct VkPhysicalDeviceFeatures {
VkBool32 robustBufferAccess;
VkBool32 fullDrawIndexUint32;
VkBool32 imageCubeArray;
VkBool32 independentBlend;
VkBool32 geometryShader;
VkBool32 tessellationShader;
VkBool32 sampleRateShading;
VkBool32 dualSrcBlend;
VkBool32 logicOp;
VkBool32 multiDrawIndirect;
VkBool32 drawIndirectFirstInstance;
VkBool32 depthClamp;
VkBool32 depthBiasClamp;
VkBool32 fillModeNonSolid;
VkBool32 depthBounds;
VkBool32 wideLines;
VkBool32 largePoints;
VkBool32 alphaToOne;
VkBool32 multiViewport;
VkBool32 samplerAnisotropy;
VkBool32 textureCompressionETC2;
VkBool32 textureCompressionASTC_LDR;
VkBool32 textureCompressionBC;

Vulkan 1.0.36 - A Specification 567 / 683

VkBool32 occlusionQueryPrecise;
VkBool32 pipelineStatisticsQuery;
VkBool32 vertexPipelineStoresAndAtomics;
VkBool32 fragmentStoresAndAtomics;
VkBool32 shaderTessellationAndGeometryPointSize;
VkBool32 shaderImageGatherExtended;
VkBool32 shaderStorageImageExtendedFormats;
VkBool32 shaderStorageImageMultisample;
VkBool32 shaderStorageImageReadWithoutFormat;
VkBool32 shaderStorageImageWriteWithoutFormat;
VkBool32 shaderUniformBufferArrayDynamicIndexing;
VkBool32 shaderSampledImageArrayDynamicIndexing;
VkBool32 shaderStorageBufferArrayDynamicIndexing;
VkBool32 shaderStorageImageArrayDynamicIndexing;
VkBool32 shaderClipDistance;
VkBool32 shaderCullDistance;
VkBool32 shaderFloat64;
VkBool32 shaderInt64;
VkBool32 shaderInt16;
VkBool32 shaderResourceResidency;
VkBool32 shaderResourceMinLod;
VkBool32 sparseBinding;
VkBool32 sparseResidencyBuffer;
VkBool32 sparseResidencyImage2D;
VkBool32 sparseResidencyImage3D;
VkBool32 sparseResidency2Samples;
VkBool32 sparseResidency4Samples;
VkBool32 sparseResidency8Samples;
VkBool32 sparseResidency16Samples;
VkBool32 sparseResidencyAliased;
VkBool32 variableMultisampleRate;
VkBool32 inheritedQueries;

} VkPhysicalDeviceFeatures;

The members of the VkPhysicalDeviceFeatures structure describe the following features:

• robustBufferAccess indicates that accesses to buffers are bounds-checked against the range of the buffer descriptor
(as determined by VkDescriptorBufferInfo::range, VkBufferViewCreateInfo::range, or the size of
the buffer). Out of bounds accesses must not cause application termination, and the effects of shader loads, stores, and
atomics must conform to an implementation-dependent behavior as described below.

– A buffer access is considered to be out of bounds if any of the following are true:

* The pointer was formed by OpImageTexelPointer and the coordinate is less than zero or greater than or
equal to the number of whole elements in the bound range.

* The pointer was not formed by OpImageTexelPointer and the object pointed to is not wholly contained
within the bound range.

Note
If a SPIR-V OpLoad instruction loads a structure and the tail end of the structure is out of bounds,
then all members of the structure are considered out of bounds even if the members at the end are not
statically used.

* If any buffer access in a given SPIR-V block is determined to be out of bounds, then any other access of the same
type (load, store, or atomic) in the same SPIR-V block that accesses an address less than 16 bytes away from the
out of bounds address may also be considered out of bounds.

– Out-of-bounds buffer loads will return any of the following values:

* Values from anywhere within the memory range(s) bound to the buffer (possibly including bytes of memory past
the end of the buffer, up to the end of the bound range).

* Zero values, or (0,0,0,x) vectors for vector reads where x is a valid value represented in the type of the vector
components and may be any of:
· 0, 1, or the maximum representable positive integer value, for signed or unsigned integer components
· 0.0 or 1.0, for floating-point components

– Out-of-bounds writes may modify values within the memory range(s) bound to the buffer, but must not modify any
other memory.

– Out-of-bounds atomics may modify values within the memory range(s) bound to the buffer, but must not modify any
other memory, and return an undefined value.

– Vertex input attributes are considered out of bounds if the address of the attribute plus the size of the attribute is
greater than the size of the bound buffer. Further, if any vertex input attribute using a specific vertex input binding is
out of bounds, then all vertex input attributes using that vertex input binding for that vertex shader invocation are
considered out of bounds.

* If a vertex input attribute is out of bounds, it will be assigned one of the following values:
· Values from anywhere within the memory range(s) bound to the buffer, converted according to the format of the

attribute.
· Zero values, format converted according to the format of the attribute.
· Zero values, or (0,0,0,x) vectors, as described above.

– If robustBufferAccess is not enabled, out of bounds accesses may corrupt any memory within the process and
cause undefined behavior up to and including application termination.

• fullDrawIndexUint32 indicates the full 32-bit range of indices is supported for indexed draw calls when using a
VkIndexType of VK_INDEX_TYPE_UINT32. maxDrawIndexedIndexValue is the maximum index value that
may be used (aside from the primitive restart index, which is always 232-1 when the VkIndexType is VK_INDEX_
TYPE_UINT32). If this feature is supported, maxDrawIndexedIndexValue must be 232-1; otherwise it must be no
smaller than 224-1. See maxDrawIndexedIndexValue.

• imageCubeArray indicates whether image views with a VkImageViewType of VK_IMAGE_VIEW_TYPE_
CUBE_ARRAY can be created, and that the corresponding SampledCubeArray and ImageCubeArray SPIR-V
capabilities can be used in shader code.

• independentBlend indicates whether the VkPipelineColorBlendAttachmentState settings are
controlled independently per-attachment. If this feature is not enabled, the
VkPipelineColorBlendAttachmentState settings for all color attachments must be identical. Otherwise, a
different VkPipelineColorBlendAttachmentState can be provided for each bound color attachment.

• geometryShader indicates whether geometry shaders are supported. If this feature is not enabled, the VK_SHADER_
STAGE_GEOMETRY_BIT and VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT enum values must not be used.
This also indicates whether shader modules can declare the Geometry capability.

• tessellationShader indicates whether tessellation control and evaluation shaders are supported. If this feature is
not enabled, the VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_
TESSELLATION_EVALUATION_BIT, VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, and VK_STRUCTURE_TYPE_
PIPELINE_TESSELLATION_STATE_CREATE_INFO enum values must not be used. This also indicates whether
shader modules can declare the Tessellation capability.

Vulkan 1.0.36 - A Specification 569 / 683

• sampleRateShading indicates whether per-sample shading and multisample interpolation are supported. If this
feature is not enabled, the sampleShadingEnable member of the
VkPipelineMultisampleStateCreateInfo structure must be set to VK_FALSE and the
minSampleShading member is ignored. This also indicates whether shader modules can declare the
SampleRateShading capability.

• dualSrcBlend indicates whether blend operations which take two sources are supported. If this feature is not
enabled, the VK_BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_
BLEND_FACTOR_SRC1_ALPHA, and VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA enum values must not
be used as source or destination blending factors. See Section 26.1.2.

• logicOp indicates whether logic operations are supported. If this feature is not enabled, the logicOpEnable member
of the VkPipelineColorBlendStateCreateInfo structure must be set to VK_FALSE, and the logicOp
member is ignored.

• multiDrawIndirect indicates whether multiple draw indirect is supported. If this feature is not enabled, the
drawCount parameter to the vkCmdDrawIndirect and vkCmdDrawIndexedIndirect commands must be 0
or 1. The maxDrawIndirectCount member of the VkPhysicalDeviceLimits structure must also be 1 if this
feature is not supported. See maxDrawIndirectCount.

• drawIndirectFirstInstance indicates whether indirect draw calls support the firstInstance parameter. If this
feature is not enabled, the firstInstance member of all VkDrawIndirectCommand and
VkDrawIndexedIndirectCommand structures that are provided to the vkCmdDrawIndirect and
vkCmdDrawIndexedIndirect commands must be 0.

• depthClamp indicates whether depth clamping is supported. If this feature is not enabled, the depthClampEnable
member of the VkPipelineRasterizationStateCreateInfo structure must be set to VK_FALSE.
Otherwise, setting depthClampEnable to VK_TRUE will enable depth clamping.

• depthBiasClamp indicates whether depth bias clamping is supported. If this feature is not enabled, the
depthBiasClamp member of the VkPipelineRasterizationStateCreateInfo structure must be set to
0.0 unless the VK_DYNAMIC_STATE_DEPTH_BIAS dynamic state is enabled, and the depthBiasClamp parameter
to vkCmdSetDepthBias must be set to 0.0.

• fillModeNonSolid indicates whether point and wireframe fill modes are supported. If this feature is not enabled, the
VK_POLYGON_MODE_POINT and VK_POLYGON_MODE_LINE enum values must not be used.

• depthBounds indicates whether depth bounds tests are supported. If this feature is not enabled, the
depthBoundsTestEnable member of the VkPipelineDepthStencilStateCreateInfo structure must be
set to VK_FALSE. When depthBoundsTestEnable is set to VK_FALSE, the minDepthBounds and
maxDepthBounds members of the VkPipelineDepthStencilStateCreateInfo structure are ignored.

• wideLines indicates whether lines with width other than 1.0 are supported. If this feature is not enabled, the
lineWidth member of the VkPipelineRasterizationStateCreateInfo structure must be set to 1.0
unless the VK_DYNAMIC_STATE_LINE_WIDTH dynamic state is enabled, and the lineWidth parameter to
vkCmdSetLineWidth must be set to 1.0. When this feature is supported, the range and granularity of supported
line widths are indicated by the lineWidthRange and lineWidthGranularity members of the
VkPhysicalDeviceLimits structure, respectively.

• largePoints indicates whether points with size greater than 1.0 are supported. If this feature is not enabled, only a
point size of 1.0 written by a shader is supported. The range and granularity of supported point sizes are indicated by
the pointSizeRange and pointSizeGranularity members of the VkPhysicalDeviceLimits structure,
respectively.

• alphaToOne indicates whether the implementation is able to replace the alpha value of the color fragment output from
the fragment shader with the maximum representable alpha value for fixed-point colors or 1.0 for floating-point colors.

If this feature is not enabled, then the alphaToOneEnable member of the
VkPipelineMultisampleStateCreateInfo structure must be set to VK_FALSE. Otherwise setting
alphaToOneEnable to VK_TRUE will enable alpha-to-one behavior.

• multiViewport indicates whether more than one viewport is supported. If this feature is not enabled, the
viewportCount and scissorCount members of the VkPipelineViewportStateCreateInfo structure
must be set to 1. Similarly, the viewportCount parameter to the vkCmdSetViewport command and the
scissorCount parameter to the vkCmdSetScissor command must be 1, and the firstViewport parameter to
the vkCmdSetViewport command and the firstScissor parameter to the vkCmdSetScissor command must
be 0.

• samplerAnisotropy indicates whether anisotropic filtering is supported. If this feature is not enabled, the
maxAnisotropy member of the VkSamplerCreateInfo structure must be 1.0.

• textureCompressionETC2 indicates whether the ETC2 and EAC compressed texture formats are supported. If this
feature is not enabled, the following formats must not be used to create images:

– VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK

– VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK

– VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK

– VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK

– VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK

– VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK

– VK_FORMAT_EAC_R11_UNORM_BLOCK

– VK_FORMAT_EAC_R11_SNORM_BLOCK

– VK_FORMAT_EAC_R11G11_UNORM_BLOCK

– VK_FORMAT_EAC_R11G11_SNORM_BLOCK

vkGetPhysicalDeviceFormatProperties is used to check for the supported properties of individual
formats.

• textureCompressionASTC_LDR indicates whether the ASTC LDR compressed texture formats are supported. If
this feature is not enabled, the following formats must not be used to create images:

– VK_FORMAT_ASTC_4x4_UNORM_BLOCK

– VK_FORMAT_ASTC_4x4_SRGB_BLOCK

– VK_FORMAT_ASTC_5x4_UNORM_BLOCK

– VK_FORMAT_ASTC_5x4_SRGB_BLOCK

– VK_FORMAT_ASTC_5x5_UNORM_BLOCK

– VK_FORMAT_ASTC_5x5_SRGB_BLOCK

– VK_FORMAT_ASTC_6x5_UNORM_BLOCK

– VK_FORMAT_ASTC_6x5_SRGB_BLOCK

– VK_FORMAT_ASTC_6x6_UNORM_BLOCK

– VK_FORMAT_ASTC_6x6_SRGB_BLOCK

– VK_FORMAT_ASTC_8x5_UNORM_BLOCK

– VK_FORMAT_ASTC_8x5_SRGB_BLOCK

– VK_FORMAT_ASTC_8x6_UNORM_BLOCK

Vulkan 1.0.36 - A Specification 571 / 683

– VK_FORMAT_ASTC_8x6_SRGB_BLOCK

– VK_FORMAT_ASTC_8x8_UNORM_BLOCK

– VK_FORMAT_ASTC_8x8_SRGB_BLOCK

– VK_FORMAT_ASTC_10x5_UNORM_BLOCK

– VK_FORMAT_ASTC_10x5_SRGB_BLOCK

– VK_FORMAT_ASTC_10x6_UNORM_BLOCK

– VK_FORMAT_ASTC_10x6_SRGB_BLOCK

– VK_FORMAT_ASTC_10x8_UNORM_BLOCK

– VK_FORMAT_ASTC_10x8_SRGB_BLOCK

– VK_FORMAT_ASTC_10x10_UNORM_BLOCK

– VK_FORMAT_ASTC_10x10_SRGB_BLOCK

– VK_FORMAT_ASTC_12x10_UNORM_BLOCK

– VK_FORMAT_ASTC_12x10_SRGB_BLOCK

– VK_FORMAT_ASTC_12x12_UNORM_BLOCK

– VK_FORMAT_ASTC_12x12_SRGB_BLOCK

vkGetPhysicalDeviceFormatProperties is used to check for the supported properties of individual
formats.

• textureCompressionBC indicates whether the BC compressed texture formats are supported. If this feature is not
enabled, the following formats must not be used to create images:

– VK_FORMAT_BC1_RGB_UNORM_BLOCK

– VK_FORMAT_BC1_RGB_SRGB_BLOCK

– VK_FORMAT_BC1_RGBA_UNORM_BLOCK

– VK_FORMAT_BC1_RGBA_SRGB_BLOCK

– VK_FORMAT_BC2_UNORM_BLOCK

– VK_FORMAT_BC2_SRGB_BLOCK

– VK_FORMAT_BC3_UNORM_BLOCK

– VK_FORMAT_BC3_SRGB_BLOCK

– VK_FORMAT_BC4_UNORM_BLOCK

– VK_FORMAT_BC4_SNORM_BLOCK

– VK_FORMAT_BC5_UNORM_BLOCK

– VK_FORMAT_BC5_SNORM_BLOCK

– VK_FORMAT_BC6H_UFLOAT_BLOCK

– VK_FORMAT_BC6H_SFLOAT_BLOCK

– VK_FORMAT_BC7_UNORM_BLOCK

– VK_FORMAT_BC7_SRGB_BLOCK

vkGetPhysicalDeviceFormatProperties is used to check for the supported properties of individual
formats.

• occlusionQueryPrecise indicates whether occlusion queries returning actual sample counts are supported.
Occlusion queries are created in a VkQueryPool by specifying the queryType of VK_QUERY_TYPE_
OCCLUSION in the VkQueryPoolCreateInfo structure which is passed to vkCreateQueryPool. If this
feature is enabled, queries of this type can enable VK_QUERY_CONTROL_PRECISE_BIT in the flags parameter to
vkCmdBeginQuery. If this feature is not supported, the implementation supports only boolean occlusion queries.
When any samples are passed, boolean queries will return a non-zero result value, otherwise a result value of zero is
returned. When this feature is enabled and VK_QUERY_CONTROL_PRECISE_BIT is set, occlusion queries will
report the actual number of samples passed.

• pipelineStatisticsQuery indicates whether the pipeline statistics queries are supported. If this feature is not
enabled, queries of type VK_QUERY_TYPE_PIPELINE_STATISTICS cannot be created, and none of the
VkQueryPipelineStatisticFlagBits bits can be set in the pipelineStatistics member of the
VkQueryPoolCreateInfo structure.

• vertexPipelineStoresAndAtomics indicates whether storage buffers and images support stores and atomic
operations in the vertex, tessellation, and geometry shader stages. If this feature is not enabled, all storage image,
storage texel buffers, and storage buffer variables used by these stages in shader modules must be decorated with the
NonWriteable decoration (or the readonly memory qualifier in GLSL).

• fragmentStoresAndAtomics indicates whether storage buffers and images support stores and atomic operations in
the fragment shader stage. If this feature is not enabled, all storage image, storage texel buffers, and storage buffer
variables used by the fragment stage in shader modules must be decorated with the NonWriteable decoration (or
the readonly memory qualifier in GLSL).

• shaderTessellationAndGeometryPointSize indicates whether the PointSize built-in decoration is available
in the tessellation control, tessellation evaluation, and geometry shader stages. If this feature is not enabled, members
decorated with the PointSize built-in decoration must not be read from or written to and all points written from a
tessellation or geometry shader will have a size of 1.0. This also indicates whether shader modules can declare the
TessellationPointSize capability for tessellation control and evaluation shaders, or if the shader modules can
declare the GeometryPointSize capability for geometry shaders. An implementation supporting this feature must
also support one or both of the tessellationShader or geometryShader features.

• shaderImageGatherExtended indicates whether the extended set of image gather instructions are available in
shader code. If this feature is not enabled, the OpImage*Gather instructions do not support the Offset and
ConstOffsets operands. This also indicates whether shader modules can declare the ImageGatherExtended
capability.

• shaderStorageImageExtendedFormats indicates whether the extended storage image formats are available in
shader code. If this feature is not enabled, the formats requiring the StorageImageExtendedFormats capability
are not supported for storage images. This also indicates whether shader modules can declare the
StorageImageExtendedFormats capability.

• shaderStorageImageMultisample indicates whether multisampled storage images are supported. If this feature is
not enabled, images that are created with a usage that includes VK_IMAGE_USAGE_STORAGE_BIT must be created
with samples equal to VK_SAMPLE_COUNT_1_BIT. This also indicates whether shader modules can declare the
StorageImageMultisample capability.

• shaderStorageImageReadWithoutFormat indicates whether storage images require a format qualifier to be
specified when reading from storage images. If this feature is not enabled, the OpImageRead instruction must not
have an OpTypeImage of Unknown. This also indicates whether shader modules can declare the
StorageImageReadWithoutFormat capability.

• shaderStorageImageWriteWithoutFormat indicates whether storage images require a format qualifier to be
specified when writing to storage images. If this feature is not enabled, the OpImageWrite instruction must not have
an OpTypeImage of Unknown. This also indicates whether shader modules can declare the
StorageImageWriteWithoutFormat capability.

Vulkan 1.0.36 - A Specification 573 / 683

• shaderUniformBufferArrayDynamicIndexing indicates whether arrays of uniform buffers can be indexed by
dynamically uniform integer expressions in shader code. If this feature is not enabled, resources with a descriptor type
of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
must be indexed only by constant integral expressions when aggregated into arrays in shader code. This also indicates
whether shader modules can declare the UniformBufferArrayDynamicIndexing capability.

• shaderSampledImageArrayDynamicIndexing indicates whether arrays of samplers or sampled images can be
indexed by dynamically uniform integer expressions in shader code. If this feature is not enabled, resources with a
descriptor type of VK_DESCRIPTOR_TYPE_SAMPLER, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_
SAMPLER, or VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE must be indexed only by constant integral expressions
when aggregated into arrays in shader code. This also indicates whether shader modules can declare the
SampledImageArrayDynamicIndexing capability.

• shaderStorageBufferArrayDynamicIndexing indicates whether arrays of storage buffers can be indexed by
dynamically uniform integer expressions in shader code. If this feature is not enabled, resources with a descriptor type
of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
must be indexed only by constant integral expressions when aggregated into arrays in shader code. This also indicates
whether shader modules can declare the StorageBufferArrayDynamicIndexing capability.

• shaderStorageImageArrayDynamicIndexing indicates whether arrays of storage images can be indexed by
dynamically uniform integer expressions in shader code. If this feature is not enabled, resources with a descriptor type
of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE must be indexed only by constant integral expressions when
aggregated into arrays in shader code. This also indicates whether shader modules can declare the
StorageImageArrayDynamicIndexing capability.

• shaderClipDistance indicates whether clip distances are supported in shader code. If this feature is not enabled,
any members decorated with the ClipDistance built-in decoration must not be read from or written to in shader
modules. This also indicates whether shader modules can declare the ClipDistance capability.

• shaderCullDistance indicates whether cull distances are supported in shader code. If this feature is not enabled,
any members decorated with the CullDistance built-in decoration must not be read from or written to in shader
modules. This also indicates whether shader modules can declare the CullDistance capability.

• shaderFloat64 indicates whether 64-bit floats (doubles) are supported in shader code. If this feature is not enabled,
64-bit floating-point types must not be used in shader code. This also indicates whether shader modules can declare the
Float64 capability.

• shaderInt64 indicates whether 64-bit integers (signed and unsigned) are supported in shader code. If this feature is
not enabled, 64-bit integer types must not be used in shader code. This also indicates whether shader modules can
declare the Int64 capability.

• shaderInt16 indicates whether 16-bit integers (signed and unsigned) are supported in shader code. If this feature is
not enabled, 16-bit integer types must not be used in shader code. This also indicates whether shader modules can
declare the Int16 capability.

• shaderResourceResidency indicates whether image operations that return resource residency information are
supported in shader code. If this feature is not enabled, the OpImageSparse* instructions must not be used in
shader code. This also indicates whether shader modules can declare the SparseResidency capability. The feature
requires at least one of the sparseResidency* features to be supported.

• shaderResourceMinLod indicates whether image operations that specify the minimum resource level-of-detail
(LOD) are supported in shader code. If this feature is not enabled, the MinLod image operand must not be used in
shader code. This also indicates whether shader modules can declare the MinLod capability.

• sparseBinding indicates whether resource memory can be managed at opaque sparse block level instead of at the
object level. If this feature is not enabled, resource memory must be bound only on a per-object basis using the

vkBindBufferMemory and vkBindImageMemory commands. In this case, buffers and images must not be
created with VK_BUFFER_CREATE_SPARSE_BINDING_BIT and VK_IMAGE_CREATE_SPARSE_BINDING_
BIT set in the flags member of the VkBufferCreateInfo and VkImageCreateInfo structures, respectively.
Otherwise resource memory can be managed as described in Sparse Resource Features.

• sparseResidencyBuffer indicates whether the device can access partially resident buffers. If this feature is not
enabled, buffers must not be created with VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT set in the flags
member of the VkBufferCreateInfo structure.

• sparseResidencyImage2D indicates whether the device can access partially resident 2D images with 1 sample per
pixel. If this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_2D and samples set to VK_
SAMPLE_COUNT_1_BIT must not be created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT set in the
flags member of the VkImageCreateInfo structure.

• sparseResidencyImage3D indicates whether the device can access partially resident 3D images. If this feature is
not enabled, images with an imageType of VK_IMAGE_TYPE_3D must not be created with VK_IMAGE_CREATE_
SPARSE_RESIDENCY_BIT set in the flags member of the VkImageCreateInfo structure.

• sparseResidency2Samples indicates whether the physical device can access partially resident 2D images with 2
samples per pixel. If this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_2D and samples

set to VK_SAMPLE_COUNT_2_BIT must not be created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
set in the flags member of the VkImageCreateInfo structure.

• sparseResidency4Samples indicates whether the physical device can access partially resident 2D images with 4
samples per pixel. If this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_2D and samples

set to VK_SAMPLE_COUNT_4_BIT must not be created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
set in the flags member of the VkImageCreateInfo structure.

• sparseResidency8Samples indicates whether the physical device can access partially resident 2D images with 8
samples per pixel. If this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_2D and samples

set to VK_SAMPLE_COUNT_8_BIT must not be created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
set in the flags member of the VkImageCreateInfo structure.

• sparseResidency16Samples indicates whether the physical device can access partially resident 2D images with 16
samples per pixel. If this feature is not enabled, images with an imageType of VK_IMAGE_TYPE_2D and samples

set to VK_SAMPLE_COUNT_16_BIT must not be created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
set in the flags member of the VkImageCreateInfo structure.

• sparseResidencyAliased indicates whether the physical device can correctly access data aliased into multiple
locations. If this feature is not enabled, the VK_BUFFER_CREATE_SPARSE_ALIASED_BIT and VK_IMAGE_
CREATE_SPARSE_ALIASED_BIT enum values must not be used in flags members of the
VkBufferCreateInfo and VkImageCreateInfo structures, respectively.

• variableMultisampleRate indicates whether all pipelines that will be bound to a command buffer during a
subpass with no attachments must have the same value for
VkPipelineMultisampleStateCreateInfo::rasterizationSamples. If set to VK_TRUE, the
implementation supports variable multisample rates in a subpass with no attachments. If set to VK_FALSE, then all
pipelines bound in such a subpass must have the same multisample rate. This has no effect in situations where a
subpass uses any attachments.

• inheritedQueries indicates whether a secondary command buffer may be executed while a query is active.

Vulkan 1.0.36 - A Specification 575 / 683

Valid Usage

• If any member of this structure is VK_FALSE, as returned by vkGetPhysicalDeviceFeatures, then it
must be VK_FALSE when passed as part of the VkDeviceCreateInfo struct when creating a device

30.1.1 Feature Requirements

All Vulkan graphics implementations must support the following features:

• robustBufferAccess.

All other features are not required by the Specification.

30.2 Limits

There are a variety of implementation-dependent limits.

The VkPhysicalDeviceLimits are properties of the physical device. These are available in the limits member of
the VkPhysicalDeviceProperties structure which is returned from vkGetPhysicalDeviceProperties.

The VkPhysicalDeviceLimits structure is defined as:

typedef struct VkPhysicalDeviceLimits {
uint32_t maxImageDimension1D;
uint32_t maxImageDimension2D;
uint32_t maxImageDimension3D;
uint32_t maxImageDimensionCube;
uint32_t maxImageArrayLayers;
uint32_t maxTexelBufferElements;
uint32_t maxUniformBufferRange;
uint32_t maxStorageBufferRange;
uint32_t maxPushConstantsSize;
uint32_t maxMemoryAllocationCount;
uint32_t maxSamplerAllocationCount;
VkDeviceSize bufferImageGranularity;
VkDeviceSize sparseAddressSpaceSize;
uint32_t maxBoundDescriptorSets;
uint32_t maxPerStageDescriptorSamplers;
uint32_t maxPerStageDescriptorUniformBuffers;
uint32_t maxPerStageDescriptorStorageBuffers;
uint32_t maxPerStageDescriptorSampledImages;
uint32_t maxPerStageDescriptorStorageImages;
uint32_t maxPerStageDescriptorInputAttachments;
uint32_t maxPerStageResources;
uint32_t maxDescriptorSetSamplers;
uint32_t maxDescriptorSetUniformBuffers;
uint32_t maxDescriptorSetUniformBuffersDynamic;
uint32_t maxDescriptorSetStorageBuffers;
uint32_t maxDescriptorSetStorageBuffersDynamic;
uint32_t maxDescriptorSetSampledImages;

uint32_t maxDescriptorSetStorageImages;
uint32_t maxDescriptorSetInputAttachments;
uint32_t maxVertexInputAttributes;
uint32_t maxVertexInputBindings;
uint32_t maxVertexInputAttributeOffset;
uint32_t maxVertexInputBindingStride;
uint32_t maxVertexOutputComponents;
uint32_t maxTessellationGenerationLevel;
uint32_t maxTessellationPatchSize;
uint32_t maxTessellationControlPerVertexInputComponents;
uint32_t maxTessellationControlPerVertexOutputComponents;
uint32_t maxTessellationControlPerPatchOutputComponents;
uint32_t maxTessellationControlTotalOutputComponents;
uint32_t maxTessellationEvaluationInputComponents;
uint32_t maxTessellationEvaluationOutputComponents;
uint32_t maxGeometryShaderInvocations;
uint32_t maxGeometryInputComponents;
uint32_t maxGeometryOutputComponents;
uint32_t maxGeometryOutputVertices;
uint32_t maxGeometryTotalOutputComponents;
uint32_t maxFragmentInputComponents;
uint32_t maxFragmentOutputAttachments;
uint32_t maxFragmentDualSrcAttachments;
uint32_t maxFragmentCombinedOutputResources;
uint32_t maxComputeSharedMemorySize;
uint32_t maxComputeWorkGroupCount[3];
uint32_t maxComputeWorkGroupInvocations;
uint32_t maxComputeWorkGroupSize[3];
uint32_t subPixelPrecisionBits;
uint32_t subTexelPrecisionBits;
uint32_t mipmapPrecisionBits;
uint32_t maxDrawIndexedIndexValue;
uint32_t maxDrawIndirectCount;
float maxSamplerLodBias;
float maxSamplerAnisotropy;
uint32_t maxViewports;
uint32_t maxViewportDimensions[2];
float viewportBoundsRange[2];
uint32_t viewportSubPixelBits;
size_t minMemoryMapAlignment;
VkDeviceSize minTexelBufferOffsetAlignment;
VkDeviceSize minUniformBufferOffsetAlignment;
VkDeviceSize minStorageBufferOffsetAlignment;
int32_t minTexelOffset;
uint32_t maxTexelOffset;
int32_t minTexelGatherOffset;
uint32_t maxTexelGatherOffset;
float minInterpolationOffset;
float maxInterpolationOffset;
uint32_t subPixelInterpolationOffsetBits;
uint32_t maxFramebufferWidth;
uint32_t maxFramebufferHeight;
uint32_t maxFramebufferLayers;
VkSampleCountFlags framebufferColorSampleCounts;
VkSampleCountFlags framebufferDepthSampleCounts;
VkSampleCountFlags framebufferStencilSampleCounts;
VkSampleCountFlags framebufferNoAttachmentsSampleCounts;

Vulkan 1.0.36 - A Specification 577 / 683

uint32_t maxColorAttachments;
VkSampleCountFlags sampledImageColorSampleCounts;
VkSampleCountFlags sampledImageIntegerSampleCounts;
VkSampleCountFlags sampledImageDepthSampleCounts;
VkSampleCountFlags sampledImageStencilSampleCounts;
VkSampleCountFlags storageImageSampleCounts;
uint32_t maxSampleMaskWords;
VkBool32 timestampComputeAndGraphics;
float timestampPeriod;
uint32_t maxClipDistances;
uint32_t maxCullDistances;
uint32_t maxCombinedClipAndCullDistances;
uint32_t discreteQueuePriorities;
float pointSizeRange[2];
float lineWidthRange[2];
float pointSizeGranularity;
float lineWidthGranularity;
VkBool32 strictLines;
VkBool32 standardSampleLocations;
VkDeviceSize optimalBufferCopyOffsetAlignment;
VkDeviceSize optimalBufferCopyRowPitchAlignment;
VkDeviceSize nonCoherentAtomSize;

} VkPhysicalDeviceLimits;

• maxImageDimension1D is the maximum dimension (width) of an image created with an imageType of VK_
IMAGE_TYPE_1D.

