use self::model::{Normal, Position, INDICES, NORMALS, POSITIONS}; use glam::{ f32::{Mat3, Vec3}, Mat4, }; use std::{error::Error, sync::Arc, time::Instant}; use vulkano::{ buffer::{ allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo}, Buffer, BufferCreateInfo, BufferUsage, }, command_buffer::{ allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel, CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, DescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceOwned, QueueCreateInfo, QueueFlags, }, format::Format, image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage}, instance::{Instance, InstanceCreateFlags, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator}, pipeline::{ graphics::{ color_blend::{ColorBlendAttachmentState, ColorBlendState}, depth_stencil::{DepthState, DepthStencilState}, input_assembly::InputAssemblyState, multisample::MultisampleState, rasterization::RasterizationState, vertex_input::{Vertex, VertexDefinition}, viewport::{Viewport, ViewportState}, GraphicsPipelineCreateInfo, }, layout::PipelineDescriptorSetLayoutCreateInfo, GraphicsPipeline, Pipeline, PipelineBindPoint, PipelineLayout, PipelineShaderStageCreateInfo, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, shader::EntryPoint, swapchain::{ acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo, }, sync::{self, GpuFuture}, Validated, VulkanError, VulkanLibrary, }; use winit::{ event::{Event, WindowEvent}, event_loop::EventLoop, window::WindowBuilder, }; mod model; fn main() -> Result<(), impl Error> { // The start of this example is exactly the same as `triangle`. You should read the `triangle` // example if you haven't done so yet. let event_loop = EventLoop::new().unwrap(); let library = VulkanLibrary::new().unwrap(); let required_extensions = Surface::required_extensions(&event_loop).unwrap(); let instance = Instance::new( library, InstanceCreateInfo { flags: InstanceCreateFlags::ENUMERATE_PORTABILITY, enabled_extensions: required_extensions, ..Default::default() }, ) .unwrap(); let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap()); let surface = Surface::from_window(instance.clone(), window.clone()).unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0; Swapchain::new( device.clone(), surface, SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count.max(2), image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let vertex_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, POSITIONS, ) .unwrap(); let normals_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, NORMALS, ) .unwrap(); let index_buffer = Buffer::from_iter( memory_allocator.clone(), BufferCreateInfo { usage: BufferUsage::INDEX_BUFFER, ..Default::default() }, AllocationCreateInfo { memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, INDICES, ) .unwrap(); let uniform_buffer = SubbufferAllocator::new( memory_allocator.clone(), SubbufferAllocatorCreateInfo { buffer_usage: BufferUsage::UNIFORM_BUFFER, memory_type_filter: MemoryTypeFilter::PREFER_DEVICE | MemoryTypeFilter::HOST_SEQUENTIAL_WRITE, ..Default::default() }, ); let render_pass = vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { format: swapchain.image_format(), samples: 1, load_op: Clear, store_op: Store, }, depth_stencil: { format: Format::D16_UNORM, samples: 1, load_op: Clear, store_op: DontCare, }, }, pass: { color: [color], depth_stencil: {depth_stencil}, }, ) .unwrap(); let vs = vs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let fs = fs::load(device.clone()) .unwrap() .entry_point("main") .unwrap(); let (mut pipeline, mut framebuffers) = window_size_dependent_setup( memory_allocator.clone(), vs.clone(), fs.clone(), &images, render_pass.clone(), ); let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); let rotation_start = Instant::now(); let descriptor_set_allocator = Arc::new(StandardDescriptorSetAllocator::new( device.clone(), Default::default(), )); let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new( device.clone(), Default::default(), )); event_loop.run(move |event, elwt| { match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { elwt.exit(); } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::WindowEvent { event: WindowEvent::RedrawRequested, .. } => { let image_extent: [u32; 2] = window.inner_size().into(); if image_extent.contains(&0) { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = swapchain .recreate(SwapchainCreateInfo { image_extent, ..swapchain.create_info() }) .expect("failed to recreate swapchain"); swapchain = new_swapchain; let (new_pipeline, new_framebuffers) = window_size_dependent_setup( memory_allocator.clone(), vs.clone(), fs.clone(), &new_images, render_pass.clone(), ); pipeline = new_pipeline; framebuffers = new_framebuffers; recreate_swapchain = false; } let uniform_buffer_subbuffer = { let elapsed = rotation_start.elapsed(); let rotation = elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0; let rotation = Mat3::from_rotation_y(rotation as f32); // NOTE: This teapot was meant for OpenGL where the origin is at the lower left // instead the origin is at the upper left in Vulkan, so we reverse the Y axis. let aspect_ratio = swapchain.image_extent()[0] as f32 / swapchain.image_extent()[1] as f32; let proj = Mat4::perspective_rh_gl( std::f32::consts::FRAC_PI_2, aspect_ratio, 0.01, 100.0, ); let view = Mat4::look_at_rh( Vec3::new(0.3, 0.3, 1.0), Vec3::new(0.0, 0.0, 0.0), Vec3::new(0.0, -1.0, 0.0), ); let scale = Mat4::from_scale(Vec3::splat(0.01)); let uniform_data = vs::Data { world: Mat4::from_mat3(rotation).to_cols_array_2d(), view: (view * scale).to_cols_array_2d(), proj: proj.to_cols_array_2d(), }; let subbuffer = uniform_buffer.allocate_sized().unwrap(); *subbuffer.write().unwrap() = uniform_data; subbuffer }; let layout = &pipeline.layout().set_layouts()[0]; let set = DescriptorSet::new( descriptor_set_allocator.clone(), layout.clone(), [WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)], [], ) .unwrap(); let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) { Ok(r) => r, Err(VulkanError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { recreate_swapchain = true; } let mut builder = RecordingCommandBuffer::new( command_buffer_allocator.clone(), queue.queue_family_index(), CommandBufferLevel::Primary, CommandBufferBeginInfo { usage: CommandBufferUsage::OneTimeSubmit, ..Default::default() }, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![ Some([0.0, 0.0, 1.0, 1.0].into()), Some(1f32.into()), ], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, Default::default(), ) .unwrap() .bind_pipeline_graphics(pipeline.clone()) .unwrap() .bind_descriptor_sets( PipelineBindPoint::Graphics, pipeline.layout().clone(), 0, set, ) .unwrap() .bind_vertex_buffers(0, (vertex_buffer.clone(), normals_buffer.clone())) .unwrap() .bind_index_buffer(index_buffer.clone()) .unwrap(); unsafe { builder .draw_indexed(index_buffer.len() as u32, 1, 0, 0, 0) .unwrap(); } builder.end_render_pass(Default::default()).unwrap(); let command_buffer = builder.end().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future.map_err(Validated::unwrap) { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(VulkanError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } Event::AboutToWait => window.request_redraw(), _ => (), } }) } /// This function is called once during initialization, then again whenever the window is resized. fn window_size_dependent_setup( memory_allocator: Arc, vs: EntryPoint, fs: EntryPoint, images: &[Arc], render_pass: Arc, ) -> (Arc, Vec>) { let device = memory_allocator.device().clone(); let extent = images[0].extent(); let depth_buffer = ImageView::new_default( Image::new( memory_allocator, ImageCreateInfo { image_type: ImageType::Dim2d, format: Format::D16_UNORM, extent: images[0].extent(), usage: ImageUsage::DEPTH_STENCIL_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT, ..Default::default() }, AllocationCreateInfo::default(), ) .unwrap(), ) .unwrap(); let framebuffers = images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view, depth_buffer.clone()], ..Default::default() }, ) .unwrap() }) .collect::>(); // In the triangle example we use a dynamic viewport, as its a simple example. However in the // teapot example, we recreate the pipelines with a hardcoded viewport instead. This allows the // driver to optimize things, at the cost of slower window resizes. // https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport let pipeline = { let vertex_input_state = [Position::per_vertex(), Normal::per_vertex()] .definition(&vs.info().input_interface) .unwrap(); let stages = [ PipelineShaderStageCreateInfo::new(vs), PipelineShaderStageCreateInfo::new(fs), ]; let layout = PipelineLayout::new( device.clone(), PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages) .into_pipeline_layout_create_info(device.clone()) .unwrap(), ) .unwrap(); let subpass = Subpass::from(render_pass, 0).unwrap(); GraphicsPipeline::new( device, None, GraphicsPipelineCreateInfo { stages: stages.into_iter().collect(), vertex_input_state: Some(vertex_input_state), input_assembly_state: Some(InputAssemblyState::default()), viewport_state: Some(ViewportState { viewports: [Viewport { offset: [0.0, 0.0], extent: [extent[0] as f32, extent[1] as f32], depth_range: 0.0..=1.0, }] .into_iter() .collect(), ..Default::default() }), rasterization_state: Some(RasterizationState::default()), depth_stencil_state: Some(DepthStencilState { depth: Some(DepthState::simple()), ..Default::default() }), multisample_state: Some(MultisampleState::default()), color_blend_state: Some(ColorBlendState::with_attachment_states( subpass.num_color_attachments(), ColorBlendAttachmentState::default(), )), subpass: Some(subpass.into()), ..GraphicsPipelineCreateInfo::layout(layout) }, ) .unwrap() }; (pipeline, framebuffers) } mod vs { vulkano_shaders::shader! { ty: "vertex", path: "vert.glsl", } } mod fs { vulkano_shaders::shader! { ty: "fragment", path: "frag.glsl", } }