Merge MappedDeviceMemory into DeviceMemory, make MemoryAlloc reuse the logic (#2300)

* Merge `MappedDeviceMemory` into `DeviceMemory`

* Fix soundness and utilize new `DeviceMemory` methods in `MemoryAlloc`

* Fix oopsies

* `Sync`ness

* `#[inline]`

* Big oopsie

* Language

* Sanity check for the deprecated stuff

* Full `khr_map_memory2`

* Missed trait impls

* `MemoryUnmapInfo::validate`

* Document mapping behavior of `GenericMemoryAllocator`

* Validate flags

* Update vulkano/src/memory/allocator/mod.rs

Co-authored-by: Rua <ruawhitepaw@gmail.com>

* Remove flags

* Errors

---------

Co-authored-by: Rua <ruawhitepaw@gmail.com>
This commit is contained in:
marc0246 2023-08-24 16:46:38 +02:00 committed by GitHub
parent 015c057fa1
commit de7b6a91a0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 951 additions and 410 deletions

View File

@ -159,7 +159,7 @@ mod linux {
let image = Arc::new( let image = Arc::new(
raw_image raw_image
.bind_memory([MemoryAlloc::new(image_memory).unwrap()]) .bind_memory([MemoryAlloc::new(image_memory)])
.map_err(|(err, _, _)| err) .map_err(|(err, _, _)| err)
.unwrap(), .unwrap(),
); );

View File

@ -73,7 +73,7 @@ pub fn derive_buffer_contents(mut ast: DeriveInput) -> Result<TokenStream> {
const LAYOUT: ::#crate_ident::buffer::BufferContentsLayout = #layout; const LAYOUT: ::#crate_ident::buffer::BufferContentsLayout = #layout;
#[inline(always)] #[inline(always)]
unsafe fn from_ffi(data: *mut ::std::ffi::c_void, range: usize) -> *mut Self { unsafe fn ptr_from_slice(slice: ::std::ptr::NonNull<[u8]>) -> *mut Self {
#[repr(C)] #[repr(C)]
union PtrRepr<T: ?Sized> { union PtrRepr<T: ?Sized> {
components: PtrComponents, components: PtrComponents,
@ -83,14 +83,11 @@ pub fn derive_buffer_contents(mut ast: DeriveInput) -> Result<TokenStream> {
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
#[repr(C)] #[repr(C)]
struct PtrComponents { struct PtrComponents {
data: *mut ::std::ffi::c_void, data: *mut u8,
len: usize, len: usize,
} }
let alignment = <Self as ::#crate_ident::buffer::BufferContents>::LAYOUT let data = <*mut [u8]>::cast::<u8>(slice.as_ptr());
.alignment()
.as_devicesize() as usize;
::std::debug_assert!(data as usize % alignment == 0);
let head_size = <Self as ::#crate_ident::buffer::BufferContents>::LAYOUT let head_size = <Self as ::#crate_ident::buffer::BufferContents>::LAYOUT
.head_size() as usize; .head_size() as usize;
@ -98,8 +95,8 @@ pub fn derive_buffer_contents(mut ast: DeriveInput) -> Result<TokenStream> {
.element_size() .element_size()
.unwrap_or(1) as usize; .unwrap_or(1) as usize;
::std::debug_assert!(range >= head_size); ::std::debug_assert!(slice.len() >= head_size);
let tail_size = range - head_size; let tail_size = slice.len() - head_size;
::std::debug_assert!(tail_size % element_size == 0); ::std::debug_assert!(tail_size % element_size == 0);
let len = tail_size / element_size; let len = tail_size / element_size;

View File

@ -16,7 +16,7 @@ use crate::{
memory::{ memory::{
self, self,
allocator::{align_down, align_up, DeviceLayout}, allocator::{align_down, align_up, DeviceLayout},
is_aligned, DeviceAlignment, is_aligned, DeviceAlignment, MappedMemoryRange,
}, },
sync::HostAccessError, sync::HostAccessError,
DeviceSize, NonZeroDeviceSize, ValidationError, DeviceSize, NonZeroDeviceSize, ValidationError,
@ -25,7 +25,6 @@ use bytemuck::AnyBitPattern;
use std::{ use std::{
alloc::Layout, alloc::Layout,
cmp, cmp,
ffi::c_void,
hash::{Hash, Hasher}, hash::{Hash, Hasher},
marker::PhantomData, marker::PhantomData,
mem::{self, align_of, size_of}, mem::{self, align_of, size_of},
@ -119,16 +118,23 @@ impl<T: ?Sized> Subbuffer<T> {
} }
} }
/// Returns the mapped pointer to the start of the subbuffer if the memory is host-visible, /// Returns the mapped pointer to the range of memory of `self`.
/// otherwise returns [`None`]. ///
pub fn mapped_ptr(&self) -> Option<NonNull<c_void>> { /// The subbuffer must fall within the range of the memory mapping given to
/// [`DeviceMemory::map`].
///
/// See [`MappingState::slice`] for the safety invariants of the returned pointer.
///
/// [`DeviceMemory::map`]: crate::memory::DeviceMemory::map
/// [`MappingState::slice`]: crate::memory::MappingState::slice
pub fn mapped_slice(&self) -> Result<NonNull<[u8]>, HostAccessError> {
match self.buffer().memory() { match self.buffer().memory() {
BufferMemory::Normal(a) => a.mapped_ptr().map(|ptr| { BufferMemory::Normal(a) => {
// SAFETY: The original address came from the Vulkan implementation, and allocation let opt = a.mapped_slice(self.range());
// sizes are guaranteed to not exceed `isize::MAX` when there's a mapped pointer,
// so the offset better be in range. // SAFETY: `self.range()` is in bounds of the allocation.
unsafe { NonNull::new_unchecked(ptr.as_ptr().add(self.offset as usize)) } unsafe { opt.unwrap_unchecked() }
}), }
BufferMemory::Sparse => unreachable!(), BufferMemory::Sparse => unreachable!(),
} }
} }
@ -327,27 +333,33 @@ where
.map_err(HostAccessError::AccessConflict)?; .map_err(HostAccessError::AccessConflict)?;
unsafe { state.cpu_read_lock(range.clone()) }; unsafe { state.cpu_read_lock(range.clone()) };
let mapped_slice = self.mapped_slice()?;
if allocation.atom_size().is_some() { if allocation.atom_size().is_some() {
// If there are other read locks being held at this point, they also called let memory_range = MappedMemoryRange {
// `invalidate_range` when locking. The GPU can't write data while the CPU holds a read offset: range.start,
// lock, so there will be no new data and this call will do nothing. size: range.end - range.start,
// TODO: probably still more efficient to call it only if we're the first to acquire a _ne: crate::NonExhaustive(()),
// read lock, but the number of CPU locks isn't currently tracked anywhere.
unsafe {
allocation
.invalidate_range(range.clone())
.map_err(HostAccessError::Invalidate)?
}; };
// If there are other read locks being held at this point, they also called
// `invalidate_range_unchecked` when locking. The device can't write data while the
// host holds a read lock, so there will be no new data and this call will do nothing.
// TODO: probably still more efficient to call it only if we're the first to acquire a
// read lock, but the number of host locks isn't currently tracked anywhere.
//
// SAFETY:
// - `self.mapped_slice()` didn't return an error, which means that the subbuffer falls
// within the mapped range of the memory.
// - We ensure that memory mappings are always aligned to the non-coherent atom size
// for non-host-coherent memory, therefore the subbuffer's range aligned to the
// non-coherent atom size must fall within the mapped range of the memory.
unsafe { allocation.invalidate_range_unchecked(memory_range) }
.map_err(HostAccessError::Invalidate)?;
} }
let mapped_ptr = self.mapped_ptr().ok_or_else(|| {
HostAccessError::ValidationError(Box::new(ValidationError {
problem: "the memory of this subbuffer is not host-visible".into(),
..Default::default()
}))
})?;
// SAFETY: `Subbuffer` guarantees that its contents are laid out correctly for `T`. // SAFETY: `Subbuffer` guarantees that its contents are laid out correctly for `T`.
let data = unsafe { &*T::from_ffi(mapped_ptr.as_ptr(), self.size as usize) }; let data = unsafe { &*T::ptr_from_slice(mapped_slice) };
Ok(BufferReadGuard { Ok(BufferReadGuard {
subbuffer: self, subbuffer: self,
@ -407,22 +419,27 @@ where
.map_err(HostAccessError::AccessConflict)?; .map_err(HostAccessError::AccessConflict)?;
unsafe { state.cpu_write_lock(range.clone()) }; unsafe { state.cpu_write_lock(range.clone()) };
let mapped_slice = self.mapped_slice()?;
if allocation.atom_size().is_some() { if allocation.atom_size().is_some() {
unsafe { let memory_range = MappedMemoryRange {
allocation offset: range.start,
.invalidate_range(range.clone()) size: range.end - range.start,
.map_err(HostAccessError::Invalidate)? _ne: crate::NonExhaustive(()),
}; };
// SAFETY:
// - `self.mapped_slice()` didn't return an error, which means that the subbuffer falls
// within the mapped range of the memory.
// - We ensure that memory mappings are always aligned to the non-coherent atom size
// for non-host-coherent memory, therefore the subbuffer's range aligned to the
// non-coherent atom size must fall within the mapped range of the memory.
unsafe { allocation.invalidate_range_unchecked(memory_range) }
.map_err(HostAccessError::Invalidate)?;
} }
let mapped_ptr = self.mapped_ptr().ok_or_else(|| {
HostAccessError::ValidationError(Box::new(ValidationError {
problem: "the memory of this subbuffer is not host-visible".into(),
..Default::default()
}))
})?;
// SAFETY: `Subbuffer` guarantees that its contents are laid out correctly for `T`. // SAFETY: `Subbuffer` guarantees that its contents are laid out correctly for `T`.
let data = unsafe { &mut *T::from_ffi(mapped_ptr.as_ptr(), self.size as usize) }; let data = unsafe { &mut *T::ptr_from_slice(mapped_slice) };
Ok(BufferWriteGuard { Ok(BufferWriteGuard {
subbuffer: self, subbuffer: self,
@ -661,7 +678,13 @@ impl<T: ?Sized> Drop for BufferWriteGuard<'_, T> {
}; };
if allocation.atom_size().is_some() && !thread::panicking() { if allocation.atom_size().is_some() && !thread::panicking() {
unsafe { allocation.flush_range(self.range.clone()).unwrap() }; let memory_range = MappedMemoryRange {
offset: self.range.start,
size: self.range.end - self.range.start,
_ne: crate::NonExhaustive(()),
};
unsafe { allocation.flush_range_unchecked(memory_range).unwrap() };
} }
let mut state = self.subbuffer.buffer().state(); let mut state = self.subbuffer.buffer().state();
@ -777,24 +800,24 @@ impl<T: ?Sized> DerefMut for BufferWriteGuard<'_, T> {
// - `LAYOUT` must be the correct layout for the type, which also means the type must either be // - `LAYOUT` must be the correct layout for the type, which also means the type must either be
// sized or if it's unsized then its metadata must be the same as that of a slice. Implementing // sized or if it's unsized then its metadata must be the same as that of a slice. Implementing
// `BufferContents` for any other kind of DST is instantaneous horrifically undefined behavior. // `BufferContents` for any other kind of DST is instantaneous horrifically undefined behavior.
// - `from_ffi` must create a pointer with the same address as the `data` parameter that is passed // - `ptr_from_slice` must create a pointer with the same address as the `slice` parameter that is
// in. The pointer is expected to be aligned properly already. // passed in. The pointer is expected to be aligned properly already.
// - `from_ffi` must create a pointer that is expected to be valid for reads (and potentially // - `ptr_from_slice` must create a pointer that is expected to be valid for reads (and potentially
// writes) for exactly `range` bytes. The `data` and `range` are expected to be valid for the // writes) for exactly `slice.len()` bytes. The `slice.len()` is expected to be valid for the
// `LAYOUT`. // `LAYOUT`.
pub unsafe trait BufferContents: Send + Sync + 'static { pub unsafe trait BufferContents: Send + Sync + 'static {
/// The layout of the contents. /// The layout of the contents.
const LAYOUT: BufferContentsLayout; const LAYOUT: BufferContentsLayout;
/// Creates a pointer to `Self` from a pointer to the start of the data and a range in bytes. /// Creates a pointer to `Self` from a pointer to a range of mapped memory.
/// ///
/// # Safety /// # Safety
/// ///
/// - If `Self` is sized, then `range` must match the size exactly. /// - If `Self` is sized, then `slice.len()` must match the size exactly.
/// - If `Self` is unsized, then the `range` minus the size of the head (sized part) of the DST /// - If `Self` is unsized, then `slice.len()` minus the size of the head (sized part) of the
/// must be evenly divisible by the size of the element type. /// DST must be evenly divisible by the size of the element type.
#[doc(hidden)] #[doc(hidden)]
unsafe fn from_ffi(data: *mut c_void, range: usize) -> *mut Self; unsafe fn ptr_from_slice(slice: NonNull<[u8]>) -> *mut Self;
} }
unsafe impl<T> BufferContents for T unsafe impl<T> BufferContents for T
@ -809,11 +832,10 @@ where
}; };
#[inline(always)] #[inline(always)]
unsafe fn from_ffi(data: *mut c_void, range: usize) -> *mut Self { unsafe fn ptr_from_slice(slice: NonNull<[u8]>) -> *mut Self {
debug_assert!(range == size_of::<T>()); debug_assert!(slice.len() == size_of::<T>());
debug_assert!(data as usize % align_of::<T>() == 0);
data.cast() <*mut [u8]>::cast::<T>(slice.as_ptr())
} }
} }
@ -827,12 +849,12 @@ where
}); });
#[inline(always)] #[inline(always)]
unsafe fn from_ffi(data: *mut c_void, range: usize) -> *mut Self { unsafe fn ptr_from_slice(slice: NonNull<[u8]>) -> *mut Self {
debug_assert!(range % size_of::<T>() == 0); let data = <*mut [u8]>::cast::<T>(slice.as_ptr());
debug_assert!(data as usize % align_of::<T>() == 0); let len = slice.len() / size_of::<T>();
let len = range / size_of::<T>(); debug_assert!(slice.len() % size_of::<T>() == 0);
ptr::slice_from_raw_parts_mut(data.cast(), len) ptr::slice_from_raw_parts_mut(data, len)
} }
} }