• maxImageDimension2D is the maximum dimension (width or height) of an image created with an imageType of
VK_IMAGE_TYPE_2D and without VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags.

• maxImageDimension3D is the maximum dimension (width, height, or depth) of an image created with an
imageType of VK_IMAGE_TYPE_3D.

• maxImageDimensionCube is the maximum dimension (width or height) of an image created with an imageType

of VK_IMAGE_TYPE_2D and with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags.

• maxImageArrayLayers is the maximum number of layers (arrayLayers) for an image.

• maxTexelBufferElements is the maximum number of addressable texels for a buffer view created on a buffer
which was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_
STORAGE_TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo structure.

• maxUniformBufferRange is the maximum value that can be specified in the range member of any
VkDescriptorBufferInfo structures passed to a call to vkUpdateDescriptorSets for descriptors of type
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

• maxStorageBufferRange is the maximum value that can be specified in the range member of any
VkDescriptorBufferInfo structures passed to a call to vkUpdateDescriptorSets for descriptors of type
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

• maxPushConstantsSize is the maximum size, in bytes, of the pool of push constant memory. For each of the push
constant ranges indicated by the pPushConstantRanges member of the VkPipelineLayoutCreateInfo
structure, offset + size must be less than or equal to this limit.

• maxMemoryAllocationCount is the maximum number of device memory allocations, as created by
vkAllocateMemory, which can simultaneously exist.

• maxSamplerAllocationCount is the maximum number of sampler objects, as created by vkCreateSampler,
which can simultaneously exist on a device.

• bufferImageGranularity is the granularity, in bytes, at which buffer or linear image resources, and optimal image
resources can be bound to adjacent offsets in the same VkDeviceMemory object without aliasing. See Buffer-Image
Granularity for more details.

• sparseAddressSpaceSize is the total amount of address space available, in bytes, for sparse memory resources.
This is an upper bound on the sum of the size of all sparse resources, regardless of whether any memory is bound to
them.

• maxBoundDescriptorSets is the maximum number of descriptor sets that can be simultaneously used by a pipeline.
All DescriptorSet decorations in shader modules must have a value less than maxBoundDescriptorSets. See
Section 13.2.

• maxPerStageDescriptorSamplers is the maximum number of samplers that can be accessible to a single shader
stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_
TYPE_COMBINED_IMAGE_SAMPLER count against this limit. A descriptor is accessible to a shader stage when the
stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set.
See Section 13.1.2 and Section 13.1.4.

• maxPerStageDescriptorUniformBuffers is the maximum number of uniform buffers that can be accessible to a
single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. A descriptor is accessible to a
shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for
that shader stage set. See Section 13.1.7 and Section 13.1.9.

• maxPerStageDescriptorStorageBuffers is the maximum number of storage buffers that can be accessible to a
single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. A descriptor is accessible to a
pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has
the bit for that shader stage set. See Section 13.1.8 and Section 13.1.10.

• maxPerStageDescriptorSampledImages is the maximum number of sampled images that can be accessible to a
single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_
SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_
BUFFER count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member
of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Section 13.1.4,
Section 13.1.3, and Section 13.1.5.

• maxPerStageDescriptorStorageImages is the maximum number of storage images that can be accessible to a
single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or
VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against this limit. A descriptor is accessible to a
pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has
the bit for that shader stage set. See Section 13.1.1, and Section 13.1.6.

• maxPerStageDescriptorInputAttachments is the maximum number of input attachments that can be accessible
to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_INPUT_
ATTACHMENT count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags
member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. These are only
supported for the fragment stage. See Section 13.1.11.

• maxPerStageResources is the maximum number of resources that can be accessible to a single shader stage in a
pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_
DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_
TYPE_UNIFORM_TEXEL_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_

Vulkan 1.0.36 - A Specification 579 / 683

DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_
TYPE_UNIFORM_BUFFER_DYNAMIC, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, or VK_
DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. For the fragment shader stage the framebuffer
color attachments also count against this limit.

• maxDescriptorSetSamplers is the maximum number of samplers that can be included in descriptor bindings in a
pipeline layout across all pipeline shader stages and descriptor set numbers. Descriptors with a type of VK_
DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this
limit. See Section 13.1.2 and Section 13.1.4.

• maxDescriptorSetUniformBuffers is the maximum number of uniform buffers that can be included in descriptor
bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers. Descriptors with a type of
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
count against this limit. See Section 13.1.7 and Section 13.1.9.

• maxDescriptorSetUniformBuffersDynamic is the maximum number of dynamic uniform buffers that can be
included in descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers.
Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. See
Section 13.1.9.

• maxDescriptorSetStorageBuffers is the maximum number of storage buffers that can be included in descriptor
bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
count against this limit. See Section 13.1.8 and Section 13.1.10.

• maxDescriptorSetStorageBuffersDynamic is the maximum number of dynamic storage buffers that can be
included in descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers.
Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. See
Section 13.1.10.

• maxDescriptorSetSampledImages is the maximum number of sampled images that can be included in descriptor
bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers. Descriptors with a type of
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against this limit. See Section 13.1.4, Section 13.1.3,
and Section 13.1.5.

• maxDescriptorSetStorageImages is the maximum number of storage images that can be included in descriptor
bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers. Descriptors with a type of
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count
against this limit. See Section 13.1.1, and Section 13.1.6.

• maxDescriptorSetInputAttachments is the maximum number of input attachments that can be included in
descriptor bindings in a pipeline layout across all pipeline shader stages and descriptor set numbers. Descriptors with a
type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. See Section 13.1.11.

• maxVertexInputAttributes is the maximum number of vertex input attributes that can be specified for a graphics
pipeline. These are described in the array of VkVertexInputAttributeDescription structures that are
provided at graphics pipeline creation time via the pVertexAttributeDescriptions member of the
VkPipelineVertexInputStateCreateInfo structure. See Section 20.1 and Section 20.2.

• maxVertexInputBindings is the maximum number of vertex buffers that can be specified for providing vertex
attributes to a graphics pipeline. These are described in the array of VkVertexInputBindingDescription
structures that are provided at graphics pipeline creation time via the pVertexBindingDescriptions member of
the VkPipelineVertexInputStateCreateInfo structure. The binding member of
VkVertexInputBindingDescription must be less than this limit. See Section 20.2.

• maxVertexInputAttributeOffset is the maximum vertex input attribute offset that can be added to the vertex
input binding stride. The offset member of the VkVertexInputAttributeDescription structure must be
less than or equal to this limit. See Section 20.2.

• maxVertexInputBindingStride is the maximum vertex input binding stride that can be specified in a vertex input
binding. The stride member of the VkVertexInputBindingDescription structure must be less than or
equal to this limit. See Section 20.2.

• maxVertexOutputComponents is the maximum number of components of output variables which can be output by a
vertex shader. See Section 8.5.

• maxTessellationGenerationLevel is the maximum tessellation generation level supported by the fixed-function
tessellation primitive generator. See Chapter 21.

• maxTessellationPatchSize is the maximum patch size, in vertices, of patches that can be processed by the
tessellation control shader and tessellation primitive generator. The patchControlPoints member of the
VkPipelineTessellationStateCreateInfo structure specified at pipeline creation time and the value
provided in the OutputVertices execution mode of shader modules must be less than or equal to this limit. See
Chapter 21.

• maxTessellationControlPerVertexInputComponents is the maximum number of components of input
variables which can be provided as per-vertex inputs to the tessellation control shader stage.

• maxTessellationControlPerVertexOutputComponents is the maximum number of components of per-vertex
output variables which can be output from the tessellation control shader stage.

• maxTessellationControlPerPatchOutputComponents is the maximum number of components of per-patch
output variables which can be output from the tessellation control shader stage.

• maxTessellationControlTotalOutputComponents is the maximum total number of components of per-vertex
and per-patch output variables which can be output from the tessellation control shader stage.

• maxTessellationEvaluationInputComponents is the maximum number of components of input variables
which can be provided as per-vertex inputs to the tessellation evaluation shader stage.

• maxTessellationEvaluationOutputComponents is the maximum number of components of per-vertex output
variables which can be output from the tessellation evaluation shader stage.

• maxGeometryShaderInvocations is the maximum invocation count supported for instanced geometry shaders.
The value provided in the Invocations execution mode of shader modules must be less than or equal to this limit.
See Chapter 22.

• maxGeometryInputComponents is the maximum number of components of input variables which can be provided
as inputs to the geometry shader stage.

• maxGeometryOutputComponents is the maximum number of components of output variables which can be output
from the geometry shader stage.

• maxGeometryOutputVertices is the maximum number of vertices which can be emitted by any geometry shader.

• maxGeometryTotalOutputComponents is the maximum total number of components of output, across all emitted
vertices, which can be output from the geometry shader stage.

• maxFragmentInputComponents is the maximum number of components of input variables which can be provided
as inputs to the fragment shader stage.

• maxFragmentOutputAttachments is the maximum number of output attachments which can be written to by the
fragment shader stage.

Vulkan 1.0.36 - A Specification 581 / 683

• maxFragmentDualSrcAttachments is the maximum number of output attachments which can be written to by the
fragment shader stage when blending is enabled and one of the dual source blend modes is in use. See Section 26.1.2
and dualSrcBlend.

• maxFragmentCombinedOutputResources is the total number of storage buffers, storage images, and output buffers
which can be used in the fragment shader stage.

• maxComputeSharedMemorySize is the maximum total storage size, in bytes, of all variables declared with the
WorkgroupLocal storage class in shader modules (or with the shared storage qualifier in GLSL) in the compute
shader stage.

• maxComputeWorkGroupCount[3] is the maximum number of local workgroups that can be dispatched by a single
dispatch command. These three values represent the maximum number of local workgroups for the X, Y, and Z
dimensions, respectively. The x, y, and z parameters to the vkCmdDispatch command, or members of the
VkDispatchIndirectCommand structure must be less than or equal to the corresponding limit. See Chapter 27.

• maxComputeWorkGroupInvocations is the maximum total number of compute shader invocations in a single local
workgroup. The product of the X, Y, and Z sizes as specified by the LocalSize execution mode in shader modules
and by the object decorated by the WorkgroupSize decoration must be less than or equal to this limit.

• maxComputeWorkGroupSize[3] is the maximum size of a local compute workgroup, per dimension. These three
values represent the maximum local workgroup size in the X, Y, and Z dimensions, respectively. The x, y, and z sizes
specified by the LocalSize execution mode and by the object decorated by the WorkgroupSize decoration in
shader modules must be less than or equal to the corresponding limit.

• subPixelPrecisionBits is the number of bits of subpixel precision in framebuffer coordinates xf and yf. See
Chapter 24.

• subTexelPrecisionBits is the number of bits of precision in the division along an axis of an image used for
minification and magnification filters. 2subTexelPrecisionBits is the actual number of divisions along each axis
of the image represented. The filtering hardware will snap to these locations when computing the filtered results.

• mipmapPrecisionBits is the number of bits of division that the LOD calculation for mipmap fetching get snapped
to when determining the contribution from each mip level to the mip filtered results. 2mipmapPrecisionBits is the
actual number of divisions.

Note
For example, if this value is 2 bits then when linearly filtering between two levels, each level could: contribute:
0%, 33%, 66%, or 100% (this is just an example and the amount of contribution should be covered by different
equations in the spec).

• maxDrawIndexedIndexValue is the maximum index value that can be used for indexed draw calls when using
32-bit indices. This excludes the primitive restart index value of 0xFFFFFFFF. See fullDrawIndexUint32.

• maxDrawIndirectCount is the maximum draw count that is supported for indirect draw calls. See
multiDrawIndirect.

• maxSamplerLodBias is the maximum absolute sampler level of detail bias. The sum of the mipLodBias member of
the VkSamplerCreateInfo structure and the Bias operand of image sampling operations in shader modules (or 0
if no Bias operand is provided to an image sampling operation) are clamped to the range
[-maxSamplerLodBias,+maxSamplerLodBias]. See [samplers-mipLodBias].

• maxSamplerAnisotropy is the maximum degree of sampler anisotropy. The maximum degree of anisotropic
filtering used for an image sampling operation is the minimum of the maxAnisotropy member of the
VkSamplerCreateInfo structure and this limit. See [samplers-maxAnisotropy].

• maxViewports is the maximum number of active viewports. The viewportCount member of the
VkPipelineViewportStateCreateInfo structure that is provided at pipeline creation must be less than or
equal to this limit.

• maxViewportDimensions[2] are the maximum viewport dimensions in the X (width) and Y (height) dimensions,
respectively. The maximum viewport dimensions must be greater than or equal to the largest image which can be
created and used as a framebuffer attachment. See Controlling the Viewport.

• viewportBoundsRange[2] is the [minimum, maximum] range that the corners of a viewport must be contained in.
This range must be at least

[-2 × size, 2 × size - 1], where size = max(maxViewportDimensions[0], maxViewportDimensions[1]) See
Controlling the Viewport.

Note
The intent of the viewportBoundsRange limit is to allow a maximum sized viewport to be arbitrarily shifted
relative to the output target as long as at least some portion intersects. This would give a bounds limit of
[-size + 1, 2 × size - 1] which would allow all possible non-empty-set intersections of the output target and
the viewport. Since these numbers are typically powers of two, picking the signed number range using the
smallest possible number of bits ends up with the specified range.

• viewportSubPixelBits is the number of bits of subpixel precision for viewport bounds. The subpixel precision that
floating-point viewport bounds are interpreted at is given by this limit.

• minMemoryMapAlignment is the minimum required alignment, in bytes, of host visible memory allocations within
the host address space. When mapping a memory allocation with vkMapMemory, subtracting offset bytes from the
returned pointer will always produce an integer multiple of this limit. See Section 10.2.1.

• minTexelBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset member of the
VkBufferViewCreateInfo structure for texel buffers. When a buffer view is created for a buffer which was
created with VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_
TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo structure, the offset must be an
integer multiple of this limit.

• minUniformBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset member of the
VkDescriptorBufferInfo structure for uniform buffers. When a descriptor of type VK_DESCRIPTOR_TYPE_
UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC is updated, the offset must be
an integer multiple of this limit. Similarly, dynamic offsets for uniform buffers must be multiples of this limit.

• minStorageBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset member of the
VkDescriptorBufferInfo structure for storage buffers. When a descriptor of type VK_DESCRIPTOR_TYPE_
STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC is updated, the offset must be
an integer multiple of this limit. Similarly, dynamic offsets for storage buffers must be multiples of this limit.

• minTexelOffset is the minimum offset value for the ConstOffset image operand of any of the
OpImageSample* or OpImageFetch* image instructions.

• maxTexelOffset is the maximum offset value for the ConstOffset image operand of any of the
OpImageSample* or OpImageFetch* image instructions.

• minTexelGatherOffset is the minimum offset value for the Offset or ConstOffsets image operands of any
of the OpImage*Gather image instructions.

• maxTexelGatherOffset is the maximum offset value for the Offset or ConstOffsets image operands of any
of the OpImage*Gather image instructions.

Vulkan 1.0.36 - A Specification 583 / 683

• minInterpolationOffset is the minimum negative offset value for the offset operand of the
InterpolateAtOffset extended instruction.

• maxInterpolationOffset is the maximum positive offset value for the offset operand of the
InterpolateAtOffset extended instruction.

• subPixelInterpolationOffsetBits is the number of subpixel fractional bits that the x and y offsets to the
InterpolateAtOffset extended instruction may be rounded to as fixed-point values.

• maxFramebufferWidth is the maximum width for a framebuffer. The width member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferHeight is the maximum height for a framebuffer. The height member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• maxFramebufferLayers is the maximum layer count for a layered framebuffer. The layers member of the
VkFramebufferCreateInfo structure must be less than or equal to this limit.

• framebufferColorSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the color sample
counts that are supported for all framebuffer color attachments.

• framebufferDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the supported
depth sample counts for all framebuffer depth/stencil attachments, when the format includes a depth component.

• framebufferStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the supported
stencil sample counts for all framebuffer depth/stencil attachments, when the format includes a stencil component.

• framebufferNoAttachmentsSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the
supported sample counts for a framebuffer with no attachments.

• maxColorAttachments is the maximum number of color attachments that can be used by a subpass in a render pass.
The colorAttachmentCount member of the VkSubpassDescription structure must be less than or equal to
this limit.

• sampledImageColorSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_
USAGE_SAMPLED_BIT, and a non-integer color format.

• sampledImageIntegerSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_
USAGE_SAMPLED_BIT, and an integer color format.

• sampledImageDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the sample
counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_
USAGE_SAMPLED_BIT, and a depth format.

• sampledImageStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the sample
supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_USAGE_
SAMPLED_BIT, and a stencil format.

• storageImageSampleCounts is a bitmask1 of VkSampleCountFlagBits bits indicating the sample counts
supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, and usage containing VK_IMAGE_
USAGE_STORAGE_BIT.

• maxSampleMaskWords is the maximum number of array elements of a variable decorated with the SampleMask
built-in decoration.

• timestampComputeAndGraphics indicates support for timestamps on all graphics and compute queues. If this limit
is set to VK_TRUE, all queues that advertise the VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT in
the VkQueueFamilyProperties::queueFlags support
VkQueueFamilyProperties::timestampValidBits of at least 36. See Timestamp Queries.

• timestampPeriod is the number of nanoseconds required for a timestamp query to be incremented by 1. See
Timestamp Queries.

• maxClipDistances is the maximum number of clip distances that can be used in a single shader stage. The size of
any array declared with the ClipDistance built-in decoration in a shader module must be less than or equal to this
limit.

• maxCullDistances is the maximum number of cull distances that can be used in a single shader stage. The size of
any array declared with the CullDistance built-in decoration in a shader module must be less than or equal to this
limit.

• maxCombinedClipAndCullDistances is the maximum combined number of clip and cull distances that can be
used in a single shader stage. The sum of the sizes of any pair of arrays declared with the ClipDistance and
CullDistance built-in decoration used by a single shader stage in a shader module must be less than or equal to
this limit.

• discreteQueuePriorities is the number of discrete priorities that can be assigned to a queue based on the value
of each member of VkDeviceQueueCreateInfo::pQueuePriorities. This must be at least 2, and levels must
be spread evenly over the range, with at least one level at 1.0, and another at 0.0. See Section 4.3.4.

• pointSizeRange[2] is the range [minimum,maximum] of supported sizes for points. Values written to variables
decorated with the PointSize built-in decoration are clamped to this range.

• lineWidthRange[2] is the range [minimum,maximum] of supported widths for lines. Values specified by the
lineWidth member of the VkPipelineRasterizationStateCreateInfo or the lineWidth parameter to
vkCmdSetLineWidth are clamped to this range.

• pointSizeGranularity is the granularity of supported point sizes. Not all point sizes in the range defined by
pointSizeRange are supported. This limit specifies the granularity (or increment) between successive supported
point sizes.

• lineWidthGranularity is the granularity of supported line widths. Not all line widths in the range defined by
lineWidthRange are supported. This limit specifies the granularity (or increment) between successive supported line
widths.

• strictLines indicates whether lines are rasterized according to the preferred method of rasterization. If set to VK_
FALSE, lines may be rasterized under a relaxed set of rules. If set to VK_TRUE, lines are rasterized as per the strict
definition. See Basic Line Segment Rasterization.

• standardSampleLocations indicates whether rasterization uses the standard sample locations as documented in
Multisampling. If set to VK_TRUE, the implementation uses the documented sample locations. If set to VK_FALSE,
the implementation may use different sample locations.

• optimalBufferCopyOffsetAlignment is the optimal buffer offset alignment in bytes for
vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer. The per texel alignment requirements are still
enforced, this is just an additional alignment recommendation for optimal performance and power.

• optimalBufferCopyRowPitchAlignment is the optimal buffer row pitch alignment in bytes for
vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer. Row pitch is the number of bytes between
texels with the same X coordinate in adjacent rows (Y coordinates differ by one). The per texel alignment requirements
are still enforced, this is just an additional alignment recommendation for optimal performance and power.

Vulkan 1.0.36 - A Specification 585 / 683

• nonCoherentAtomSize is the size and alignment in bytes that bounds concurrent access to host-mapped device
memory.

1
For all bitmasks of type VkSampleCountFlags above, possible values include:

typedef enum VkSampleCountFlagBits {
VK_SAMPLE_COUNT_1_BIT = 0x00000001,
VK_SAMPLE_COUNT_2_BIT = 0x00000002,
VK_SAMPLE_COUNT_4_BIT = 0x00000004,
VK_SAMPLE_COUNT_8_BIT = 0x00000008,
VK_SAMPLE_COUNT_16_BIT = 0x00000010,
VK_SAMPLE_COUNT_32_BIT = 0x00000020,
VK_SAMPLE_COUNT_64_BIT = 0x00000040,

} VkSampleCountFlagBits;

The sample count limits defined above represent the minimum supported sample counts for each image type.
Individual images may support additional sample counts, which are queried using
vkGetPhysicalDeviceImageFormatProperties as described in Supported Sample Counts.

30.2.1 Limit Requirements

The following table specifies the required minimum/maximum for all Vulkan graphics implementations. Where a limit
corresponds to a fine-grained device feature which is optional, the feature name is listed with two required limits, one
when the feature is supported and one when it is not supported. If an implementation supports a feature, the limits
reported are the same whether or not the feature is enabled.

Table 30.1: Required Limit Types

Type Limit Feature
uint32_t maxImageDimension1D -
uint32_t maxImageDimension2D -
uint32_t maxImageDimension3D -
uint32_t maxImageDimensionCube -
uint32_t maxImageArrayLayers -
uint32_t maxTexelBufferElements -
uint32_t maxUniformBufferRange -
uint32_t maxStorageBufferRange -
uint32_t maxPushConstantsSize -
uint32_t maxMemoryAllocationCount -
uint32_t maxSamplerAllocationCount -
VkDeviceSize bufferImageGranularity -
VkDeviceSize sparseAddressSpaceSize sparseBinding
uint32_t maxBoundDescriptorSets -
uint32_t maxPerStageDescriptorSamplers -
uint32_t maxPerStageDescriptorUniformBuffers -
uint32_t maxPerStageDescriptorStorageBuffers -
uint32_t maxPerStageDescriptorSampledImages -
uint32_t maxPerStageDescriptorStorageImages -
uint32_t maxPerStageDescriptorInputAttachments -
uint32_t maxPerStageResources -

Table 30.1: (continued)

Type Limit Feature
uint32_t maxDescriptorSetSamplers -
uint32_t maxDescriptorSetUniformBuffers -
uint32_t maxDescriptorSetUniformBuffersDynamic -
uint32_t maxDescriptorSetStorageBuffers -
uint32_t maxDescriptorSetStorageBuffersDynamic -
uint32_t maxDescriptorSetSampledImages -
uint32_t maxDescriptorSetStorageImages -
uint32_t maxDescriptorSetInputAttachments -
uint32_t maxVertexInputAttributes -
uint32_t maxVertexInputBindings -
uint32_t maxVertexInputAttributeOffset -
uint32_t maxVertexInputBindingStride -
uint32_t maxVertexOutputComponents -
uint32_t maxTessellationGenerationLevel tessellationShader

uint32_t maxTessellationPatchSize tessellationShader

uint32_t maxTessellationControlPerVertexInputComp

onents

tessellationShader

uint32_t maxTessellationControlPerVertexOutputCom

ponents

tessellationShader

uint32_t maxTessellationControlPerPatchOutputComp

onents

tessellationShader

uint32_t maxTessellationControlTotalOutputCompone

nts

tessellationShader

uint32_t maxTessellationEvaluationInputComponents tessellationShader

uint32_t maxTessellationEvaluationOutputCompone

nts

tessellationShader

uint32_t maxGeometryShaderInvocations geometryShader

uint32_t maxGeometryInputComponents geometryShader

uint32_t maxGeometryOutputComponents geometryShader

uint32_t maxGeometryOutputVertices geometryShader

uint32_t maxGeometryTotalOutputComponents geometryShader

uint32_t maxFragmentInputComponents -
uint32_t maxFragmentOutputAttachments -
uint32_t maxFragmentDualSrcAttachments dualSrcBlend

uint32_t maxFragmentCombinedOutputResources -
uint32_t maxComputeSharedMemorySize -
3 × uint32_t maxComputeWorkGroupCount -
uint32_t maxComputeWorkGroupInvocations -
3 × uint32_t maxComputeWorkGroupSize -
uint32_t subPixelPrecisionBits -
uint32_t subTexelPrecisionBits -
uint32_t mipmapPrecisionBits -
uint32_t maxDrawIndexedIndexValue fullDrawIndexUint32

uint32_t maxDrawIndirectCount multiDrawIndirect

float maxSamplerLodBias -
float maxSamplerAnisotropy samplerAnisotropy

uint32_t maxViewports multiViewport

2 × uint32_t maxViewportDimensions -
2 × float viewportBoundsRange -

Vulkan 1.0.36 - A Specification 587 / 683

Table 30.1: (continued)

Type Limit Feature
uint32_t viewportSubPixelBits -
size_t minMemoryMapAlignment -
VkDeviceSize minTexelBufferOffsetAlignment -
VkDeviceSize minUniformBufferOffsetAlignment -
VkDeviceSize minStorageBufferOffsetAlignment -
int32_t minTexelOffset -
uint32_t maxTexelOffset -
int32_t minTexelGatherOffset shaderImageGatherExten

ded

uint32_t maxTexelGatherOffset shaderImageGatherExten

ded

float minInterpolationOffset sampleRateShading

float maxInterpolationOffset sampleRateShading

uint32_t subPixelInterpolationOffsetBits sampleRateShading

uint32_t maxFramebufferWidth -
uint32_t maxFramebufferHeight -
uint32_t maxFramebufferLayers -
VkSampleCountF
lags

framebufferColorSampleCounts -

VkSampleCountF
lags

framebufferDepthSampleCounts -

VkSampleCountF
lags

framebufferStencilSampleCounts -

VkSampleCountF
lags

framebufferNoAttachmentsSampleCounts -

uint32_t maxColorAttachments -
VkSampleCountF
lags

sampledImageColorSampleCounts -

VkSampleCountF
lags

sampledImageIntegerSampleCounts -

VkSampleCountF
lags

sampledImageDepthSampleCounts -

VkSampleCountF
lags

sampledImageStencilSampleCounts -

VkSampleCountF
lags

storageImageSampleCounts shaderStorageImageMultis

ample

uint32_t maxSampleMaskWords -
VkBool32 timestampComputeAndGraphics -
float timestampPeriod -
uint32_t maxClipDistances shaderClipDistance

uint32_t maxCullDistances shaderCullDistance

uint32_t maxCombinedClipAndCullDistances shaderCullDistance

uint32_t discreteQueuePriorities -
2 × float pointSizeRange largePoints

2 × float lineWidthRange wideLines

float pointSizeGranularity largePoints

float lineWidthGranularity wideLines

VkBool32 strictLines -
VkBool32 standardSampleLocations -

Table 30.1: (continued)

Type Limit Feature
VkDeviceSize optimalBufferCopyOffsetAlignment -
VkDeviceSize optimalBufferCopyRowPitchAlignment -
VkDeviceSize nonCoherentAtomSize -

