vulkano/examples/multi-window-game-of-life/main.rs

221 lines
6.9 KiB
Rust
Raw Normal View History

// A multi windowed game of life application. You could use this to learn:
//
// - how to handle multiple window inputs,
// - how to draw on a canvas,
// - how to organize compute shader with graphics,
// - how to do a cellular automata simulation using compute shaders.
//
// The possibilities are limitless. ;)
mod app;
mod game_of_life;
mod pixels_draw;
mod render_pass;
use crate::app::{App, RenderPipeline};
use cgmath::Vector2;
use std::{error::Error, time::Instant};
use vulkano_util::renderer::VulkanoWindowRenderer;
use winit::{
event::{ElementState, Event, MouseButton, WindowEvent},
event_loop::{ControlFlow, EventLoop},
};
pub const WINDOW_WIDTH: f32 = 1024.0;
pub const WINDOW_HEIGHT: f32 = 1024.0;
pub const WINDOW2_WIDTH: f32 = 512.0;
pub const WINDOW2_HEIGHT: f32 = 512.0;
pub const SCALING: f32 = 2.0;
fn main() -> Result<(), impl Error> {
println!("Welcome to Vulkano Game of Life\nUse the mouse to draw life on the grid(s)\n");
// Create event loop.
let event_loop = EventLoop::new().unwrap();
// Create app with vulkano context.
let mut app = App::default();
app.open(&event_loop);
// Time & inputs...
let mut time = Instant::now();
let mut cursor_pos = Vector2::new(0.0, 0.0);
// An extremely crude way to handle input state... but works for this example.
let mut mouse_is_pressed_w1 = false;
let mut mouse_is_pressed_w2 = false;
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
if process_event(
&event,
&mut app,
&mut cursor_pos,
&mut mouse_is_pressed_w1,
&mut mouse_is_pressed_w2,
) {
elwt.exit();
return;
} else if event == Event::AboutToWait {
for (_, renderer) in app.windows.iter() {
renderer.window().request_redraw();
}
}
// Draw life on windows if mouse is down.
draw_life(
&mut app,
cursor_pos,
mouse_is_pressed_w1,
mouse_is_pressed_w2,
);
// Compute life & render 60fps.
if (Instant::now() - time).as_secs_f64() > 1.0 / 60.0 {
compute_then_render_per_window(&mut app);
time = Instant::now();
}
})
}
/// Processes a single event for an event loop.
/// Returns true only if the window is to be closed.
pub fn process_event(
event: &Event<()>,
app: &mut App,
cursor_pos: &mut Vector2<f32>,
mouse_pressed_w1: &mut bool,
mouse_pressed_w2: &mut bool,
) -> bool {
if let Event::WindowEvent {
event, window_id, ..
} = &event
{
match event {
WindowEvent::CloseRequested => {
if *window_id == app.windows.primary_window_id().unwrap() {
return true;
} else {
// Destroy window by removing its renderer.
app.windows.remove_renderer(*window_id);
app.pipelines.remove(window_id);
}
}
// Resize window and its images.
WindowEvent::Resized(..) | WindowEvent::ScaleFactorChanged { .. } => {
let vulkano_window = app.windows.get_renderer_mut(*window_id).unwrap();
vulkano_window.resize();
}
// Handle mouse position events.
WindowEvent::CursorMoved { position, .. } => {
*cursor_pos = Vector2::new(position.x as f32, position.y as f32)
}
// Handle mouse button events.
WindowEvent::MouseInput { state, button, .. } => {
let mut mouse_pressed = false;
if button == &MouseButton::Left && state == &ElementState::Pressed {
mouse_pressed = true;
}
if button == &MouseButton::Left && state == &ElementState::Released {
mouse_pressed = false;
}
if window_id == &app.windows.primary_window_id().unwrap() {
*mouse_pressed_w1 = mouse_pressed;
} else {
*mouse_pressed_w2 = mouse_pressed;
}
}
_ => (),
}
}
false
}
fn draw_life(
app: &mut App,
cursor_pos: Vector2<f32>,
mouse_is_pressed_w1: bool,
mouse_is_pressed_w2: bool,
) {
let primary_window_id = app.windows.primary_window_id().unwrap();
for (id, window) in app.windows.iter_mut() {
if id == &primary_window_id && !mouse_is_pressed_w1 {
continue;
}
if id != &primary_window_id && !mouse_is_pressed_w2 {
continue;
}
let window_size = window.window_size();
let compute_pipeline = &mut app.pipelines.get_mut(id).unwrap().compute;
let mut normalized_pos = Vector2::new(
(cursor_pos.x / window_size[0]).clamp(0.0, 1.0),
(cursor_pos.y / window_size[1]).clamp(0.0, 1.0),
);
// Flip y.
normalized_pos.y = 1.0 - normalized_pos.y;
let image_extent = compute_pipeline.color_image().image().extent();
compute_pipeline.draw_life(Vector2::new(
(image_extent[0] as f32 * normalized_pos.x) as i32,
(image_extent[1] as f32 * normalized_pos.y) as i32,
))
}
}
/// Compute and render per window.
fn compute_then_render_per_window(app: &mut App) {
let primary_window_id = app.windows.primary_window_id().unwrap();
for (window_id, window_renderer) in app.windows.iter_mut() {
let pipeline = app.pipelines.get_mut(window_id).unwrap();
if *window_id == primary_window_id {
compute_then_render(window_renderer, pipeline, [1.0, 0.0, 0.0, 1.0], [0.0; 4]);
} else {
compute_then_render(window_renderer, pipeline, [0.0, 0.0, 0.0, 1.0], [1.0; 4]);
}
}
}
/// Compute game of life, then display result on target image.
fn compute_then_render(
window_renderer: &mut VulkanoWindowRenderer,
pipeline: &mut RenderPipeline,
life_color: [f32; 4],
dead_color: [f32; 4],
) {
// Skip this window when minimized.
match window_renderer.window_size() {
[w, h] => {
if w == 0.0 || h == 0.0 {
return;
}
}
}
// Start the frame.
let before_pipeline_future = match window_renderer.acquire() {
Err(e) => {
println!("{e}");
return;
}
Ok(future) => future,
};
// Compute.
let after_compute = pipeline
.compute
.compute(before_pipeline_future, life_color, dead_color);
// Render.
let color_image = pipeline.compute.color_image();
let target_image = window_renderer.swapchain_image_view();
let after_render = pipeline
.place_over_frame
.render(after_compute, color_image, target_image);
// Finish the frame. Wait for the future so resources are not in use when we render.
window_renderer.present(after_render, true);
}