Make image_index and final_views accessible, and add new example. (#2473)

* Make image_index and final_views accessible, and new example.

The first 2 changes should make creating frame buffers easier.
The new example should make it easier to learn vulkano-util.

* Remove unnecessary imports, and run clippy.

* Run fmt.

* .acquire() no longer returns image_index

* rename final_views() to swapchain_image_views()

The name change makes it more consistent with swapchain_image_view().

Personally I don't understand why the field name is final_views, yet we externally in function names refer to it as swapchain image views and such like.

* Fractal example no longer creates framebuffer every frame.

* Game of life example no longer creates framebuffer every frame.

(Also removed a piece of code I had commented out, but had forgotten to remove from the fractal example.)

* Rename if_recreate_swapchain to on_recreate_swapchain and update acquire() documentation. to on_recreate_swapchain

* on_recreate_swapchain is now impl FnOnce instead of generics based FnMut

Thanks marc0246!

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>

* Replace empty comment with an actual comment.

---------

Co-authored-by: marc0246 <40955683+marc0246@users.noreply.github.com>
This commit is contained in:
Katt 2024-02-21 16:08:50 +08:00 committed by GitHub
parent cdcaedc4f8
commit 9a35fb0221
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 613 additions and 49 deletions

10
Cargo.lock generated
View File

@ -2315,6 +2315,16 @@ dependencies = [
"winit 0.29.9",
]
[[package]]
name = "triangle-util"
version = "0.0.0"
dependencies = [
"vulkano",
"vulkano-shaders",
"vulkano-util",
"winit 0.29.9",
]
[[package]]
name = "triangle-v1_3"
version = "0.0.0"

View File

@ -54,7 +54,11 @@ pub struct FractalApp {
}
impl FractalApp {
pub fn new(gfx_queue: Arc<Queue>, image_format: vulkano::format::Format) -> FractalApp {
pub fn new(
gfx_queue: Arc<Queue>,
image_format: vulkano::format::Format,
swapchain_image_views: &[Arc<ImageView>],
) -> FractalApp {
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(
gfx_queue.device().clone(),
));
@ -82,6 +86,7 @@ impl FractalApp {
command_buffer_allocator,
descriptor_set_allocator,
image_format,
swapchain_image_views,
),
is_julia: false,
is_c_paused: false,

View File

@ -63,6 +63,7 @@ fn main() -> Result<(), impl Error> {
let mut app = FractalApp::new(
gfx_queue.clone(),
primary_window_renderer.swapchain_format(),
primary_window_renderer.swapchain_image_views(),
);
app.print_guide();
@ -144,7 +145,10 @@ fn compute_then_render(
target_image_id: usize,
) {
// Start the frame.
let before_pipeline_future = match renderer.acquire() {
let before_pipeline_future = match renderer.acquire(|swapchain_image_views| {
app.place_over_frame
.recreate_framebuffers(swapchain_image_views)
}) {
Err(e) => {
println!("{e}");
return;
@ -159,9 +163,12 @@ fn compute_then_render(
let after_compute = app.compute(image.clone()).join(before_pipeline_future);
// Render the image over the swapchain image, inputting the previous future.
let after_renderpass_future =
app.place_over_frame
.render(after_compute, image, renderer.swapchain_image_view());
let after_renderpass_future = app.place_over_frame.render(
after_compute,
image,
renderer.swapchain_image_view(),
renderer.image_index(),
);
// Finish the frame (which presents the view), inputting the last future. Wait for the future
// so resources are not in use when we render.