Table 30.2: Required Limits

Limit Unsupported
Limit

Supported Limit Limit Type1

maxImageDimension1D - 4096 min
maxImageDimension2D - 4096 min
maxImageDimension3D - 256 min
maxImageDimensionCube - 4096 min
maxImageArrayLayers - 256 min
maxTexelBufferElements - 65536 min
maxUniformBufferRange - 16384 min
maxStorageBufferRange - 227 min
maxPushConstantsSize - 128 min
maxMemoryAllocationCount - 4096 min
maxSamplerAllocationCount - 4000 min
bufferImageGranularity - 131072 max
sparseAddressSpaceSize 0 231 min
maxBoundDescriptorSets - 4 min
maxPerStageDescriptorSamplers - 16 min
maxPerStageDescriptorUniformBuffers - 12 min
maxPerStageDescriptorStorageBuffers - 4 min
maxPerStageDescriptorSampledImages - 16 min
maxPerStageDescriptorStorageImages - 4 min
maxPerStageDescriptorInputAttachments - 4 min
maxPerStageResources - 128 2 min
maxDescriptorSetSamplers - 96 8 min, n ×

PerStage
maxDescriptorSetUniformBuffers - 72 8 min, n ×

PerStage
maxDescriptorSetUniformBuffersDynamic - 8 min
maxDescriptorSetStorageBuffers - 24 8 min, n ×

PerStage
maxDescriptorSetStorageBuffersDynamic - 4 min
maxDescriptorSetSampledImages - 96 8 min, n ×

PerStage
maxDescriptorSetStorageImages - 24 8 min, n ×

PerStage
maxDescriptorSetInputAttachments - 4 min
maxVertexInputAttributes - 16 min
maxVertexInputBindings - 16 min
maxVertexInputAttributeOffset - 2047 min
maxVertexInputBindingStride - 2048 min

Vulkan 1.0.36 - A Specification 589 / 683

Table 30.2: (continued)

Limit Unsupported
Limit

Supported Limit Limit Type1

maxVertexOutputComponents - 64 min
maxTessellationGenerationLevel 0 64 min
maxTessellationPatchSize 0 32 min
maxTessellationControlPerVertexInputCom

ponents

0 64 min

maxTessellationControlPerVertexOutputCo

mponents

0 64 min

maxTessellationControlPerPatchOutputCom

ponents

0 120 min

maxTessellationControlTotalOutputCompon

ents

0 2048 min

maxTessellationEvaluationInputCompone

nts

0 64 min

maxTessellationEvaluationOutputCompone

nts

0 64 min

maxGeometryShaderInvocations 0 32 min
maxGeometryInputComponents 0 64 min
maxGeometryOutputComponents 0 64 min
maxGeometryOutputVertices 0 256 min
maxGeometryTotalOutputComponents 0 1024 min
maxFragmentInputComponents - 64 min
maxFragmentOutputAttachments - 4 min
maxFragmentDualSrcAttachments 0 1 min
maxFragmentCombinedOutputResources - 4 min
maxComputeSharedMemorySize - 16384 min
maxComputeWorkGroupCount - (65535,65535,65535) min
maxComputeWorkGroupInvocations - 128 min
maxComputeWorkGroupSize - (128,128,64) min
subPixelPrecisionBits - 4 min
subTexelPrecisionBits - 4 min
mipmapPrecisionBits - 4 min
maxDrawIndexedIndexValue 224-1 232-1 min
maxDrawIndirectCount 1 216-1 min
maxSamplerLodBias - 2 min
maxSamplerAnisotropy 1 16 min
maxViewports 1 16 min
maxViewportDimensions - (4096,4096) 3 min
viewportBoundsRange - (-8192,8191) 4 (max,min)
viewportSubPixelBits - 0 min
minMemoryMapAlignment - 64 min
minTexelBufferOffsetAlignment - 256 max
minUniformBufferOffsetAlignment - 256 max
minStorageBufferOffsetAlignment - 256 max
minTexelOffset - -8 max
maxTexelOffset - 7 min
minTexelGatherOffset 0 -8 max
maxTexelGatherOffset 0 7 min
minInterpolationOffset 0.0 -0.5 5 max

Table 30.2: (continued)

Limit Unsupported
Limit

Supported Limit Limit Type1

maxInterpolationOffset 0.0 0.5 - (1 ULP) 5 min
subPixelInterpolationOffsetBits 0 4 5 min
maxFramebufferWidth - 4096 min
maxFramebufferHeight - 4096 min
maxFramebufferLayers - 256 min
framebufferColorSampleCounts - (VK_SAMPLE_

COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

framebufferDepthSampleCounts - (VK_SAMPLE_
COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

framebufferStencilSampleCounts - (VK_SAMPLE_
COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

framebufferNoAttachmentsSampleCounts - (VK_SAMPLE_
COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

maxColorAttachments - 4 min
sampledImageColorSampleCounts - (VK_SAMPLE_

COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

sampledImageIntegerSampleCounts - VK_SAMPLE_
COUNT_1_BIT

min

sampledImageDepthSampleCounts - (VK_SAMPLE_
COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

sampledImageStencilSampleCounts - (VK_SAMPLE_
COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

storageImageSampleCounts VK_
SAMPLE_
COUNT_1_
BIT

(VK_SAMPLE_
COUNT_1_BIT |
VK_SAMPLE_
COUNT_4_BIT)

min

maxSampleMaskWords - 1 min
timestampComputeAndGraphics - - implementation

dependent
timestampPeriod - - duration
maxClipDistances 0 8 min
maxCullDistances 0 8 min
maxCombinedClipAndCullDistances 0 8 min
discreteQueuePriorities - 2 min

Vulkan 1.0.36 - A Specification 591 / 683

Table 30.2: (continued)

Limit Unsupported
Limit

Supported Limit Limit Type1

pointSizeRange (1.0,1.0) (1.0,64.0 - ULP)6 (max,min)
lineWidthRange (1.0,1.0) (1.0,8.0 - ULP)7 (max,min)
pointSizeGranularity 0.0 1.0 6 max, fixed point

increment
lineWidthGranularity 0.0 1.0 7 max, fixed point

increment
strictLines - - implementation

dependent
standardSampleLocations - - implementation

dependent
optimalBufferCopyOffsetAlignment - - recommendation
optimalBufferCopyRowPitchAlignment - - recommendation
nonCoherentAtomSize - 256 max

1
The Limit Type column indicates the limit is either the minimum limit all implementations must support or the
maximum limit all implementations must support. For bitmasks a minimum limit is the least bits all
implementations must set, but they may have additional bits set beyond this minimum.

2
The maxPerStageResources must be at least the smallest of the following:

• the sum of the maxPerStageDescriptorUniformBuffers, maxPerStageDescriptorStorageBuffers,
maxPerStageDescriptorSampledImages, maxPerStageDescriptorStorageImages,
maxPerStageDescriptorInputAttachments, maxColorAttachments limits, or

• 128.

It may not be possible to reach this limit in every stage.

3
See maxViewportDimensions for the required relationship to other limits.

4
See viewportBoundsRange for the required relationship to other limits.

5
The values minInterpolationOffset and maxInterpolationOffset describe the closed interval of
supported interpolation offsets: [minInterpolationOffset, maxInterpolationOffset]. The ULP is
determined by subPixelInterpolationOffsetBits. If subPixelInterpolationOffsetBits is 4, this
provides increments of (1/24) = 0.0625, and thus the range of supported interpolation offsets would be [-0.5,
0.4375].

6
The point size ULP is determined by pointSizeGranularity. If the pointSizeGranularity is 0.125, the
range of supported point sizes must be at least [1.0, 63.875].

7
The line width ULP is determined by lineWidthGranularity. If the lineWidthGranularity is 0.0625, the
range of supported line widths must be at least [1.0, 7.9375].

8
The maxDescriptorSet* limit is n times the corresponding maxPerStageDescriptor* limit, where n is the
number of shader stages supported by the VkPhysicalDevice. If all shader stages are supported, n = 6 (vertex,
tessellation control, tessellation evaluation, geometry, fragment, compute).

30.3 Formats

The features for the set of formats (VkFormat) supported by the implementation are queried individually using the
vkGetPhysicalDeviceFormatProperties command.

30.3.1 Format Definition

The available formats are defined by the VkFormat enumeration:

typedef enum VkFormat {
VK_FORMAT_UNDEFINED = 0,
VK_FORMAT_R4G4_UNORM_PACK8 = 1,
VK_FORMAT_R4G4B4A4_UNORM_PACK16 = 2,
VK_FORMAT_B4G4R4A4_UNORM_PACK16 = 3,
VK_FORMAT_R5G6B5_UNORM_PACK16 = 4,
VK_FORMAT_B5G6R5_UNORM_PACK16 = 5,
VK_FORMAT_R5G5B5A1_UNORM_PACK16 = 6,
VK_FORMAT_B5G5R5A1_UNORM_PACK16 = 7,
VK_FORMAT_A1R5G5B5_UNORM_PACK16 = 8,
VK_FORMAT_R8_UNORM = 9,
VK_FORMAT_R8_SNORM = 10,
VK_FORMAT_R8_USCALED = 11,
VK_FORMAT_R8_SSCALED = 12,
VK_FORMAT_R8_UINT = 13,
VK_FORMAT_R8_SINT = 14,
VK_FORMAT_R8_SRGB = 15,
VK_FORMAT_R8G8_UNORM = 16,
VK_FORMAT_R8G8_SNORM = 17,
VK_FORMAT_R8G8_USCALED = 18,
VK_FORMAT_R8G8_SSCALED = 19,
VK_FORMAT_R8G8_UINT = 20,
VK_FORMAT_R8G8_SINT = 21,
VK_FORMAT_R8G8_SRGB = 22,
VK_FORMAT_R8G8B8_UNORM = 23,
VK_FORMAT_R8G8B8_SNORM = 24,
VK_FORMAT_R8G8B8_USCALED = 25,
VK_FORMAT_R8G8B8_SSCALED = 26,
VK_FORMAT_R8G8B8_UINT = 27,
VK_FORMAT_R8G8B8_SINT = 28,
VK_FORMAT_R8G8B8_SRGB = 29,
VK_FORMAT_B8G8R8_UNORM = 30,
VK_FORMAT_B8G8R8_SNORM = 31,
VK_FORMAT_B8G8R8_USCALED = 32,
VK_FORMAT_B8G8R8_SSCALED = 33,
VK_FORMAT_B8G8R8_UINT = 34,

Vulkan 1.0.36 - A Specification 593 / 683

VK_FORMAT_B8G8R8_SINT = 35,
VK_FORMAT_B8G8R8_SRGB = 36,
VK_FORMAT_R8G8B8A8_UNORM = 37,
VK_FORMAT_R8G8B8A8_SNORM = 38,
VK_FORMAT_R8G8B8A8_USCALED = 39,
VK_FORMAT_R8G8B8A8_SSCALED = 40,
VK_FORMAT_R8G8B8A8_UINT = 41,
VK_FORMAT_R8G8B8A8_SINT = 42,
VK_FORMAT_R8G8B8A8_SRGB = 43,
VK_FORMAT_B8G8R8A8_UNORM = 44,
VK_FORMAT_B8G8R8A8_SNORM = 45,
VK_FORMAT_B8G8R8A8_USCALED = 46,
VK_FORMAT_B8G8R8A8_SSCALED = 47,
VK_FORMAT_B8G8R8A8_UINT = 48,
VK_FORMAT_B8G8R8A8_SINT = 49,
VK_FORMAT_B8G8R8A8_SRGB = 50,
VK_FORMAT_A8B8G8R8_UNORM_PACK32 = 51,
VK_FORMAT_A8B8G8R8_SNORM_PACK32 = 52,
VK_FORMAT_A8B8G8R8_USCALED_PACK32 = 53,
VK_FORMAT_A8B8G8R8_SSCALED_PACK32 = 54,
VK_FORMAT_A8B8G8R8_UINT_PACK32 = 55,
VK_FORMAT_A8B8G8R8_SINT_PACK32 = 56,
VK_FORMAT_A8B8G8R8_SRGB_PACK32 = 57,
VK_FORMAT_A2R10G10B10_UNORM_PACK32 = 58,
VK_FORMAT_A2R10G10B10_SNORM_PACK32 = 59,
VK_FORMAT_A2R10G10B10_USCALED_PACK32 = 60,
VK_FORMAT_A2R10G10B10_SSCALED_PACK32 = 61,
VK_FORMAT_A2R10G10B10_UINT_PACK32 = 62,
VK_FORMAT_A2R10G10B10_SINT_PACK32 = 63,
VK_FORMAT_A2B10G10R10_UNORM_PACK32 = 64,
VK_FORMAT_A2B10G10R10_SNORM_PACK32 = 65,
VK_FORMAT_A2B10G10R10_USCALED_PACK32 = 66,
VK_FORMAT_A2B10G10R10_SSCALED_PACK32 = 67,
VK_FORMAT_A2B10G10R10_UINT_PACK32 = 68,
VK_FORMAT_A2B10G10R10_SINT_PACK32 = 69,
VK_FORMAT_R16_UNORM = 70,
VK_FORMAT_R16_SNORM = 71,
VK_FORMAT_R16_USCALED = 72,
VK_FORMAT_R16_SSCALED = 73,
VK_FORMAT_R16_UINT = 74,
VK_FORMAT_R16_SINT = 75,
VK_FORMAT_R16_SFLOAT = 76,
VK_FORMAT_R16G16_UNORM = 77,
VK_FORMAT_R16G16_SNORM = 78,
VK_FORMAT_R16G16_USCALED = 79,
VK_FORMAT_R16G16_SSCALED = 80,
VK_FORMAT_R16G16_UINT = 81,
VK_FORMAT_R16G16_SINT = 82,
VK_FORMAT_R16G16_SFLOAT = 83,
VK_FORMAT_R16G16B16_UNORM = 84,
VK_FORMAT_R16G16B16_SNORM = 85,
VK_FORMAT_R16G16B16_USCALED = 86,
VK_FORMAT_R16G16B16_SSCALED = 87,
VK_FORMAT_R16G16B16_UINT = 88,
VK_FORMAT_R16G16B16_SINT = 89,
VK_FORMAT_R16G16B16_SFLOAT = 90,
VK_FORMAT_R16G16B16A16_UNORM = 91,

VK_FORMAT_R16G16B16A16_SNORM = 92,
VK_FORMAT_R16G16B16A16_USCALED = 93,
VK_FORMAT_R16G16B16A16_SSCALED = 94,
VK_FORMAT_R16G16B16A16_UINT = 95,
VK_FORMAT_R16G16B16A16_SINT = 96,
VK_FORMAT_R16G16B16A16_SFLOAT = 97,
VK_FORMAT_R32_UINT = 98,
VK_FORMAT_R32_SINT = 99,
VK_FORMAT_R32_SFLOAT = 100,
VK_FORMAT_R32G32_UINT = 101,
VK_FORMAT_R32G32_SINT = 102,
VK_FORMAT_R32G32_SFLOAT = 103,
VK_FORMAT_R32G32B32_UINT = 104,
VK_FORMAT_R32G32B32_SINT = 105,
VK_FORMAT_R32G32B32_SFLOAT = 106,
VK_FORMAT_R32G32B32A32_UINT = 107,
VK_FORMAT_R32G32B32A32_SINT = 108,
VK_FORMAT_R32G32B32A32_SFLOAT = 109,
VK_FORMAT_R64_UINT = 110,
VK_FORMAT_R64_SINT = 111,
VK_FORMAT_R64_SFLOAT = 112,
VK_FORMAT_R64G64_UINT = 113,
VK_FORMAT_R64G64_SINT = 114,
VK_FORMAT_R64G64_SFLOAT = 115,
VK_FORMAT_R64G64B64_UINT = 116,
VK_FORMAT_R64G64B64_SINT = 117,
VK_FORMAT_R64G64B64_SFLOAT = 118,
VK_FORMAT_R64G64B64A64_UINT = 119,
VK_FORMAT_R64G64B64A64_SINT = 120,
VK_FORMAT_R64G64B64A64_SFLOAT = 121,
VK_FORMAT_B10G11R11_UFLOAT_PACK32 = 122,
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 = 123,
VK_FORMAT_D16_UNORM = 124,
VK_FORMAT_X8_D24_UNORM_PACK32 = 125,
VK_FORMAT_D32_SFLOAT = 126,
VK_FORMAT_S8_UINT = 127,
VK_FORMAT_D16_UNORM_S8_UINT = 128,
VK_FORMAT_D24_UNORM_S8_UINT = 129,
VK_FORMAT_D32_SFLOAT_S8_UINT = 130,
VK_FORMAT_BC1_RGB_UNORM_BLOCK = 131,
VK_FORMAT_BC1_RGB_SRGB_BLOCK = 132,
VK_FORMAT_BC1_RGBA_UNORM_BLOCK = 133,
VK_FORMAT_BC1_RGBA_SRGB_BLOCK = 134,
VK_FORMAT_BC2_UNORM_BLOCK = 135,
VK_FORMAT_BC2_SRGB_BLOCK = 136,
VK_FORMAT_BC3_UNORM_BLOCK = 137,
VK_FORMAT_BC3_SRGB_BLOCK = 138,
VK_FORMAT_BC4_UNORM_BLOCK = 139,
VK_FORMAT_BC4_SNORM_BLOCK = 140,
VK_FORMAT_BC5_UNORM_BLOCK = 141,
VK_FORMAT_BC5_SNORM_BLOCK = 142,
VK_FORMAT_BC6H_UFLOAT_BLOCK = 143,
VK_FORMAT_BC6H_SFLOAT_BLOCK = 144,
VK_FORMAT_BC7_UNORM_BLOCK = 145,
VK_FORMAT_BC7_SRGB_BLOCK = 146,
VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK = 147,
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK = 148,

Vulkan 1.0.36 - A Specification 595 / 683

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK = 149,
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK = 150,
VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK = 151,
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK = 152,
VK_FORMAT_EAC_R11_UNORM_BLOCK = 153,
VK_FORMAT_EAC_R11_SNORM_BLOCK = 154,
VK_FORMAT_EAC_R11G11_UNORM_BLOCK = 155,
VK_FORMAT_EAC_R11G11_SNORM_BLOCK = 156,
VK_FORMAT_ASTC_4x4_UNORM_BLOCK = 157,
VK_FORMAT_ASTC_4x4_SRGB_BLOCK = 158,
VK_FORMAT_ASTC_5x4_UNORM_BLOCK = 159,
VK_FORMAT_ASTC_5x4_SRGB_BLOCK = 160,
VK_FORMAT_ASTC_5x5_UNORM_BLOCK = 161,
VK_FORMAT_ASTC_5x5_SRGB_BLOCK = 162,
VK_FORMAT_ASTC_6x5_UNORM_BLOCK = 163,
VK_FORMAT_ASTC_6x5_SRGB_BLOCK = 164,
VK_FORMAT_ASTC_6x6_UNORM_BLOCK = 165,
VK_FORMAT_ASTC_6x6_SRGB_BLOCK = 166,
VK_FORMAT_ASTC_8x5_UNORM_BLOCK = 167,
VK_FORMAT_ASTC_8x5_SRGB_BLOCK = 168,
VK_FORMAT_ASTC_8x6_UNORM_BLOCK = 169,
VK_FORMAT_ASTC_8x6_SRGB_BLOCK = 170,
VK_FORMAT_ASTC_8x8_UNORM_BLOCK = 171,
VK_FORMAT_ASTC_8x8_SRGB_BLOCK = 172,
VK_FORMAT_ASTC_10x5_UNORM_BLOCK = 173,
VK_FORMAT_ASTC_10x5_SRGB_BLOCK = 174,
VK_FORMAT_ASTC_10x6_UNORM_BLOCK = 175,
VK_FORMAT_ASTC_10x6_SRGB_BLOCK = 176,
VK_FORMAT_ASTC_10x8_UNORM_BLOCK = 177,
VK_FORMAT_ASTC_10x8_SRGB_BLOCK = 178,
VK_FORMAT_ASTC_10x10_UNORM_BLOCK = 179,
VK_FORMAT_ASTC_10x10_SRGB_BLOCK = 180,
VK_FORMAT_ASTC_12x10_UNORM_BLOCK = 181,
VK_FORMAT_ASTC_12x10_SRGB_BLOCK = 182,
VK_FORMAT_ASTC_12x12_UNORM_BLOCK = 183,
VK_FORMAT_ASTC_12x12_SRGB_BLOCK = 184,

} VkFormat;

VK_FORMAT_UNDEFINED
The format is not specified.

VK_FORMAT_R4G4_UNORM_PACK8
A two-component, 8-bit packed unsigned normalized format that has a 4-bit R component in bits 4..7, and a 4-bit
G component in bits 0..3.

VK_FORMAT_R4G4B4A4_UNORM_PACK16
A four-component, 16-bit packed unsigned normalized format that has a 4-bit R component in bits 12..15, a 4-bit
G component in bits 8..11, a 4-bit B component in bits 4..7, and a 4-bit A component in bits 0..3.

VK_FORMAT_B4G4R4A4_UNORM_PACK16
A four-component, 16-bit packed unsigned normalized format that has a 4-bit B component in bits 12..15, a 4-bit
G component in bits 8..11, a 4-bit R component in bits 4..7, and a 4-bit A component in bits 0..3.

VK_FORMAT_R5G6B5_UNORM_PACK16
A three-component, 16-bit packed unsigned normalized format that has a 5-bit R component in bits 11..15, a 6-bit
G component in bits 5..10, and a 5-bit B component in bits 0..4.

VK_FORMAT_B5G6R5_UNORM_PACK16
A three-component, 16-bit packed unsigned normalized format that has a 5-bit B component in bits 11..15, a 6-bit
G component in bits 5..10, and a 5-bit R component in bits 0..4.

VK_FORMAT_R5G5B5A1_UNORM_PACK16
A four-component, 16-bit packed unsigned normalized format that has a 5-bit R component in bits 11..15, a 5-bit
G component in bits 6..10, a 5-bit B component in bits 1..5, and a 1-bit A component in bit 0.

VK_FORMAT_B5G5R5A1_UNORM_PACK16
A four-component, 16-bit packed unsigned normalized format that has a 5-bit B component in bits 11..15, a 5-bit
G component in bits 6..10, a 5-bit R component in bits 1..5, and a 1-bit A component in bit 0.

VK_FORMAT_A1R5G5B5_UNORM_PACK16
A four-component, 16-bit packed unsigned normalized format that has a 1-bit A component in bit 15, a 5-bit R
component in bits 10..14, a 5-bit G component in bits 5..9, and a 5-bit B component in bits 0..4.

VK_FORMAT_R8_UNORM
A one-component, 8-bit unsigned normalized format that has a single 8-bit R component.

VK_FORMAT_R8_SNORM
A one-component, 8-bit signed normalized format that has a single 8-bit R component.

VK_FORMAT_R8_USCALED
A one-component, 8-bit unsigned scaled integer format that has a single 8-bit R component.

VK_FORMAT_R8_SSCALED
A one-component, 8-bit signed scaled integer format that has a single 8-bit R component.

VK_FORMAT_R8_UINT
A one-component, 8-bit unsigned integer format that has a single 8-bit R component.

VK_FORMAT_R8_SINT
A one-component, 8-bit signed integer format that has a single 8-bit R component.

VK_FORMAT_R8_SRGB
A one-component, 8-bit unsigned normalized format that has a single 8-bit R component stored with sRGB
nonlinear encoding.

VK_FORMAT_R8G8_UNORM
A two-component, 16-bit unsigned normalized format that has an 8-bit R component in byte 0, and an 8-bit G
component in byte 1.

VK_FORMAT_R8G8_SNORM
A two-component, 16-bit signed normalized format that has an 8-bit R component in byte 0, and an 8-bit G
component in byte 1.

VK_FORMAT_R8G8_USCALED
A two-component, 16-bit unsigned scaled integer format that has an 8-bit R component in byte 0, and an 8-bit G
component in byte 1.

VK_FORMAT_R8G8_SSCALED
A two-component, 16-bit signed scaled integer format that has an 8-bit R component in byte 0, and an 8-bit G
component in byte 1.

VK_FORMAT_R8G8_UINT
A two-component, 16-bit unsigned integer format that has an 8-bit R component in byte 0, and an 8-bit G
component in byte 1.

Vulkan 1.0.36 - A Specification 597 / 683

VK_FORMAT_R8G8_SINT
A two-component, 16-bit signed integer format that has an 8-bit R component in byte 0, and an 8-bit G component
in byte 1.

VK_FORMAT_R8G8_SRGB
A two-component, 16-bit unsigned normalized format that has an 8-bit R component stored with sRGB nonlinear
encoding in byte 0, and an 8-bit G component stored with sRGB nonlinear encoding in byte 1.

VK_FORMAT_R8G8B8_UNORM
A three-component, 24-bit unsigned normalized format that has an 8-bit R component in byte 0, an 8-bit G
component in byte 1, and an 8-bit B component in byte 2.

VK_FORMAT_R8G8B8_SNORM
A three-component, 24-bit signed normalized format that has an 8-bit R component in byte 0, an 8-bit G
component in byte 1, and an 8-bit B component in byte 2.

VK_FORMAT_R8G8B8_USCALED
A three-component, 24-bit unsigned scaled format that has an 8-bit R component in byte 0, an 8-bit G component
in byte 1, and an 8-bit B component in byte 2.

VK_FORMAT_R8G8B8_SSCALED
A three-component, 24-bit signed scaled format that has an 8-bit R component in byte 0, an 8-bit G component in
byte 1, and an 8-bit B component in byte 2.

VK_FORMAT_R8G8B8_UINT
A three-component, 24-bit unsigned integer format that has an 8-bit R component in byte 0, an 8-bit G component
in byte 1, and an 8-bit B component in byte 2.

VK_FORMAT_R8G8B8_SINT
A three-component, 24-bit signed integer format that has an 8-bit R component in byte 0, an 8-bit G component in
byte 1, and an 8-bit B component in byte 2.

VK_FORMAT_R8G8B8_SRGB
A three-component, 24-bit unsigned normalized format that has an 8-bit R component stored with sRGB nonlinear
encoding in byte 0, an 8-bit G component stored with sRGB nonlinear encoding in byte 1, and an 8-bit B
component stored with sRGB nonlinear encoding in byte 2.

VK_FORMAT_B8G8R8_UNORM
A three-component, 24-bit unsigned normalized format that has an 8-bit B component in byte 0, an 8-bit G
component in byte 1, and an 8-bit R component in byte 2.

VK_FORMAT_B8G8R8_SNORM
A three-component, 24-bit signed normalized format that has an 8-bit B component in byte 0, an 8-bit G
component in byte 1, and an 8-bit R component in byte 2.

VK_FORMAT_B8G8R8_USCALED
A three-component, 24-bit unsigned scaled format that has an 8-bit B component in byte 0, an 8-bit G component
in byte 1, and an 8-bit R component in byte 2.

VK_FORMAT_B8G8R8_SSCALED
A three-component, 24-bit signed scaled format that has an 8-bit B component in byte 0, an 8-bit G component in
byte 1, and an 8-bit R component in byte 2.

VK_FORMAT_B8G8R8_UINT
A three-component, 24-bit unsigned integer format that has an 8-bit B component in byte 0, an 8-bit G component
in byte 1, and an 8-bit R component in byte 2.

VK_FORMAT_B8G8R8_SINT
A three-component, 24-bit signed integer format that has an 8-bit B component in byte 0, an 8-bit G component in
byte 1, and an 8-bit R component in byte 2.

VK_FORMAT_B8G8R8_SRGB
A three-component, 24-bit unsigned normalized format that has an 8-bit B component stored with sRGB nonlinear
encoding in byte 0, an 8-bit G component stored with sRGB nonlinear encoding in byte 1, and an 8-bit R
component stored with sRGB nonlinear encoding in byte 2.

VK_FORMAT_R8G8B8A8_UNORM
A four-component, 32-bit unsigned normalized format that has an 8-bit R component in byte 0, an 8-bit G
component in byte 1, an 8-bit B component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_R8G8B8A8_SNORM
A four-component, 32-bit signed normalized format that has an 8-bit R component in byte 0, an 8-bit G component
in byte 1, an 8-bit B component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_R8G8B8A8_USCALED
A four-component, 32-bit unsigned scaled format that has an 8-bit R component in byte 0, an 8-bit G component
in byte 1, an 8-bit B component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_R8G8B8A8_SSCALED
A four-component, 32-bit signed scaled format that has an 8-bit R component in byte 0, an 8-bit G component in
byte 1, an 8-bit B component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_R8G8B8A8_UINT
A four-component, 32-bit unsigned integer format that has an 8-bit R component in byte 0, an 8-bit G component
in byte 1, an 8-bit B component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_R8G8B8A8_SINT
A four-component, 32-bit signed integer format that has an 8-bit R component in byte 0, an 8-bit G component in
byte 1, an 8-bit B component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_R8G8B8A8_SRGB
A four-component, 32-bit unsigned normalized format that has an 8-bit R component stored with sRGB nonlinear
encoding in byte 0, an 8-bit G component stored with sRGB nonlinear encoding in byte 1, an 8-bit B component
stored with sRGB nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_B8G8R8A8_UNORM
A four-component, 32-bit unsigned normalized format that has an 8-bit B component in byte 0, an 8-bit G
component in byte 1, an 8-bit R component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_B8G8R8A8_SNORM
A four-component, 32-bit signed normalized format that has an 8-bit B component in byte 0, an 8-bit G component
in byte 1, an 8-bit R component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_B8G8R8A8_USCALED
A four-component, 32-bit unsigned scaled format that has an 8-bit B component in byte 0, an 8-bit G component
in byte 1, an 8-bit R component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_B8G8R8A8_SSCALED
A four-component, 32-bit signed scaled format that has an 8-bit B component in byte 0, an 8-bit G component in
byte 1, an 8-bit R component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_B8G8R8A8_UINT
A four-component, 32-bit unsigned integer format that has an 8-bit B component in byte 0, an 8-bit G component
in byte 1, an 8-bit R component in byte 2, and an 8-bit A component in byte 3.