View File

@ -229,7 +229,7 @@ pub use self::{
}; };
use super::{ use super::{
DedicatedAllocation, DeviceAlignment, DeviceMemory, ExternalMemoryHandleTypes, DedicatedAllocation, DeviceAlignment, DeviceMemory, ExternalMemoryHandleTypes,
MemoryAllocateFlags, MemoryAllocateInfo, MemoryProperties, MemoryPropertyFlags, MemoryAllocateFlags, MemoryAllocateInfo, MemoryMapInfo, MemoryProperties, MemoryPropertyFlags,
MemoryRequirements, MemoryType, MemoryRequirements, MemoryType,
}; };
use crate::{ use crate::{
@ -381,7 +381,7 @@ pub unsafe trait MemoryAllocator: DeviceOwned {
allocation_size: DeviceSize, allocation_size: DeviceSize,
dedicated_allocation: Option<DedicatedAllocation<'_>>, dedicated_allocation: Option<DedicatedAllocation<'_>>,
export_handle_types: ExternalMemoryHandleTypes, export_handle_types: ExternalMemoryHandleTypes,
) -> Result<MemoryAlloc, MemoryAllocatorError>; ) -> Result<MemoryAlloc, VulkanError>;
} }
/// Describes what memory property flags are required, preferred and not preferred when picking a /// Describes what memory property flags are required, preferred and not preferred when picking a
@ -812,6 +812,13 @@ impl StandardMemoryAllocator {
/// ///
/// See also [the `MemoryAllocator` implementation]. /// See also [the `MemoryAllocator` implementation].
/// ///
/// # Mapping behavior
///
/// Every time a new `DeviceMemory` block is allocated, it is mapped in full automatically as long
/// as it resides in host-visible memory. It remains mapped until it is dropped, which only happens
/// if the allocator is dropped. In other words, all eligible blocks are persistently mapped, so
/// you don't need to worry about whether or not your host-visible allocations are host-accessible.
///
/// # `DeviceMemory` allocation /// # `DeviceMemory` allocation
/// ///
/// If an allocation is created with the [`MemoryAllocatePreference::Unknown`] option, and the /// If an allocation is created with the [`MemoryAllocatePreference::Unknown`] option, and the
@ -1176,7 +1183,7 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
.property_flags .property_flags
.contains(ash::vk::MemoryPropertyFlags::LAZILY_ALLOCATED) .contains(ash::vk::MemoryPropertyFlags::LAZILY_ALLOCATED)
{ {
return unsafe { let allocation = unsafe {
self.allocate_dedicated_unchecked( self.allocate_dedicated_unchecked(
memory_type_index, memory_type_index,
create_info.layout.size(), create_info.layout.size(),
@ -1187,7 +1194,9 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
ExternalMemoryHandleTypes::empty() ExternalMemoryHandleTypes::empty()
}, },
) )
}; }?;
return Ok(allocation);
} }
unsafe { self.allocate_from_type_unchecked(memory_type_index, create_info, false) } unsafe { self.allocate_from_type_unchecked(memory_type_index, create_info, false) }
@ -1305,17 +1314,16 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
let mut i = 0; let mut i = 0;
loop { loop {
let allocate_info = MemoryAllocateInfo { let allocation_size = block_size >> i;
allocation_size: block_size >> i,
match self.allocate_dedicated_unchecked(
memory_type_index, memory_type_index,
allocation_size,
None,
export_handle_types, export_handle_types,
dedicated_allocation: None, ) {
flags: self.flags, Ok(allocation) => {
..Default::default() break S::new(allocation);
};
match DeviceMemory::allocate_unchecked(self.device.clone(), allocate_info, None) {
Ok(device_memory) => {
break S::new(MemoryAlloc::new(device_memory)?);
} }
// Retry up to 3 times, halving the allocation size each time. // Retry up to 3 times, halving the allocation size each time.
Err(VulkanError::OutOfHostMemory | VulkanError::OutOfDeviceMemory) if i < 3 => { Err(VulkanError::OutOfHostMemory | VulkanError::OutOfDeviceMemory) if i < 3 => {
@ -1459,6 +1467,7 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
dedicated_allocation, dedicated_allocation,
export_handle_types, export_handle_types,
) )
.map_err(MemoryAllocatorError::VulkanError)
} else { } else {
if size > block_size / 2 { if size > block_size / 2 {
prefers_dedicated_allocation = true; prefers_dedicated_allocation = true;
@ -1476,6 +1485,7 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
dedicated_allocation, dedicated_allocation,
export_handle_types, export_handle_types,
) )
.map_err(MemoryAllocatorError::VulkanError)
// Fall back to suballocation. // Fall back to suballocation.
.or_else(|err| { .or_else(|err| {
if size <= block_size { if size <= block_size {
@ -1504,6 +1514,7 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
dedicated_allocation, dedicated_allocation,
export_handle_types, export_handle_types,
) )
.map_err(MemoryAllocatorError::VulkanError)
}) })
} }
} }
@ -1515,12 +1526,14 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
self.allocate_from_type_unchecked(memory_type_index, create_info.clone(), true) self.allocate_from_type_unchecked(memory_type_index, create_info.clone(), true)
} }
MemoryAllocatePreference::AlwaysAllocate => self.allocate_dedicated_unchecked( MemoryAllocatePreference::AlwaysAllocate => self
memory_type_index, .allocate_dedicated_unchecked(
size, memory_type_index,
dedicated_allocation, size,
export_handle_types, dedicated_allocation,
), export_handle_types,
)
.map_err(MemoryAllocatorError::VulkanError),
}; };
match res { match res {
@ -1546,20 +1559,40 @@ unsafe impl<S: Suballocator> MemoryAllocator for GenericMemoryAllocator<S> {
allocation_size: DeviceSize, allocation_size: DeviceSize,
dedicated_allocation: Option<DedicatedAllocation<'_>>, dedicated_allocation: Option<DedicatedAllocation<'_>>,
export_handle_types: ExternalMemoryHandleTypes, export_handle_types: ExternalMemoryHandleTypes,
) -> Result<MemoryAlloc, MemoryAllocatorError> { ) -> Result<MemoryAlloc, VulkanError> {
let allocate_info = MemoryAllocateInfo { // SAFETY: The caller must uphold the safety contract.
allocation_size, let mut memory = DeviceMemory::allocate_unchecked(
memory_type_index,
dedicated_allocation,
export_handle_types,
flags: self.flags,
..Default::default()
};
let mut allocation = MemoryAlloc::new(DeviceMemory::allocate_unchecked(
self.device.clone(), self.device.clone(),
allocate_info, MemoryAllocateInfo {
allocation_size,
memory_type_index,
dedicated_allocation,
export_handle_types,
flags: self.flags,
..Default::default()
},
None, None,
)?)?; )?;
if self.pools[memory_type_index as usize]
.memory_type
.property_flags
.intersects(ash::vk::MemoryPropertyFlags::HOST_VISIBLE)
{
// SAFETY:
// - We checked that the memory is host-visible.
// - The memory can't be mapped already, because we just allocated it.
// - Mapping the whole range is always valid.
memory.map_unchecked(MemoryMapInfo {
offset: 0,
size: memory.allocation_size(),
_ne: crate::NonExhaustive(()),
})?;
}
let mut allocation = MemoryAlloc::new(memory);
// SAFETY: The memory is freshly allocated.
allocation.set_allocation_type(self.allocation_type); allocation.set_allocation_type(self.allocation_type);
Ok(allocation) Ok(allocation)
@ -1628,7 +1661,7 @@ unsafe impl<T: MemoryAllocator> MemoryAllocator for Arc<T> {
allocation_size: DeviceSize, allocation_size: DeviceSize,
dedicated_allocation: Option<DedicatedAllocation<'_>>, dedicated_allocation: Option<DedicatedAllocation<'_>>,
export_handle_types: ExternalMemoryHandleTypes, export_handle_types: ExternalMemoryHandleTypes,
) -> Result<MemoryAlloc, MemoryAllocatorError> { ) -> Result<MemoryAlloc, VulkanError> {
(**self).allocate_dedicated_unchecked( (**self).allocate_dedicated_unchecked(
memory_type_index, memory_type_index,
allocation_size, allocation_size,