View File

@ -20,6 +20,7 @@ pub struct RenderPassPlaceOverFrame {
render_pass: Arc<RenderPass>,
pixels_draw_pipeline: PixelsDrawPipeline,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
framebuffers: Vec<Arc<Framebuffer>>,
}
impl RenderPassPlaceOverFrame {
@ -28,6 +29,7 @@ impl RenderPassPlaceOverFrame {
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
descriptor_set_allocator: Arc<StandardDescriptorSetAllocator>,
output_format: Format,
swapchain_image_views: &[Arc<ImageView>],
) -> RenderPassPlaceOverFrame {
let render_pass = vulkano::single_pass_renderpass!(
gfx_queue.device().clone(),
@ -55,9 +57,10 @@ impl RenderPassPlaceOverFrame {
RenderPassPlaceOverFrame {
gfx_queue,
render_pass,
render_pass: render_pass.clone(),
pixels_draw_pipeline,
command_buffer_allocator,
framebuffers: create_framebuffers(swapchain_image_views, render_pass),
}
}
@ -68,6 +71,7 @@ impl RenderPassPlaceOverFrame {
before_future: F,
view: Arc<ImageView>,
target: Arc<ImageView>,
image_index: u32,
) -> Box<dyn GpuFuture>
where
F: GpuFuture + 'static,
@ -75,16 +79,6 @@ impl RenderPassPlaceOverFrame {
// Get dimensions.
let img_dims: [u32; 2] = target.image().extent()[0..2].try_into().unwrap();
// Create framebuffer (must be in same order as render pass description in `new`.
let framebuffer = Framebuffer::new(
self.render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![target],
..Default::default()
},
)
.unwrap();
// Create primary command buffer builder.
let mut command_buffer_builder = RecordingCommandBuffer::new(
self.command_buffer_allocator.clone(),
@ -102,7 +96,9 @@ impl RenderPassPlaceOverFrame {
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0; 4].into())],
..RenderPassBeginInfo::framebuffer(framebuffer)
..RenderPassBeginInfo::framebuffer(
self.framebuffers[image_index as usize].clone(),
)
},
SubpassBeginInfo {
contents: SubpassContents::SecondaryCommandBuffers,
@ -132,4 +128,27 @@ impl RenderPassPlaceOverFrame {
after_future.boxed()
}
pub fn recreate_framebuffers(&mut self, swapchain_image_views: &[Arc<ImageView>]) {
self.framebuffers = create_framebuffers(swapchain_image_views, self.render_pass.clone());
}
}
fn create_framebuffers(
swapchain_image_views: &[Arc<ImageView>],
render_pass: Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
swapchain_image_views
.iter()
.map(|swapchain_image_view| {
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![swapchain_image_view.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}

View File

@ -9,10 +9,10 @@ use vulkano::{
},
descriptor_set::allocator::StandardDescriptorSetAllocator,
device::Queue,
format::Format,
};
use vulkano_util::{
context::{VulkanoConfig, VulkanoContext},
renderer::VulkanoWindowRenderer,
window::{VulkanoWindows, WindowDescriptor},
};
use winit::{event_loop::EventLoop, window::WindowId};
@ -28,11 +28,11 @@ impl RenderPipeline {
compute_queue: Arc<Queue>,
gfx_queue: Arc<Queue>,
size: [u32; 2],
swapchain_format: Format,
window_renderer: &VulkanoWindowRenderer,
) -> RenderPipeline {
RenderPipeline {
compute: GameOfLifeComputePipeline::new(app, compute_queue, size),
place_over_frame: RenderPassPlaceOverFrame::new(app, gfx_queue, swapchain_format),
place_over_frame: RenderPassPlaceOverFrame::new(app, gfx_queue, window_renderer),
}
}
}
@ -81,10 +81,7 @@ impl App {
(WINDOW_WIDTH / SCALING) as u32,
(WINDOW_HEIGHT / SCALING) as u32,
],
self.windows
.get_primary_renderer()
.unwrap()
.swapchain_format(),
self.windows.get_primary_renderer().unwrap(),
),
);
self.pipelines.insert(
@ -97,7 +94,7 @@ impl App {
(WINDOW2_WIDTH / SCALING) as u32,
(WINDOW2_HEIGHT / SCALING) as u32,
],
self.windows.get_renderer(id2).unwrap().swapchain_format(),
self.windows.get_renderer(id2).unwrap(),
),
);
}