Vulkan 1.0.36 - A Specification 599 / 683

VK_FORMAT_B8G8R8A8_SINT
A four-component, 32-bit signed integer format that has an 8-bit B component in byte 0, an 8-bit G component in
byte 1, an 8-bit R component in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_B8G8R8A8_SRGB
A four-component, 32-bit unsigned normalized format that has an 8-bit B component stored with sRGB nonlinear
encoding in byte 0, an 8-bit G component stored with sRGB nonlinear encoding in byte 1, an 8-bit R component
stored with sRGB nonlinear encoding in byte 2, and an 8-bit A component in byte 3.

VK_FORMAT_A8B8G8R8_UNORM_PACK32
A four-component, 32-bit packed unsigned normalized format that has an 8-bit A component in bits 24..31, an
8-bit B component in bits 16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

VK_FORMAT_A8B8G8R8_SNORM_PACK32
A four-component, 32-bit packed signed normalized format that has an 8-bit A component in bits 24..31, an 8-bit
B component in bits 16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

VK_FORMAT_A8B8G8R8_USCALED_PACK32
A four-component, 32-bit packed unsigned scaled integer format that has an 8-bit A component in bits 24..31, an
8-bit B component in bits 16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

VK_FORMAT_A8B8G8R8_SSCALED_PACK32
A four-component, 32-bit packed signed scaled integer format that has an 8-bit A component in bits 24..31, an
8-bit B component in bits 16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

VK_FORMAT_A8B8G8R8_UINT_PACK32
A four-component, 32-bit packed unsigned integer format that has an 8-bit A component in bits 24..31, an 8-bit B
component in bits 16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

VK_FORMAT_A8B8G8R8_SINT_PACK32
A four-component, 32-bit packed signed integer format that has an 8-bit A component in bits 24..31, an 8-bit B
component in bits 16..23, an 8-bit G component in bits 8..15, and an 8-bit R component in bits 0..7.

VK_FORMAT_A8B8G8R8_SRGB_PACK32
A four-component, 32-bit packed unsigned normalized format that has an 8-bit A component in bits 24..31, an
8-bit B component stored with sRGB nonlinear encoding in bits 16..23, an 8-bit G component stored with sRGB
nonlinear encoding in bits 8..15, and an 8-bit R component stored with sRGB nonlinear encoding in bits 0..7.

VK_FORMAT_A2R10G10B10_UNORM_PACK32
A four-component, 32-bit packed unsigned normalized format that has a 2-bit A component in bits 30..31, a 10-bit
R component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

VK_FORMAT_A2R10G10B10_SNORM_PACK32
A four-component, 32-bit packed signed normalized format that has a 2-bit A component in bits 30..31, a 10-bit R
component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

VK_FORMAT_A2R10G10B10_USCALED_PACK32
A four-component, 32-bit packed unsigned scaled integer format that has a 2-bit A component in bits 30..31, a
10-bit R component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

VK_FORMAT_A2R10G10B10_SSCALED_PACK32
A four-component, 32-bit packed signed scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit
R component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

VK_FORMAT_A2R10G10B10_UINT_PACK32
A four-component, 32-bit packed unsigned integer format that has a 2-bit A component in bits 30..31, a 10-bit R
component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

VK_FORMAT_A2R10G10B10_SINT_PACK32
A four-component, 32-bit packed signed integer format that has a 2-bit A component in bits 30..31, a 10-bit R
component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit B component in bits 0..9.

VK_FORMAT_A2B10G10R10_UNORM_PACK32
A four-component, 32-bit packed unsigned normalized format that has a 2-bit A component in bits 30..31, a 10-bit
B component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

VK_FORMAT_A2B10G10R10_SNORM_PACK32
A four-component, 32-bit packed signed normalized format that has a 2-bit A component in bits 30..31, a 10-bit B
component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

VK_FORMAT_A2B10G10R10_USCALED_PACK32
A four-component, 32-bit packed unsigned scaled integer format that has a 2-bit A component in bits 30..31, a
10-bit B component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

VK_FORMAT_A2B10G10R10_SSCALED_PACK32
A four-component, 32-bit packed signed scaled integer format that has a 2-bit A component in bits 30..31, a 10-bit
B component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

VK_FORMAT_A2B10G10R10_UINT_PACK32
A four-component, 32-bit packed unsigned integer format that has a 2-bit A component in bits 30..31, a 10-bit B
component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

VK_FORMAT_A2B10G10R10_SINT_PACK32
A four-component, 32-bit packed signed integer format that has a 2-bit A component in bits 30..31, a 10-bit B
component in bits 20..29, a 10-bit G component in bits 10..19, and a 10-bit R component in bits 0..9.

VK_FORMAT_R16_UNORM
A one-component, 16-bit unsigned normalized format that has a single 16-bit R component.

VK_FORMAT_R16_SNORM
A one-component, 16-bit signed normalized format that has a single 16-bit R component.

VK_FORMAT_R16_USCALED
A one-component, 16-bit unsigned scaled integer format that has a single 16-bit R component.

VK_FORMAT_R16_SSCALED
A one-component, 16-bit signed scaled integer format that has a single 16-bit R component.

VK_FORMAT_R16_UINT
A one-component, 16-bit unsigned integer format that has a single 16-bit R component.

VK_FORMAT_R16_SINT
A one-component, 16-bit signed integer format that has a single 16-bit R component.

VK_FORMAT_R16_SFLOAT
A one-component, 16-bit signed floating-point format that has a single 16-bit R component.

VK_FORMAT_R16G16_UNORM
A two-component, 32-bit unsigned normalized format that has a 16-bit R component in bytes 0..1, and a 16-bit G
component in bytes 2..3.

VK_FORMAT_R16G16_SNORM
A two-component, 32-bit signed normalized format that has a 16-bit R component in bytes 0..1, and a 16-bit G
component in bytes 2..3.

Vulkan 1.0.36 - A Specification 601 / 683

VK_FORMAT_R16G16_USCALED
A two-component, 32-bit unsigned scaled integer format that has a 16-bit R component in bytes 0..1, and a 16-bit
G component in bytes 2..3.

VK_FORMAT_R16G16_SSCALED
A two-component, 32-bit signed scaled integer format that has a 16-bit R component in bytes 0..1, and a 16-bit G
component in bytes 2..3.

VK_FORMAT_R16G16_UINT
A two-component, 32-bit unsigned integer format that has a 16-bit R component in bytes 0..1, and a 16-bit G
component in bytes 2..3.

VK_FORMAT_R16G16_SINT
A two-component, 32-bit signed integer format that has a 16-bit R component in bytes 0..1, and a 16-bit G
component in bytes 2..3.

VK_FORMAT_R16G16_SFLOAT
A two-component, 32-bit signed floating-point format that has a 16-bit R component in bytes 0..1, and a 16-bit G
component in bytes 2..3.

VK_FORMAT_R16G16B16_UNORM
A three-component, 48-bit unsigned normalized format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16_SNORM
A three-component, 48-bit signed normalized format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16_USCALED
A three-component, 48-bit unsigned scaled integer format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16_SSCALED
A three-component, 48-bit signed scaled integer format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16_UINT
A three-component, 48-bit unsigned integer format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16_SINT
A three-component, 48-bit signed integer format that has a 16-bit R component in bytes 0..1, a 16-bit G component
in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16_SFLOAT
A three-component, 48-bit signed floating-point format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, and a 16-bit B component in bytes 4..5.

VK_FORMAT_R16G16B16A16_UNORM
A four-component, 64-bit unsigned normalized format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R16G16B16A16_SNORM
A four-component, 64-bit signed normalized format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R16G16B16A16_USCALED
A four-component, 64-bit unsigned scaled integer format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R16G16B16A16_SSCALED
A four-component, 64-bit signed scaled integer format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R16G16B16A16_UINT
A four-component, 64-bit unsigned integer format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R16G16B16A16_SINT
A four-component, 64-bit signed integer format that has a 16-bit R component in bytes 0..1, a 16-bit G component
in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R16G16B16A16_SFLOAT
A four-component, 64-bit signed floating-point format that has a 16-bit R component in bytes 0..1, a 16-bit G
component in bytes 2..3, a 16-bit B component in bytes 4..5, and a 16-bit A component in bytes 6..7.

VK_FORMAT_R32_UINT
A one-component, 32-bit unsigned integer format that has a single 32-bit R component.

VK_FORMAT_R32_SINT
A one-component, 32-bit signed integer format that has a single 32-bit R component.

VK_FORMAT_R32_SFLOAT
A one-component, 32-bit signed floating-point format that has a single 32-bit R component.

VK_FORMAT_R32G32_UINT
A two-component, 64-bit unsigned integer format that has a 32-bit R component in bytes 0..3, and a 32-bit G
component in bytes 4..7.

VK_FORMAT_R32G32_SINT
A two-component, 64-bit signed integer format that has a 32-bit R component in bytes 0..3, and a 32-bit G
component in bytes 4..7.

VK_FORMAT_R32G32_SFLOAT
A two-component, 64-bit signed floating-point format that has a 32-bit R component in bytes 0..3, and a 32-bit G
component in bytes 4..7.

VK_FORMAT_R32G32B32_UINT
A three-component, 96-bit unsigned integer format that has a 32-bit R component in bytes 0..3, a 32-bit G
component in bytes 4..7, and a 32-bit B component in bytes 8..11.

VK_FORMAT_R32G32B32_SINT
A three-component, 96-bit signed integer format that has a 32-bit R component in bytes 0..3, a 32-bit G component
in bytes 4..7, and a 32-bit B component in bytes 8..11.

VK_FORMAT_R32G32B32_SFLOAT
A three-component, 96-bit signed floating-point format that has a 32-bit R component in bytes 0..3, a 32-bit G
component in bytes 4..7, and a 32-bit B component in bytes 8..11.

VK_FORMAT_R32G32B32A32_UINT
A four-component, 128-bit unsigned integer format that has a 32-bit R component in bytes 0..3, a 32-bit G
component in bytes 4..7, a 32-bit B component in bytes 8..11, and a 32-bit A component in bytes 12..15.

Vulkan 1.0.36 - A Specification 603 / 683

VK_FORMAT_R32G32B32A32_SINT
A four-component, 128-bit signed integer format that has a 32-bit R component in bytes 0..3, a 32-bit G
component in bytes 4..7, a 32-bit B component in bytes 8..11, and a 32-bit A component in bytes 12..15.

VK_FORMAT_R32G32B32A32_SFLOAT
A four-component, 128-bit signed floating-point format that has a 32-bit R component in bytes 0..3, a 32-bit G
component in bytes 4..7, a 32-bit B component in bytes 8..11, and a 32-bit A component in bytes 12..15.

VK_FORMAT_R64_UINT
A one-component, 64-bit unsigned integer format that has a single 64-bit R component.

VK_FORMAT_R64_SINT
A one-component, 64-bit signed integer format that has a single 64-bit R component.

VK_FORMAT_R64_SFLOAT
A one-component, 64-bit signed floating-point format that has a single 64-bit R component.

VK_FORMAT_R64G64_UINT
A two-component, 128-bit unsigned integer format that has a 64-bit R component in bytes 0..7, and a 64-bit G
component in bytes 8..15.

VK_FORMAT_R64G64_SINT
A two-component, 128-bit signed integer format that has a 64-bit R component in bytes 0..7, and a 64-bit G
component in bytes 8..15.

VK_FORMAT_R64G64_SFLOAT
A two-component, 128-bit signed floating-point format that has a 64-bit R component in bytes 0..7, and a 64-bit G
component in bytes 8..15.

VK_FORMAT_R64G64B64_UINT
A three-component, 192-bit unsigned integer format that has a 64-bit R component in bytes 0..7, a 64-bit G
component in bytes 8..15, and a 64-bit B component in bytes 16..23.

VK_FORMAT_R64G64B64_SINT
A three-component, 192-bit signed integer format that has a 64-bit R component in bytes 0..7, a 64-bit G
component in bytes 8..15, and a 64-bit B component in bytes 16..23.

VK_FORMAT_R64G64B64_SFLOAT
A three-component, 192-bit signed floating-point format that has a 64-bit R component in bytes 0..7, a 64-bit G
component in bytes 8..15, and a 64-bit B component in bytes 16..23.

VK_FORMAT_R64G64B64A64_UINT
A four-component, 256-bit unsigned integer format that has a 64-bit R component in bytes 0..7, a 64-bit G
component in bytes 8..15, a 64-bit B component in bytes 16..23, and a 64-bit A component in bytes 24..31.

VK_FORMAT_R64G64B64A64_SINT
A four-component, 256-bit signed integer format that has a 64-bit R component in bytes 0..7, a 64-bit G
component in bytes 8..15, a 64-bit B component in bytes 16..23, and a 64-bit A component in bytes 24..31.

VK_FORMAT_R64G64B64A64_SFLOAT
A four-component, 256-bit signed floating-point format that has a 64-bit R component in bytes 0..7, a 64-bit G
component in bytes 8..15, a 64-bit B component in bytes 16..23, and a 64-bit A component in bytes 24..31.

VK_FORMAT_B10G11R11_UFLOAT_PACK32
A three-component, 32-bit packed unsigned floating-point format that has a 10-bit B component in bits 22..31, an
11-bit G component in bits 11..21, an 11-bit R component in bits 0..10. See Section 2.7.4 and Section 2.7.3.

VK_FORMAT_E5B9G9R9_UFLOAT_PACK32
A three-component, 32-bit packed unsigned floating-point format that has a 5-bit shared exponent in bits 27..31, a
9-bit B component mantissa in bits 18..26, a 9-bit G component mantissa in bits 9..17, and a 9-bit R component
mantissa in bits 0..8.

VK_FORMAT_D16_UNORM
A one-component, 16-bit unsigned normalized format that has a single 16-bit depth component.

VK_FORMAT_X8_D24_UNORM_PACK32
A two-component, 32-bit format that has 24 unsigned normalized bits in the depth component and, optionally, 8
bits that are unused.

VK_FORMAT_D32_SFLOAT
A one-component, 32-bit signed floating-point format that has 32-bits in the depth component.

VK_FORMAT_S8_UINT
A one-component, 8-bit unsigned integer format that has 8-bits in the stencil component.

VK_FORMAT_D16_UNORM_S8_UINT
A two-component, 24-bit format that has 16 unsigned normalized bits in the depth component and 8 unsigned
integer bits in the stencil component.

VK_FORMAT_D24_UNORM_S8_UINT
A two-component, 32-bit packed format that has 8 unsigned integer bits in the stencil component, and 24 unsigned
normalized bits in the depth component.

VK_FORMAT_D32_SFLOAT_S8_UINT
A two-component format that has 32 signed float bits in the depth component and 8 unsigned integer bits in the
stencil component. There are optionally 24-bits that are unused.

VK_FORMAT_BC1_RGB_UNORM_BLOCK
A three-component, block-compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGB texel data. This format has no alpha and is considered opaque.

VK_FORMAT_BC1_RGB_SRGB_BLOCK
A three-component, block-compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGB texel data with sRGB nonlinear encoding. This format has no alpha and is
considered opaque.

VK_FORMAT_BC1_RGBA_UNORM_BLOCK
A four-component, block-compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle of
unsigned normalized RGB texel data, and provides 1 bit of alpha.

VK_FORMAT_BC1_RGBA_SRGB_BLOCK
A four-component, block-compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle of
unsigned normalized RGB texel data with sRGB nonlinear encoding, and provides 1 bit of alpha.

VK_FORMAT_BC2_UNORM_BLOCK
A four-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding
RGB values.

VK_FORMAT_BC2_SRGB_BLOCK
A four-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding
RGB values with sRGB nonlinear encoding.

Vulkan 1.0.36 - A Specification 605 / 683

VK_FORMAT_BC3_UNORM_BLOCK
A four-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding
RGB values.

VK_FORMAT_BC3_SRGB_BLOCK
A four-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding
RGB values with sRGB nonlinear encoding.

VK_FORMAT_BC4_UNORM_BLOCK
A one-component, block-compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle of
unsigned normalized red texel data.

VK_FORMAT_BC4_SNORM_BLOCK
A one-component, block-compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle of
signed normalized red texel data.

VK_FORMAT_BC5_UNORM_BLOCK
A two-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RG texel data with the first 64 bits encoding red values followed by 64 bits encoding green
values.

VK_FORMAT_BC5_SNORM_BLOCK
A two-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of signed normalized RG texel data with the first 64 bits encoding red values followed by 64 bits encoding green
values.

VK_FORMAT_BC6H_UFLOAT_BLOCK
A three-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned floating-point RGB texel data.

VK_FORMAT_BC6H_SFLOAT_BLOCK
A three-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of signed floating-point RGB texel data.

VK_FORMAT_BC7_UNORM_BLOCK
A four-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data.

VK_FORMAT_BC7_SRGB_BLOCK
A four-component, block-compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
A three-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGB texel data. This format has no alpha and is considered opaque.

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK
A three-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGB texel data with sRGB nonlinear encoding. This format has no alpha and is
considered opaque.

VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK
A four-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGB texel data, and provides 1 bit of alpha.

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK
A four-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGB texel data with sRGB nonlinear encoding, and provides 1 bit of alpha.

VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK
A four-component, ETC2 compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding
RGB values.

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK
A four-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with the first 64 bits encoding alpha values followed by 64 bits encoding
RGB values with sRGB nonlinear encoding applied.

VK_FORMAT_EAC_R11_UNORM_BLOCK
A one-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle of
unsigned normalized red texel data.

VK_FORMAT_EAC_R11_SNORM_BLOCK
A one-component, ETC2 compressed format where each 64-bit compressed texel block encodes a 4x4 rectangle of
signed normalized red texel data.

VK_FORMAT_EAC_R11G11_UNORM_BLOCK
A two-component, ETC2 compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RG texel data with the first 64 bits encoding red values followed by 64 bits encoding green
values.

VK_FORMAT_EAC_R11G11_SNORM_BLOCK
A two-component, ETC2 compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of signed normalized RG texel data with the first 64 bits encoding red values followed by 64 bits encoding green
values.

VK_FORMAT_ASTC_4x4_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_4x4_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 4x4 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_5x4_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 5x4 rectangle
of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_5x4_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 5x4 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_5x5_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 5x5 rectangle
of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_5x5_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 5x5 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

Vulkan 1.0.36 - A Specification 607 / 683

VK_FORMAT_ASTC_6x5_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 6x5 rectangle
of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_6x5_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 6x5 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_6x6_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 6x6 rectangle
of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_6x6_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 6x6 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_8x5_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes an 8x5
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_8x5_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes an 8x5 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_8x6_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes an 8x6
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_8x6_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes an 8x6 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_8x8_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes an 8x8
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_8x8_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes an 8x8 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_10x5_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x5
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_10x5_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x5 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_10x6_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x6
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_10x6_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x6 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_10x8_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x8
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_10x8_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x8 rectangle
of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB components.

VK_FORMAT_ASTC_10x10_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x10
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_10x10_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 10x10
rectangle of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB
components.

VK_FORMAT_ASTC_12x10_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 12x10
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_12x10_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 12x10
rectangle of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB
components.

VK_FORMAT_ASTC_12x12_UNORM_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 12x12
rectangle of unsigned normalized RGBA texel data.

VK_FORMAT_ASTC_12x12_SRGB_BLOCK
A four-component, ASTC compressed format where each 128-bit compressed texel block encodes a 12x12
rectangle of unsigned normalized RGBA texel data with sRGB nonlinear encoding applied to the RGB
components.

30.3.1.1 Packed Formats

For the purposes of address alignment when accessing buffer memory containing vertex attribute or texel data, the
following formats are considered packed - whole texels or attributes are stored in a single data element, rather than
individual components occupying a single data element:

• Packed into 8-bit data types:

– VK_FORMAT_R4G4_UNORM_PACK8

• Packed into 16-bit data types:

– VK_FORMAT_R4G4B4A4_UNORM_PACK16

– VK_FORMAT_B4G4R4A4_UNORM_PACK16

– VK_FORMAT_R5G6B5_UNORM_PACK16

– VK_FORMAT_B5G6R5_UNORM_PACK16

– VK_FORMAT_R5G5B5A1_UNORM_PACK16

– VK_FORMAT_B5G5R5A1_UNORM_PACK16

Vulkan 1.0.36 - A Specification 609 / 683

– VK_FORMAT_A1R5G5B5_UNORM_PACK16

• Packed into 32-bit data types:

– VK_FORMAT_A8B8G8R8_UNORM_PACK32

– VK_FORMAT_A8B8G8R8_SNORM_PACK32

– VK_FORMAT_A8B8G8R8_USCALED_PACK32

– VK_FORMAT_A8B8G8R8_SSCALED_PACK32

– VK_FORMAT_A8B8G8R8_UINT_PACK32

– VK_FORMAT_A8B8G8R8_SINT_PACK32

– VK_FORMAT_A8B8G8R8_SRGB_PACK32

– VK_FORMAT_A2R10G10B10_UNORM_PACK32

– VK_FORMAT_A2R10G10B10_SNORM_PACK32

– VK_FORMAT_A2R10G10B10_USCALED_PACK32

– VK_FORMAT_A2R10G10B10_SSCALED_PACK32

– VK_FORMAT_A2R10G10B10_UINT_PACK32

– VK_FORMAT_A2R10G10B10_SINT_PACK32

– VK_FORMAT_A2B10G10R10_UNORM_PACK32

– VK_FORMAT_A2B10G10R10_SNORM_PACK32

– VK_FORMAT_A2B10G10R10_USCALED_PACK32

– VK_FORMAT_A2B10G10R10_SSCALED_PACK32

– VK_FORMAT_A2B10G10R10_UINT_PACK32

– VK_FORMAT_A2B10G10R10_SINT_PACK32

– VK_FORMAT_B10G11R11_UFLOAT_PACK32

– VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

– VK_FORMAT_X8_D24_UNORM_PACK32

30.3.1.2 Identification of Formats

A “format” is represented by a single enum value. The name of a format is usually built up by using the following
pattern:

etext:VK_FORMAT_{component-format|compression-scheme}_{numeric-format}

The component-format specifies either the size of the R, G, B, and A components (if they are present) in the case of a
color format, or the size of the depth (D) and stencil (S) components (if they are present) in the case of a depth/stencil
format (see below). An X indicates a component that is unused, but may be present for padding.

Table 30.3: Interpretation of Numeric Format

Numeric format Description
UNORM The components are unsigned normalized values in the range [0,1]
SNORM The components are signed normalized values in the range [-1,1]
USCALED The components are unsigned integer values that get converted to floating-point in the

range [0,2n-1]
SSCALED The components are signed integer values that get converted to floating-point in the

range [-2n-1,2n-1-1]
UINT The components are unsigned integer values in the range [0,2n-1]
SINT The components are signed integer values in the range [-2n-1,2n-1-1]
UFLOAT The components are unsigned floating-point numbers (used by packed, shared exponent,

and some compressed formats)
SFLOAT The components are signed floating-point numbers
SRGB The R, G, and B components are unsigned normalized values that represent values using

sRGB nonlinear encoding, while the A component (if one exists) is a regular unsigned
normalized value

The suffix _PACKnn indicates that the format is packed into an underlying type with nn bits.

The suffix _BLOCK indicates that the format is a block-compressed format, with the representation of multiple pixels
encoded interdependently within a region.

Table 30.4: Interpretation of Compression Scheme

Compression
scheme

Description

BC Block Compression. See Section B.1.
ETC2 Ericsson Texture Compression. See Section B.2.
EAC ETC2 Alpha Compression. See Section B.2.
ASTC Adaptive Scalable Texture Compression (LDR Profile). See Section B.3.

30.3.1.3 Representation

Color formats must be represented in memory in exactly the form indicated by the format’s name. This means that
promoting one format to another with more bits per component and/or additional components must not occur for color
formats. Depth/stencil formats have more relaxed requirements as discussed below. Each format has an element size, the
number of bytes used to stored one element or one compressed block, with the value of the element size listed in
VkFormat.

The representation of non-packed formats is that the first component specified in the name of the format is in the lowest
memory addresses and the last component specified is in the highest memory addresses. See Byte mappings for
non-packed/compressed color formats. The in-memory ordering of bytes within a component is determined by the host
endianness.

Vulkan 1.0.36 - A Specification 611 / 683

Table 30.5: Byte mappings for non-packed/compressed color formats

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← Byte
R VK_FORMAT_R8_*
R G VK_FORMAT_R8G8_*
R G B VK_FORMAT_R8G8B8_*
B G R VK_FORMAT_B8G8R8_*
R G B A VK_FORMAT_R8G8B8A8_*
B G R A VK_FORMAT_B8G8R8A8_*

R VK_FORMAT_R16_*
R G VK_FORMAT_R16G16_*
R G B VK_FORMAT_R16G16B16_*
R G B A VK_FORMAT_R16G16B16A16_*

R VK_FORMAT_R32_*
R G VK_FORMAT_R32G32_*
R G B VK_FORMAT_R32G32B32_*
R G B A VK_FORMAT_R32G32B32A32_*

R VK_FORMAT_R64_*
R G VK_FORMAT_R64G64_*

VK_FORMAT_R64G64B64_* as VK_FORMAT_R64G64_* but with B in bytes 16-23
VK_FORMAT_R64G64B64A64_* as VK_FORMAT_R64G64B64_* but with A in bytes 24-31

Packed formats store multiple components within one underlying type. The bit representation is that the first component
specified in the name of the format is in the most-significant bits and the last component specified is in the
least-significant bits of the underlying type. The in-memory ordering of bytes comprising the underlying type is
determined by the host endianness.

Table 30.6: Bit mappings for packed 8-bit formats

Bit→ 7 6 5 4 3 2 1 0
VK_FORMAT_R4G4_UNORM_PACK8 R3 R2 R1 R0 G3 G2 G1 G0

Table 30.7: Bit mappings for packed 16-bit formats

Bit→ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VK_FORMAT_R4G4B4A4_

UNORM_PACK16
R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0 A3 A2 A1 A0

VK_FORMAT_B4G4R4A4_
UNORM_PACK16

B3 B2 B1 B0 G3 G2 G1 G0 R3 R2 R1 R0 A3 A2 A1 A0

VK_FORMAT_R5G6B5_UNORM_
PACK16

R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

VK_FORMAT_B5G6R5_UNORM_
PACK16

B4 B3 B2 B1 B0 G5 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

VK_FORMAT_R5G5B5A1_
UNORM_PACK16

R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0 A0

Table 30.7: (continued)

Bit→ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VK_FORMAT_B5G5R5A1_

UNORM_PACK16
B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0 A0

VK_FORMAT_A1R5G5B5_
UNORM_PACK16

A0 R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

Table 30.8: Bit mappings for packed 32-bit formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VK_FORMAT_A8B8G8R8_*_PACK32

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 G7 G6 G5 G4 G3 G2 G1 G0 R7 R6 R5 R4 R3 R2 R1 R0
VK_FORMAT_A2R10G10B10_*_PACK32

A1 A0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 G9 G8 G7 G6 G5 G4 G3 G2 G1 G0 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
VK_FORMAT_A2B10G10R10_*_PACK32

A1 A0 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 G9 G8 G7 G6 G5 G4 G3 G2 G1 G0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0
VK_FORMAT_B10G11R11_UFLOAT_PACK32

B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 G10G9 G8 G7 G6 G5 G4 G3 G2 G1 G0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

E4 E3 E2 E1 E0 B8 B7 B6 B5 B4 B3 B2 B1 B0 G8 G7 G6 G5 G4 G3 G2 G1 G0 R8 R7 R6 R5 R4 R3 R2 R1 R0
VK_FORMAT_X8_D24_UNORM_PACK32

X7 X6 X5 X4 X3 X2 X1 X0 D23D22D21D20D19D18D17D16D15D14D13D12D11D10D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

30.3.1.4 Depth/Stencil Formats

Depth/stencil formats are considered opaque and need not be stored in the exact number of bits per texel or component
ordering indicated by the format enum. However, implementations must not substitute a different depth or stencil
precision than that described in the format (e.g. D16 must not be implemented as D24 or D32).

30.3.1.5 Format Compatibility Classes

Uncompressed color formats are compatible with each other if they occupy the same number of bits per data element.
Compressed color formats are compatible with each other if the only difference between them is the numerical type of
the uncompressed pixels (e.g. signed vs. unsigned, or SRGB vs. UNORM encoding). Each depth/stencil format is only
compatible with itself. In the following table, all the formats in the same row are compatible.