View File

@ -14,14 +14,13 @@
//! [the parent module]: super //! [the parent module]: super
use self::host::SlotId; use self::host::SlotId;
use super::{ use super::{align_down, align_up, array_vec::ArrayVec, DeviceAlignment, DeviceLayout};
align_down, align_up, array_vec::ArrayVec, DeviceAlignment, DeviceLayout, MemoryAllocatorError,
};
use crate::{ use crate::{
device::{Device, DeviceOwned}, device::{Device, DeviceOwned},
image::ImageTiling, image::ImageTiling,
memory::{is_aligned, DeviceMemory, MemoryPropertyFlags}, memory::{self, is_aligned, DeviceMemory, MappedMemoryRange, MemoryPropertyFlags},
DeviceSize, NonZeroDeviceSize, VulkanError, VulkanObject, sync::HostAccessError,
DeviceSize, NonZeroDeviceSize, Validated, ValidationError, VulkanError,
}; };
use crossbeam_queue::ArrayQueue; use crossbeam_queue::ArrayQueue;
use parking_lot::Mutex; use parking_lot::Mutex;
@ -29,12 +28,10 @@ use std::{
cell::Cell, cell::Cell,
cmp, cmp,
error::Error, error::Error,
ffi::c_void,
fmt::{self, Display}, fmt::{self, Display},
mem::{self, ManuallyDrop, MaybeUninit}, mem::{self, ManuallyDrop},
ops::Range, ops::RangeBounds,
ptr::{self, NonNull}, ptr::{self, NonNull},
slice,
sync::{ sync::{
atomic::{AtomicU64, Ordering}, atomic::{AtomicU64, Ordering},
Arc, Arc,
@ -57,8 +54,6 @@ pub struct MemoryAlloc {
size: DeviceSize, size: DeviceSize,
// Needed when binding resources to the allocation in order to avoid aliasing memory. // Needed when binding resources to the allocation in order to avoid aliasing memory.
allocation_type: AllocationType, allocation_type: AllocationType,
// Mapped pointer to the start of the allocation or `None` is the memory is not host-visible.
mapped_ptr: Option<NonNull<c_void>>,
// Used by the suballocators to align allocations to the non-coherent atom size when the memory // Used by the suballocators to align allocations to the non-coherent atom size when the memory
// type is host-visible but not host-coherent. This will be `None` for any other memory type. // type is host-visible but not host-coherent. This will be `None` for any other memory type.
atom_size: Option<DeviceAlignment>, atom_size: Option<DeviceAlignment>,
@ -86,17 +81,10 @@ enum AllocParent {
Dedicated(DeviceMemory), Dedicated(DeviceMemory),
} }
// It is safe to share `mapped_ptr` between threads because the user would have to use unsafe code
// themself to get UB in the first place.
unsafe impl Send for MemoryAlloc {}
unsafe impl Sync for MemoryAlloc {}
impl MemoryAlloc { impl MemoryAlloc {
/// Creates a new `MemoryAlloc`. /// Creates a new `MemoryAlloc`.
///
/// The memory is mapped automatically if it's host-visible.
#[inline] #[inline]
pub fn new(device_memory: DeviceMemory) -> Result<Self, MemoryAllocatorError> { pub fn new(device_memory: DeviceMemory) -> Self {
// Sanity check: this would lead to UB when suballocating. // Sanity check: this would lead to UB when suballocating.
assert!(device_memory.allocation_size() <= DeviceLayout::MAX_SIZE); assert!(device_memory.allocation_size() <= DeviceLayout::MAX_SIZE);
@ -107,47 +95,21 @@ impl MemoryAlloc {
[memory_type_index as usize] [memory_type_index as usize]
.property_flags; .property_flags;
let mapped_ptr = if property_flags.intersects(MemoryPropertyFlags::HOST_VISIBLE) {
// Sanity check: this would lead to UB when calculating pointer offsets.
assert!(device_memory.allocation_size() <= isize::MAX.try_into().unwrap());
let fns = device.fns();
let mut output = MaybeUninit::uninit();
// This is always valid because we are mapping the whole range.
unsafe {
(fns.v1_0.map_memory)(
device.handle(),
device_memory.handle(),
0,
ash::vk::WHOLE_SIZE,
ash::vk::MemoryMapFlags::empty(),
output.as_mut_ptr(),
)
.result()
.map_err(VulkanError::from)?;
Some(NonNull::new(output.assume_init()).unwrap())
}
} else {
None
};
let atom_size = (property_flags.intersects(MemoryPropertyFlags::HOST_VISIBLE) let atom_size = (property_flags.intersects(MemoryPropertyFlags::HOST_VISIBLE)
&& !property_flags.intersects(MemoryPropertyFlags::HOST_COHERENT)) && !property_flags.intersects(MemoryPropertyFlags::HOST_COHERENT))
.then_some(physical_device.properties().non_coherent_atom_size); .then_some(physical_device.properties().non_coherent_atom_size);
Ok(MemoryAlloc { MemoryAlloc {
offset: 0, offset: 0,
size: device_memory.allocation_size(), size: device_memory.allocation_size(),
allocation_type: AllocationType::Unknown, allocation_type: AllocationType::Unknown,
mapped_ptr,
atom_size, atom_size,
parent: if device_memory.is_dedicated() { parent: if device_memory.is_dedicated() {
AllocParent::Dedicated(device_memory) AllocParent::Dedicated(device_memory)
} else { } else {
AllocParent::Root(Arc::new(device_memory)) AllocParent::Root(Arc::new(device_memory))
}, },
}) }
} }
/// Returns the offset of the allocation within the [`DeviceMemory`] block. /// Returns the offset of the allocation within the [`DeviceMemory`] block.
@ -168,37 +130,31 @@ impl MemoryAlloc {
self.allocation_type self.allocation_type
} }
/// Returns the mapped pointer to the start of the allocation if the memory is host-visible, /// Returns the mapped pointer to a range of the allocation, or returns [`None`] if ouf of
/// otherwise returns [`None`]. /// bounds.
///
/// `range` is specified in bytes relative to the beginning of `self` and must fall within the
/// range of the memory mapping given to [`DeviceMemory::map`].
///
/// See [`MappingState::slice`] for the safety invariants of the returned pointer.
///
/// [`MappingState::slice`]: crate::memory::MappingState::slice
#[inline] #[inline]
pub fn mapped_ptr(&self) -> Option<NonNull<c_void>> { pub fn mapped_slice(
self.mapped_ptr &self,
} range: impl RangeBounds<DeviceSize>,
) -> Option<Result<NonNull<[u8]>, HostAccessError>> {
let mut range = memory::range(range, ..self.size())?;
range.start += self.offset();
range.end += self.offset();
/// Returns a mapped slice to the data within the allocation if the memory is host-visible, let res = if let Some(state) = self.device_memory().mapping_state() {
/// otherwise returns [`None`]. state.slice(range).ok_or(HostAccessError::OutOfMappedRange)
/// } else {
/// # Safety Err(HostAccessError::NotHostMapped)
/// };
/// - While the returned slice exists, there must be no operations pending or executing in a
/// GPU queue that write to the same memory.
#[inline]
pub unsafe fn mapped_slice(&self) -> Option<&[u8]> {
self.mapped_ptr
.map(|ptr| slice::from_raw_parts(ptr.as_ptr().cast(), self.size as usize))
}
/// Returns a mapped mutable slice to the data within the allocation if the memory is Some(res)
/// host-visible, otherwise returns [`None`].
///
/// # Safety
///
/// - While the returned slice exists, there must be no operations pending or executing in a
/// GPU queue that access the same memory.
#[inline]
pub unsafe fn mapped_slice_mut(&mut self) -> Option<&mut [u8]> {
self.mapped_ptr
.map(|ptr| slice::from_raw_parts_mut(ptr.as_ptr().cast(), self.size as usize))
} }
pub(crate) fn atom_size(&self) -> Option<DeviceAlignment> { pub(crate) fn atom_size(&self) -> Option<DeviceAlignment> {
@ -207,142 +163,122 @@ impl MemoryAlloc {
/// Invalidates the host (CPU) cache for a range of the allocation. /// Invalidates the host (CPU) cache for a range of the allocation.
/// ///
/// You must call this method before the memory is read by the host, if the device previously /// If the device memory is not [host-coherent], you must call this function before the memory
/// wrote to the memory. It has no effect if the memory is not mapped or if the memory is /// is read by the host, if the device previously wrote to the memory. It has no effect if the
/// [host-coherent]. /// memory is host-coherent.
///
/// `range` is specified in bytes relative to the start of the allocation. The start and end of
/// `range` must be a multiple of the [`non_coherent_atom_size`] device property, but
/// `range.end` can also equal to `self.size()`.
/// ///
/// # Safety /// # Safety
/// ///
/// - If there are memory writes by the GPU that have not been propagated into the CPU cache, /// - If there are memory writes by the device that have not been propagated into the host
/// then there must not be any references in Rust code to the specified `range` of the memory. /// cache, then there must not be any references in Rust code to any portion of the specified
/// /// `memory_range`.
/// # Panics
///
/// - Panics if `range` is empty.
/// - Panics if `range.end` exceeds `self.size`.
/// - Panics if `range.start` or `range.end` are not a multiple of the `non_coherent_atom_size`.
/// ///
/// [host-coherent]: crate::memory::MemoryPropertyFlags::HOST_COHERENT /// [host-coherent]: crate::memory::MemoryPropertyFlags::HOST_COHERENT
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size /// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
#[inline] #[inline]
pub unsafe fn invalidate_range(&self, range: Range<DeviceSize>) -> Result<(), VulkanError> { pub unsafe fn invalidate_range(
// VUID-VkMappedMemoryRange-memory-00684
if let Some(atom_size) = self.atom_size {
let range = self.create_memory_range(range, atom_size);
let device = self.device();
let fns = device.fns();
(fns.v1_0.invalidate_mapped_memory_ranges)(device.handle(), 1, &range)
.result()
.map_err(VulkanError::from)?;
} else {
self.debug_validate_memory_range(&range);
}
Ok(())
}
/// Flushes the host (CPU) cache for a range of the allocation.
///
/// You must call this method after writing to the memory from the host, if the device is going
/// to read the memory. It has no effect if the memory is not mapped or if the memory is
/// [host-coherent].
///
/// `range` is specified in bytes relative to the start of the allocation. The start and end of
/// `range` must be a multiple of the [`non_coherent_atom_size`] device property, but
/// `range.end` can also equal to `self.size()`.
///
/// # Safety
///
/// - There must be no operations pending or executing in a GPU queue that access the specified
/// `range` of the memory.
///
/// # Panics
///
/// - Panics if `range` is empty.
/// - Panics if `range.end` exceeds `self.size`.
/// - Panics if `range.start` or `range.end` are not a multiple of the `non_coherent_atom_size`.
///
/// [host-coherent]: crate::memory::MemoryPropertyFlags::HOST_COHERENT
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
#[inline]
pub unsafe fn flush_range(&self, range: Range<DeviceSize>) -> Result<(), VulkanError> {
// VUID-VkMappedMemoryRange-memory-00684
if let Some(atom_size) = self.atom_size {
let range = self.create_memory_range(range, atom_size);
let device = self.device();
let fns = device.fns();
(fns.v1_0.flush_mapped_memory_ranges)(device.handle(), 1, &range)
.result()
.map_err(VulkanError::from)?;
} else {
self.debug_validate_memory_range(&range);
}
Ok(())
}
fn create_memory_range(
&self, &self,
range: Range<DeviceSize>, memory_range: MappedMemoryRange,
atom_size: DeviceAlignment, ) -> Result<(), Validated<VulkanError>> {
) -> ash::vk::MappedMemoryRange { self.validate_memory_range(&memory_range)?;
assert!(!range.is_empty() && range.end <= self.size);
// VUID-VkMappedMemoryRange-size-00685 self.device_memory()
// Guaranteed because we always map the entire `DeviceMemory`. .invalidate_range(self.create_memory_range(memory_range))
}
// VUID-VkMappedMemoryRange-offset-00687 #[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