View File

@ -194,7 +194,11 @@ fn compute_then_render(
}
// Start the frame.
let before_pipeline_future = match window_renderer.acquire() {
let before_pipeline_future = match window_renderer.acquire(|swapchain_image_views| {
pipeline
.place_over_frame
.recreate_framebuffers(swapchain_image_views)
}) {
Err(e) => {
println!("{e}");
return;
@ -211,9 +215,12 @@ fn compute_then_render(
let color_image = pipeline.compute.color_image();
let target_image = window_renderer.swapchain_image_view();
let after_render = pipeline
.place_over_frame
.render(after_compute, color_image, target_image);
let after_render = pipeline.place_over_frame.render(
after_compute,
color_image,
target_image,
window_renderer.image_index(),
);
// Finish the frame. Wait for the future so resources are not in use when we render.
window_renderer.present(after_render, true);

View File

@ -7,11 +7,11 @@ use vulkano::{
SubpassContents,
},
device::Queue,
format::Format,
image::view::ImageView,
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sync::GpuFuture,
};
use vulkano_util::renderer::VulkanoWindowRenderer;
/// A render pass which places an incoming image over the frame, filling it.
pub struct RenderPassPlaceOverFrame {
@ -19,19 +19,20 @@ pub struct RenderPassPlaceOverFrame {
render_pass: Arc<RenderPass>,
pixels_draw_pipeline: PixelsDrawPipeline,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
framebuffers: Vec<Arc<Framebuffer>>,
}
impl RenderPassPlaceOverFrame {
pub fn new(
app: &App,
gfx_queue: Arc<Queue>,
output_format: Format,
window_renderer: &VulkanoWindowRenderer,
) -> RenderPassPlaceOverFrame {
let render_pass = vulkano::single_pass_renderpass!(
gfx_queue.device().clone(),
attachments: {
color: {
format: output_format,
format: window_renderer.swapchain_format(),
samples: 1,
load_op: Clear,
store_op: Store,
@ -48,9 +49,10 @@ impl RenderPassPlaceOverFrame {
RenderPassPlaceOverFrame {
gfx_queue,
render_pass,
render_pass: render_pass.clone(),
pixels_draw_pipeline,
command_buffer_allocator: app.command_buffer_allocator.clone(),
framebuffers: create_framebuffers(window_renderer.swapchain_image_views(), render_pass),
}
}
@ -61,6 +63,7 @@ impl RenderPassPlaceOverFrame {
before_future: F,
image_view: Arc<ImageView>,
target: Arc<ImageView>,
image_index: u32,
) -> Box<dyn GpuFuture>
where
F: GpuFuture + 'static,
@ -68,16 +71,6 @@ impl RenderPassPlaceOverFrame {
// Get the dimensions.
let img_dims: [u32; 2] = target.image().extent()[0..2].try_into().unwrap();
// Create the framebuffer.
let framebuffer = Framebuffer::new(
self.render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![target],
..Default::default()
},
)
.unwrap();
// Create a primary command buffer builder.
let mut command_buffer_builder = RecordingCommandBuffer::new(
self.command_buffer_allocator.clone(),
@ -95,7 +88,9 @@ impl RenderPassPlaceOverFrame {
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0; 4].into())],
..RenderPassBeginInfo::framebuffer(framebuffer)
..RenderPassBeginInfo::framebuffer(
self.framebuffers[image_index as usize].clone(),
)
},
SubpassBeginInfo {
contents: SubpassContents::SecondaryCommandBuffers,
@ -125,4 +120,27 @@ impl RenderPassPlaceOverFrame {
after_future.boxed()
}
pub fn recreate_framebuffers(&mut self, swapchain_image_views: &[Arc<ImageView>]) {
self.framebuffers = create_framebuffers(swapchain_image_views, self.render_pass.clone());
}
}
fn create_framebuffers(
swapchain_image_views: &[Arc<ImageView>],
render_pass: Arc<RenderPass>,
) -> Vec<Arc<Framebuffer>> {
swapchain_image_views
.iter()
.map(|swapchain_image_view| {
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![swapchain_image_view.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}