Vulkan 1.0.36 - A Specification 613 / 683

Table 30.9: Compatible formats

Class Formats
8-bit VK_FORMAT_R4G4_UNORM_PACK8,

VK_FORMAT_R8_UNORM,
VK_FORMAT_R8_SNORM,
VK_FORMAT_R8_USCALED,
VK_FORMAT_R8_SSCALED,
VK_FORMAT_R8_UINT,
VK_FORMAT_R8_SINT,
VK_FORMAT_R8_SRGB

16-bit VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_FORMAT_B5G6R5_UNORM_PACK16,
VK_FORMAT_R5G5B5A1_UNORM_PACK16,
VK_FORMAT_B5G5R5A1_UNORM_PACK16,
VK_FORMAT_A1R5G5B5_UNORM_PACK16,
VK_FORMAT_R8G8_UNORM,
VK_FORMAT_R8G8_SNORM,
VK_FORMAT_R8G8_USCALED,
VK_FORMAT_R8G8_SSCALED,
VK_FORMAT_R8G8_UINT,
VK_FORMAT_R8G8_SINT,
VK_FORMAT_R8G8_SRGB,
VK_FORMAT_R16_UNORM,
VK_FORMAT_R16_SNORM,
VK_FORMAT_R16_USCALED,
VK_FORMAT_R16_SSCALED,
VK_FORMAT_R16_UINT,
VK_FORMAT_R16_SINT,
VK_FORMAT_R16_SFLOAT

24-bit VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8B8_SNORM,
VK_FORMAT_R8G8B8_USCALED,
VK_FORMAT_R8G8B8_SSCALED,
VK_FORMAT_R8G8B8_UINT,
VK_FORMAT_R8G8B8_SINT,
VK_FORMAT_R8G8B8_SRGB,
VK_FORMAT_B8G8R8_UNORM,
VK_FORMAT_B8G8R8_SNORM,
VK_FORMAT_B8G8R8_USCALED,
VK_FORMAT_B8G8R8_SSCALED,
VK_FORMAT_B8G8R8_UINT,
VK_FORMAT_B8G8R8_SINT,
VK_FORMAT_B8G8R8_SRGB

Table 30.9: (continued)

Class Formats
32-bit VK_FORMAT_R8G8B8A8_UNORM,

VK_FORMAT_R8G8B8A8_SNORM,
VK_FORMAT_R8G8B8A8_USCALED,
VK_FORMAT_R8G8B8A8_SSCALED,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_R8G8B8A8_SRGB,
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_B8G8R8A8_SNORM,
VK_FORMAT_B8G8R8A8_USCALED,
VK_FORMAT_B8G8R8A8_SSCALED,
VK_FORMAT_B8G8R8A8_UINT,
VK_FORMAT_B8G8R8A8_SINT,
VK_FORMAT_B8G8R8A8_SRGB,
VK_FORMAT_A8B8G8R8_UNORM_PACK32,
VK_FORMAT_A8B8G8R8_SNORM_PACK32,
VK_FORMAT_A8B8G8R8_USCALED_PACK32,
VK_FORMAT_A8B8G8R8_SSCALED_PACK32,
VK_FORMAT_A8B8G8R8_UINT_PACK32,
VK_FORMAT_A8B8G8R8_SINT_PACK32,
VK_FORMAT_A8B8G8R8_SRGB_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_A2R10G10B10_SNORM_PACK32,
VK_FORMAT_A2R10G10B10_USCALED_PACK32,
VK_FORMAT_A2R10G10B10_SSCALED_PACK32,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2B10G10R10_SNORM_PACK32,
VK_FORMAT_A2B10G10R10_USCALED_PACK32,
VK_FORMAT_A2B10G10R10_SSCALED_PACK32,
VK_FORMAT_A2B10G10R10_UINT_PACK32,
VK_FORMAT_A2B10G10R10_SINT_PACK32,
VK_FORMAT_R16G16_UNORM,
VK_FORMAT_R16G16_SNORM,
VK_FORMAT_R16G16_USCALED,
VK_FORMAT_R16G16_SSCALED,
VK_FORMAT_R16G16_UINT,
VK_FORMAT_R16G16_SINT,
VK_FORMAT_R16G16_SFLOAT,
VK_FORMAT_R32_UINT,
VK_FORMAT_R32_SINT,
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_B10G11R11_UFLOAT_PACK32,
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32

Vulkan 1.0.36 - A Specification 615 / 683

Table 30.9: (continued)

Class Formats
48-bit VK_FORMAT_R16G16B16_UNORM,

VK_FORMAT_R16G16B16_SNORM,
VK_FORMAT_R16G16B16_USCALED,
VK_FORMAT_R16G16B16_SSCALED,
VK_FORMAT_R16G16B16_UINT,
VK_FORMAT_R16G16B16_SINT,
VK_FORMAT_R16G16B16_SFLOAT

64-bit VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_USCALED,
VK_FORMAT_R16G16B16A16_SSCALED,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_FORMAT_R32G32_UINT,
VK_FORMAT_R32G32_SINT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R64_UINT,
VK_FORMAT_R64_SINT,
VK_FORMAT_R64_SFLOAT

96-bit VK_FORMAT_R32G32B32_UINT,
VK_FORMAT_R32G32B32_SINT,
VK_FORMAT_R32G32B32_SFLOAT

128-bit VK_FORMAT_R32G32B32A32_UINT,
VK_FORMAT_R32G32B32A32_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R64G64_UINT,
VK_FORMAT_R64G64_SINT,
VK_FORMAT_R64G64_SFLOAT

192-bit VK_FORMAT_R64G64B64_UINT,
VK_FORMAT_R64G64B64_SINT,
VK_FORMAT_R64G64B64_SFLOAT

256-bit VK_FORMAT_R64G64B64A64_UINT,
VK_FORMAT_R64G64B64A64_SINT,
VK_FORMAT_R64G64B64A64_SFLOAT

BC1_RGB VK_FORMAT_BC1_RGB_UNORM_BLOCK,
VK_FORMAT_BC1_RGB_SRGB_BLOCK

BC1_RGBA VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
VK_FORMAT_BC1_RGBA_SRGB_BLOCK

BC2 VK_FORMAT_BC2_UNORM_BLOCK,
VK_FORMAT_BC2_SRGB_BLOCK

BC3 VK_FORMAT_BC3_UNORM_BLOCK,
VK_FORMAT_BC3_SRGB_BLOCK

BC4 VK_FORMAT_BC4_UNORM_BLOCK,
VK_FORMAT_BC4_SNORM_BLOCK

BC5 VK_FORMAT_BC5_UNORM_BLOCK,
VK_FORMAT_BC5_SNORM_BLOCK

BC6H VK_FORMAT_BC6H_UFLOAT_BLOCK,
VK_FORMAT_BC6H_SFLOAT_BLOCK

Table 30.9: (continued)

Class Formats
BC7 VK_FORMAT_BC7_UNORM_BLOCK,

VK_FORMAT_BC7_SRGB_BLOCK
ETC2_RGB VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,

VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK
ETC2_RGBA VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,

VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK
ETC2_EAC_RGBA VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,

VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK
EAC_R VK_FORMAT_EAC_R11_UNORM_BLOCK,

VK_FORMAT_EAC_R11_SNORM_BLOCK
EAC_RG VK_FORMAT_EAC_R11G11_UNORM_BLOCK,

VK_FORMAT_EAC_R11G11_SNORM_BLOCK
ASTC_4x4 VK_FORMAT_ASTC_4x4_UNORM_BLOCK,

VK_FORMAT_ASTC_4x4_SRGB_BLOCK
ASTC_5x4 VK_FORMAT_ASTC_5x4_UNORM_BLOCK,

VK_FORMAT_ASTC_5x4_SRGB_BLOCK
ASTC_5x5 VK_FORMAT_ASTC_5x5_UNORM_BLOCK,

VK_FORMAT_ASTC_5x5_SRGB_BLOCK
ASTC_6x5 VK_FORMAT_ASTC_6x5_UNORM_BLOCK,

VK_FORMAT_ASTC_6x5_SRGB_BLOCK
ASTC_6x6 VK_FORMAT_ASTC_6x6_UNORM_BLOCK,

VK_FORMAT_ASTC_6x6_SRGB_BLOCK
ASTC_8x5 VK_FORMAT_ASTC_8x5_UNORM_BLOCK,

VK_FORMAT_ASTC_8x5_SRGB_BLOCK
ASTC_8x6 VK_FORMAT_ASTC_8x6_UNORM_BLOCK,

VK_FORMAT_ASTC_8x6_SRGB_BLOCK
ASTC_8x8 VK_FORMAT_ASTC_8x8_UNORM_BLOCK,

VK_FORMAT_ASTC_8x8_SRGB_BLOCK
ASTC_10x5 VK_FORMAT_ASTC_10x5_UNORM_BLOCK,

VK_FORMAT_ASTC_10x5_SRGB_BLOCK
ASTC_10x6 VK_FORMAT_ASTC_10x6_UNORM_BLOCK,

VK_FORMAT_ASTC_10x6_SRGB_BLOCK
ASTC_10x8 VK_FORMAT_ASTC_10x8_UNORM_BLOCK,

VK_FORMAT_ASTC_10x8_SRGB_BLOCK
ASTC_10x10 VK_FORMAT_ASTC_10x10_UNORM_BLOCK,

VK_FORMAT_ASTC_10x10_SRGB_BLOCK
ASTC_12x10 VK_FORMAT_ASTC_12x10_UNORM_BLOCK,

VK_FORMAT_ASTC_12x10_SRGB_BLOCK
ASTC_12x12 VK_FORMAT_ASTC_12x12_UNORM_BLOCK,

VK_FORMAT_ASTC_12x12_SRGB_BLOCK
D16 VK_FORMAT_D16_UNORM
D24 VK_FORMAT_X8_D24_UNORM_PACK32
D32 VK_FORMAT_D32_SFLOAT
S8 VK_FORMAT_S8_UINT
D16S8 VK_FORMAT_D16_UNORM_S8_UINT
D24S8 VK_FORMAT_D24_UNORM_S8_UINT
D32S8 VK_FORMAT_D32_SFLOAT_S8_UINT

Vulkan 1.0.36 - A Specification 617 / 683

30.3.2 Format Properties

To query supported format features which are properties of the physical device, call:

void vkGetPhysicalDeviceFormatProperties(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkFormatProperties* pFormatProperties);

• physicalDevice is the physical device from which to query the format properties.

• format is the format whose properties are queried.

• pFormatProperties is a pointer to a VkFormatProperties structure in which physical device properties for
format are returned.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• format must be a valid VkFormat value

• pFormatProperties must be a pointer to a VkFormatProperties structure

The VkPhysicalDeviceLimits structure is defined as:

typedef struct VkFormatProperties {
VkFormatFeatureFlags linearTilingFeatures;
VkFormatFeatureFlags optimalTilingFeatures;
VkFormatFeatureFlags bufferFeatures;

} VkFormatProperties;

• linearTilingFeatures describes the features supported by VK_IMAGE_TILING_LINEAR.

• optimalTilingFeatures describes the features supported by VK_IMAGE_TILING_OPTIMAL.

• bufferFeatures describes the features supported by buffers.

Supported features are described as a set of VkFormatFeatureFlagBits:

typedef enum VkFormatFeatureFlagBits {
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT = 0x00000001,
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT = 0x00000002,
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT = 0x00000004,
VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT = 0x00000008,
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT = 0x00000010,
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT = 0x00000020,
VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT = 0x00000040,
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT = 0x00000080,

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT = 0x00000100,
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000200,
VK_FORMAT_FEATURE_BLIT_SRC_BIT = 0x00000400,
VK_FORMAT_FEATURE_BLIT_DST_BIT = 0x00000800,
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT = 0x00001000,

} VkFormatFeatureFlagBits;

The linearTilingFeatures and optimalTilingFeatures members of the VkFormatProperties structure
describe what features are supported by VK_IMAGE_TILING_LINEAR and VK_IMAGE_TILING_OPTIMAL images,
respectively.

The following bits may be set in linearTilingFeatures and optimalTilingFeatures, indicating they are
supported by images or image views created with the queried
vkGetPhysicalDeviceFormatProperties::format:

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
VkImageView can be sampled from. See sampled images section.

VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT
VkImageView can be used as storage image. See storage images section.

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT
VkImageView can be used as storage image that supports atomic operations.

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT
VkImageView can be used as a framebuffer color attachment and as an input attachment.

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT
VkImageView can be used as a framebuffer color attachment that supports blending and as an input attachment.

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
VkImageView can be used as a framebuffer depth/stencil attachment and as an input attachment.

VK_FORMAT_FEATURE_BLIT_SRC_BIT
VkImage can be used as srcImage for the vkCmdBlitImage command.

VK_FORMAT_FEATURE_BLIT_DST_BIT
VkImage can be used as dstImage for the vkCmdBlitImage command.

VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
If VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT is also set, VkImageView can be used with a sampler that
has either of magFilter or minFilter set to VK_FILTER_LINEAR, or mipmapMode set to VK_SAMPLER_
MIPMAP_MODE_LINEAR. If VK_FORMAT_FEATURE_BLIT_SRC_BIT is also set, VkImage can be used as
the srcImage to vkCmdBlitImage with a filter of VK_FILTER_LINEAR. This bit must only be exposed
for formats that also support the VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT or VK_FORMAT_
FEATURE_BLIT_SRC_BIT.

If the format being queried is a depth/stencil format, this bit only indicates that the depth aspect (not the stencil
aspect) of an image of this format supports linear filtering, and that linear filtering of the depth aspect is supported
whether depth compare is enabled in the sampler or not. If this bit is not present, linear filtering with depth
compare disabled is unsupported and linear filtering with depth compare enabled is supported, but may compute
the filtered value in an implementation-dependent manner which differs from the normal rules of linear filtering.
The resulting value must be in the range [0,1] and should be proportional to, or a weighted average of, the number
of comparison passes or failures.

The following features may appear in bufferFeatures, indicating they are supported by buffers or buffer views
created with the queried vkGetPhysicalDeviceFormatProperties::format:

Vulkan 1.0.36 - A Specification 619 / 683

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT
Format can be used to create a VkBufferView that can be bound to a VK_DESCRIPTOR_TYPE_UNIFORM_
TEXEL_BUFFER descriptor.

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT
Format can be used to create a VkBufferView that can be bound to a VK_DESCRIPTOR_TYPE_STORAGE_
TEXEL_BUFFER descriptor.

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
Atomic operations are supported on VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER with this format.

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT
Format can be used as a vertex attribute format (VkVertexInputAttributeDescription::format).

Note
If no format feature flags are supported, then the only possible use would be image transfers - which alone are
not useful. As such, if no format feature flags are supported, the format itself is not supported, and images of
that format cannot be created.

If format is a block-compression format, then buffers must not support any features for the format.

30.3.3 Required Format Support

Implementations must support at least the following set of features on the listed formats. For images, these features must
be supported for every VkImageType (including arrayed and cube variants) unless otherwise noted. These features are
supported on existing formats without needing to advertise an extension or needing to explicitly enable them. Support for
additional functionality beyond the requirements listed here is queried using the
vkGetPhysicalDeviceFormatProperties command.

The following tables show which feature bits must be supported for each format.

Table 30.10: Key for format feature tables

3 This feature must be supported on the named format
† This feature must be supported on at least some of the named

formats, with more information in the table where the symbol
appears

Table 30.11: Feature bits in optimalTilingFeatures

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
VK_FORMAT_FEATURE_BLIT_SRC_BIT
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT
VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT
VK_FORMAT_FEATURE_BLIT_DST_BIT
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

Table 30.11: (continued)

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

Table 30.12: Feature bits in bufferFeatures

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT
VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT

Vulkan 1.0.36 - A Specification 621 / 683

Table 30.13: Mandatory format support: sub-byte channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_UNDEFINED
VK_FORMAT_R4G4_UNORM_PACK8
VK_FORMAT_R4G4B4A4_UNORM_PACK16
VK_FORMAT_B4G4R4A4_UNORM_PACK16 3 3 3
VK_FORMAT_R5G6B5_UNORM_PACK16 3 3 3 3 3 3
VK_FORMAT_B5G6R5_UNORM_PACK16
VK_FORMAT_R5G5B5A1_UNORM_PACK16
VK_FORMAT_B5G5R5A1_UNORM_PACK16
VK_FORMAT_A1R5G5B5_UNORM_PACK16 3 3 3 3 3 3

Table 30.14: Mandatory format support: 1-3 byte-sized channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_R8_UNORM 3 3 3 3 3 3 3 3
VK_FORMAT_R8_SNORM 3 3 3 3 3
VK_FORMAT_R8_USCALED
VK_FORMAT_R8_SSCALED
VK_FORMAT_R8_UINT 3 3 3 3 3 3
VK_FORMAT_R8_SINT 3 3 3 3 3 3
VK_FORMAT_R8_SRGB
VK_FORMAT_R8G8_UNORM 3 3 3 3 3 3 3 3
VK_FORMAT_R8G8_SNORM 3 3 3 3 3
VK_FORMAT_R8G8_USCALED
VK_FORMAT_R8G8_SSCALED
VK_FORMAT_R8G8_UINT 3 3 3 3 3 3
VK_FORMAT_R8G8_SINT 3 3 3 3 3 3
VK_FORMAT_R8G8_SRGB
VK_FORMAT_R8G8B8_UNORM
VK_FORMAT_R8G8B8_SNORM
VK_FORMAT_R8G8B8_USCALED
VK_FORMAT_R8G8B8_SSCALED
VK_FORMAT_R8G8B8_UINT
VK_FORMAT_R8G8B8_SINT
VK_FORMAT_R8G8B8_SRGB
VK_FORMAT_B8G8R8_UNORM
VK_FORMAT_B8G8R8_SNORM
VK_FORMAT_B8G8R8_USCALED
VK_FORMAT_B8G8R8_SSCALED
VK_FORMAT_B8G8R8_UINT
VK_FORMAT_B8G8R8_SINT
VK_FORMAT_B8G8R8_SRGB

Vulkan 1.0.36 - A Specification 623 / 683

Table 30.15: Mandatory format support: 4 byte-sized channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_R8G8B8A8_UNORM 3 3 3 3 3 3 3 3 3 3
VK_FORMAT_R8G8B8A8_SNORM 3 3 3 3 3 3 3
VK_FORMAT_R8G8B8A8_USCALED
VK_FORMAT_R8G8B8A8_SSCALED
VK_FORMAT_R8G8B8A8_UINT 3 3 3 3 3 3 3 3
VK_FORMAT_R8G8B8A8_SINT 3 3 3 3 3 3 3 3
VK_FORMAT_R8G8B8A8_SRGB 3 3 3 3 3 3
VK_FORMAT_B8G8R8A8_UNORM 3 3 3 3 3 3 3 3
VK_FORMAT_B8G8R8A8_SNORM
VK_FORMAT_B8G8R8A8_USCALED
VK_FORMAT_B8G8R8A8_SSCALED
VK_FORMAT_B8G8R8A8_UINT
VK_FORMAT_B8G8R8A8_SINT
VK_FORMAT_B8G8R8A8_SRGB 3 3 3 3 3 3
VK_FORMAT_A8B8G8R8_UNORM_PACK32 3 3 3 3 3 3 3 3 3
VK_FORMAT_A8B8G8R8_SNORM_PACK32 3 3 3 3 3 3
VK_FORMAT_A8B8G8R8_USCALED_PACK32
VK_FORMAT_A8B8G8R8_SSCALED_PACK32
VK_FORMAT_A8B8G8R8_UINT_PACK32 3 3 3 3 3 3 3
VK_FORMAT_A8B8G8R8_SINT_PACK32 3 3 3 3 3 3 3
VK_FORMAT_A8B8G8R8_SRGB_PACK32 3 3 3 3 3 3

Table 30.16: Mandatory format support: 10-bit channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_A2R10G10B10_UNORM_PACK32
VK_FORMAT_A2R10G10B10_SNORM_PACK32
VK_FORMAT_A2R10G10B10_USCALED_PACK32
VK_FORMAT_A2R10G10B10_SSCALED_PACK32
VK_FORMAT_A2R10G10B10_UINT_PACK32
VK_FORMAT_A2R10G10B10_SINT_PACK32
VK_FORMAT_A2B10G10R10_UNORM_PACK32 3 3 3 3 3 3 3 3
VK_FORMAT_A2B10G10R10_SNORM_PACK32
VK_FORMAT_A2B10G10R10_USCALED_PACK32
VK_FORMAT_A2B10G10R10_SSCALED_PACK32
VK_FORMAT_A2B10G10R10_UINT_PACK32 3 3 3 3 3
VK_FORMAT_A2B10G10R10_SINT_PACK32

Vulkan 1.0.36 - A Specification 625 / 683

Table 30.17: Mandatory format support: 16-bit channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_R16_UNORM 3
VK_FORMAT_R16_SNORM 3
VK_FORMAT_R16_USCALED
VK_FORMAT_R16_SSCALED
VK_FORMAT_R16_UINT 3 3 3 3 3 3
VK_FORMAT_R16_SINT 3 3 3 3 3 3
VK_FORMAT_R16_SFLOAT 3 3 3 3 3 3 3 3
VK_FORMAT_R16G16_UNORM 3
VK_FORMAT_R16G16_SNORM 3
VK_FORMAT_R16G16_USCALED
VK_FORMAT_R16G16_SSCALED
VK_FORMAT_R16G16_UINT 3 3 3 3 3 3
VK_FORMAT_R16G16_SINT 3 3 3 3 3 3
VK_FORMAT_R16G16_SFLOAT 3 3 3 3 3 3 3 3
VK_FORMAT_R16G16B16_UNORM
VK_FORMAT_R16G16B16_SNORM
VK_FORMAT_R16G16B16_USCALED
VK_FORMAT_R16G16B16_SSCALED
VK_FORMAT_R16G16B16_UINT
VK_FORMAT_R16G16B16_SINT
VK_FORMAT_R16G16B16_SFLOAT
VK_FORMAT_R16G16B16A16_UNORM 3
VK_FORMAT_R16G16B16A16_SNORM 3
VK_FORMAT_R16G16B16A16_USCALED
VK_FORMAT_R16G16B16A16_SSCALED
VK_FORMAT_R16G16B16A16_UINT 3 3 3 3 3 3 3 3
VK_FORMAT_R16G16B16A16_SINT 3 3 3 3 3 3 3 3
VK_FORMAT_R16G16B16A16_SFLOAT 3 3 3 3 3 3 3 3 3 3

Table 30.18: Mandatory format support: 32-bit channels

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_R32_UINT 3 3 3 3 3 3 3 3 3 3
VK_FORMAT_R32_SINT 3 3 3 3 3 3 3 3 3 3
VK_FORMAT_R32_SFLOAT 3 3 3 3 3 3 3 3
VK_FORMAT_R32G32_UINT 3 3 3 3 3 3 3 3
VK_FORMAT_R32G32_SINT 3 3 3 3 3 3 3 3
VK_FORMAT_R32G32_SFLOAT 3 3 3 3 3 3 3 3
VK_FORMAT_R32G32B32_UINT 3
VK_FORMAT_R32G32B32_SINT 3
VK_FORMAT_R32G32B32_SFLOAT 3
VK_FORMAT_R32G32B32A32_UINT 3 3 3 3 3 3 3 3
VK_FORMAT_R32G32B32A32_SINT 3 3 3 3 3 3 3 3
VK_FORMAT_R32G32B32A32_SFLOAT 3 3 3 3 3 3 3 3

Vulkan 1.0.36 - A Specification 627 / 683

Table 30.19: Mandatory format support: 64-bit/uneven channels and
depth/stencil

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_R64_UINT
VK_FORMAT_R64_SINT
VK_FORMAT_R64_SFLOAT
VK_FORMAT_R64G64_UINT
VK_FORMAT_R64G64_SINT
VK_FORMAT_R64G64_SFLOAT
VK_FORMAT_R64G64B64_UINT
VK_FORMAT_R64G64B64_SINT
VK_FORMAT_R64G64B64_SFLOAT
VK_FORMAT_R64G64B64A64_UINT
VK_FORMAT_R64G64B64A64_SINT
VK_FORMAT_R64G64B64A64_SFLOAT
VK_FORMAT_B10G11R11_UFLOAT_PACK32 3 3 3 3
VK_FORMAT_E5B9G9R9_UFLOAT_PACK32 3 3 3
VK_FORMAT_D16_UNORM 3 3 3
VK_FORMAT_X8_D24_UNORM_PACK32 †
VK_FORMAT_D32_SFLOAT 3 3 †
VK_FORMAT_S8_UINT
VK_FORMAT_D16_UNORM_S8_UINT
VK_FORMAT_D24_UNORM_S8_UINT †
VK_FORMAT_D32_SFLOAT_S8_UINT †
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT feature must be supported for at least one of
VK_FORMAT_X8_D24_UNORM_PACK32 and VK_FORMAT_D32_SFLOAT, and must be supported for at least
one of VK_FORMAT_D24_UNORM_S8_UINT and VK_FORMAT_D32_SFLOAT_S8_UINT.

Table 30.20: Mandatory format support: BC compressed formats with
VkImageType VK_IMAGE_TYPE_2D and VK_IMAGE_TYPE_3D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_BC1_RGB_UNORM_BLOCK † † †
VK_FORMAT_BC1_RGB_SRGB_BLOCK † † †
VK_FORMAT_BC1_RGBA_UNORM_BLOCK † † †
VK_FORMAT_BC1_RGBA_SRGB_BLOCK † † †
VK_FORMAT_BC2_UNORM_BLOCK † † †
VK_FORMAT_BC2_SRGB_BLOCK † † †
VK_FORMAT_BC3_UNORM_BLOCK † † †
VK_FORMAT_BC3_SRGB_BLOCK † † †
VK_FORMAT_BC4_UNORM_BLOCK † † †
VK_FORMAT_BC4_SNORM_BLOCK † † †
VK_FORMAT_BC5_UNORM_BLOCK † † †
VK_FORMAT_BC5_SNORM_BLOCK † † †
VK_FORMAT_BC6H_UFLOAT_BLOCK † † †
VK_FORMAT_BC6H_SFLOAT_BLOCK † † †
VK_FORMAT_BC7_UNORM_BLOCK † † †
VK_FORMAT_BC7_SRGB_BLOCK † † †
The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_
FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Table 30.21, or Table 30.22.

Vulkan 1.0.36 - A Specification 629 / 683

Table 30.21: Mandatory format support: ETC2 and EAC compressed
formats with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK † † †
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK † † †
VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK † † †
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK † † †
VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK † † †
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK † † †
VK_FORMAT_EAC_R11_UNORM_BLOCK † † †
VK_FORMAT_EAC_R11_SNORM_BLOCK † † †
VK_FORMAT_EAC_R11G11_UNORM_BLOCK † † †
VK_FORMAT_EAC_R11G11_SNORM_BLOCK † † †
The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_
FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Table 30.20, or Table 30.22.

Table 30.22: Mandatory format support: ASTC LDR compressed for-
mats with VkImageType VK_IMAGE_TYPE_2D

VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT

↓

VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT

↓

VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT

↓

VK_FORMAT_FEATURE_BLIT_DST_BIT

↓

VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT

↓

VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

↓
VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT

↓VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
↓VK_FORMAT_FEATURE_BLIT_SRC_BIT ↓

VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT ↓
Format ↓
VK_FORMAT_ASTC_4x4_UNORM_BLOCK † † †
VK_FORMAT_ASTC_4x4_SRGB_BLOCK † † †
VK_FORMAT_ASTC_5x4_UNORM_BLOCK † † †
VK_FORMAT_ASTC_5x4_SRGB_BLOCK † † †
VK_FORMAT_ASTC_5x5_UNORM_BLOCK † † †
VK_FORMAT_ASTC_5x5_SRGB_BLOCK † † †
VK_FORMAT_ASTC_6x5_UNORM_BLOCK † † †
VK_FORMAT_ASTC_6x5_SRGB_BLOCK † † †
VK_FORMAT_ASTC_6x6_UNORM_BLOCK † † †
VK_FORMAT_ASTC_6x6_SRGB_BLOCK † † †
VK_FORMAT_ASTC_8x5_UNORM_BLOCK † † †
VK_FORMAT_ASTC_8x5_SRGB_BLOCK † † †
VK_FORMAT_ASTC_8x6_UNORM_BLOCK † † †
VK_FORMAT_ASTC_8x6_SRGB_BLOCK † † †
VK_FORMAT_ASTC_8x8_UNORM_BLOCK † † †
VK_FORMAT_ASTC_8x8_SRGB_BLOCK † † †
VK_FORMAT_ASTC_10x5_UNORM_BLOCK † † †
VK_FORMAT_ASTC_10x5_SRGB_BLOCK † † †
VK_FORMAT_ASTC_10x6_UNORM_BLOCK † † †
VK_FORMAT_ASTC_10x6_SRGB_BLOCK † † †
VK_FORMAT_ASTC_10x8_UNORM_BLOCK † † †
VK_FORMAT_ASTC_10x8_SRGB_BLOCK † † †
VK_FORMAT_ASTC_10x10_UNORM_BLOCK † † †
VK_FORMAT_ASTC_10x10_SRGB_BLOCK † † †
VK_FORMAT_ASTC_12x10_UNORM_BLOCK † † †
VK_FORMAT_ASTC_12x10_SRGB_BLOCK † † †
VK_FORMAT_ASTC_12x12_UNORM_BLOCK † † †
VK_FORMAT_ASTC_12x12_SRGB_BLOCK † † †
The VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, VK_FORMAT_FEATURE_BLIT_SRC_BIT and VK_
FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT features must be supported in
optimalTilingFeatures for all the formats in at least one of: this table, Table 30.20, or Table 30.21.

Vulkan 1.0.36 - A Specification 631 / 683

30.4 Additional Image Capabilities

In addition to the minimum capabilities described in the previous sections (Limits and Formats), implementations may
support additional capabilities for certain types of images. For example, larger dimensions or additional sample counts
for certain image types, or additional capabilities for linear tiling format images.

