use self::model::{Normal, Position, INDICES, NORMALS, POSITIONS}; use glam::{ f32::{Mat3, Vec3}, Mat4, }; use std::{error::Error, sync::Arc, time::Instant}; use vulkano::{ buffer::{ allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo}, Buffer, BufferCreateInfo, BufferUsage, Subbuffer, }, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceOwned, Queue, QueueCreateInfo, QueueFlags, }, format::Format, image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, depth_stencil::{DepthState, DepthStencilState}, input_assembly::InputAssemblyState, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, shader::EntryPoint, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ application::ApplicationHandler, dpi::PhysicalSize, event::WindowEvent, event_loop::{ActiveEventLoop, EventLoop}, window::{Window, WindowId}, }; mod model; fn main() -> Result<(), impl Error> { // The start of this example is exactly the same as `triangle`. You should read the `triangle` // example if you haven't done so yet. let event_loop = EventLoop::new().unwrap(); let mut app = App::new(&event_loop); event_loop.run_app(&mut app) } struct App { instance: Arc, device: Arc, queue: Arc, memory_allocator: Arc, descriptor_set_allocator: Arc, command_buffer_allocator: Arc, vertex_buffer: Subbuffer<[Position]>, normals_buffer: Subbuffer<[Normal]>, index_buffer: Subbuffer<[u16]>, uniform_buffer_allocator: SubbufferAllocator, rcx: Option, } struct RenderContext { window: Arc, swapchain: Arc, render_pass: Arc, framebuffers: Vec>, vs: EntryPoint, fs: EntryPoint, pipeline: Arc, recreate_swapchain: bool, previous_frame_end: Option>, rotation_start: Instant, } impl App { fn new(event_loop: &EventLoop<()>) -> Self { let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.presentation_support(i as u32, event_loop).unwrap() }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new( device.clone(), Default::default(), )); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); let vertex_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, POSITIONS, ) .unwrap(); let normals_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, NORMALS, ) .unwrap(); let index_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::INDEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, INDICES, ) .unwrap(); let uniform_buffer_allocator = SubbufferAllocator::new( memory_allocator.clone(), SubbufferAllocatorCreateInfo { buffer_usage: BufferUsage::UNIFORM_BUFFER, memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, ); App { instance, device, queue, memory_allocator, descriptor_set_allocator, command_buffer_allocator, vertex_buffer, normals_buffer, index_buffer, uniform_buffer_allocator, rcx: None, } } } impl ApplicationHandler for App { fn resumed(&mut self, event_loop: &ActiveEventLoop) { let window = Arc::new( event_loop .create_window(Window::default_attributes()) .unwrap(), ); let surface = Surface::from_window(self.instance.clone(), window.clone()).unwrap(); let window_size = window.inner_size(); let (swapchain, images) = { let surface_capabilities = self .device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let (image_format, _) = self .device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0]; Swapchain::new( self.device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window_size.into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let render_pass = vulkano::single_pass_renderpass!( self.device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, depth_stencil: { format: Format::D16_UNORM, samples: 1, load_op: Clear, store_op: DontCare, }, }, pass: { color: [color], depth_stencil: {depth_stencil}, }, ) .unwrap(); let vs = vs::load(self.device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(self.device.clone()) .unwrap() .entry_point("main") .unwrap(); let (framebuffers, pipeline) = window_size_dependent_setup( window_size, &images, &render_pass, &self.memory_allocator, &vs, &fs, ); let previous_frame_end = Some(sync::now(self.device.clone()).boxed()); let rotation_start = Instant::now(); self.rcx = Some(RenderContext { window, swapchain, render_pass, framebuffers, vs, fs, pipeline, recreate_swapchain: false, previous_frame_end, rotation_start, }); } fn window_event( &mut self, event_loop: &ActiveEventLoop, _window_id: WindowId, event: WindowEvent, ) { let rcx = self.rcx.as_mut().unwrap(); match event { WindowEvent::CloseRequested => { event_loop.exit(); } WindowEvent::Resized(_) => { rcx.recreate_swapchain = true; } WindowEvent::RedrawRequested => { let window_size = rcx.window.inner_size(); if window_size.width == 0 || window_size.height == 0 { return; } rcx.previous_frame_end.as_mut().unwrap().cleanup_finished(); if rcx.recreate_swapchain { let (new_swapchain, new_images) = rcx .swapchain .recreate(SwapchainCreateInfo { image_extent: window_size.into(), ..rcx.swapchain.create_info() }) .expect("failed to recreate swapchain"); rcx.swapchain = new_swapchain; (rcx.framebuffers, rcx.pipeline) = window_size_dependent_setup( window_size, &new_images, &rcx.render_pass, &self.memory_allocator, &rcx.vs, &rcx.fs, ); rcx.recreate_swapchain = false; } let uniform_buffer = { let elapsed = rcx.rotation_start.elapsed(); let rotation = elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0; let rotation = Mat3::from_rotation_y(rotation as f32); // NOTE: This teapot was meant for OpenGL where the origin is at the lower left // instead the origin is at the upper left in Vulkan, so we reverse the Y axis. let aspect_ratio = rcx.swapchain.image_extent()[0] as f32 / rcx.swapchain.image_extent()[1] as f32; let proj = Mat4::perspective_rh_gl( std::f32::consts::FRAC_PI_2, aspect_ratio, 0.01, 100.0, ); let view = Mat4::look_at_rh( Vec3::new(0.3, 0.3, 1.0), Vec3::new(0.0, 0.0, 0.0), Vec3::new(0.0, -1.0, 0.0), ); let scale = Mat4::from_scale(Vec3::splat(0.01)); let uniform_data = vs::Data { world: Mat4::from_mat3(rotation).to_cols_array_2d(), view: (view * scale).to_cols_array_2d(), proj: proj.to_cols_array_2d(), }; let buffer = self.uniform_buffer_allocator.allocate_sized().unwrap(); *buffer.write().unwrap() = uniform_data; buffer }; let layout = &rcx.pipeline.layout().set_layouts()[0]; let descriptor_set = DescriptorSet::new( self.descriptor_set_allocator.clone(), layout.clone(), [WriteDescriptorSet::buffer(0, uniform_buffer)], [], ) .unwrap(); let (image_index, suboptimal, acquire_future) = match acquire_next_image( rcx.swapchain.clone(), None, ) .map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { rcx.recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { rcx.recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( self.command_buffer_allocator.clone(), self.queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![ Some([0.0, 0.0, 1.0, 1.0].into()), Some(1f32.into()), ], ..RenderPassBeginInfo::framebuffer( rcx.framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .bind_pipeline_graphics(rcx.pipeline.clone()) .unwrap() .bind_descriptor_sets( PipelineBindPoint::Graphics, rcx.pipeline.layout().clone(), 0, descriptor_set, ) .unwrap() .bind_vertex_buffers( 0, (self.vertex_buffer.clone(), self.normals_buffer.clone()), ) .unwrap() .bind_index_buffer(self.index_buffer.clone()) .unwrap(); unsafe { builder.draw_indexed(self.index_buffer.len() as u32, 1, 0, 0, 0) } .unwrap(); builder.end_render_pass(Default::default()).unwrap(); let command_buffer = builder.build().unwrap(); let future = rcx .previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(self.queue.clone(), command_buffer) .unwrap() .then_swapchain_present( self.queue.clone(), SwapchainPresentInfo::swapchain_image_index( rcx.swapchain.clone(), image_index, ), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { rcx.previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { rcx.recreate_swapchain = true; rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); rcx.previous_frame_end = Some(sync::now(self.device.clone()).boxed()); } } } _ => {} } } fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) { let rcx = self.rcx.as_mut().unwrap(); rcx.window.request_redraw(); } } /// This function is called once during initialization, then again whenever the window is resized. fn window_size_dependent_setup( window_size: PhysicalSize, images: &[Arc], render_pass: &Arc, memory_allocator: &Arc, vs: &EntryPoint, fs: &EntryPoint, ) -> (Vec>, Arc) { let device = memory_allocator.device(); let depth_buffer = ImageView::new_default( Image::new( memory_allocator.clone(), ImageCreateInfo { image_type: ImageType::Dim2d, format: Format::D16_UNORM, extent: images[0].extent(), usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT, ..Default::default() }, AllocationCreateInfo::default(), ) .unwrap(), ) .unwrap(); let framebuffers = images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view, depth_buffer.clone()], ..Default::default() }, ) .unwrap() }) .collect::>(); // In the triangle example we use a dynamic viewport, as its a simple example. However in the // teapot example, we recreate the pipelines with a hardcoded viewport instead. This allows the // driver to optimize things, at the cost of slower window resizes. // https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport let pipeline = { let vertex_input_state = [Position::per_vertex(), Normal::per_vertex()] .definition(vs) .unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs.clone()), PipelineShaderStageCreateInfo::new(fs.clone()), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass.clone(), 0).unwrap(); GraphicsPipeline::new( device.clone(), None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState::default()), viewport_state: Some(ViewportState { viewports: [Viewport { offset: [0.0, 0.0], extent: window_size.into(), depth_range: 0.0..=1.0, }] .into_iter() .collect(), ..Default::default() }), rasterization_state: Some(RasterizationState::default()), depth_stencil_state: Some(DepthStencilState { depth: Some(DepthState::simple()), ..Default::default() }), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; (framebuffers, pipeline) } mod vs { vulkano_shaders::shader! { ty: "vertex", path: "vert.glsl", } } mod fs { vulkano_shaders::shader! { ty: "fragment", path: "frag.glsl", } }