View File

@ -0,0 +1,23 @@
[package]
name = "triangle-util"
version = "0.0.0"
edition = "2021"
publish = false
[[bin]]
name = "triangle-util"
path = "main.rs"
test = false
bench = false
doc = false
[dependencies]
# The `vulkano` crate is the main crate that you must use to use Vulkan.
vulkano = { workspace = true, features = ["macros"] }
# Provides the `shader!` macro that is used to generate code for using shaders.
vulkano-shaders = { workspace = true }
# Contains the utility functions that make life easier.
vulkano-util = { workspace = true }
# The Vulkan library doesn't provide any functionality to create and handle windows, as
# this would be out of scope. In order to open a window, we are going to use the `winit` crate.
winit = { workspace = true }

View File

@ -0,0 +1,463 @@
// Welcome to the triangle-util example!
//
// This is almost exactly the same as the triange example, except that it uses utility functions
// to make life easier.
//
// This example assumes that you are already more or less familiar with graphics programming and
// that you want to learn Vulkan. This means that for example it won't go into details about what a
// vertex or a shader is.
use std::{error::Error, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer, RenderPassBeginInfo, SubpassBeginInfo,
SubpassContents,
},
image::view::ImageView,
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sync::GpuFuture,
};
use vulkano_util::{
context::{VulkanoConfig, VulkanoContext},
window::VulkanoWindows,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
};
fn main() -> Result<(), impl Error> {
let context = VulkanoContext::new(VulkanoConfig::default());
let event_loop = EventLoop::new().unwrap();
// Manages any windows and their rendering.
let mut windows_manager = VulkanoWindows::default();
windows_manager.create_window(&event_loop, &context, &Default::default(), |_| {});
let window_renderer = windows_manager.get_primary_renderer_mut().unwrap();
// Some little debug infos.
println!(
"Using device: {} (type: {:?})",
context.device().physical_device().properties().device_name,
context.device().physical_device().properties().device_type,
);
// We now create a buffer that will store the shape of our triangle. We use `#[repr(C)]` here
// to force rustc to use a defined layout for our data, as the default representation has *no
// guarantees*.
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct Vertex {
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.25],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.25, -0.1],
},
];
let vertex_buffer = Buffer::from_iter(
context.memory_allocator().clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
// The next step is to create the shaders.
//
// The raw shader creation API provided by the vulkano library is unsafe for various reasons,
// so The `shader!` macro provides a way to generate a Rust module from GLSL source - in the
// example below, the source is provided as a string input directly to the shader, but a path
// to a source file can be provided as well. Note that the user must specify the type of shader
// (e.g. "vertex", "fragment", etc.) using the `ty` option of the macro.
//
// The items generated by the `shader!` macro include a `load` function which loads the shader
// using an input logical device. The module also includes type definitions for layout
// structures defined in the shader source, for example uniforms and push constants.
//
// A more detailed overview of what the `shader!` macro generates can be found in the
// vulkano-shaders crate docs. You can view them at https://docs.rs/vulkano-shaders/
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
// manually.
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images where the
// colors, depth and/or stencil information will be written.
let render_pass = vulkano::single_pass_renderpass!(
context.device().clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `format: <ty>` indicates the type of the format of the image. This has to be one
// of the types of the `vulkano::format` module (or alternatively one of your
// structs that implements the `FormatDesc` trait). Here we use the same format as
// the swapchain.
format: window_renderer.swapchain_format(),
// `samples: 1` means that we ask the GPU to use one sample to determine the value
// of each pixel in the color attachment. We could use a larger value
// (multisampling) for antialiasing. An example of this can be found in
// msaa-renderpass.rs.
samples: 1,
// `load_op: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load_op: Clear,
// `store_op: Store` means that we ask the GPU to store the output of the draw in
// the actual image. We could also ask it to discard the result.
store_op: Store,
},
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {},
},
)
.unwrap();
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
// many settings for customization, all baked into a single object. For drawing, we create
// a **graphics** pipeline, but there are also other types of pipeline.
let pipeline = {
// First, we load the shaders that the pipeline will use:
// the vertex shader and the fragment shader.
//
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
// one.
let vs = vs::load(context.device().clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(context.device().clone())
.unwrap()
.entry_point("main")
.unwrap();
// Automatically generate a vertex input state from the vertex shader's input interface,
// that takes a single vertex buffer containing `Vertex` structs.
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
// Make a list of the shader stages that the pipeline will have.
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
// We must now create a **pipeline layout** object, which describes the locations and types
// of descriptor sets and push constants used by the shaders in the pipeline.
//
// Multiple pipelines can share a common layout object, which is more efficient.
// The shaders in a pipeline must use a subset of the resources described in its pipeline
// layout, but the pipeline layout is allowed to contain resources that are not present in
// the shaders; they can be used by shaders in other pipelines that share the same
// layout. Thus, it is a good idea to design shaders so that many pipelines have
// common resource locations, which allows them to share pipeline layouts.
