// Welcome to the deferred lighting example! // // The idea behind deferred lighting is to render the scene in two steps. // // First you draw all the objects of the scene. But instead of calculating the color they will have // on the screen, you output their characteristics such as their diffuse color and their normals, // and write this to images. // // After all the objects are drawn, you should obtain several images that contain the // characteristics of each pixel. // // Then you apply lighting to the scene. In other words you draw to the final image by taking these // intermediate images and the various lights of the scene as input. // // This technique allows you to apply tons of light sources to a scene, which would be too // expensive otherwise. It has some drawbacks, which are the fact that transparent objects must be // drawn after the lighting, and that the whole process consumes more memory. use crate::{ frame::{FrameSystem, Pass}, triangle_draw_system::TriangleDrawSystem, }; use cgmath::{Matrix4, SquareMatrix, Vector3}; use std::{error::Error, sync::Arc}; use vulkano::{ command_buffer::allocator::{ StandardCommandBufferAllocator, StandardCommandBufferAllocatorCreateInfo, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo, QueueFlags, }, image::{view::ImageView, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::StandardMemoryAllocator, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ event::{Event, WindowEvent}, event_loop::{ControlFlow, EventLoop}, window::WindowBuilder, }; mod frame; mod triangle_draw_system; fn main() -> Result<(), impl Error> { // Basic initialization. See the triangle example if you want more details about this. let event_loop = EventLoop::new().unwrap(); let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(&event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, mut images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; let (swapchain, images) = Swapchain::new( device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap(); let images = images .into_iter() .map(|image| ImageView::new_default(image).unwrap()) .collect::>(); (swapchain, images) }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), StandardCommandBufferAllocatorCreateInfo { secondary_buffer_count: 32, ..Default::default() }, )); // Here is the basic initialization for the deferred system. let mut frame_system = FrameSystem::new( queue.clone(), swapchain.image_format(), memory_allocator.clone(), command_buffer_allocator.clone(), ); let triangle_draw_system = TriangleDrawSystem::new( queue.clone(), frame_system.deferred_subpass(), memory_allocator.clone(), command_buffer_allocator, ); let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); event_loop.run(move |event, elwt| { elwt.set_control_flow(ControlFlow::Poll); match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { elwt.exit(); } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::WindowEvent { event: WindowEvent::RedrawRequested, .. } => { let image_extent: [u32; 2] = window.inner_size().into(); if image_extent.contains(&0) { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = swapchain .recreate(SwapchainCreateInfo { image_extent, ..swapchain.create_info() }) .expect("failed to recreate swapchain"); let new_images = new_images .into_iter() .map(|image| ImageView::new_default(image).unwrap()) .collect::>(); swapchain = new_swapchain; images = new_images; recreate_swapchain = false; } let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { recreate_swapchain = true; } let future = previous_frame_end.take().unwrap().join(acquire_future); let mut frame = frame_system.frame( future, images[image_index as usize].clone(), Matrix4::identity(), ); let mut after_future = None; while let Some(pass) = frame.next_pass() { match pass { Pass::Deferred(mut draw_pass) => { let cb = triangle_draw_system.draw(draw_pass.viewport_dimensions()); draw_pass.execute(cb); } Pass::Lighting(mut lighting) => { lighting.ambient_light([0.1, 0.1, 0.1]); lighting .directional_light(Vector3::new(0.2, -0.1, -0.7), [0.6, 0.6, 0.6]); lighting.point_light(Vector3::new(0.5, -0.5, -0.1), [1.0, 0.0, 0.0]); lighting.point_light(Vector3::new(-0.9, 0.2, -0.15), [0.0, 1.0, 0.0]); lighting.point_light(Vector3::new(0.0, 0.5, -0.05), [0.0, 0.0, 1.0]); } Pass::Finished(af) => { after_future = Some(af); } } } let future = after_future .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } Event::AboutToWait => window.request_redraw(), _ => (), } }) }