// VUID-VkMappedMemoryRange-size-01390 #[inline]
assert!( pub unsafe fn invalidate_range_unchecked(
is_aligned(range.start, atom_size) &self,
&& (is_aligned(range.end, atom_size) || range.end == self.size) memory_range: MappedMemoryRange,
); ) -> Result<(), VulkanError> {
self.device_memory()
.invalidate_range_unchecked(self.create_memory_range(memory_range))
}
// VUID-VkMappedMemoryRange-offset-00687 /// Flushes the host cache for a range of the allocation.
// Guaranteed as long as `range.start` is aligned because the suballocators always align ///
// `self.offset` to the non-coherent atom size for non-coherent host-visible memory. /// If the device memory is not [host-coherent], you must call this function after writing to
let offset = self.offset + range.start; /// the memory, if the device is going to read the memory. It has no effect if the memory is
/// host-coherent.
///
/// # Safety
///
/// - There must be no operations pending or executing in a device queue, that access the
/// specified `memory_range`.
///
/// [host-coherent]: crate::memory::MemoryPropertyFlags::HOST_COHERENT
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
#[inline]
pub unsafe fn flush_range(
&self,
memory_range: MappedMemoryRange,
) -> Result<(), Validated<VulkanError>> {
self.validate_memory_range(&memory_range)?;
let mut size = range.end - range.start; self.device_memory()
let device_memory = self.device_memory(); .flush_range(self.create_memory_range(memory_range))
}
// VUID-VkMappedMemoryRange-size-01390 #[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
if offset + size < device_memory.allocation_size() { #[inline]
// We align the size in case `range.end == self.size`. We can do this without aliasing pub unsafe fn flush_range_unchecked(
// other allocations because the suballocators ensure that all allocations are aligned &self,
// to the atom size for non-coherent host-visible memory. memory_range: MappedMemoryRange,
size = align_up(size, atom_size); ) -> Result<(), VulkanError> {
} self.device_memory()
.flush_range_unchecked(self.create_memory_range(memory_range))
}
ash::vk::MappedMemoryRange { fn validate_memory_range(
memory: device_memory.handle(), &self,
memory_range: &MappedMemoryRange,
) -> Result<(), Box<ValidationError>> {
let &MappedMemoryRange {
offset, offset,
size, size,
..Default::default() _ne: _,
} = memory_range;
if !(offset <= self.size() && size <= self.size() - offset) {
return Err(Box::new(ValidationError {
context: "memory_range".into(),
problem: "is not contained within the allocation".into(),
..Default::default()
}));
} }
Ok(())
} }
/// This exists because even if no cache control is required, the parameters should still be fn create_memory_range(&self, memory_range: MappedMemoryRange) -> MappedMemoryRange {
/// valid, otherwise you might have bugs in your code forever just because your memory happens let MappedMemoryRange {
/// to be host-coherent. mut offset,
fn debug_validate_memory_range(&self, range: &Range<DeviceSize>) { mut size,
debug_assert!(!range.is_empty() && range.end <= self.size); _ne: _,
} = memory_range;
let atom_size = self let memory = self.device_memory();
.device()
.physical_device() offset += self.offset();
.properties()
.non_coherent_atom_size; // VUID-VkMappedMemoryRange-size-01390
debug_assert!( if memory_range.offset + size == self.size() {
is_aligned(range.start, atom_size) // We can align the end of the range like this without aliasing other allocations,
&& (is_aligned(range.end, atom_size) || range.end == self.size), // because the suballocators ensure that all allocations are aligned to the atom size
"attempted to invalidate or flush a memory range that is not aligned to the \ // for non-host-coherent host-visible memory.
non-coherent atom size", let end = cmp::min(
); align_up(offset + size, memory.atom_size()),
memory.allocation_size(),
);
size = end - offset;
}
MappedMemoryRange {
offset,
size,
_ne: crate::NonExhaustive(()),
}
} }
/// Returns the underlying block of [`DeviceMemory`]. /// Returns the underlying block of [`DeviceMemory`].
@ -490,12 +426,6 @@ impl MemoryAlloc {
/// [`shift`]: Self::shift /// [`shift`]: Self::shift
#[inline] #[inline]
pub unsafe fn set_offset(&mut self, new_offset: DeviceSize) { pub unsafe fn set_offset(&mut self, new_offset: DeviceSize) {
if let Some(ptr) = self.mapped_ptr.as_mut() {
*ptr = NonNull::new_unchecked(
ptr.as_ptr()
.offset(new_offset as isize - self.offset as isize),
);
}
self.offset = new_offset; self.offset = new_offset;
} }
@ -642,8 +572,7 @@ unsafe impl DeviceOwned for MemoryAlloc {
/// }, /// },
/// ) /// )
/// .unwrap(), /// .unwrap(),
/// ) /// );
/// .unwrap();
/// ///
/// // You can now feed `region` into any suballocator. /// // You can now feed `region` into any suballocator.
/// ``` /// ```
@ -1159,26 +1088,10 @@ unsafe impl Suballocator for Arc<FreeListAllocator> {
// constrained by the remaining size of the region. // constrained by the remaining size of the region.
self.free_size.fetch_sub(size, Ordering::Release); self.free_size.fetch_sub(size, Ordering::Release);
let mapped_ptr = self.region.mapped_ptr.map(|ptr| {
// This can't overflow because offsets in the free-list are confined
// to the range [region.offset, region.offset + region.size).
let relative_offset = offset - self.region.offset;
// SAFETY: Allocation sizes are guaranteed to not exceed
// `isize::MAX` when they have a mapped pointer, and the original
// pointer was handed to us from the Vulkan implementation,
// so the offset better be in range.
let ptr = ptr.as_ptr().offset(relative_offset as isize);
// SAFETY: Same as the previous.
NonNull::new_unchecked(ptr)
});
return Ok(MemoryAlloc { return Ok(MemoryAlloc {
offset, offset,
size, size,
allocation_type, allocation_type,
mapped_ptr,
atom_size: self.region.atom_size, atom_size: self.region.atom_size,
parent: AllocParent::FreeList { parent: AllocParent::FreeList {
allocator: self.clone(), allocator: self.clone(),
@ -1773,25 +1686,10 @@ unsafe impl Suballocator for Arc<BuddyAllocator> {
// constrained by the remaining size of the region. // constrained by the remaining size of the region.
self.free_size.fetch_sub(size, Ordering::Release); self.free_size.fetch_sub(size, Ordering::Release);
let mapped_ptr = self.region.mapped_ptr.map(|ptr| {
// This can't overflow because offsets in the free-list are confined to the
// range [region.offset, region.offset + region.size).
let relative_offset = offset - self.region.offset;
// SAFETY: Allocation sizes are guaranteed to not exceed `isize::MAX` when
// they have a mapped pointer, and the original pointer was handed to us
// from the Vulkan implementation, so the offset better be in range.
let ptr = unsafe { ptr.as_ptr().offset(relative_offset as isize) };
// SAFETY: Same as the previous.
unsafe { NonNull::new_unchecked(ptr) }
});
return Ok(MemoryAlloc { return Ok(MemoryAlloc {
offset, offset,
size: layout.size(), size: layout.size(),
allocation_type, allocation_type,
mapped_ptr,
atom_size: self.region.atom_size, atom_size: self.region.atom_size,
parent: AllocParent::Buddy { parent: AllocParent::Buddy {
allocator: self.clone(), allocator: self.clone(),
@ -2176,21 +2074,10 @@ impl PoolAllocatorInner {
}; };
} }
let mapped_ptr = self.region.mapped_ptr.map(|ptr| {
// SAFETY: Allocation sizes are guaranteed to not exceed `isize::MAX` when they have a
// mapped pointer, and the original pointer was handed to us from the Vulkan
// implementation, so the offset better be in range.
let ptr = unsafe { ptr.as_ptr().offset(relative_offset as isize) };
// SAFETY: Same as the previous.
unsafe { NonNull::new_unchecked(ptr) }
});
Ok(MemoryAlloc { Ok(MemoryAlloc {
offset, offset,
size, size,
allocation_type: self.region.allocation_type, allocation_type: self.region.allocation_type,
mapped_ptr,
atom_size: self.region.atom_size, atom_size: self.region.atom_size,
parent: AllocParent::Pool { parent: AllocParent::Pool {
allocator: self, allocator: self,
@ -2453,21 +2340,10 @@ unsafe impl Suballocator for Arc<BumpAllocator> {
Ordering::Relaxed, Ordering::Relaxed,
) { ) {
Ok(_) => { Ok(_) => {
let mapped_ptr = self.region.mapped_ptr.map(|ptr| {
// SAFETY: Allocation sizes are guaranteed to not exceed `isize::MAX` when
// they have a mapped pointer, and the original pointer was handed to us
// from the Vulkan implementation, so the offset better be in range.
let ptr = unsafe { ptr.as_ptr().offset(relative_offset as isize) };
// SAFETY: Same as the previous.
unsafe { NonNull::new_unchecked(ptr) }
});
return Ok(MemoryAlloc { return Ok(MemoryAlloc {
offset, offset,
size, size,
allocation_type, allocation_type,
mapped_ptr,
atom_size: self.region.atom_size, atom_size: self.region.atom_size,
parent: AllocParent::Bump(self.clone()), parent: AllocParent::Bump(self.clone()),
}); });
@ -2644,44 +2520,6 @@ mod tests {
use crate::memory::MemoryAllocateInfo; use crate::memory::MemoryAllocateInfo;
use std::thread; use std::thread;
#[test]
fn memory_alloc_set_offset() {
let (device, _) = gfx_dev_and_queue!();
let memory_type_index = device
.physical_device()
.memory_properties()
.memory_types
.iter()
.position(|memory_type| {
memory_type
.property_flags
.contains(MemoryPropertyFlags::HOST_VISIBLE)
})
.unwrap() as u32;
let mut alloc = MemoryAlloc::new(
DeviceMemory::allocate(
device,
MemoryAllocateInfo {
memory_type_index,
allocation_size: 1024,
..Default::default()
},
)
.unwrap(),
)
.unwrap();
let ptr = alloc.mapped_ptr().unwrap().as_ptr();
unsafe {
alloc.set_offset(16);
assert_eq!(alloc.mapped_ptr().unwrap().as_ptr(), ptr.offset(16));
alloc.set_offset(0);
assert_eq!(alloc.mapped_ptr().unwrap().as_ptr(), ptr.offset(0));
alloc.set_offset(32);
assert_eq!(alloc.mapped_ptr().unwrap().as_ptr(), ptr.offset(32));
}
}
#[test] #[test]
fn free_list_allocator_capacity() { fn free_list_allocator_capacity() {
const THREADS: DeviceSize = 12; const THREADS: DeviceSize = 12;
@ -2782,7 +2620,7 @@ mod tests {
.unwrap(); .unwrap();
PoolAllocator::new( PoolAllocator::new(
MemoryAlloc::new(device_memory).unwrap(), MemoryAlloc::new(device_memory),
DeviceAlignment::new(1).unwrap(), DeviceAlignment::new(1).unwrap(),
) )
} }
@ -2837,7 +2675,7 @@ mod tests {
.unwrap(); .unwrap();
PoolAllocator::<BLOCK_SIZE>::new( PoolAllocator::<BLOCK_SIZE>::new(
MemoryAlloc::new(device_memory).unwrap(), MemoryAlloc::new(device_memory),
DeviceAlignment::new(1).unwrap(), DeviceAlignment::new(1).unwrap(),
) )
}; };
@ -2872,7 +2710,7 @@ mod tests {
}, },
) )
.unwrap(); .unwrap();
let mut region = MemoryAlloc::new(device_memory).unwrap(); let mut region = MemoryAlloc::new(device_memory);
unsafe { region.set_allocation_type(allocation_type) }; unsafe { region.set_allocation_type(allocation_type) };
PoolAllocator::new(region, DeviceAlignment::new(256).unwrap()) PoolAllocator::new(region, DeviceAlignment::new(256).unwrap())
@ -3108,7 +2946,7 @@ mod tests {
}, },
) )
.unwrap(); .unwrap();
let mut allocator = <$type>::new(MemoryAlloc::new(device_memory).unwrap()); let mut allocator = <$type>::new(MemoryAlloc::new(device_memory));
Arc::get_mut(&mut allocator) Arc::get_mut(&mut allocator)
.unwrap() .unwrap()
.buffer_image_granularity = DeviceAlignment::new($granularity).unwrap(); .buffer_image_granularity = DeviceAlignment::new($granularity).unwrap();