let layout = PipelineLayout::new(
context.device().clone(),
// Since we only have one pipeline in this example, and thus one pipeline layout,
// we automatically generate the creation info for it from the resources used in the
// shaders. In a real application, you would specify this information manually so that
// you can re-use one layout in multiple pipelines.
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(context.device().clone())
.unwrap(),
)
.unwrap();
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
// Finally, create the pipeline.
GraphicsPipeline::new(
context.device().clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
// How vertex data is read from the vertex buffers into the vertex shader.
vertex_input_state: Some(vertex_input_state),
// How vertices are arranged into primitive shapes.
// The default primitive shape is a triangle.
input_assembly_state: Some(InputAssemblyState::default()),
// How primitives are transformed and clipped to fit the framebuffer.
// We use a resizable viewport, set to draw over the entire window.
viewport_state: Some(ViewportState::default()),
// How polygons are culled and converted into a raster of pixels.
// The default value does not perform any culling.
rasterization_state: Some(RasterizationState::default()),
// How multiple fragment shader samples are converted to a single pixel value.
// The default value does not perform any multisampling.
multisample_state: Some(MultisampleState::default()),
// How pixel values are combined with the values already present in the framebuffer.
// The default value overwrites the old value with the new one, without any
// blending.
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
// Dynamic states allows us to specify parts of the pipeline settings when
// recording the command buffer, before we perform drawing.
// Here, we specify that the viewport should be dynamic.
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
// Otherwise we would have to recreate the whole pipeline.
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(
window_renderer.swapchain_image_views(),
render_pass.clone(),
&mut viewport,
);
// Before we can start creating and recording command buffers, we need a way of allocating
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
// underneath and provides a safe interface for them.
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
context.device().clone(),
Default::default(),
));
// Initialization is finally finished!
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
window_renderer.resize();
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
// Do not draw the frame when the screen size is zero. On Windows, this can
// occur when minimizing the application.
let image_extent: [u32; 2] = window_renderer.window().inner_size().into();
if image_extent.contains(&0) {
return;
}
// Begin rendering by acquiring the gpu future from the window renderer.
let previous_frame_end = window_renderer
.acquire(|swapchain_images| {
// Whenever the window resizes we need to recreate everything dependent on
// the window size. In this example that includes
// the swapchain, the framebuffers and the dynamic
// state viewport.
framebuffers = window_size_dependent_setup(
swapchain_images,
render_pass.clone(),
&mut viewport,
);
})
.unwrap();
// In order to draw, we have to record a *command buffer*. The command buffer object
// holds the list of commands that are going to be executed.
//
// Recording a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to
// be optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The
// command buffer will only be executable on that given queue family.
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator.clone(),
context.graphics_queue().queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
// Before we can draw, we have to *enter a render pass*.
.begin_render_pass(
RenderPassBeginInfo {
// A list of values to clear the attachments with. This list contains
// one item for each attachment in the render pass. In this case, there
// is only one attachment, and we clear it with a blue color.
//
// Only attachments that have `AttachmentLoadOp::Clear` are provided
// with clear values, any others should use `None` as the clear value.
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into())],
..RenderPassBeginInfo::framebuffer(
framebuffers[window_renderer.image_index() as usize].clone(),
)
},
SubpassBeginInfo {
// The contents of the first (and only) subpass.
// This can be either `Inline` or `SecondaryCommandBuffers`.
// The latter is a bit more advanced and is not covered here.
contents: SubpassContents::Inline,
..Default::default()
},
)
.unwrap()
// We are now inside the first subpass of the render pass.
//
// TODO: Document state setting and how it affects subsequent draw commands.
.set_viewport(0, [viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap();
unsafe {
builder
// We add a draw command.
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap();
}
builder
// We leave the render pass. Note that if we had multiple subpasses we could
// have called `next_subpass` to jump to the next subpass.
.end_render_pass(Default::default())
.unwrap();
// Finish recording the command buffer by calling `end`.
let command_buffer = builder.end().unwrap();
let future = previous_frame_end
.then_execute(context.graphics_queue().clone(), command_buffer)
.unwrap()
.boxed();
// The color output is now expected to contain our triangle. But in order to
// show it on the screen, we have to *present* the image by calling
// `present` on the window renderer.
//
// This function does not actually present the image immediately. Instead it
// submits a present command at the end of the queue. This means that it will
// only be presented once the GPU has finished executing the command buffer
// that draws the triangle.
window_renderer.present(future, false);
}
Event::AboutToWait => window_renderer.window().request_redraw(),
_ => (),
}
})
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
swapchain_images: &[Arc<ImageView>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let extent = swapchain_images[0].image().extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
swapchain_images
.iter()
.map(|swapchain_image| {
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![swapchain_image.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}