To query additional capabilities specific to image types, call:

VkResult vkGetPhysicalDeviceImageFormatProperties(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkImageType type,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkImageCreateFlags flags,
VkImageFormatProperties* pImageFormatProperties);

• physicalDevice is the physical device from which to query the image capabilities.

• format is the image format, corresponding to VkImageCreateInfo::format.

• type is the image type, corresponding to VkImageCreateInfo::imageType.

• tiling is the image tiling, corresponding to VkImageCreateInfo::tiling.

• usage is the intended usage of the image, corresponding to VkImageCreateInfo::usage.

• flags is a bitmask describing additional parameters of the image, corresponding to VkImageCreateInfo::flags.

• pImageFormatProperties points to an instance of the VkImageFormatProperties structure in which
capabilities are returned.

The format, type, tiling, usage, and flags parameters correspond to parameters that would be consumed by
vkCreateImage.

If format is not a supported image format, or if the combination of format, type, tiling, usage, and flags is not
supported for images, then vkGetPhysicalDeviceImageFormatProperties returns VK_ERROR_FORMAT_
NOT_SUPPORTED.

The limitations on an image format that are reported by vkGetPhysicalDeviceImageFormatProperties
have the following property: if usage1 and usage2 of type VkImageUsageFlags are such that the bits set in
usage1 are a subset of the bits set in usage2, and flags1 and flags2 of type VkImageCreateFlags are such
that the bits set in flags1 are a subset of the bits set in flags2, then the limitations for usage1 and flags1 must
be no more strict than the limitations for usage2 and flags2, for all values of format, type, and tiling.

Valid Usage (Implicit)

• physicalDevice must be a valid VkPhysicalDevice handle

• format must be a valid VkFormat value

• type must be a valid VkImageType value

• tiling must be a valid VkImageTiling value

• usage must be a valid combination of VkImageUsageFlagBits values

• usage must not be 0

• flags must be a valid combination of VkImageCreateFlagBits values

• pImageFormatProperties must be a pointer to a VkImageFormatProperties structure

Return Codes

Success

• VK_SUCCESS

Failure

• VK_ERROR_OUT_OF_HOST_MEMORY

• VK_ERROR_OUT_OF_DEVICE_MEMORY

• VK_ERROR_FORMAT_NOT_SUPPORTED

The VkImageFormatProperties structure is defined as:

typedef struct VkImageFormatProperties {
VkExtent3D maxExtent;
uint32_t maxMipLevels;
uint32_t maxArrayLayers;
VkSampleCountFlags sampleCounts;
VkDeviceSize maxResourceSize;

} VkImageFormatProperties;

• maxExtent are the maximum image dimensions. See the Allowed Extent Values section below for how these values
are constrained by type.

• maxMipLevels is the maximum number of mipmap levels. maxMipLevels must either be equal to 1 (valid only if
tiling is VK_IMAGE_TILING_LINEAR) or be equal to dlog2(max(width, height, depth))e + 1. width,
height, and depth are taken from the corresponding members of maxExtent.

• maxArrayLayers is the maximum number of array layers. maxArrayLayers must either be equal to 1 or be greater
than or equal to the maxImageArrayLayers member of VkPhysicalDeviceLimits. A value of 1 is valid only
if tiling is VK_IMAGE_TILING_LINEAR or if type is VK_IMAGE_TYPE_3D.

• sampleCounts is a bitmask of VkSampleCountFlagBits specifying all the supported sample counts for this
image as described below.

• maxResourceSize is an upper bound on the total image size in bytes, inclusive of all image subresources.
Implementations may have an address space limit on total size of a resource, which is advertised by this property.
maxResourceSize must be at least 231.

Vulkan 1.0.36 - A Specification 633 / 683

Note
There is no mechanism to query the size of an image before creating it, to compare that size against maxResou
rceSize. If an application attempts to create an image that exceeds this limit, the creation will fail or the image
will be invalid. While the advertised limit must be at least 231, it may not be possible to create an image that
approaches that size, particularly for VK_IMAGE_TYPE_1D.

If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties is not supported by the
implementation for use in vkCreateImage, then all members of VkImageFormatProperties will be filled with
zero.

30.4.1 Supported Sample Counts

vkGetPhysicalDeviceImageFormatProperties returns a bitmask of VkSampleCountFlagBits in
sampleCounts specifying the supported sample counts for the image parameters.

sampleCounts will be set to VK_SAMPLE_COUNT_1_BIT if at least one of the following conditions is true:

• tiling is VK_IMAGE_TILING_LINEAR

• type is not VK_IMAGE_TYPE_2D

• flags contains VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT

• Neither the VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT flag nor the VK_FORMAT_FEATURE_DEPTH_
STENCIL_ATTACHMENT_BIT flag in VkFormatProperties::optimalTilingFeatures returned by
vkGetPhysicalDeviceFormatProperties is set

Otherwise, the bits set in sampleCounts will be the sample counts supported for the specified values of usage and
format. For each bit set in usage, the supported sample counts relate to the limits in VkPhysicalDeviceLimits
as follows:

• If usage includes VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, a superset of
VkPhysicalDeviceLimits::framebufferColorSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a depth
aspect, a superset of VkPhysicalDeviceLimits::framebufferDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, and format includes a stencil
aspect, a superset of VkPhysicalDeviceLimits::framebufferStencilSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a color aspect, a superset of
VkPhysicalDeviceLimits::sampledImageColorSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format includes a depth aspect, a superset of
VkPhysicalDeviceLimits::sampledImageDepthSampleCounts

• If usage includes VK_IMAGE_USAGE_SAMPLED_BIT, and format is an integer format, a superset of
VkPhysicalDeviceLimits::sampledImageIntegerSampleCounts

• If usage includes VK_IMAGE_USAGE_STORAGE_BIT, a superset of
VkPhysicalDeviceLimits::storageImageSampleCounts

If multiple bits are set in usage, sampleCounts will be the intersection of the per-usage values described above.

If none of the bits described above are set in usage, then there is no corresponding limit in
VkPhysicalDeviceLimits. In this case, sampleCounts must include at least VK_SAMPLE_COUNT_1_BIT.

30.4.2 Allowed Extent Values Based On Image Type

For VK_IMAGE_TYPE_1D:

• maxExtent.width ≤ VkPhysicalDeviceLimits.maxImageDimension1D

• maxExtent.height = 1

• maxExtent.depth = 1

For VK_IMAGE_TYPE_2D:

• maxExtent.width ≤ VkPhysicalDeviceLimits.maxImageDimension2D

• maxExtent.height ≤ VkPhysicalDeviceLimits.maxImageDimension2D

• maxExtent.depth = 1

For VK_IMAGE_TYPE_3D:

• maxExtent.width ≤ VkPhysicalDeviceLimits.maxImageDimension3D

• maxExtent.height ≤ VkPhysicalDeviceLimits.maxImageDimension3D

• maxExtent.depth ≤ VkPhysicalDeviceLimits.maxImageDimension3D

Vulkan 1.0.36 - A Specification 635 / 683

Chapter 31

Debugging

To aid developers in tracking down errors in the application’s use of Vulkan, particularly in combination with an external
debugger or profiler, debugging extensions may be available. If this Specification was generated with any such
extensions included, they will be described in the remainder of this chapter.

Vulkan 1.0.36 - A Specification 637 / 683

Chapter 32

Glossary

The terms defined in this section are used consistently throughout this Specification and may be used with or without
capitalization.

Accessible (Descriptor Binding)
A descriptor binding is accessible to a shader stage if that stage is included in the stageFlags of the descriptor
binding. Descriptors using that binding can only be used by stages in which they are accessible.

Acquire Operation (Resource)
An operation that acquires ownership of an image subresource or buffer range.

Adjacent Vertex
A vertex in an adjacency primitive topology that is not part of a given primitive, but is accessible in geometry
shaders.

Aliased Range (Memory)
A range of a device memory allocation that is bound to multiple resources simultaneously.

Allocation Scope
An association of a host memory allocation to a parent object or command, where the allocation’s lifetime ends
before or at the same time as the parent object is freed or destroyed, or during the parent command.

API Order
A set of ordering rules that govern how primitives in draw commands affect the framebuffer.

Aspect (Image)
An image may contain multiple kinds, or aspects, of data for each pixel, where each aspect is used in a particular
way by the pipeline and may be stored differently or separately from other aspects. For example, the color
components of an image format make up the color aspect of the image, and may be used as a framebuffer color
attachment. Some operations, like depth testing, operate only on specific aspects of an image. Others operations,
like image/buffer copies, only operate on one aspect at a time.

Attachment (Render Pass)
A zero-based integer index name used in render pass creation to refer to a framebuffer attachment that is accessed
by one or more subpasses. The index also refers to an attachment description which includes information about the
properties of the image view that will later be attached.

Availability Operation
An operation that causes the values generated by specified memory write accesses to become available for future
access.

Available
A state of values written to memory that allows them to be made visible.

Back-Facing
See Facingness.

Batch
A single structure submitted to a queue as part of a queue submission command, describing a set of queue
operations to execute.

Backwards Compatibility
A given version of the API is backwards compatible with an earlier version if an application, relying only on valid
behavior and functionality defined by the earlier specification, is able to correctly run against each version without
any modification. This assumes no active attempt by that application to not run when it detects a different version.

Full Compatibility
A given version of the API is fully compatible with another version if an application, relying only on valid behavior
and functionality defined by either of those specifications, is able to correctly run against each version without any
modification. This assumes no active attempt by that application to not run when it detects a different version.

Binding (Memory)
An association established between a range of a resource object and a range of a memory object. These
associations determine the memory locations affected by operations performed on elements of a resource object.
Memory bindings are established using the vkBindBufferMemory command for non-sparse buffer objects,
using the vkBindImageMemory command for non-sparse image objects, and using the
vkQueueBindSparse command for sparse resources.

Blend Constant
Four floating point (RGBA) values used as an input to blending.

Blending
Arithmetic operations between a fragment color value and a value in a color attachment that produce a final color
value to be written to the attachment.

Buffer
A resource that represents a linear array of data in device memory. Represented by a VkBuffer object.

Buffer View
An object that represents a range of a specific buffer, and state that controls how the contents are interpreted.
Represented by a VkBufferView object.

Built-In Variable
A variable decorated in a shader, where the decoration makes the variable take values provided by the execution
environment or values that are generated by fixed-function pipeline stages.

Built-In Interface Block
A block defined in a shader that contains only variables decorated with built-in decorations, and is used to match
against other shader stages.

Clip Coordinates
The homogeneous coordinate space that vertex positions (Position decoration) are written in by vertex
processing stages.

Clip Distance
A built-in output from vertex processing stages that defines a clip half-space against which the primitive is clipped.

Clip Volume
The intersection of the view volume with all clip half-spaces.

Vulkan 1.0.36 - A Specification 639 / 683

Color Attachment
A subpass attachment point, or image view, that is the target of fragment color outputs and blending.

Color Renderable Format
A VkFormat where VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT is set in the
optimalTilingFeatures or linearTilingFeatures field of VkFormatProperties::optimalTilingFeatures
returned by vkGetPhysicalDeviceFormatProperties, depending on the tiling used.

Combined Image Sampler
A descriptor type that includes both a sampled image and a sampler.

Command Buffer
An object that records commands to be submitted to a queue. Represented by a VkCommandBuffer object.

Command Pool
An object that command buffer memory is allocated from, and that owns that memory. Command pools aid
multithreaded performance by enabling different threads to use different allocators, without internal
synchronization on each use. Represented by a VkCommandPool object.

Compatible Allocator
When allocators are compatible, allocations from each allocator can be freed by the other allocator.

Compatible Image Formats
When formats are compatible, images created with one of the formats can have image views created from it using
any of the compatible formats.

Compatible Queues
Queues within a queue family. Compatible queues have identical properties.

Component (Format)
A distinct part of a format. Depth, stencil, and color channels (e.g. R, G, B, A), are all separate components.

Compressed Texel Block
An element of an image having a block-compressed format, comprising a rectangular block of texel values that are
encoded as a single value in memory. Compressed texel blocks of a particular block-compressed format have a
corresponding width, height, and depth that define the dimensions of these elements in units of texels, and a size in
bytes of the encoding in memory.

Cull Distance
A built-in output from vertex processing stages that defines a cull half-space where the primitive is rejected if all
vertices have a negative value for the same cull distance.

Cull Volume
The intersection of the view volume with all cull half-spaces.

Decoration (SPIR-V)
Auxiliary information such as built-in variables, stream numbers, invariance, interpolation type, relaxed precision,
etc., added to variables or structure-type members through decorations.

Depth/Stencil Attachment
A subpass attachment point, or image view, that is the target of depth and/or stencil test operations and writes.

Depth/Stencil Format
A VkFormat that includes depth and/or stencil components.

Depth/Stencil Image (or ImageView)
A VkImage (or VkImageView) with a depth/stencil format.

Derivative Group
A set of fragment shader invocations that cooperate to compute derivatives, including implicit derivatives for
sampled image operations.

Descriptor
Information about a resource or resource view written into a descriptor set that is used to access the resource or
view from a shader.

Descriptor Binding
An entry in a descriptor set layout corresponding to zero or more descriptors of a single descriptor type in a set.
Defined by a VkDescriptorSetLayoutBinding structure.

Descriptor Pool
An object that descriptor sets are allocated from, and that owns the storage of those descriptor sets. Descriptor
pools aid multithreaded performance by enabling different threads to use different allocators, without internal
synchronization on each use. Represented by a VkDescriptorPool object.

Descriptor Set
An object that resource descriptors are written into via the API, and that can be bound to a command buffer such
that the descriptors contained within it can be accessed from shaders. Represented by a VkDescriptorSet
object.

Descriptor Set Layout
An object that defines the set of resources (types and counts) and their relative arrangement (in the binding
namespace) within a descriptor set. Used when allocating descriptor sets and when creating pipeline layouts.
Represented by a VkDescriptorSetLayout object.

Device
The processor(s) and execution environment that perform tasks requested by the application via the Vulkan API.

Device Memory
Memory accessible to the device. Represented by a VkDeviceMemory object.

Device-Level Object
Logical device objects and their child objects For example, VkDevice, VkQueue, and VkCommandBuffer
objects are device-level objects.

Device-Local Memory
Memory that is connected to the device, and may be more performant for device access than host-local memory.

Direct Drawing Commands
Drawing commands that take all their parameters as direct arguments to the command (and not sourced via
structures in buffer memory as the indirect drawing commands). Includes vkCmdDraw, and
vkCmdDrawIndexed.

Dispatchable Handle
A handle of a pointer handle type which may be used by layers as part of intercepting API commands. The first
argument to each Vulkan command is a dispatchable handle type.

Dispatching Commands
Commands that provoke work using a compute pipeline. Includes vkCmdDispatch and
vkCmdDispatchIndirect.

Drawing Commands
Commands that provoke work using a graphics pipeline. Includes vkCmdDraw, vkCmdDrawIndexed,
vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect.

Vulkan 1.0.36 - A Specification 641 / 683

Duration (Command)
The duration of a Vulkan command refers to the interval between calling the command and its return to the caller.

Dynamic Storage Buffer
A storage buffer whose offset is specified each time the storage buffer is bound to a command buffer via a
descriptor set.

Dynamic Uniform Buffer
A uniform buffer whose offset is specified each time the uniform buffer is bound to a command buffer via a
descriptor set.

Dynamically Uniform
See Dynamically Uniform in section 2.2 “Terms” of the Khronos SPIR-V Specification.

Element Size
The size (in bytes) used to store one element of an uncompressed format or the size (in bytes) used to store one
block of a block-compressed format.

Explicitly-Enabled Layer
A layer enabled by the application by adding it to the enabled layer list in vkCreateInstance or
vkCreateDevice.

Event
A synchronization primitive that is signaled when execution of previous commands complete through a specified
set of pipeline stages. Events can be waited on by the device and polled by the host. Represented by a VkEvent
object.

Executable State (Command Buffer)
A command buffer that has ended recording commands and can be executed. See also Initial State and Recording
State.

Execution Dependency
A dependency that guarantees that certain pipeline stages’ work for a first set of commands has completed
execution before certain pipeline stages’ work for a second set of commands begins execution. This is
accomplished via pipeline barriers, subpass dependencies, events, or implicit ordering operations.

Execution Dependency Chain
A sequence of execution dependencies that transitively act as a single execution dependency.

Extension Scope
The set of objects and commands that can be affected by an extension. Extensions are either device scope or
instance scope.

External synchronization
A type of synchronization required of the application, where parameters defined to be externally synchronized
must not be used simultaneously in multiple threads.

Facingness (Polygon)
A classification of a polygon as either front-facing or back-facing, depending on the orientation (winding order) of
its vertices.

Fence
A synchronization primitive that is signaled when a set of batches or sparse binding operations complete execution
on a queue. Fences can be waited on by the host. Represented by a VkFence object.

Flat Shading
A property of a vertex attribute that causes the value from a single vertex (the provoking vertex) to be used for all
vertices in a primitive, and for interpolation of that attribute to return that single value unaltered.

Fragment Input Attachment Interface
A fragment shader entry point’s variables with UniformConstant storage class and a decoration of
InputAttachmentIndex, which receive values from input attachments.

Fragment Output Interface
A fragment shader entry point’s variables with Output storage class, which output to color and/or depth/stencil
attachments.

Framebuffer
A collection of image views and a set of dimensions that, in conjunction with a render pass, define the inputs and
outputs used by drawing commands. Represented by a VkFramebuffer object.

Framebuffer Attachment
One of the image views used in a framebuffer.

Framebuffer Coordinates
A coordinate system in which adjacent pixels’ coordinates differ by 1 in x and/or y, with (0,0) in the upper left
corner and pixel centers at half-integers.

Framebuffer-Space
Operating with respect to framebuffer coordinates.

Framebuffer-Local
A framebuffer-local dependency guarantees that only for a single framebuffer region, the first set of operations
happens-before the second set of operations.

Framebuffer-Global
A framebuffer-global dependency guarantees that for all framebuffer regions, the first set of operations
happens-before the second set of operations.

Framebuffer Region
A framebuffer region is a set of sample (x, y, layer, sample) coordinates that is a subset of the entire framebuffer.

Front-Facing
See Facingness.

Global Workgroup
A collection of local workgroups dispatched by a single dispatch command.

Handle
An opaque integer or pointer value used to refer to a Vulkan object. Each object type has a unique handle type.

Happen-after
A transitive, irreflexive and antisymmetric ordering relation between operations. An execution dependency with a
source of A and a destination of B enforces that B happens-after A. The inverse relation of happens-before.

Happen-before
A transitive, irreflexive and antisymmetric ordering relation between operations. An execution dependency with a
source of A and a destination of B enforces that A happens-before B. The inverse relation of happens-after.

Helper Invocation
A fragment shader invocation that is created solely for the purposes of evaluating derivatives for use in non-helper
fragment shader invocations, and which does not have side effects.

Host
The processor(s) and execution environment that the application runs on, and that the Vulkan API is exposed on.

Vulkan 1.0.36 - A Specification 643 / 683

Host Memory
Memory not accessible to the device, used to store implementation data structures.

Host-Accessible Subresource
A buffer, or a linear image subresource in either the VK_IMAGE_LAYOUT_PREINITIALIZED or VK_IMAGE_
LAYOUT_GENERAL layout. Host-accessible subresources have a well-defined addressing scheme which can be
used by the host.

Host-Local Memory
Memory that is not local to the device, and may be less performant for device access than device-local memory.

Host-Visible Memory
Device memory that can be mapped on the host and can be read and written by the host.

Image
A resource that represents a multi-dimensional formatted interpretation of device memory. Represented by a
VkImage object.

Image Subresource
A specific mipmap level and layer of an image.

Image Subresource Range
A set of image subresources that are contiguous mipmap levels and layers.

Image View
An object that represents an image subresource range of a specific image, and state that controls how the contents
are interpreted. Represented by a VkImageView object.

Immutable Sampler
A sampler descriptor provided at descriptor set layout creation time, and that is used for that binding in all
descriptor sets allocated from the layout, and cannot be changed.

Implicitly-Enabled Layer
A layer enabled by a loader-defined mechanism outside the Vulkan API, rather than explicitly by the application
during instance or device creation.

Index Buffer
A buffer bound via vkCmdBindIndexBuffer which is the source of index values used to fetch vertex
attributes for a vkCmdDrawIndexed or vkCmdDrawIndexedIndirect command.

Indexed Drawing Commands
Drawing commands which use an index buffer as the source of index values used to fetch vertex attributes for a
drawing command. Includes vkCmdDrawIndexed, and vkCmdDrawIndexedIndirect.

Indirect Commands
Drawing or dispatching commands that source some of their parameters from structures in buffer memory.
Includes vkCmdDrawIndirect, vkCmdDrawIndexedIndirect, and vkCmdDispatchIndirect.

Indirect Drawing Commands
Drawing commands that source some of their parameters from structures in buffer memory. Includes
vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect.

Initial State (Command Buffer)
A command buffer that has not begun recording commands. See also Recorded State and Executable State.

Input Attachment
A descriptor type that represents an image view, and supports unfiltered read-only access in a shader, only at the
fragment’s location in the view.

Instance
The top-level Vulkan object, which represents the application’s connection to the implementation. Represented by
a VkInstance object.

Instance-Level Object
High-level Vulkan objects, which are not logical devices, nor children of logical devices. For example,
VkInstance and VkPhysicalDevice objects are instance-level objects.

Internal Synchronization
A type of synchronization required of the implementation, where parameters not defined to be externally
synchronized may require internal mutexing to avoid multithreaded race conditions.

Invocation (Shader)
A single execution of an entry point in a SPIR-V module. For example, a single vertex’s execution of a vertex
shader or a single fragment’s execution of a fragment shader.

Invocation Group
A set of shader invocations that are executed in parallel and that must execute the same control flow path in order
for control flow to be considered dynamically uniform.

Local Workgroup
A collection of compute shader invocations invoked by a single dispatch command, which share shared memory
and can synchronize with each other.

Logical Device
An object that represents the application’s interface to the physical device. The logical device is the parent of most
Vulkan objects. Represented by a VkDevice object.

Logical Operation
Bitwise operations between a fragment color value and a value in a color attachment, that produce a final color
value to be written to the attachment.

Lost Device
A state that a logical device may be in as a result of hardware errors or other exceptional conditions.

Mappable
See Host-Visible Memory.

Memory Dependency
A memory dependency is an execution dependency which includes availability and visibility operations such that:

• The first set of operations happens-before the availability operation

• The availability operation happens-before the visibility operation

• The visibility operation happens-before the second set of operations

Memory Heap
A region of memory from which device memory allocations can be made.

Memory Type
An index used to select a set of memory properties (e.g. mappable, cached) for a device memory allocation.

Mip Tail Region
The set of mipmap levels of a sparse residency texture that are too small to fill a sparse block, and that must all be
bound to memory collectively and opaquely.

Non-Dispatchable Handle
A handle of an integer handle type. Handle values may not be unique, even for two objects of the same type.

Vulkan 1.0.36 - A Specification 645 / 683

Non-Indexed Drawing Commands
Drawing commands for which the vertex attributes are sourced in linear order from the vertex input attributes for a
drawing command (i.e. they do not use an index buffer). Includes vkCmdDraw, and vkCmdDrawIndirect.

Normalized
A value that is interpreted as being in the range [0,1] as a result of being implicitly divided by some other value.

Normalized Device Coordinates
A coordinate space after perspective division is applied to clip coordinates, and before the viewport transformation
converts to framebuffer coordinates.

Overlapped Range (Aliased Range)
The aliased range of a device memory allocation that intersects a given image subresource of an image or range of
a buffer.

Ownership (Resource)
If an entity (e.g. a queue family) has ownership of a resource, access to that resource is well-defined for access by
that entity.

Packed Format
A format whose components are stored as a single data element in memory, with their relative locations defined
within that element.

Physical Device
An object that represents a single device in the system. Represented by a VkPhysicalDevice object.

Pipeline
An object that controls how graphics or compute work is executed on the device. A pipeline includes one or more
shaders, as well as state controlling any non-programmable stages of the pipeline. Represented by a
VkPipeline object.

Pipeline Barrier
An execution and/or memory dependency recorded as an explicit command in a command buffer, that forms a
dependency between the previous and subsequent commands.

Pipeline Cache
An object that can be used to collect and retrieve information from pipelines as they are created, and can be
populated with previously retrieved information in order to accelerate pipeline creation. Represented by a
VkPipelineCache object.

Pipeline Layout
An object that defines the set of resources (via a collection of descriptor set layouts) and push constants used by
pipelines that are created using the layout. Used when creating a pipeline and when binding descriptor sets and
setting push constant values. Represented by a VkPipelineLayout object.

Pipeline Stage
A logically independent execution unit that performs some of the operations defined by an action command.

Point Sampling (Rasterization)
A rule that determines whether a fragment sample location is covered by a polygon primitive by testing whether
the sample location is in the interior of the polygon in framebuffer-space, or on the boundary of the polygon
according to the tie-breaking rules.

Preserve Attachment
One of a list of attachments in a subpass description that is not read or written by the subpass, but that is read or
written on earlier and later subpasses and whose contents must be preserved through this subpass.

Primary Command Buffer
A command buffer that can execute secondary command buffers, and can be submitted directly to a queue.

Primitive Topology
State that controls how vertices are assembled into primitives, e.g. as lists of triangles, strips of lines, etc..

Provoking Vertex
The vertex in a primitive from which flat shaded attribute values are taken. This is generally the “first” vertex in
the primitive, and depends on the primitive topology.

Push Constants
A small bank of values writable via the API and accessible in shaders. Push constants allow the application to set
values used in shaders without creating buffers or modifying and binding descriptor sets for each update.

Push Constant Interface
The set of variables with PushConstant storage class that are statically used by a shader entry point, and which
receive values from push constant commands.

Query Pool
An object that contains a number of query entries and their associated state and results. Represented by a
VkQueryPool object.

Queue
An object that executes command buffers and sparse binding operations on a device. Represented by a VkQueue
object.

Queue Family
A set of queues that have common properties and support the same functionality, as advertised in
VkQueueFamilyProperties.

Queue Operation
A unit of work to be executed by a specific queue on a device, submitted via a queue submission command. Each
queue submission command details the specific queue operations that occur as a result of calling that command.
Queue operations typically include work that is specific to each command, and synchronization tasks.

Queue Submission
Zero or more batches and an optional fence to be signaled, passed to a command for execution on a queue. See the
Devices and Queues chapter for more information.

Recording State (Command Buffer)
A command buffer that is ready to record commands. See also Initial State and Executable State.

Release Operation (Resource)
An operation that releases ownership of an image subresource or buffer range.

Render Pass
An object that represents a set of framebuffer attachments and phases of rendering using those attachments.
Represented by a VkRenderPass object.

Render Pass Instance
A use of a render pass in a command buffer.

Reset (Command Buffer)
Resetting a command buffer discards any previously recorded commands and puts a command buffer in the initial
state.

Vulkan 1.0.36 - A Specification 647 / 683

Residency Code
An integer value returned by sparse image instructions, indicating whether any sparse unbound texels were
accessed.

Resolve Attachment
A subpass attachment point, or image view, that is the target of a multisample resolve operation from the
corresponding color attachment at the end of the subpass.

Sampled Image
A descriptor type that represents an image view, and supports filtered (sampled) and unfiltered read-only acccess in
a shader.

Sampler
An object that contains state that controls how sampled image data is sampled (or filtered) when accessed in a
shader. Also a descriptor type describing the object. Represented by a VkSampler object.

Secondary Command Buffer
A command buffer that can be executed by a primary command buffer, and must not be submitted directly to a
queue.

Self-Dependency
A subpass dependency from a subpass to itself, i.e. with srcSubpass equal to dstSubpass. A self-dependency
is not automatically performed during a render pass instance, rather a subset of it can be performed via
vkCmdPipelineBarrier during the subpass.

Semaphore
A synchronization primitive that supports signal and wait operations, and can be used to synchronize operations
within a queue or across queues. Represented by a VkSemaphore object.

Shader
Instructions selected (via an entry point) from a shader module, which are executed in a shader stage.

Shader Code
A stream of instructions used to describe the operation of a shader.

Shader Module
A collection of shader code, potentially including several functions and entry points, that is used to create shaders
in pipelines. Represented by a VkShaderModule object.

Shader Stage
A stage of the graphics or compute pipeline that executes shader code.

Side Effect
A store to memory or atomic operation on memory from a shader invocation.

Sparse Block
An element of a sparse resource that can be independently bound to memory. Sparse blocks of a particular sparse
resource have a corresponding size in bytes that they use in the bound memory.

Sparse Image Block
A sparse block in a sparse partially-resident image. In addition to the sparse block size in bytes, sparse image
blocks have a corresponding width, height, and depth that define the dimensions of these elements in units of texels
or compressed texel blocks, the latter being used in case of sparse images having a block-compressed format.

Sparse Unbound Texel
A texel read from a region of a sparse texture that does not have memory bound to it.

Static Use
An object in a shader is statically used by a shader entry point if any function in the entry point’s call tree contains
an instruction using the object. Static use is used to constrain the set of descriptors used by a shader entry point.

Storage Buffer
A descriptor type that represents a buffer, and supports reads, writes, and atomics in a shader.

Storage Image
A descriptor type that represents an image view, and supports unfiltered loads, stores, and atomics in a shader.

Storage Texel Buffer
A descriptor type that represents a buffer view, and supports unfiltered, formatted reads, writes, and atomics in a
shader.