View File

@ -22,7 +22,8 @@ use std::{
mem::MaybeUninit, mem::MaybeUninit,
num::NonZeroU64, num::NonZeroU64,
ops::Range, ops::Range,
ptr, slice, ptr::{self, NonNull},
slice,
sync::{atomic::Ordering, Arc}, sync::{atomic::Ordering, Arc},
}; };
@ -61,6 +62,10 @@ pub struct DeviceMemory {
export_handle_types: ExternalMemoryHandleTypes, export_handle_types: ExternalMemoryHandleTypes,
imported_handle_type: Option<ExternalMemoryHandleType>, imported_handle_type: Option<ExternalMemoryHandleType>,
flags: MemoryAllocateFlags, flags: MemoryAllocateFlags,
mapping_state: Option<MappingState>,
atom_size: DeviceAlignment,
is_coherent: bool,
} }
impl DeviceMemory { impl DeviceMemory {
@ -71,7 +76,6 @@ impl DeviceMemory {
/// ///
/// # Panics /// # Panics
/// ///
/// - Panics if `allocate_info.allocation_size` is 0.
/// - Panics if `allocate_info.dedicated_allocation` is `Some` and the contained buffer or /// - Panics if `allocate_info.dedicated_allocation` is `Some` and the contained buffer or
/// image does not belong to `device`. /// image does not belong to `device`.
#[inline] #[inline]
@ -82,7 +86,7 @@ impl DeviceMemory {
if !(device.api_version() >= Version::V1_1 if !(device.api_version() >= Version::V1_1
|| device.enabled_extensions().khr_dedicated_allocation) || device.enabled_extensions().khr_dedicated_allocation)
{ {
// Fall back instead of erroring out // Fall back instead of erroring out.
allocate_info.dedicated_allocation = None; allocate_info.dedicated_allocation = None;
} }
@ -99,7 +103,6 @@ impl DeviceMemory {
/// ///
/// # Panics /// # Panics
/// ///
/// - Panics if `allocate_info.allocation_size` is 0.
/// - Panics if `allocate_info.dedicated_allocation` is `Some` and the contained buffer or /// - Panics if `allocate_info.dedicated_allocation` is `Some` and the contained buffer or
/// image does not belong to `device`. /// image does not belong to `device`.
#[inline] #[inline]
@ -111,7 +114,7 @@ impl DeviceMemory {
if !(device.api_version() >= Version::V1_1 if !(device.api_version() >= Version::V1_1
|| device.enabled_extensions().khr_dedicated_allocation) || device.enabled_extensions().khr_dedicated_allocation)
{ {
// Fall back instead of erroring out // Fall back instead of erroring out.
allocate_info.dedicated_allocation = None; allocate_info.dedicated_allocation = None;
} }
@ -281,16 +284,28 @@ impl DeviceMemory {
output.assume_init() output.assume_init()
}; };
let atom_size = device.physical_device().properties().non_coherent_atom_size;
let is_coherent = device.physical_device().memory_properties().memory_types
[memory_type_index as usize]
.property_flags
.intersects(MemoryPropertyFlags::HOST_COHERENT);
Ok(DeviceMemory { Ok(DeviceMemory {
handle, handle,
device: InstanceOwnedDebugWrapper(device), device: InstanceOwnedDebugWrapper(device),
id: Self::next_id(), id: Self::next_id(),
allocation_size, allocation_size,
memory_type_index, memory_type_index,
dedicated_to: dedicated_allocation.map(Into::into), dedicated_to: dedicated_allocation.map(Into::into),
export_handle_types, export_handle_types,
imported_handle_type, imported_handle_type,
flags, flags,
mapping_state: None,
atom_size,
is_coherent,
}) })
} }
@ -315,16 +330,28 @@ impl DeviceMemory {
_ne: _, _ne: _,
} = allocate_info; } = allocate_info;
let atom_size = device.physical_device().properties().non_coherent_atom_size;
let is_coherent = device.physical_device().memory_properties().memory_types
[memory_type_index as usize]
.property_flags
.intersects(MemoryPropertyFlags::HOST_COHERENT);
DeviceMemory { DeviceMemory {
handle, handle,
device: InstanceOwnedDebugWrapper(device), device: InstanceOwnedDebugWrapper(device),
id: Self::next_id(), id: Self::next_id(),
allocation_size, allocation_size,
memory_type_index, memory_type_index,
dedicated_to: dedicated_allocation.map(Into::into), dedicated_to: dedicated_allocation.map(Into::into),
export_handle_types, export_handle_types,
imported_handle_type: None, imported_handle_type: None,
flags, flags,
mapping_state: None,
atom_size,
is_coherent,
} }
} }
@ -370,6 +397,305 @@ impl DeviceMemory {
self.flags self.flags
} }
/// Returns the current mapping state, or [`None`] if the memory is not currently host-mapped.
#[inline]
pub fn mapping_state(&self) -> Option<&MappingState> {
self.mapping_state.as_ref()
}
pub(crate) fn atom_size(&self) -> DeviceAlignment {
self.atom_size
}
/// Maps a range of memory to be accessed by the host.
///
/// `self` must not be host-mapped already and must be allocated from host-visible memory.
#[inline]
pub fn map(&mut self, map_info: MemoryMapInfo) -> Result<(), Validated<VulkanError>> {
self.validate_map(&map_info)?;
unsafe { Ok(self.map_unchecked(map_info)?) }
}
fn validate_map(&self, map_info: &MemoryMapInfo) -> Result<(), Box<ValidationError>> {
if self.mapping_state.is_some() {
return Err(Box::new(ValidationError {
problem: "this device memory is already host-mapped".into(),
vuids: &["VUID-vkMapMemory-memory-00678"],
..Default::default()
}));
}
map_info
.validate(self)
.map_err(|err| err.add_context("map_info"))?;
let memory_type = &self
.device()
.physical_device()
.memory_properties()
.memory_types[self.memory_type_index() as usize];
if !memory_type
.property_flags
.intersects(MemoryPropertyFlags::HOST_VISIBLE)
{
return Err(Box::new(ValidationError {
problem: "`self.memory_type_index()` refers to a memory type whose \
`property_flags` does not contain `MemoryPropertyFlags::HOST_VISIBLE`"
.into(),
vuids: &["VUID-vkMapMemory-memory-00682"],
..Default::default()
}));
}
Ok(())
}
#[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
pub unsafe fn map_unchecked(&mut self, map_info: MemoryMapInfo) -> Result<(), VulkanError> {
let MemoryMapInfo {
offset,
size,
_ne: _,
} = map_info;
// Sanity check: this would lead to UB when calculating pointer offsets.
assert!(size <= isize::MAX.try_into().unwrap());
let device = self.device();
let ptr = {
let fns = device.fns();
let mut output = MaybeUninit::uninit();
if device.enabled_extensions().khr_map_memory2 {
let map_info_vk = ash::vk::MemoryMapInfoKHR {
flags: ash::vk::MemoryMapFlags::empty(),
memory: self.handle(),
offset,
size,
..Default::default()
};
(fns.khr_map_memory2.map_memory2_khr)(
device.handle(),
&map_info_vk,
output.as_mut_ptr(),
)
.result()
.map_err(VulkanError::from)?;
} else {
(fns.v1_0.map_memory)(
device.handle(),
self.handle,
offset,
size,
ash::vk::MemoryMapFlags::empty(),
output.as_mut_ptr(),
)
.result()
.map_err(VulkanError::from)?;
}
output.assume_init()
};
let ptr = NonNull::new(ptr).unwrap();
let range = offset..offset + size;
self.mapping_state = Some(MappingState { ptr, range });
Ok(())
}
/// Unmaps the memory. It will no longer be accessible from the host.
///
/// `self` must be currently host-mapped.
//
// NOTE(Marc): The `&mut` here is more than just because we need to mutate the struct.
// `vkMapMemory` and `vkUnmapMemory` must be externally synchronized, but more importantly, if
// we allowed unmapping through a shared reference, it would be possible to unmap a resource
// that's currently being read or written by the host elsewhere, requiring even more locking on
// each host access.
#[inline]
pub fn unmap(&mut self, unmap_info: MemoryUnmapInfo) -> Result<(), Validated<VulkanError>> {
self.validate_unmap(&unmap_info)?;
unsafe { self.unmap_unchecked(unmap_info) }?;
Ok(())
}
fn validate_unmap(&self, unmap_info: &MemoryUnmapInfo) -> Result<(), Box<ValidationError>> {
if self.mapping_state.is_none() {
return Err(Box::new(ValidationError {
problem: "this device memory is not currently host-mapped".into(),
vuids: &["VUID-vkUnmapMemory-memory-00689"],
..Default::default()
}));
}
unmap_info
.validate(self)
.map_err(|err| err.add_context("unmap_info"))?;
Ok(())
}
#[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
pub unsafe fn unmap_unchecked(
&mut self,
unmap_info: MemoryUnmapInfo,
) -> Result<(), VulkanError> {
let MemoryUnmapInfo { _ne: _ } = unmap_info;
let device = self.device();
let fns = device.fns();
if device.enabled_extensions().khr_map_memory2 {
let unmap_info_vk = ash::vk::MemoryUnmapInfoKHR {
flags: ash::vk::MemoryUnmapFlagsKHR::empty(),
memory: self.handle(),
..Default::default()
};
(fns.khr_map_memory2.unmap_memory2_khr)(device.handle(), &unmap_info_vk)
