Fix triangle example

This commit is contained in:
Pierre Krieger 2016-02-28 17:21:01 +01:00
parent 19804a387e
commit 75962119c1
2 changed files with 50 additions and 85 deletions

View File

@ -1,10 +1,9 @@
extern crate kernel32;
extern crate gdi32;
extern crate user32;
extern crate winapi;
#[macro_use]
extern crate vulkano;
extern crate winit;
#[cfg(windows)]
use winit::os::windows::WindowExt;
use std::sync::Arc;
use std::ffi::OsStr;
@ -39,8 +38,8 @@ fn main() {
// create the window in a platform-specific way. Then we create a `Surface` object from it.
//
// Surface objects are cross-platform. Once you have a `Surface` everything is the same again.
let window = unsafe { create_window() };
let surface = unsafe { vulkano::swapchain::Surface::from_hwnd(&instance, kernel32::GetModuleHandleW(ptr::null()), window).unwrap() };
let window = winit::WindowBuilder::new().build().unwrap();
let surface = unsafe { vulkano::swapchain::Surface::from_hwnd(&instance, ptr::null() as *const () /* FIXME */, window.get_hwnd()).unwrap() };
// The next step is to choose which queue will execute our draw commands.
//
@ -141,26 +140,37 @@ fn main() {
// We are going to create a command buffer below. Command buffers need to be allocated
// from a *command buffer pool*, so we create the pool.
let cb_pool = vulkano::command_buffer::CommandBufferPool::new(&device, &queue.lock().unwrap().family())
let cb_pool = vulkano::command_buffer::CommandBufferPool::new(&device, &queue.family())
.expect("failed to create command buffer pool");
// We are going to draw on the images returned when creating the swapchain. To do so, we must
// convert them into *image views*. TODO: explain more
let images = images.into_iter().map(|image| {
let image = image.transition(vulkano::image::Layout::PresentSrc, &cb_pool,
&mut queue.lock().unwrap()).unwrap();
&queue).unwrap();
vulkano::image::ImageView::new(&image).expect("failed to create image view")
}).collect::<Vec<_>>();
// The next step is to create a *renderpass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let renderpass = single_pass_renderpass!{
device: &device,
attachments: {
color [Clear]
mod renderpass {
single_pass_renderpass!{
attachments: {
color: {
load: Clear,
store: Store,
format: B8G8R8A8Srgb,
}
},
pass: {
color: [color],
depth_stencil: {}
}
}
}.unwrap();
}
let renderpass = vulkano::framebuffer::RenderPass::new(&device, renderpass::Layout).unwrap();
let pipeline = {
let ia = vulkano::pipeline::input_assembly::InputAssembly::triangle_list();
@ -186,7 +196,8 @@ fn main() {
};
vulkano::pipeline::GraphicsPipeline::new(&device, &vs.main_entry_point(), &ia, &viewports,
&raster, &ms, &blend, &fs.main_entry_point(), &vulkano::descriptor_set::PipelineLayout::new(&device, Default::default(), ((), ())).unwrap(),
&raster, &ms, &blend, &fs.main_entry_point(),
&vulkano::descriptor_set::PipelineLayout::new(&device, vulkano::descriptor_set::EmptyPipelineDesc, ()).unwrap(),
&renderpass.subpass(0).unwrap()).unwrap()
};
@ -196,7 +207,7 @@ fn main() {
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let framebuffers = images.iter().map(|image| {
vulkano::framebuffer::Framebuffer::new(&renderpass, (1244, 699, 1), image).unwrap()
vulkano::framebuffer::Framebuffer::new(&renderpass, (1244, 699, 1), (image.clone() as Arc<_>,)).unwrap()
}).collect::<Vec<_>>();
// The final initialization step is to create a command buffer.
@ -210,8 +221,8 @@ fn main() {
// each image.
let command_buffers = framebuffers.iter().map(|framebuffer| {
vulkano::command_buffer::PrimaryCommandBufferBuilder::new(&cb_pool).unwrap()