View File

@ -203,6 +203,16 @@ impl VulkanoWindowRenderer {
dims[0] / dims[1]
}
/// Returns a reference to the swapchain image views.
#[inline]
#[must_use]
// swapchain_image_views or swapchain_images_views, neither sounds good.
pub fn swapchain_image_views(&self) -> &Vec<Arc<ImageView>> {
// Why do we use "final views" as the field name,
// yet always externally refer to them as "swapchain image views"?
&self.final_views
}
/// Resize swapchain and camera view images at the beginning of next frame based on window
/// size.
#[inline]
@ -245,16 +255,21 @@ impl VulkanoWindowRenderer {
}
/// Begin your rendering by calling `acquire`.
/// Returns a [`GpuFuture`] representing the time after which the
/// swapchain image has been acquired and previous frame ended.
/// Execute your command buffers after calling this function and finish rendering by calling
/// [`VulkanoWindowRenderer::present`].
/// 'on_recreate_swapchain' is called when the swapchain gets recreated, due to being resized,
/// suboptimal, or changing the present mode. Returns a [`GpuFuture`] representing the time
/// after which the swapchain image has been acquired and previous frame ended.
/// Execute your command buffers after calling this function and
/// finish rendering by calling [`VulkanoWindowRenderer::present`].
#[inline]
pub fn acquire(&mut self) -> Result<Box<dyn GpuFuture>, VulkanError> {
pub fn acquire(
&mut self,
on_recreate_swapchain: impl FnOnce(&Vec<Arc<ImageView>>),
) -> Result<Box<dyn GpuFuture>, VulkanError> {
// Recreate swap chain if needed (when resizing of window occurs or swapchain is outdated)
// Also resize render views if needed
if self.recreate_swapchain {
self.recreate_swapchain_and_views();
on_recreate_swapchain(&self.final_views);
}
// Acquire next image in the swapchain