.result()
.map_err(VulkanError::from)?;
} else {
(fns.v1_0.unmap_memory)(device.handle(), self.handle);
}
self.mapping_state = None;
Ok(())
}
/// Invalidates the host cache for a range of mapped memory.
///
/// If the device memory is not [host-coherent], you must call this function before the memory
/// is read by the host, if the device previously wrote to the memory. It has no effect if the
/// memory is host-coherent.
///
/// # Safety
///
/// - If there are memory writes by the device that have not been propagated into the host
/// cache, then there must not be any references in Rust code to any portion of the specified
/// `memory_range`.
///
/// [host-coherent]: crate::memory::MemoryPropertyFlags::HOST_COHERENT
/// [`map`]: Self::map
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
#[inline]
pub unsafe fn invalidate_range(
&self,
memory_range: MappedMemoryRange,
) -> Result<(), Validated<VulkanError>> {
self.validate_memory_range(&memory_range)?;
Ok(self.invalidate_range_unchecked(memory_range)?)
}
#[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
#[inline]
pub unsafe fn invalidate_range_unchecked(
&self,
memory_range: MappedMemoryRange,
) -> Result<(), VulkanError> {
if self.is_coherent {
return Ok(());
}
let MappedMemoryRange {
offset,
size,
_ne: _,
} = memory_range;
let memory_range_vk = ash::vk::MappedMemoryRange {
memory: self.handle(),
offset,
size,
..Default::default()
};
let fns = self.device().fns();
(fns.v1_0.invalidate_mapped_memory_ranges)(self.device().handle(), 1, &memory_range_vk)
.result()
.map_err(VulkanError::from)?;
Ok(())
}
/// Flushes the host cache for a range of mapped memory.
///
/// If the device memory is not [host-coherent], you must call this function after writing to
/// the memory, if the device is going to read the memory. It has no effect if the memory is
/// host-coherent.
///
/// # Safety
///
/// - There must be no operations pending or executing in a device queue, that access the
/// specified `memory_range`.
///
/// [host-coherent]: crate::memory::MemoryPropertyFlags::HOST_COHERENT
/// [`map`]: Self::map
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
#[inline]
pub unsafe fn flush_range(
&self,
memory_range: MappedMemoryRange,
) -> Result<(), Validated<VulkanError>> {
self.validate_memory_range(&memory_range)?;
Ok(self.flush_range_unchecked(memory_range)?)
}
#[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
#[inline]
pub unsafe fn flush_range_unchecked(
&self,
memory_range: MappedMemoryRange,
) -> Result<(), VulkanError> {
if self.is_coherent {
return Ok(());
}
let MappedMemoryRange {
offset,
size,
_ne: _,
} = memory_range;
let memory_range_vk = ash::vk::MappedMemoryRange {
memory: self.handle(),
offset,
size,
..Default::default()
};
let fns = self.device().fns();
(fns.v1_0.flush_mapped_memory_ranges)(self.device().handle(), 1, &memory_range_vk)
.result()
.map_err(VulkanError::from)?;
Ok(())
}
// NOTE(Marc): We are validating the parameters regardless of whether the memory is
// non-coherent on purpose, to catch potential bugs arising because the code isn't tested on
// such hardware.
fn validate_memory_range(
&self,
memory_range: &MappedMemoryRange,
) -> Result<(), Box<ValidationError>> {
memory_range
.validate(self)
.map_err(|err| err.add_context("memory_range"))?;
Ok(())
}
/// Retrieves the amount of lazily-allocated memory that is currently commited to this /// Retrieves the amount of lazily-allocated memory that is currently commited to this
/// memory object. /// memory object.
/// ///
@ -1034,7 +1360,7 @@ vulkan_bitflags_enum! {
vulkan_bitflags! { vulkan_bitflags! {
#[non_exhaustive] #[non_exhaustive]
/// A mask specifying flags for device memory allocation. /// Flags specifying additional properties of a device memory allocation.
MemoryAllocateFlags = MemoryAllocateFlags(u32); MemoryAllocateFlags = MemoryAllocateFlags(u32);
/* TODO: enable /* TODO: enable
@ -1054,6 +1380,306 @@ vulkan_bitflags! {
DEVICE_ADDRESS_CAPTURE_REPLAY = DEVICE_ADDRESS_CAPTURE_REPLAY,*/ DEVICE_ADDRESS_CAPTURE_REPLAY = DEVICE_ADDRESS_CAPTURE_REPLAY,*/
} }
/// Parameters of a memory map operation.
#[derive(Debug)]
pub struct MemoryMapInfo {
/// The offset (in bytes) from the beginning of the `DeviceMemory`, where the mapping starts.
///
/// Must be less than the [`allocation_size`] of the device memory. If the the memory was not
/// allocated from [host-coherent] memory, then this must be a multiple of the
/// [`non_coherent_atom_size`] device property.
///
/// The default value is `0`.
///
/// [`allocation_size`]: DeviceMemory::allocation_size
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
pub offset: DeviceSize,
/// The size (in bytes) of the mapping.
///
/// Must be less than or equal to the [`allocation_size`] of the device memory minus `offset`.
/// If the the memory was not allocated from [host-coherent] memory, then this must be a
/// multiple of the [`non_coherent_atom_size`] device property, or be equal to the allocation
/// size minus `offset`.
///
/// The default value is `0`, which must be overridden.
///
/// [`allocation_size`]: DeviceMemory::allocation_size
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
pub size: DeviceSize,
pub _ne: crate::NonExhaustive,
}
impl MemoryMapInfo {
pub(crate) fn validate(&self, memory: &DeviceMemory) -> Result<(), Box<ValidationError>> {
let &Self {
offset,
size,
_ne: _,
} = self;
if !(offset < memory.allocation_size()) {
return Err(Box::new(ValidationError {
context: "offset".into(),
problem: "is not less than `self.allocation_size()`".into(),
vuids: &["VUID-vkMapMemory-offset-00679"],
..Default::default()
}));
}
if size == 0 {
return Err(Box::new(ValidationError {
context: "size".into(),
problem: "is zero".into(),
vuids: &["VUID-vkMapMemory-size-00680"],
..Default::default()
}));
}
if !(size <= memory.allocation_size() - offset) {
return Err(Box::new(ValidationError {
context: "size".into(),
problem: "is not less than or equal to `self.allocation_size()` minus `offset`"
.into(),
vuids: &["VUID-vkMapMemory-size-00681"],
..Default::default()
}));
}
let atom_size = memory.atom_size();
// Not required for merely mapping, but without this check the user can end up with
// parts of the mapped memory at the start and end that they're not able to
// invalidate/flush, which is probably unintended.
//
// NOTE(Marc): We also rely on this for soundness, because it is easier and more optimal to
// not have to worry about whether a range of mapped memory is still in bounds of the
// mapped memory after being aligned to the non-coherent atom size.
if !memory.is_coherent
&& (!is_aligned(offset, atom_size)
|| (!is_aligned(size, atom_size) && offset + size != memory.allocation_size()))
{
return Err(Box::new(ValidationError {
problem: "`self.memory_type_index()` refers to a memory type whose \
`property_flags` does not contain `MemoryPropertyFlags::HOST_COHERENT`, and \
`offset` and/or `size` are not aligned to the `non_coherent_atom_size` device \
property"
.into(),
..Default::default()
}));
}
Ok(())
}
}
impl Default for MemoryMapInfo {
#[inline]
fn default() -> Self {
MemoryMapInfo {
offset: 0,
size: 0,
_ne: crate::NonExhaustive(()),
}
}
}
/// Parameters of a memory unmap operation.
#[derive(Debug)]
pub struct MemoryUnmapInfo {
pub _ne: crate::NonExhaustive,
}
impl MemoryUnmapInfo {
pub(crate) fn validate(&self, _memory: &DeviceMemory) -> Result<(), Box<ValidationError>> {
let &Self { _ne: _ } = self;
Ok(())
}
}
impl Default for MemoryUnmapInfo {
#[inline]
fn default() -> Self {
MemoryUnmapInfo {
_ne: crate::NonExhaustive(()),
}
}
}
/// Represents the currently host-mapped region of a [`DeviceMemory`] block.
#[derive(Debug)]
pub struct MappingState {
ptr: NonNull<c_void>,
range: Range<DeviceSize>,
}
// It is safe to share `ptr` between threads because the user would have to use unsafe code
// themself to get UB in the first place.
unsafe impl Send for MappingState {}
unsafe impl Sync for MappingState {}
impl MappingState {
/// Returns the pointer to the start of the mapped memory. Meaning that the pointer is already
/// offset by the [`offset`].
///
/// [`offset`]: Self::offset
#[inline]
pub fn ptr(&self) -> NonNull<c_void> {
self.ptr
}
/// Returns the offset given to [`DeviceMemory::map`].