Subpass
A phase of rendering within a render pass, that reads and writes a subset of the attachments.

Subpass Dependency
An execution and/or memory dependency between two subpasses described as part of render pass creation, and
automatically performed between subpasses in a render pass instance. A subpass dependency limits the overlap of
execution of the pair of subpasses, and can provide guarantees of memory coherence between accesses in the
subpasses.

Subpass Description
Lists of attachment indices for input attachments, color attachments, depth/stencil attachment, resolve attachments,
and preserve attachments used by the subpass in a render pass.

Subset (Self-Dependency)
A subset of a self-dependency is a pipeline barrier performed during the subpass of the self-dependency, and
whose stage masks and access masks each contain a subset of the bits set in the identically named mask in the
self-dependency.

Texel Coordinate System
One of three coordinate systems (normalized, unnormalized, integer) that define how texel coordinates are
interpreted in an image or a specific mipmap level of an image.

Uniform Texel Buffer
A descriptor type that represents a buffer view, and supports unfiltered, formatted, read-only access in a shader.

Uniform Buffer
A descriptor type that represents a buffer, and supports read-only access in a shader.

Unnormalized
A value that is interpreted according to its conventional interpretation, and is not normalized.

User-Defined Variable Interface
A shader entry point’s variables with Input or Output storage class that are not built-in variables.

Vertex Input Attribute
A graphics pipeline resource that produces input values for the vertex shader by reading data from a vertex input
binding and converting it to the attribute’s format.

Vertex Input Binding
A graphics pipeline resource that is bound to a buffer and includes state that affects addressing calculations within
that buffer.

Vulkan 1.0.36 - A Specification 649 / 683

Vertex Input Interface
A vertex shader entry point’s variables with Input storage class, which receive values from vertex input
attributes.

Vertex Processing Stages
A set of shader stages that comprises the vertex shader, tessellation control shader, tessellation evaluation shader,
and geometry shader stages.

View Volume
A subspace in homogeneous coordinates, corresponding to post-projection x and y values between -1 and +1, and
z values between 0 and +1.

Viewport Transformation
A transformation from normalized device coordinates to framebuffer coordinates, based on a viewport rectangle
and depth range.

Visibility Operation
An operation that causes available values to become visible to specified memory accesses.

Visible
A state of values written to memory that allows them to be accessed by a set of operations.

Vulkan 1.0.36 - A Specification 651 / 683

Chapter 33

Common Abbreviations

Abbreviations and acronyms are sometimes used in the Specification and the API where they are considered clear and
commonplace, and are defined here:

Src
Source

Dst
Destination

Min
Minimum

Max
Maximum

Rect
Rectangle

Info
Information

LOD
Level of Detail

ID
Identifier

UUID
Universally Unique Identifier

Op
Operation

R
Red color component

G
Green color component

B
Blue color component

A
Alpha color component

Vulkan 1.0.36 - A Specification 653 / 683

Chapter 34

Prefixes

Prefixes are used in the API to denote specific semantic meaning of Vulkan names, or as a label to avoid name clashes,
and are explained here:

VK/Vk/vk
Vulkan namespace
All types, commands, enumerants and defines in this specification are prefixed with these two characters.

PFN/pfn
Function Pointer
Denotes that a type is a function pointer, or that a variable is of a pointer type.

p
Pointer
Variable is a pointer.

vkCmd
Commands that record commands in command buffers
These API commands do not result in immediate processing on the device. Instead, they record the requested
action in a command buffer for execution when the command buffer is submitted to a queue.

s
Structure
Used to denote the VK_STRUCTURE_TYPE* member of each structure in sType

Vulkan 1.0.36 - A Specification 655 / 683

Appendix A

Vulkan Environment for SPIR-V

Shaders for Vulkan are defined by the Khronos SPIR-V Specification as well as the Khronos SPIR-V Extended
Instructions for GLSL Specification. This appendix defines additional SPIR-V requirements applying to Vulkan shaders.

A.1 Required Versions and Formats

A Vulkan 1.0 implementation must support the 1.0 version of SPIR-V and the 1.0 version of the SPIR-V Extended
Instructions for GLSL.

A SPIR-V module passed into vkCreateShaderModule is interpreted as a series of 32-bit words in host endianness,
with literal strings packed as described in section 2.2 of the SPIR-V Specification. The first few words of the SPIR-V
module must be a magic number and a SPIR-V version number, as described in section 2.3 of the SPIR-V Specification.

A.2 Capabilities

Implementations must support the following capability operands declared by OpCapability:

• Matrix

• Shader

• InputAttachment

• Sampled1D

• Image1D

• SampledBuffer

• ImageBuffer

• ImageQuery

• DerivativeControl

Implementations may support features that are not required by the Specification, as described in the Features chapter. If
such a feature is supported, then any capability operand(s) corresponding to that feature must also be supported.

Table A.1: SPIR-V Capabilities which are not required, and correspond-
ing feature or extension names

SPIR-V OpCapability Vulkan feature or extension name
Geometry geometryShader
Tessellation tessellationShader
Float64 shaderFloat64
Int64 shaderInt64
Int16 shaderInt16
TessellationPointSize shaderTessellationAndGeometryPointSize
GeometryPointSize shaderTessellationAndGeometryPointSize
ImageGatherExtended shaderImageGatherExtended
StorageImageMultisample shaderStorageImageMultisample
UniformBufferArrayDynamicIndexing shaderUniformBufferArrayDynamicIndexing
SampledImageArrayDynamicIndexing shaderSampledImageArrayDynamicIndexing
StorageBufferArrayDynamicIndexing shaderStorageBufferArrayDynamicIndexing
StorageImageArrayDynamicIndexing shaderStorageImageArrayDynamicIndexing
ClipDistance shaderClipDistance
CullDistance shaderCullDistance
ImageCubeArray imageCubeArray
SampleRateShading sampleRateShading
SparseResidency shaderResourceResidency
MinLod shaderResourceMinLod
SampledCubeArray imageCubeArray
ImageMSArray shaderStorageImageMultisample
StorageImageExtendedFormats shaderStorageImageExtendedFormats
InterpolationFunction sampleRateShading
StorageImageReadWithoutFormat shaderStorageImageReadWithoutFormat
StorageImageWriteWithoutFormat shaderStorageImageWriteWithoutFormat
MultiViewport multiViewport

The application must not pass a SPIR-V module containing any of the following to vkCreateShaderModule:

• any OpCapability not listed above,

• an unsupported capability, or

• a capability which corresponds to a Vulkan feature or extension which has not been enabled.

A.3 Validation Rules within a Module

A SPIR-V module passed to vkCreateShaderModule must conform to the following rules:

• Every entry point must have no return value and accept no arguments.

• Recursion: The static function-call graph for an entry point must not contain cycles.

• The Logical addressing model must be selected.

• Scope for execution must be limited to:

Vulkan 1.0.36 - A Specification 657 / 683

– Workgroup
– Subgroup

• Scope for memory must be limited to:

– Device
– Workgroup
– Invocation

• The OriginLowerLeft execution mode must not be used; fragment entry points must declare
OriginUpperLeft.

• The PixelCenterInteger execution mode must not be used. Pixels are always centered at half-integer
coordinates.

• Images

– OpTypeImage must declare a scalar 32-bit float or 32-bit integer type for the “Sampled Type”.
(RelaxedPrecision can be applied to a sampling instruction and to the variable holding the result of a sampling
instruction.)

– OpSampledImage must only consume an “Image” operand whose type has its “Sampled” operand set to 1.

– The (u,v) coordinates used for a SubpassData must be the <id> of a constant vector (0,0), or if a layer coordinate
is used, must be a vector that was formed with constant 0 for the u and v components.

– The “Depth” operand of OpTypeImage is ignored.

• Decorations

– The GLSLShared and GLSLPacked decorations must not be used.

– The Flat, NoPerspective, Sample, and Centroid decorations must not be used on variables with storage
class other than Input or on variables used in the interface of non-fragment shader entry points.

– The Patch decoration must not be used on variables in the interface of a vertex, geometry, or fragment shader
stage’s entry point.

• OpTypeRuntimeArray must only be used for the last member of an OpTypeStruct in the Uniform storage
class.

• Linkage: See Shader Interfaces for additional linking and validation rules.

• Compute Shaders

– For each compute shader entry point, either a LocalSize execution mode or an object decorated with the
WorkgroupSize decoration must be specified.

A.4 Precision and Operation of SPIR-V Instructions

The following rules apply to both single and double-precision floating point instructions:

• Positive and negative infinities and positive and negative zeros are generated as dictated by IEEE 754, but subject to
the precisions allowed in the following table.

• Dividing a non-zero by a zero results in the appropriately signed IEEE 754 infinity.

• Any denormalized value input into a shader or potentially generated by any instruction in a shader may be flushed to 0.

• The rounding mode cannot be set and is undefined.

• NaNs may not be generated. Instructions that operate on a NaN may not result in a NaN.

• Support for signaling NaNs is optional and exceptions are never raised.

The precision of double-precision instructions is at least that of single precision. For single precision (32 bit)
instructions, precisions are required to be at least as follows, unless decorated with RelaxedPrecision:

Table A.2: Precision of core SPIR-V Instructions

Instruction Precision
OpFAdd Correctly rounded.
OpFSub Correctly rounded.
OpFMul Correctly rounded.
OpFOrdEqual, OpFUnordEqual Correct result.
OpFOrdLessThan, OpFUnordLessThan Correct result.
OpFOrdGreaterThan, OpFUnordGreaterThan Correct result.
OpFOrdLessThanEqual,
OpFUnordLessThanEqual

Correct result.

OpFOrdGreaterThanEqual,
OpFUnordGreaterThanEqual

Correct result.

OpFDiv 2.5 ULP for b in the range [2-126, 2126].
conversions between types Correctly rounded.

Table A.3: Precision of GLSL.std.450 Instructions

Instruction Precision
fma() Inherited from OpFMul followed by OpFAdd.
exp(x), exp2(x) 3 + 2 × |x| ULP.
log(), log2() 3 ULP outside the range [0.5, 2.0]. Absolute error <

2-21 inside the range [0.5, 2.0].
pow(x, y) Inherited from exp2(y × log2(x)).
sqrt() Inherited from 1.0 / inversesqrt().
inversesqrt() 2 ULP.

GLSL.std.450 extended instructions specifically defined in terms of the above instructions inherit the above errors.
GLSL.std.450 extended instructions not listed above and not defined in terms of the above have undefined precision.
These include, for example, the trigonometric functions and determinant.

For the OpSRem and OpSMod instructions, if either operand is negative the result is undefined.

Note
While the OpSRem and OpSMod instructions are supported by the Vulkan environment, they require non-
negative values and thus do not enable additional functionality beyond what OpUMod provides.

Vulkan 1.0.36 - A Specification 659 / 683

Compatibility Between SPIR-V Image Formats And Vulkan Formats

Images which are read from or written to by shaders must have SPIR-V image formats compatible with the Vulkan image
formats backing the image under the circumstances described for texture image validation. The compatibile formats are:

Table A.4: SPIR-V and Vulkan Image Format Compatibility

SPIR-V Image Format Compatible Vulkan Format
Rgba32f VK_FORMAT_R32G32B32A32_SFLOAT
Rgba16f VK_FORMAT_R16G16B16A16_SFLOAT
R32f VK_FORMAT_R32_SFLOAT
Rgba8 VK_FORMAT_R8G8B8A8_UNORM
Rgba8Snorm VK_FORMAT_R8G8B8A8_SNORM
Rg32f VK_FORMAT_R32G32_SFLOAT
Rg16f VK_FORMAT_R16G16_SFLOAT
R11fG11fB10f VK_FORMAT_B10G11R11_UFLOAT_PACK32
R16f VK_FORMAT_R16_SFLOAT
Rgba16 VK_FORMAT_R16G16B16A16_UNORM
Rgb10A2 VK_FORMAT_A2B10G10R10_UNORM_PACK32
Rg16 VK_FORMAT_R16G16_UNORM
Rg8 VK_FORMAT_R8G8_UNORM
R16 VK_FORMAT_R16_UNORM
R8 VK_FORMAT_R8_UNORM
Rgba16Snorm VK_FORMAT_R16G16B16A16_SNORM
Rg16Snorm VK_FORMAT_R16G16_SNORM
Rg8Snorm VK_FORMAT_R8G8_SNORM
R16Snorm VK_FORMAT_R16_SNORM
R8Snorm VK_FORMAT_R8_SNORM
Rgba32i VK_FORMAT_R32G32B32A32_SINT
Rgba16i VK_FORMAT_R16G16B16A16_SINT
Rgba8i VK_FORMAT_R8G8B8A8_SINT
R32i VK_FORMAT_R32_SINT
Rg32i VK_FORMAT_R32G32_SINT
Rg16i VK_FORMAT_R16G16_SINT
Rg8i VK_FORMAT_R8G8_SINT
R16i VK_FORMAT_R16_SINT
R8i VK_FORMAT_R8_SINT
Rgba32ui VK_FORMAT_R32G32B32A32_UINT
Rgba16ui VK_FORMAT_R16G16B16A16_UINT
Rgba8ui VK_FORMAT_R8G8B8A8_UINT
R32ui VK_FORMAT_R32_UINT
Rgb10a2ui VK_FORMAT_A2B10G10R10_UINT_PACK32
Rg32ui VK_FORMAT_R32G32_UINT
Rg16ui VK_FORMAT_R16G16_UINT
Rg8ui VK_FORMAT_R8G8_UINT
R16ui VK_FORMAT_R16_UINT
R8ui VK_FORMAT_R8_UINT

Vulkan 1.0.36 - A Specification 661 / 683

Appendix B

Compressed Image Formats

The compressed texture formats used by Vulkan are described in the specifically identified sections of the Khronos Data
Format Specification, version 1.1.

Unless otherwise described, the quantities encoded in these compressed formats are treated as normalized, unsigned
values.

Those formats listed as sRGB-encoded have in-memory representations of R, G and B components which are
nonlinearly-encoded as R’, G’, and B’; any alpha component is unchanged. As part of filtering, the nonlinear R’, G’, and
B’ values are converted to linear R, G, and B components; any alpha component is unchanged. The conversion between
linear and nonlinear encoding is performed as described in the “KHR_DF_TRANSFER_SRGB” section of the Khronos
Data Format Specification.

B.1 Block-Compressed Image Formats

Table B.1: Mapping of Vulkan BC formats to descriptions

VkFormat Khronos Data Format Specification
description

Formats described in the “S3TC Compressed Texture Image Formats” chapter
VK_FORMAT_BC1_RGB_UNORM_BLOCK BC1 with no alpha
VK_FORMAT_BC1_RGB_SRGB_BLOCK BC1 with no alpha, sRGB-encoded
VK_FORMAT_BC1_RGBA_UNORM_BLOCK BC1 with alpha
VK_FORMAT_BC1_RGBA_SRGB_BLOCK BC1 with alpha, sRGB-encoded
VK_FORMAT_BC2_UNORM_BLOCK BC2
VK_FORMAT_BC2_SRGB_BLOCK BC2, sRGB-encoded
VK_FORMAT_BC3_UNORM_BLOCK BC3
VK_FORMAT_BC3_SRGB_BLOCK BC3, sRGB-encoded

Formats described in the “RGTC Compressed Texture Image Formats” chapter
VK_FORMAT_BC4_UNORM_BLOCK BC4 unsigned
VK_FORMAT_BC4_SNORM_BLOCK BC4 signed
VK_FORMAT_BC5_UNORM_BLOCK BC5 unsigned
VK_FORMAT_BC5_SNORM_BLOCK BC5 signed

Formats described in the “BPTC Compressed Texture Image Formats” chapter
VK_FORMAT_BC6H_UFLOAT_BLOCK BC6H (unsigned version)
VK_FORMAT_BC6H_SFLOAT_BLOCK BC6H (signed version)
VK_FORMAT_BC7_UNORM_BLOCK BC7
VK_FORMAT_BC7_SRGB_BLOCK BC7, sRGB-encoded

Vulkan 1.0.36 - A Specification 663 / 683

B.2 ETC Compressed Image Formats

The following formats are described in the “ETC2 Compressed Texture Image Formats” chapter of the Khronos Data
Format Specification.

Table B.2: Mapping of Vulkan ETC formats to descriptions

VkFormat Khronos Data Format Specification description
VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK RGB ETC2
VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK RGB ETC2 with sRGB encoding
VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK RGB ETC2 with punch-through alpha
VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK RGB ETC2 with punch-through alpha and sRGB
VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK RGBA ETC2
VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK RGBA ETC2 with sRGB encoding
VK_FORMAT_EAC_R11_UNORM_BLOCK Unsigned R11 EAC
VK_FORMAT_EAC_R11_SNORM_BLOCK Signed R11 EAC
VK_FORMAT_EAC_R11G11_UNORM_BLOCK Unsigned RG11 EAC
VK_FORMAT_EAC_R11G11_SNORM_BLOCK Signed RG11 EAC

B.3 ASTC Compressed Image Formats

ASTC formats are described in the “ASTC Compressed Texture Image Formats” chapter of the Khronos Data Format
Specification.

Table B.3: Mapping of Vulkan ASTC formats to descriptions

VkFormat Compressed
texel block

dimen-
sions

sRGB-encoded

VK_FORMAT_ASTC_4x4_UNORM_BLOCK 4 × 4 No
VK_FORMAT_ASTC_4x4_SRGB_BLOCK 4 × 4 Yes
VK_FORMAT_ASTC_5x4_UNORM_BLOCK 5 × 4 No
VK_FORMAT_ASTC_5x4_SRGB_BLOCK 5 × 4 Yes
VK_FORMAT_ASTC_5x5_UNORM_BLOCK 5 × 5 No
VK_FORMAT_ASTC_5x5_SRGB_BLOCK 5 × 5 Yes
VK_FORMAT_ASTC_6x5_UNORM_BLOCK 6 × 5 No
VK_FORMAT_ASTC_6x5_SRGB_BLOCK 6 × 5 Yes
VK_FORMAT_ASTC_6x6_UNORM_BLOCK 6 × 6 No
VK_FORMAT_ASTC_6x6_SRGB_BLOCK 6 × 6 Yes
VK_FORMAT_ASTC_8x5_UNORM_BLOCK 8 × 5 No
VK_FORMAT_ASTC_8x5_SRGB_BLOCK 8 × 5 Yes
VK_FORMAT_ASTC_8x6_UNORM_BLOCK 8 × 6 No
VK_FORMAT_ASTC_8x6_SRGB_BLOCK 8 × 6 Yes
VK_FORMAT_ASTC_8x8_UNORM_BLOCK 8 × 8 No
VK_FORMAT_ASTC_8x8_SRGB_BLOCK 8 × 8 Yes
VK_FORMAT_ASTC_10x5_UNORM_BLOCK 10 × 5 No
VK_FORMAT_ASTC_10x5_SRGB_BLOCK 10 × 5 Yes
VK_FORMAT_ASTC_10x6_UNORM_BLOCK 10 × 6 No
VK_FORMAT_ASTC_10x6_SRGB_BLOCK 10 × 6 Yes
VK_FORMAT_ASTC_10x8_UNORM_BLOCK 10 × 8 No
VK_FORMAT_ASTC_10x8_SRGB_BLOCK 10 × 8 Yes
VK_FORMAT_ASTC_10x10_UNORM_BLOCK 10 × 10 No
VK_FORMAT_ASTC_10x10_SRGB_BLOCK 10 × 10 Yes
VK_FORMAT_ASTC_12x10_UNORM_BLOCK 12 × 10 No
VK_FORMAT_ASTC_12x10_SRGB_BLOCK 12 × 10 Yes
VK_FORMAT_ASTC_12x12_UNORM_BLOCK 12 × 12 No
VK_FORMAT_ASTC_12x12_SRGB_BLOCK 12 × 12 Yes

Vulkan 1.0.36 - A Specification 665 / 683

Appendix C

Layers & Extensions

Extensions to the Vulkan API can be defined by authors, groups of authors, and the Khronos Vulkan Working Group. In
order not to compromise the readability of the Vulkan Specification, the core Specification does not incorporate most
extensions. The online Registry of extensions is available at URL

http://www.khronos.org/registry/vulkan/

and allows generating versions of the Specification incorporating different extensions.

Most of the content previously in this appendix does not specify use of specific Vulkan extensions and layers, but rather
specifies the processes by which extensions and layers are created. As of version 1.0.21 of the Vulkan Specification, this
content has been migrated to the Vulkan Documentation and Extensions document. Authors creating extensions and
layers must follow the mandatory procedures in that document.

The remainder of this appendix documents a set of extensions chosen when this document was built. Versions of the
Specification published in the Registry include:

• Core API + mandatory extensions required of all Vulkan implementations.

• Core API + all registered and published Khronos (KHR) extensions.

• Core API + all registered and published extensions.

Extensions are grouped as Khronos, multivendor EXT, and then by vendor alphabetically.

C.1 VK_KHR_sampler_mirror_clamp_to_edge

Name String
VK_KHR_sampler_mirror_clamp_to_edge

Extension Type
Device extension

Registered Extension Number
15

Status
Final

http://www.khronos.org/registry/vulkan/

Last Modified Date
2016-02-16

Revision
1

Dependencies

• This extension is written against version 1.0. of the Vulkan API.

Contributors

• Tobias Hector, Imagination Technologies

Contacts

• Tobias Hector (tobias.hector@imgtec.com)

VK_KHR_sampler_mirror_clamp_to_edge extends the set of sampler address modes to include an additional mode
(VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE) that effectively uses a texture map twice as large as
the original image in which the additional half of the new image is a mirror image of the original image.

This new mode relaxes the need to generate images whose opposite edges match by using the original image to generate
a matching “mirror image”. This mode allows the texture to be mirrored only once in the negative s, t, and r directions.

C.1.1 New Enum Constants

• Extending VkSamplerAddressMode:

– VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE

C.1.2 Example

Creating a sampler with the new address mode in each dimension

VkSamplerCreateInfo createInfo =
{

VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO // sType
// Other members set to application-desired values

};

createInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
createInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
createInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;

VkSampler sampler;
VkResult result = vkCreateSampler(

device,
&createInfo,
&sampler);

C.1.3 Version History

• Revision 1, 2016-02-16 (Tobias Hector)

– Initial draft

mailto:tobias.hector@imgtec.com

Vulkan 1.0.36 - A Specification 667 / 683

Appendix D

API Boilerplate

This appendix defines Vulkan API features that are infrastructure required for a complete functional description of
Vulkan, but do not logically belong elsewhere in the Specification.

D.1 Structure Types

Vulkan structures containing sType members must have a value of sType matching the type of the structure, as
described more fully in Valid Usage for Structure Types. Structure types supported by the Vulkan API include:

typedef enum VkStructureType {
VK_STRUCTURE_TYPE_APPLICATION_INFO = 0,
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO = 1,
VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO = 2,
VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO = 3,
VK_STRUCTURE_TYPE_SUBMIT_INFO = 4,
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO = 5,
VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE = 6,
VK_STRUCTURE_TYPE_BIND_SPARSE_INFO = 7,
VK_STRUCTURE_TYPE_FENCE_CREATE_INFO = 8,
VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO = 9,
VK_STRUCTURE_TYPE_EVENT_CREATE_INFO = 10,
VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO = 11,
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO = 12,
VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO = 13,
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO = 14,
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO = 15,
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO = 16,
VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO = 17,
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO = 18,
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO = 19,
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO = 20,
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO = 21,
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO = 22,
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO = 23,
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO = 24,
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO = 25,
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO = 26,
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO = 27,

VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO = 28,
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO = 29,
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO = 30,
VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO = 31,
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO = 32,
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO = 33,
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO = 34,
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET = 35,
VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET = 36,
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO = 37,
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO = 38,
VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO = 39,
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO = 40,
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO = 41,
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO = 42,
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO = 43,
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER = 44,
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER = 45,
VK_STRUCTURE_TYPE_MEMORY_BARRIER = 46,
VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO = 47,
VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO = 48,

} VkStructureType;

D.2 Flag Types

Vulkan flag types are all bitmasks aliasing the base type VkFlags and with corresponding bit flag types defining the
valid bits for that flag, as described in Valid Usage for Flags. Flag types supported by the Vulkan API include:

typedef VkFlags VkAccessFlags;

typedef VkFlags VkAttachmentDescriptionFlags;

typedef VkFlags VkBufferCreateFlags;

typedef VkFlags VkBufferUsageFlags;

typedef VkFlags VkBufferViewCreateFlags;

typedef VkFlags VkColorComponentFlags;

typedef VkFlags VkCommandBufferResetFlags;

typedef VkFlags VkCommandBufferUsageFlags;

typedef VkFlags VkCommandPoolCreateFlags;

typedef VkFlags VkCommandPoolResetFlags;

typedef VkFlags VkCullModeFlags;

Vulkan 1.0.36 - A Specification 669 / 683

typedef VkFlags VkDependencyFlags;

typedef VkFlags VkDescriptorPoolCreateFlags;

typedef VkFlags VkDescriptorPoolResetFlags;

typedef VkFlags VkDescriptorSetLayoutCreateFlags;

typedef VkFlags VkDeviceCreateFlags;

typedef VkFlags VkDeviceQueueCreateFlags;

typedef VkFlags VkEventCreateFlags;

typedef VkFlags VkFenceCreateFlags;

typedef VkFlags VkFormatFeatureFlags;

typedef VkFlags VkFramebufferCreateFlags;

typedef VkFlags VkImageAspectFlags;

typedef VkFlags VkImageCreateFlags;

typedef VkFlags VkImageUsageFlags;

typedef VkFlags VkImageViewCreateFlags;

typedef VkFlags VkInstanceCreateFlags;

typedef VkFlags VkMemoryHeapFlags;

typedef VkFlags VkMemoryMapFlags;

typedef VkFlags VkMemoryPropertyFlags;

typedef VkFlags VkPipelineCacheCreateFlags;

typedef VkFlags VkPipelineColorBlendStateCreateFlags;

typedef VkFlags VkPipelineCreateFlags;

typedef VkFlags VkPipelineDepthStencilStateCreateFlags;

typedef VkFlags VkPipelineDynamicStateCreateFlags;

typedef VkFlags VkPipelineInputAssemblyStateCreateFlags;

typedef VkFlags VkPipelineLayoutCreateFlags;

typedef VkFlags VkPipelineMultisampleStateCreateFlags;

typedef VkFlags VkPipelineRasterizationStateCreateFlags;

typedef VkFlags VkPipelineShaderStageCreateFlags;

typedef VkFlags VkPipelineStageFlags;

typedef VkFlags VkPipelineTessellationStateCreateFlags;

typedef VkFlags VkPipelineVertexInputStateCreateFlags;

typedef VkFlags VkPipelineViewportStateCreateFlags;

typedef VkFlags VkQueryControlFlags;

typedef VkFlags VkQueryPipelineStatisticFlags;

typedef VkFlags VkQueryPoolCreateFlags;

typedef VkFlags VkQueryResultFlags;

typedef VkFlags VkQueueFlags;

typedef VkFlags VkRenderPassCreateFlags;

typedef VkFlags VkSampleCountFlags;

typedef VkFlags VkSamplerCreateFlags;

typedef VkFlags VkSemaphoreCreateFlags;

typedef VkFlags VkShaderModuleCreateFlags;

typedef VkFlags VkShaderStageFlags;

typedef VkFlags VkSparseImageFormatFlags;

typedef VkFlags VkSparseMemoryBindFlags;

typedef VkFlags VkStencilFaceFlags;

typedef VkFlags VkSubpassDescriptionFlags;

Vulkan 1.0.36 - A Specification 671 / 683

D.3 Macro Definitions in vulkan.h

Vulkan is defined as a C API. The supplied vulkan.h header defines a small number of C preprocessor macros that are
described below.

D.3.1 Vulkan Version Number Macros

API Version Numbers are packed into integers. These macros manipulate version numbers in useful ways.

VK_VERSION_MAJOR extracts the API major version number from a packed version number:

#define VK_VERSION_MAJOR(version) ((uint32_t)(version) >> 22)

VK_VERSION_MINOR extracts the API minor version number from a packed version number:

#define VK_VERSION_MINOR(version) (((uint32_t)(version) >> 12) & 0x3ff)

VK_VERSION_PATCH extracts the API patch version number from a packed version number:

#define VK_VERSION_PATCH(version) ((uint32_t)(version) & 0xfff)

VK_API_VERSION_1_0 returns the API version number for Vulkan 1.0. The patch version number in this macro will
always be zero. The supported patch version for a physical device can be queried with
vkGetPhysicalDeviceProperties.

// Vulkan 1.0 version number
#define VK_API_VERSION_1_0 VK_MAKE_VERSION(1, 0, 0)

VK_API_VERSION is now commented out of vulkan.h and cannot be used.

// DEPRECATED: This define has been removed. Specific version defines (e.g. ←↩
VK_API_VERSION_1_0), or the VK_MAKE_VERSION macro, should be used instead.

//#define VK_API_VERSION VK_MAKE_VERSION(1, 0, 0)

VK_MAKE_VERSION constructs an API version number.

#define VK_MAKE_VERSION(major, minor, patch) \
(((major) << 22) | ((minor) << 12) | (patch))

• major is the major version number.

• minor is the minor version number.

• patch is the patch version number.

This macro can be used when constructing the VkApplicationInfo::apiVersion parameter passed to
vkCreateInstance.