.draw_inline(&renderpass, &framebuffer, [0.0, 0.0, 1.0, 1.0])
.draw(&pipeline, vertex_buffer.clone(), &vulkano::command_buffer::DynamicState::none(), ((), ()))
.draw_inline(&renderpass, &framebuffer, ([0.0, 0.0, 1.0, 1.0],))
.draw(&pipeline, vertex_buffer.clone(), &vulkano::command_buffer::DynamicState::none(), ())
.draw_end()
.build().unwrap()
}).collect::<Vec<_>>();
@ -227,80 +238,19 @@ fn main() {
// This operation returns the index of the image that we are allowed to draw upon..
let image_num = swapchain.acquire_next_image(1000000).unwrap();
// Our queue is wrapped around a `Mutex`, so we have to lock it.
let mut queue = queue.lock().unwrap();
// In order to draw, all we need to do is submit the command buffer to the queue.
command_buffers[image_num].submit(&mut queue).unwrap();
command_buffers[image_num].submit(&queue).unwrap();
// The color output should now contain our triangle. But in order to show it on the
// screen, we have to *present* the image. Depending on the presentation mode, this may
// be shown immediatly or on the next redraw.
swapchain.present(&mut queue, image_num).unwrap();
swapchain.present(&queue, image_num).unwrap();
// In a real application we want to submit things to the same queue in parallel, so we
// shouldn't keep it locked too long.
drop(queue);
unsafe {
let mut msg = mem::uninitialized();
if user32::GetMessageW(&mut msg, ptr::null_mut(), 0, 0) == 0 {
break;
for ev in window.poll_events() {
match ev {
winit::Event::Closed => break,
_ => ()
}
user32::TranslateMessage(&msg);
user32::DispatchMessageW(&msg);
}
}
}
unsafe fn create_window() -> winapi::HWND {
let class_name = register_window_class();
let title: Vec<u16> = vec![b'V' as u16, b'u' as u16, b'l' as u16, b'k' as u16,
b'a' as u16, b'n' as u16, 0];
user32::CreateWindowExW(winapi::WS_EX_APPWINDOW | winapi::WS_EX_WINDOWEDGE, class_name.as_ptr(),
title.as_ptr() as winapi::LPCWSTR,
winapi::WS_OVERLAPPEDWINDOW | winapi::WS_CLIPSIBLINGS |
winapi::WS_VISIBLE,
winapi::CW_USEDEFAULT, winapi::CW_USEDEFAULT,
winapi::CW_USEDEFAULT, winapi::CW_USEDEFAULT,
ptr::null_mut(), ptr::null_mut(),
kernel32::GetModuleHandleW(ptr::null()),
ptr::null_mut())
}
unsafe fn register_window_class() -> Vec<u16> {
let class_name: Vec<u16> = OsStr::new("Window Class").encode_wide().chain(Some(0).into_iter())
.collect::<Vec<u16>>();
let class = winapi::WNDCLASSEXW {
cbSize: mem::size_of::<winapi::WNDCLASSEXW>() as winapi::UINT,
style: winapi::CS_HREDRAW | winapi::CS_VREDRAW | winapi::CS_OWNDC,
lpfnWndProc: Some(callback),
cbClsExtra: 0,
cbWndExtra: 0,
hInstance: kernel32::GetModuleHandleW(ptr::null()),
hIcon: ptr::null_mut(),
hCursor: ptr::null_mut(),
hbrBackground: ptr::null_mut(),
lpszMenuName: ptr::null(),
lpszClassName: class_name.as_ptr(),
hIconSm: ptr::null_mut(),
};
user32::RegisterClassExW(&class);
class_name
}
unsafe extern "system" fn callback(window: winapi::HWND, msg: winapi::UINT,
wparam: winapi::WPARAM, lparam: winapi::LPARAM)
-> winapi::LRESULT
{
user32::DefWindowProcW(window, msg, wparam, lparam)
}

View File

@ -68,6 +68,21 @@ pub unsafe trait DescriptorSetsCollection {
fn is_compatible_with<P>(&self, pipeline_layout: &Arc<PipelineLayout<P>>) -> bool;
}
unsafe impl DescriptorSetsCollection for () {
type Iter = OptionIntoIter<Arc<AbstractDescriptorSet>>;
#[inline]
fn list(&self) -> Self::Iter {
None.into_iter()
}
#[inline]
fn is_compatible_with<P>(&self, pipeline_layout: &Arc<PipelineLayout<P>>) -> bool {
// FIXME:
true
}
}
unsafe impl<T> DescriptorSetsCollection for Arc<DescriptorSet<T>>
where T: 'static + DescriptorSetDesc
{