#[inline]
pub fn offset(&self) -> DeviceSize {
self.range.start
}
/// Returns the size given to [`DeviceMemory::map`].
#[inline]
pub fn size(&self) -> DeviceSize {
self.range.end - self.range.start
}
/// Returns a pointer to a slice of the mapped memory. Returns `None` if out of bounds.
///
/// `range` is specified in bytes relative to the start of the memory allocation, and must fall
/// within the range of the memory mapping given to [`DeviceMemory::map`].
///
/// This function is safe in the sense that the returned pointer is guaranteed to be within
/// bounds of the mapped memory, however dereferencing the pointer isn't:
///
/// - Normal Rust aliasing rules apply: if you create a mutable reference out of the pointer,
/// you must ensure that no other references exist in Rust to any portion of the same memory.
/// - While a reference created from the pointer exists, there must be no operations pending or
/// executing in any queue on the device, that write to any portion of the same memory.
/// - While a mutable reference created from the pointer exists, there must be no operations
/// pending or executing in any queue on the device, that read from any portion of the same
/// memory.
#[inline]
pub fn slice(&self, range: Range<DeviceSize>) -> Option<NonNull<[u8]>> {
if self.range.start <= range.start
&& range.start <= range.end
&& range.end <= self.range.end
{
// SAFETY: We checked that the range is within the currently mapped range.
Some(unsafe { self.slice_unchecked(range) })
} else {
None
}
}
/// # Safety
///
/// - `range` must be within the currently mapped range.
#[cfg_attr(not(feature = "document_unchecked"), doc(hidden))]
#[inline]
pub unsafe fn slice_unchecked(&self, range: Range<DeviceSize>) -> NonNull<[u8]> {
let ptr = self.ptr.as_ptr();
// SAFETY: The caller must guarantee that `range` is within the currently mapped range,
// which means that the offset pointer and length must denote a slice that's contained
// within the allocated (mapped) object.
let ptr = ptr.add((range.start - self.range.start) as usize);
let len = (range.end - range.start) as usize;
let ptr = ptr::slice_from_raw_parts_mut(<*mut c_void>::cast::<u8>(ptr), len);
// SAFETY: The original pointer was non-null, and the caller must guarantee that `range`
// is within the currently mapped range, which means that the offset couldn't have wrapped
// around the address space.
NonNull::new_unchecked(ptr)
}
}
/// Represents a range of host-mapped [`DeviceMemory`] to be invalidated or flushed.
///
/// Must be contained within the currently mapped range of the device memory.
#[derive(Debug)]
pub struct MappedMemoryRange {
/// The offset (in bytes) from the beginning of the allocation, where the range starts.
///
/// Must be a multiple of the [`non_coherent_atom_size`] device property.
///
/// The default value is `0`.
///
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
pub offset: DeviceSize,
/// The size (in bytes) of the range.
///
/// Must be a multiple of the [`non_coherent_atom_size`] device property, or be equal to the
/// allocation size minus `offset`.
///
/// The default value is `0`.
///
/// [`non_coherent_atom_size`]: crate::device::Properties::non_coherent_atom_size
pub size: DeviceSize,
pub _ne: crate::NonExhaustive,
}
impl MappedMemoryRange {
pub(crate) fn validate(&self, memory: &DeviceMemory) -> Result<(), Box<ValidationError>> {
let &Self {
offset,
size,
_ne: _,
} = self;
if let Some(state) = &memory.mapping_state {
if !(state.range.start <= offset && size <= state.range.end - offset) {
return Err(Box::new(ValidationError {
problem: "is not contained within the mapped range of this device memory"
.into(),
vuids: &["VUID-VkMappedMemoryRange-size-00685"],
..Default::default()
}));
}
} else {
return Err(Box::new(ValidationError {
problem: "this device memory is not currently host-mapped".into(),
vuids: &["VUID-VkMappedMemoryRange-memory-00684"],
..Default::default()
}));
}
if !is_aligned(offset, memory.atom_size()) {
return Err(Box::new(ValidationError {
context: "offset".into(),
problem: "is not aligned to the `non_coherent_atom_size` device property".into(),
vuids: &["VUID-VkMappedMemoryRange-offset-00687"],
..Default::default()
}));
}
if !(is_aligned(size, memory.atom_size()) || size == memory.allocation_size() - offset) {
return Err(Box::new(ValidationError {
context: "size".into(),
problem: "is not aligned to the `non_coherent_atom_size` device property nor \
equal to `self.allocation_size()` minus `offset`"
.into(),
vuids: &["VUID-VkMappedMemoryRange-size-01390"],
..Default::default()
}));
}
Ok(())
}
}
impl Default for MappedMemoryRange {
#[inline]
fn default() -> Self {
MappedMemoryRange {
offset: 0,
size: 0,
_ne: crate::NonExhaustive(()),
}
}
}
/// Represents device memory that has been mapped in a CPU-accessible space. /// Represents device memory that has been mapped in a CPU-accessible space.
/// ///
/// In order to access the contents of the allocated memory, you can use the `read` and `write` /// In order to access the contents of the allocated memory, you can use the `read` and `write`
@ -1095,6 +1721,10 @@ vulkan_bitflags! {
/// } /// }
/// ``` /// ```
#[derive(Debug)] #[derive(Debug)]
#[deprecated(
since = "0.34.0",
note = "use the methods provided directly on `DeviceMemory` instead"
)]
pub struct MappedDeviceMemory { pub struct MappedDeviceMemory {
memory: DeviceMemory, memory: DeviceMemory,
pointer: *mut c_void, // points to `range.start` pointer: *mut c_void, // points to `range.start`
@ -1110,6 +1740,7 @@ pub struct MappedDeviceMemory {
// Vulkan specs, documentation of `vkFreeMemory`: // Vulkan specs, documentation of `vkFreeMemory`:
// > If a memory object is mapped at the time it is freed, it is implicitly unmapped. // > If a memory object is mapped at the time it is freed, it is implicitly unmapped.
#[allow(deprecated)]
impl MappedDeviceMemory { impl MappedDeviceMemory {
/// Maps a range of memory to be accessed by the CPU. /// Maps a range of memory to be accessed by the CPU.
/// ///
@ -1165,8 +1796,14 @@ impl MappedDeviceMemory {
})); }));
} }
// VUID-vkMapMemory-memory-00678 if memory.mapping_state().is_some() {
// Guaranteed because we take ownership of `memory`, no other mapping can exist. return Err(Box::new(ValidationError {
context: "memory".into(),
problem: "is already host-mapped".into(),
vuids: &["VUID-vkMapMemory-memory-00678"],
..Default::default()
}));
}
if range.end > memory.allocation_size { if range.end > memory.allocation_size {
return Err(Box::new(ValidationError { return Err(Box::new(ValidationError {
@ -1208,6 +1845,9 @@ impl MappedDeviceMemory {
memory: DeviceMemory, memory: DeviceMemory,
range: Range<DeviceSize>, range: Range<DeviceSize>,
) -> Result<Self, VulkanError> { ) -> Result<Self, VulkanError> {
// Sanity check: this would lead to UB when calculating pointer offsets.
assert!(range.end - range.start <= isize::MAX.try_into().unwrap());
let device = memory.device(); let device = memory.device();
let pointer = unsafe { let pointer = unsafe {
@ -1480,6 +2120,7 @@ impl MappedDeviceMemory {
} }
} }
#[allow(deprecated)]
impl AsRef<DeviceMemory> for MappedDeviceMemory { impl AsRef<DeviceMemory> for MappedDeviceMemory {
#[inline] #[inline]
fn as_ref(&self) -> &DeviceMemory { fn as_ref(&self) -> &DeviceMemory {
@ -1487,6 +2128,7 @@ impl AsRef<DeviceMemory> for MappedDeviceMemory {
} }
} }
#[allow(deprecated)]
impl AsMut<DeviceMemory> for MappedDeviceMemory { impl AsMut<DeviceMemory> for MappedDeviceMemory {
#[inline] #[inline]
fn as_mut(&mut self) -> &mut DeviceMemory { fn as_mut(&mut self) -> &mut DeviceMemory {
@ -1494,6 +2136,7 @@ impl AsMut<DeviceMemory> for MappedDeviceMemory {
} }
} }
#[allow(deprecated)]
unsafe impl DeviceOwned for MappedDeviceMemory { unsafe impl DeviceOwned for MappedDeviceMemory {
#[inline] #[inline]
fn device(&self) -> &Arc<Device> { fn device(&self) -> &Arc<Device> {
@ -1501,7 +2144,9 @@ unsafe impl DeviceOwned for MappedDeviceMemory {
} }
} }
#[allow(deprecated)]
unsafe impl Send for MappedDeviceMemory {} unsafe impl Send for MappedDeviceMemory {}
#[allow(deprecated)]
unsafe impl Sync for MappedDeviceMemory {} unsafe impl Sync for MappedDeviceMemory {}
#[cfg(test)] #[cfg(test)]