D.3.2 Vulkan Header File Version Number

VK_HEADER_VERSION is the version number of the vulkan.h header. This value is currently kept synchronized
with the release number of the Specification. However, it is not guaranteed to remain synchronized, since most
Specification updates have no effect on vulkan.h.

// Version of this file
#define VK_HEADER_VERSION 36

D.3.3 Vulkan Handle Macros

VK_DEFINE_HANDLE defines a dispatchable handle type.

#define VK_DEFINE_HANDLE(object) typedef struct object##_T* object;

• object is the name of the resulting C type.

The only dispatchable handle types are those related to device and instance management, such as VkDevice.

VK_DEFINE_NON_DISPATCHABLE_HANDLE defines a non-dispatchable handle type.

#if !defined(VK_DEFINE_NON_DISPATCHABLE_HANDLE)
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__ ←↩

)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(←↩
__aarch64__) || defined(__powerpc64__)

#define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef struct object##_T * ←↩
object;

#else
#define VK_DEFINE_NON_DISPATCHABLE_HANDLE(object) typedef uint64_t object;

#endif
#endif

• object is the name of the resulting C type.

Most Vulkan handle types, such as VkBuffer, are non-dispatchable.

Note
The vulkan.h header allows the VK_DEFINE_NON_DISPATCHABLE_HANDLE definition to be overridden
by the application. If VK_DEFINE_NON_DISPATCHABLE_HANDLE is already defined when the vulkan.
h header is compiled the default definition is skipped. This allows the application to define a binary-compatible
custom handle which may provide more type-safety or other features needed by the application. Behavior
is undefined if the application defines a non-binary-compatible handle and may result in memory corruption
or application termination. Binary compatibility is platform dependent so the application must be careful if it
overrides the default VK_DEFINE_NON_DISPATCHABLE_HANDLE definition.

VK_NULL_HANDLE is a reserved value representing a non-valid object handle. It may be passed to and returned from
Vulkan commands only when specifically allowed.

#define VK_NULL_HANDLE 0

D.4 Platform-Specific Macro Definitions in vk_platform.h

Additional platform-specific macros and interfaces are defined using the included vk_platform.h file. These macros
are used to control platform-dependent behavior, and their exact definitions are under the control of specific platforms
and Vulkan implementations.

Vulkan 1.0.36 - A Specification 673 / 683

D.4.1 Platform-Specific Calling Conventions

On many platforms the following macros are empty strings, causing platform- and compiler-specific default calling
conventions to be used.

VKAPI_ATTR is a macro placed before the return type in Vulkan API function declarations. This macro controls calling
conventions for C++11 and GCC/Clang-style compilers.

VKAPI_CALL is a macro placed after the return type in Vulkan API function declarations. This macro controls calling
conventions for MSVC-style compilers.

VKAPI_PTR is a macro placed between the (and * in Vulkan API function pointer declarations. This macro also
controls calling conventions, and typically has the same definition as VKAPI_ATTR or VKAPI_CALL, depending on the
compiler.

D.4.2 Platform-Specific Header Control

If the VK_NO_STDINT_H macro is defined by the application at compile time, extended integer types used by
vulkan.h, such as uint8_t, must also be defined by the application. Otherwise, vulkan.h will not compile. If
VK_NO_STDINT_H is not defined, the system <stdint.h> is used to define these types, or there is a fallback path
when Microsoft Visual Studio version 2008 and earlier versions are detected at compile time.

D.4.3 Window System-Specific Header Control

To use a Vulkan extension supporting a platform-specific window system, header files for that window systems must be
included at compile time. The Vulkan header files cannot determine whether or not an external header is available at
compile time, so applications wishing to use such an extension must #define a macro causing such headers to be
included. If this is not done, the corresponding extension interfaces will not be defined and they will be unusable.

The extensions, required compile time symbols to enable them, window systems they correspond to, and external header
files that are included when the macro is #defined are shown in the following table.

Table D.1: Window System Extensions and Required Compile Time
Symbol Definitions

Extension Name Required Compile Time
Symbol

Window System Name External Header Files
Used

VK_KHR_android_
surface

VK_USE_PLATFORM_
ANDROID_KHR

Android Native <android/native_
window.h>

VK_KHR_mir_
surface

VK_USE_PLATFORM_
MIR_KHR

Mir <mir_toolkit/
client_types.h>

VK_KHR_wayland_
surface

VK_USE_PLATFORM_
WAYLAND_KHR

Wayland <wayland-client.
h>

VK_KHR_win32_
surface

VK_USE_PLATFORM_
WIN32_KHR

Microsoft Windows <windows.h>

VK_KHR_xcb_
surface

VK_USE_PLATFORM_
XCB_KHR

X Window System Xcb
library

<xcb/xcb.h>

VK_KHR_xlib_
surface

VK_USE_PLATFORM_
XLIB_KHR

X Window System Xlib
library

<X11/Xlib.h>

Vulkan 1.0.36 - A Specification 675 / 683

Appendix E

Invariance

The Vulkan specification is not pixel exact. It therefore does not guarantee an exact match between images produced by
different Vulkan implementations. However, the specification does specify exact matches, in some cases, for images
produced by the same implementation. The purpose of this appendix is to identify and provide justification for those
cases that require exact matches.

E.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of Vulkan commands. For any given Vulkan and
framebuffer state vector, and for any Vulkan command, the resulting Vulkan and framebuffer state must be identical
whenever the command is executed on that initial Vulkan and framebuffer state. This repeatability requirement does not
apply when using shaders containing side effects (image and buffer variable stores and atomic operations), because these
memory operations are not guaranteed to be processed in a defined order.

One purpose of repeatability is avoidance of visual artifacts when a double-buffered scene is redrawn. If rendering is not
repeatable, swapping between two buffers rendered with the same command sequence may result in visible changes in
the image. Such false motion is distracting to the viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeatability as a requirement, two scenes rendered
with one (small) polygon changed in position might differ at every pixel. Such a difference, while within the law of
repeatability, is certainly not within its spirit. Additional invariance rules are desirable to ensure useful operation.

E.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such algorithms render multiple times, each time
with a different Vulkan mode vector, to eventually produce a result in the framebuffer. Examples of these algorithms
include:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a different color or using the XOR logical
operation.

• Using stencil operations to compute capping planes.

E.3 Invariance Rules

For a given Vulkan device:

Rule 1 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the resulting Vulkan and
framebuffer state must be identical each time the command is executed on that initial Vulkan and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any other state value is not affected by the
change):

Required:

• Color and depth/stencil attachment contents

• Scissor parameters (other than enable)

• Write masks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

Corollary 1 Fragment generation is invariant with respect to the state values listed in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with respect to parameters that directly control
it.

Corollary 2 Images rendered into different color attachments of the same framebuffer, either simultaneously or
separately using the same command sequence, are pixel identical.

Rule 4 Identical pipelines will produce the same result when run multiple times with the same input. The wording
“Identical pipelines” means VkPipeline objects that have been created with identical SPIR-V binaries and identical
state, which are then used by commands executed using the same Vulkan state vector. Invariance is relaxed for shaders
with side effects, such as performing stores or atomics.

Rule 5 All fragment shaders that either conditionally or unconditionally assign FragCoord.z to FragDepth are
depth-invariant with respect to each other, for those fragments where the assignment to FragDepth actually is done.

If a sequence of Vulkan commands specifies primitives to be rendered with shaders containing side effects (image and
buffer variable stores and atomic operations), invariance rules are relaxed. In particular, rule 1, corollary 2, and rule 4 do
not apply in the presence of shader side effects.

The following weaker versions of rules 1 and 4 apply to Vulkan commands involving shader side effects:

Rule 6 For any given Vulkan and framebuffer state vector, and for any given Vulkan command, the contents of any
framebuffer state not directly or indirectly affected by results of shader image or buffer variable stores or atomic
operations must be identical each time the command is executed on that initial Vulkan and framebuffer state.

Rule 7 Identical pipelines will produce the same result when run multiple times with the same input as long as:

• shader invocations do not use image atomic operations;

Vulkan 1.0.36 - A Specification 677 / 683

• no framebuffer memory is written to more than once by image stores, unless all such stores write the same value; and

• no shader invocation, or other operation performed to process the sequence of commands, reads memory written to by
an image store.

When any sequence of Vulkan commands triggers shader invocations that perform image stores or atomic operations,
and subsequent Vulkan commands read the memory written by those shader invocations, these operations must be
explicitly synchronized.

E.4 Tessellation Invariance

When using a pipeline containing tessellation evaluation shaders, the fixed-function tessellation primitive generator
consumes the input patch specified by an application and emits a new set of primitives. The following invariance rules
are intended to provide repeatability guarantees. Additionally, they are intended to allow an application with a carefully
crafted tessellation evaluation shader to ensure that the sets of triangles generated for two adjacent patches have identical
vertices along shared patch edges, avoiding “cracks” caused by minor differences in the positions of vertices along
shared edges.

Rule 1 When processing two patches with identical outer and inner tessellation levels, the tessellation primitive
generator will emit an identical set of point, line, or triangle primitives as long as the pipeline used to process the patch
primitives has tessellation evaluation shaders specifying the same tessellation mode, spacing, vertex order, and point
mode decorations. Two sets of primitives are considered identical if and only if they contain the same number and type of
primitives and the generated tessellation coordinates for the vertex numbered m of the primitive numbered n are identical
for all values of m and n.

Rule 2 The set of vertices generated along the outer edge of the subdivided primitive in triangle and quad tessellation,
and the tessellation coordinates of each, depends only on the corresponding outer tessellation level and the spacing
decorations in the tessellation shaders of the pipeline.

Rule 3 The set of vertices generated when subdividing any outer primitive edge is always symmetric. For triangle
tessellation, if the subdivision generates a vertex with tessellation coordinates of the form (0, x, 1-x), (x, 0, 1-x), or (x,
1-x, 0), it will also generate a vertex with coordinates of exactly (0, 1-x, x), (1-x, 0, x), or (1-x, x, 0), respectively. For
quad tessellation, if the subdivision generates a vertex with coordinates of (x, 0) or (0, x), it will also generate a vertex
with coordinates of exactly (1-x, 0) or (0, 1-x), respectively. For isoline tessellation, if it generates vertices at (0, x) and
(1, x) where x is not zero, it will also generate vertices at exactly (0, 1-x) and (1, 1-x), respectively.

Rule 4 The set of vertices generated when subdividing outer edges in triangular and quad tessellation must be
independent of the specific edge subdivided, given identical outer tessellation levels and spacing. For example, if vertices
at (x, 1 - x, 0) and (1-x, x, 0) are generated when subdividing the w = 0 edge in triangular tessellation, vertices must be
generated at (x, 0, 1-x) and (1-x, 0, x) when subdividing an otherwise identical v = 0 edge. For quad tessellation, if
vertices at (x, 0) and (1-x, 0) are generated when subdividing the v = 0 edge, vertices must be generated at (0, x) and (0,
1-x) when subdividing an otherwise identical u = 0 edge.

Rule 5 When processing two patches that are identical in all respects enumerated in rule 1 except for vertex order, the set
of triangles generated for triangle and quad tessellation must be identical except for vertex and triangle order. For each
triangle n1 produced by processing the first patch, there must be a triangle n2 produced when processing the second
patch each of whose vertices has the same tessellation coordinates as one of the vertices in n1.

Rule 6 When processing two patches that are identical in all respects enumerated in rule 1 other than matching outer
tessellation levels and/or vertex order, the set of interior triangles generated for triangle and quad tessellation must be
identical in all respects except for vertex and triangle order. For each interior triangle n1 produced by processing the
first patch, there must be a triangle n2 produced when processing the second patch each of whose vertices has the same
tessellation coordinates as one of the vertices in n1. A triangle produced by the tessellator is considered an interior
triangle if none of its vertices lie on an outer edge of the subdivided primitive.

Rule 7 For quad and triangle tessellation, the set of triangles connecting an inner and outer edge depends only on the
inner and outer tessellation levels corresponding to that edge and the spacing decorations.

Rule 8 The value of all defined components of TessCoord will be in the range [0, 1]. Additionally, for any defined
component x of TessCoord, the results of computing 1.0-x in a tessellation evaluation shader will be exact. If any
floating-point values in the range [0, 1] fail to satisfy this property, such values must not be used as tessellation
coordinate components.

Vulkan 1.0.36 - A Specification 679 / 683

Appendix F

Credits

Vulkan 1.0 is the result of contributions from many people and companies participating in the Khronos Vulkan Working
Group, as well as input from the Vulkan Advisory Panel.

Members of the Working Group, including the company that they represented at the time of their contributions, are listed
below. Some specific contributions made by individuals are listed together with their name.

• Adam Jackson, Red Hat

• Adam Śmigielski, Mobica

• Alex Bourd, Qualcomm Technologies, Inc.

• Alexander Galazin, ARM

• Allen Hux, Intel

• Alon Or-bach, Samsung Electronics (WSI technical sub-group chair)

• Andrew Cox, Samsung Electronics

• Andrew Garrard, Samsung Electronics (format wrangler)

• Andrew Poole, Samsung Electronics

• Andrew Rafter, Samsung Electronics

• Andrew Richards, Codeplay Software Ltd.

• Andrew Woloszyn, Google

• Antoine Labour, Google

• Aras Pranckevičius, Unity

• Ashwin Kolhe, NVIDIA

• Ben Bowman, Imagination Technologies

• Benj Lipchak

• Bill Hollings, The Brenwill Workshop

• Bill Licea-Kane, Qualcomm Technologies, Inc.

• Brent E. Insko, Intel

• Brian Ellis, Qualcomm Technologies, Inc.

• Cass Everitt, Oculus VR

• Cemil Azizoglu, Canonical

• Chad Versace, Intel

• Chang-Hyo Yu, Samsung Electronics

• Chia-I Wu, LunarG

• Chris Frascati, Qualcomm Technologies, Inc.

• Christophe Riccio, Unity

• Cody Northrop, LunarG

• Courtney Goeltzenleuchter, LunarG

• Damien Leone, NVIDIA

• Dan Baker, Oxide Games

• Dan Ginsburg, Valve

• Daniel Johnston, Intel

• Daniel Koch, NVIDIA (Shader Interfaces; Features)

• Daniel Rakos, AMD

• David Airlie, Red Hat

• David Neto, Google

• David Mao, AMD

• David Yu, Pixar

• Dominik Witczak, AMD

• Frank (LingJun) Chen, Qualcomm Technologies, Inc.

• Fred Liao, Mediatek

• Gabe Dagani, Freescale

• Graeme Leese, Broadcom

• Graham Connor, Imagination Technologies

• Graham Sellers, AMD

• Hwanyong Lee, Kyungpook National University

• Ian Elliott, LunarG

• Ian Romanick, Intel

Vulkan 1.0.36 - A Specification 681 / 683

• James Jones, NVIDIA

• James Hughes, Oculus VR

• Jan Hermes, Continental Corporation

• Jan-Harald Fredriksen, ARM

• Jason Ekstrand, Intel

• Jeff Bolz, NVIDIA (extensive contributions, exhaustive review and rewrites for technical correctness)

• Jeff Juliano, NVIDIA

• Jeff Vigil, Qualcomm Technologies, Inc.

• Jens Owen, LunarG

• Jeremy Hayes, LunarG

• Jesse Barker, ARM

• Jesse Hall, Google

• Johannes van Waveren, Oculus VR

• John Kessenich, Google (SPIR-V and GLSL for Vulkan spec author)

• John McDonald, Valve

• Jon Ashburn, LunarG

• Jon Leech, Independent (XML toolchain, normative language, release wrangler)

• Jonas Gustavsson, Sony Mobile

• Jonathan Hamilton, Imagination Technologies

• Jungwoo Kim, Samsung Electronics

• Kenneth Benzie, Codeplay Software Ltd.

• Kerch Holt, NVIDIA (SPIR-V technical sub-group chair)

• Kristian Kristensen, Intel

• Krzysztof Iwanicki, Samsung Electronics

• Larry Seiler, Intel

• Lutz Latta, Lucasfilm

• Maria Rovatsou, Codeplay Software Ltd.

• Mark Callow

• Mark Lobodzinski, LunarG

• Mateusz Przybylski, Intel

• Mathias Heyer, NVIDIA

• Mathias Schott, NVIDIA

• Maxim Lukyanov, Samsung Electronics

• Maurice Ribble, Qualcomm Technologies, Inc.

• Michael Lentine, Google

• Michael Worcester, Imagination Technologies

• Michal Pietrasiuk, Intel

• Mika Isojarvi, Google

• Mike Stroyan, LunarG

• Minyoung Son, Samsung Electronics

• Mitch Singer, AMD

• Mythri Venugopal, Samsung Electronics

• Naveen Leekha, Google

• Neil Henning, Codeplay Software Ltd.

• Neil Trevett, NVIDIA

• Nick Penwarden, Epic Games

• Niklas Smedberg, Epic Games

• Norbert Nopper, Freescale

• Pat Brown, NVIDIA

• Patrick Doane, Blizzard Entertainment

• Peter Lohrmann, Valve

• Pierre Boudier, NVIDIA

• Pierre-Loup A. Griffais, Valve

• Piers Daniell, NVIDIA (dynamic state, copy commands, memory types)

• Piotr Bialecki, Intel

• Prabindh Sundareson, Samsung Electronics

• Pyry Haulos, Google (Vulkan conformance test subcommittee chair)

• Ray Smith, ARM

• Rob Stepinski, Transgaming

• Robert J. Simpson, Qualcomm Technologies, Inc.

• Rolando Caloca Olivares, Epic Games

• Roy Ju, Mediatek

• Rufus Hamede, Imagination Technologies

• Sean Ellis, ARM

Vulkan 1.0.36 - A Specification 683 / 683

• Sean Harmer, KDAB

• Shannon Woods, Google

• Slawomir Cygan, Intel

• Slawomir Grajewski, Intel

• Stefanus Du Toit, Google

• Steve Hill, Broadcom

• Steve Viggers, Core Avionics & Industrial Inc.

• Stuart Smith, Imagination Technologies

• Tim Foley, Intel

• Timo Suoranta, AMD

• Timothy Lottes, AMD

• Tobias Hector, Imagination Technologies (validity language and toolchain)

• Tobin Ehlis, LunarG

• Tom Olson, ARM (working group chair)

• Tomasz Kubale, Intel

• Tony Barbour, LunarG

• Wayne Lister, Imagination Technologies

• Yanjun Zhang, Vivante

• Zhenghong Wang, Mediatek

In addition to the Working Group, the Vulkan Advisory Panel members provided important real-world usage information
and advice that helped guide design decisions.

Administrative support to the Working Group was provided by members of Gold Standard Group, including Andrew
Riegel, Elizabeth Riegel, Glenn Fredericks, Kathleen Mattson and Michelle Clark. Technical support was provided by
James Riordon, webmaster of Khronos.org and OpenGL.org.

	Introduction
	What is the Vulkan Graphics System?
	The Programmer's View of Vulkan
	The Implementor's View of Vulkan
	Our View of Vulkan

	Filing Bug Reports
	Terminology
	Normative References

	Fundamentals
	Architecture Model
	Execution Model
	Queue Operation

	Object Model
	Object Lifetime

	Command Syntax and Duration
	Lifetime of Retrieved Results

	Threading Behavior
	Errors
	Valid Usage
	Implicit Valid Usage
	Valid Usage for Object Handles
	Valid Usage for Pointers
	Valid Usage for Enumerated Types
	Valid Usage for Flags
	Valid Usage for Structure Types
	Valid Usage for Structure Pointer Chains
	Valid Usage for Nested Structures

	Return Codes

	Numeric Representation and Computation
	Floating-Point Computation
	16-Bit Floating-Point Numbers
	Unsigned 11-Bit Floating-Point Numbers
	Unsigned 10-Bit Floating-Point Numbers
	General Requirements

	Fixed-Point Data Conversions
	Conversion from Normalized Fixed-Point to Floating-Point
	Conversion from Floating-Point to Normalized Fixed-Point

	API Version Numbers and Semantics
	Common Object Types
	Offsets
	Extents
	Rectangles

	Initialization
	Command Function Pointers
	Instances

	Devices and Queues
	Physical Devices
	Devices
	Device Creation
	Device Use
	Lost Device
	Device Destruction

	Queues
	Queue Family Properties
	Queue Creation
	Queue Family Index
	Queue Priority
	Queue Submission
	Sparse Memory Binding

	Queue Destruction

	Command Buffers
	Command Pools
	Command Buffer Allocation and Management
	Command Buffer Recording
	Command Buffer Submission
	Queue Forward Progress
	Secondary Command Buffer Execution

	Synchronization and Cache Control
	Execution and Memory Dependencies
	Image Layout Transitions
	Pipeline Stages
	Access Types
	Framebuffer Region Dependencies

	Fences
	Semaphores
	Semaphore Signaling
	Semaphore Waiting & Unsignaling

	Events
	Pipeline Barriers
	Subpass Self-dependency

	Memory Barriers
	Global Memory Barriers
	Buffer Memory Barriers
	Image Memory Barriers
	Queue Family Ownership Transfer

	Wait Idle Operations
	Host Write Ordering Guarantees

	Render Pass
	Render Pass Creation
	Render Pass Compatibility
	Framebuffers
	Render Pass Commands

	Shaders
	Shader Modules
	Shader Execution
	Shader Memory Access Ordering
	Shader Inputs and Outputs
	Vertex Shaders
	Vertex Shader Execution

	Tessellation Control Shaders
	Tessellation Control Shader Execution

	Tessellation Evaluation Shaders
	Tessellation Evaluation Shader Execution

	Geometry Shaders
	Geometry Shader Execution

	Fragment Shaders
	Fragment Shader Execution
	Early Fragment Tests

	Compute Shaders
	Interpolation Decorations
	Static Use
	Invocation and Derivative Groups

	Pipelines
	Compute Pipelines
	Graphics Pipelines
	Valid Combinations of Stages for Graphics Pipelines

	Pipeline destruction
	Multiple Pipeline Creation
	Pipeline Derivatives
	Pipeline Cache
	Specialization Constants
	Pipeline Binding

	Memory Allocation
	Host Memory
	Device Memory
	Host Access to Device Memory Objects
	Lazily Allocated Memory

	Resource Creation
	Buffers
	Buffer Views
	Images
	Image Layouts
	Image Views
	Resource Memory Association
	Resource Sharing Mode
	Memory Aliasing

	Samplers
	Resource Descriptors
	Descriptor Types
	Storage Image
	Sampler
	Sampled Image
	Combined Image Sampler
	Uniform Texel Buffer
	Storage Texel Buffer
	Uniform Buffer
	Storage Buffer
	Dynamic Uniform Buffer
	Dynamic Storage Buffer
	Input Attachment

	Descriptor Sets
	Descriptor Set Layout
	Pipeline Layouts
	Pipeline Layout Compatibility

	Allocation of Descriptor Sets
	Descriptor Set Updates
	Descriptor Set Binding
	Push Constant Updates

	Shader Interfaces
	Shader Input and Output Interfaces
	Built-in Interface Block
	User-defined Variable Interface
	Interface Matching
	Location Assignment
	Component Assignment

	Vertex Input Interface
	Fragment Output Interface
	Fragment Input Attachment Interface
	Shader Resource Interface
	Push Constant Interface
	Descriptor Set Interface
	DescriptorSet and Binding Assignment
	Offset and Stride Assignment

	Built-In Variables

	Image Operations
	Image Operations Overview
	Texel Coordinate Systems

	Conversion Formulas
	RGB to Shared Exponent Conversion
	Shared Exponent to RGB

	Texel Input Operations
	Texel Input Validation Operations
	Instruction/Sampler/Image Validation
	Integer Texel Coordinate Validation
	Cube Map Edge Handling
	Sparse Validation

	Format Conversion
	Texel Replacement
	Depth Compare Operation
	Conversion to RGBA
	Component Swizzle
	Sparse Residency

	Texel Output Operations
	Texel Output Validation Operations
	Texel Format Validation

	Integer Texel Coordinate Validation
	Sparse Texel Operation
	Texel Output Format Conversion

	Derivative Operations
	Normalized Texel Coordinate Operations
	Projection Operation
	Derivative Image Operations
	Cube Map Face Selection and Transformations
	Cube Map Face Selection
	Cube Map Coordinate Transformation
	Cube Map Derivative Transformation
	Scale Factor Operation, Level-of-Detail Operation and Image Level(s) Selection
	Scale Factor Operation
	Level-of-Detail Operation
	Image Level(s) Selection

	(s,t,r,q,a) to (u,v,w,a) Transformation

	Unnormalized Texel Coordinate Operations
	(u,v,w,a) to (i,j,k,l,n) Transformation And Array Layer Selection

	Image Sample Operations
	Wrapping Operation
	Texel Gathering
	Texel Filtering
	Texel Anisotropic Filtering

	Image Operation Steps

	Queries
	Query Pools
	Query Operation
	Occlusion Queries
	Pipeline Statistics Queries
	Timestamp Queries

	Clear Commands
	Clearing Images Outside A Render Pass Instance
	Clearing Images Inside A Render Pass Instance
	Clear Values
	Filling Buffers
	Updating Buffers

	Copy Commands
	Common Operation
	Copying Data Between Buffers
	Copying Data Between Images
	Copying Data Between Buffers and Images
	Image Copies with Scaling
	Resolving Multisample Images

	Drawing Commands
	Primitive Topologies
	Points
	Separate Lines
	Line Strips
	Triangle Strips
	Triangle Fans
	Separate Triangles
	Lines With Adjacency
	Line Strips With Adjacency
	Triangle List With Adjacency
	Triangle Strips With Adjacency
	Separate Patches
	General Considerations For Polygon Primitives

	Programmable Primitive Shading

	Fixed-Function Vertex Processing
	Vertex Attributes
	Attribute Location and Component Assignment

	Vertex Input Description
	Example

	Tessellation
	Tessellator
	Tessellator Patch Discard
	Tessellator Spacing
	Triangle Tessellation
	Quad Tessellation
	Isoline Tessellation
	Tessellation Pipeline State

	Geometry Shading
	Geometry Shader Input Primitives
	Geometry Shader Output Primitives
	Multiple Invocations of Geometry Shaders
	Geometry Shader Primitive Ordering

	Fixed-Function Vertex Post-Processing
	Flat Shading
	Primitive Clipping
	Clipping Shader Outputs
	Coordinate Transformations
	Controlling the Viewport

	Rasterization
	Discarding Primitives Before Rasterization
	Rasterization Order
	Multisampling
	Sample Shading
	Points
	Basic Point Rasterization

	Line Segments
	Basic Line Segment Rasterization

	Polygons
	Basic Polygon Rasterization
	Polygon Mode
	Depth Bias

	Fragment Operations
	Early Per-Fragment Tests
	Scissor Test
	Sample Mask
	Early Fragment Test Mode
	Late Per-Fragment Tests
	Multisample Coverage
	Depth and Stencil Operations
	Depth Bounds Test
	Stencil Test
	Depth Test
	Sample Counting

	The Framebuffer
	Blending
	Blend Factors
	Dual-Source Blending
	Blend Operations

	Logical Operations

	Dispatching Commands
	Sparse Resources
	Sparse Resource Features
	Sparse Buffers and Fully-Resident Images
	Sparse Buffer and Fully-Resident Image Block Size

	Sparse Partially-Resident Buffers
	Sparse Partially-Resident Images
	Accessing Unbound Regions
	Mip Tail Regions
	Standard Sparse Image Block Shapes
	Custom Sparse Image Block Shapes
	Multiple Aspects
	Metadata

	Sparse Memory Aliasing
	Sparse Resource Implementation Guidelines
	Sparse Resource API
	Physical Device Features
	Sparse Physical Device Features

	Physical Device Sparse Properties
	Sparse Image Format Properties
	Sparse Image Format Properties API

	Sparse Resource Creation
	Sparse Resource Memory Requirements
	Buffer and Fully-Resident Images
	Partially Resident Images
	Sparse Image Memory Requirements

	Binding Resource Memory
	Sparse Memory Binding Functions

	Examples
	Basic Sparse Resources
	Advanced Sparse Resources

	Extended Functionality
	Layers
	Device Layer Deprecation

	Extensions
	Instance Extensions and Device Extensions

	Features, Limits, and Formats
	Features
	Feature Requirements

	Limits
	Limit Requirements

	Formats
	Format Definition
	Packed Formats
	Identification of Formats
	Representation
	Depth/Stencil Formats
	Format Compatibility Classes

	Format Properties
	Required Format Support

	Additional Image Capabilities
	Supported Sample Counts
	Allowed Extent Values Based On Image Type

	Debugging
	Glossary
	Common Abbreviations
	Prefixes
	Vulkan Environment for SPIR-V
	Required Versions and Formats
	Capabilities
	Validation Rules within a Module
	Precision and Operation of SPIR-V Instructions

	Compressed Image Formats
	Block-Compressed Image Formats
	ETC Compressed Image Formats
	ASTC Compressed Image Formats

	Layers & Extensions
	VK_KHR_sampler_mirror_clamp_to_edge
	New Enum Constants
	Example
	Version History

	API Boilerplate
	Structure Types
	Flag Types
	Macro Definitions in vulkan.h
	Vulkan Version Number Macros
	Vulkan Header File Version Number
	Vulkan Handle Macros

	Platform-Specific Macro Definitions in vk_platform.h
	Platform-Specific Calling Conventions
	Platform-Specific Header Control
	Window System-Specific Header Control

	Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	Tessellation Invariance

	Credits