View File

@ -15,11 +15,11 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::{ use std::{
alloc::Layout, alloc::Layout,
cmp::Ordering, cmp::Ordering,
ffi::c_void,
fmt::{Debug, Display, Formatter, Result as FmtResult}, fmt::{Debug, Display, Formatter, Result as FmtResult},
hash::{Hash, Hasher}, hash::{Hash, Hasher},
mem::{align_of, size_of, MaybeUninit}, mem::{size_of, MaybeUninit},
ops::{Deref, DerefMut}, ops::{Deref, DerefMut},
ptr::NonNull,
}; };
/// A newtype wrapper around `T`, with `N` bytes of trailing padding. /// A newtype wrapper around `T`, with `N` bytes of trailing padding.
@ -303,11 +303,10 @@ where
panic!("zero-sized types are not valid buffer contents"); panic!("zero-sized types are not valid buffer contents");
}; };
unsafe fn from_ffi(data: *mut c_void, range: usize) -> *mut Self { unsafe fn ptr_from_slice(slice: NonNull<[u8]>) -> *mut Self {
debug_assert!(range == size_of::<Self>()); debug_assert!(slice.len() == size_of::<Padded<T, N>>());
debug_assert!(data as usize % align_of::<Self>() == 0);
data.cast() <*mut [u8]>::cast::<Padded<T, N>>(slice.as_ptr())
} }
} }

View File

@ -25,7 +25,7 @@ pub use self::{
MemoryBarrier, PipelineStage, PipelineStages, QueueFamilyOwnershipTransfer, MemoryBarrier, PipelineStage, PipelineStages, QueueFamilyOwnershipTransfer,
}, },
}; };
use crate::{device::Queue, ValidationError, VulkanError}; use crate::{device::Queue, VulkanError};
use std::{ use std::{
error::Error, error::Error,
fmt::{Display, Formatter}, fmt::{Display, Formatter},
@ -104,7 +104,8 @@ pub(crate) enum CurrentAccess {
pub enum HostAccessError { pub enum HostAccessError {
AccessConflict(AccessConflict), AccessConflict(AccessConflict),
Invalidate(VulkanError), Invalidate(VulkanError),
ValidationError(Box<ValidationError>), NotHostMapped,
OutOfMappedRange,
} }
impl Error for HostAccessError { impl Error for HostAccessError {
@ -112,7 +113,7 @@ impl Error for HostAccessError {
match self { match self {
Self::AccessConflict(err) => Some(err), Self::AccessConflict(err) => Some(err),
Self::Invalidate(err) => Some(err), Self::Invalidate(err) => Some(err),
Self::ValidationError(err) => Some(err), _ => None,
} }
} }
} }
@ -124,7 +125,13 @@ impl Display for HostAccessError {
write!(f, "the resource is already in use in a conflicting way") write!(f, "the resource is already in use in a conflicting way")
} }
HostAccessError::Invalidate(_) => write!(f, "invalidating the device memory failed"), HostAccessError::Invalidate(_) => write!(f, "invalidating the device memory failed"),
HostAccessError::ValidationError(_) => write!(f, "validation error"), HostAccessError::NotHostMapped => {
write!(f, "the device memory is not current host-mapped")
}
HostAccessError::OutOfMappedRange => write!(
f,
"the requested range is not within the currently mapped range of device memory",
),
} }
} }
} }