mirror of
https://github.com/vulkano-rs/vulkano.git
synced 2024-11-26 08:45:59 +00:00
306 lines
11 KiB
Rust
306 lines
11 KiB
Rust
|
// Copyright (c) 2016 The vulkano developers
|
||
|
// Licensed under the Apache License, Version 2.0
|
||
|
// <LICENSE-APACHE or
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
|
||
|
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
|
||
|
// at your option. All files in the project carrying such
|
||
|
// notice may not be copied, modified, or distributed except
|
||
|
// according to those terms.
|
||
|
|
||
|
// Welcome to the instancing example!
|
||
|
//
|
||
|
// This is a simple, modified version of the `triangle.rs` example that demonstrates how we can use
|
||
|
// the "instancing" technique with vulkano to draw many instances of the triangle.
|
||
|
|
||
|
#[macro_use]
|
||
|
extern crate vulkano;
|
||
|
extern crate vulkano_shaders;
|
||
|
extern crate winit;
|
||
|
extern crate vulkano_win;
|
||
|
|
||
|
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
|
||
|
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
|
||
|
use vulkano::device::{Device, DeviceExtensions};
|
||
|
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
|
||
|
use vulkano::image::SwapchainImage;
|
||
|
use vulkano::instance::{Instance, PhysicalDevice};
|
||
|
use vulkano::pipeline::GraphicsPipeline;
|
||
|
use vulkano::pipeline::vertex::OneVertexOneInstanceDefinition;
|
||
|
use vulkano::pipeline::viewport::Viewport;
|
||
|
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
|
||
|
use vulkano::swapchain;
|
||
|
use vulkano::sync::{GpuFuture, FlushError};
|
||
|
use vulkano::sync;
|
||
|
|
||
|
use vulkano_win::VkSurfaceBuild;
|
||
|
|
||
|
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
|
||
|
|
||
|
use std::sync::Arc;
|
||
|
|
||
|
// # Vertex Types
|
||
|
//
|
||
|
// Seeing as we are going to use the `OneVertexOneInstanceDefinition` vertex definition for our
|
||
|
// graphics pipeline, we need to define two vertex types:
|
||
|
//
|
||
|
// 1. `Vertex` is the vertex type that we will use to describe the triangle's geometry.
|
||
|
#[derive(Debug, Clone)]
|
||
|
struct Vertex {
|
||
|
position: [f32; 2],
|
||
|
}
|
||
|
impl_vertex!(Vertex, position);
|
||
|
|
||
|
// 2. `InstanceData` is the vertex type that describes the unique data per instance.
|
||
|
#[derive(Debug, Clone)]
|
||
|
struct InstanceData {
|
||
|
position_offset: [f32; 2],
|
||
|
scale: f32,
|
||
|
}
|
||
|
impl_vertex!(InstanceData, position_offset, scale);
|
||
|
|
||
|
fn main() {
|
||
|
let instance = {
|
||
|
let extensions = vulkano_win::required_extensions();
|
||
|
Instance::new(None, &extensions, None).unwrap()
|
||
|
};
|
||
|
|
||
|
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
|
||
|
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
|
||
|
|
||
|
|
||
|
let mut events_loop = EventsLoop::new();
|
||
|
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
|
||
|
let window = surface.window();
|
||
|
|
||
|
let queue_family = physical.queue_families().find(|&q| {
|
||
|
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
|
||
|
}).unwrap();
|
||
|
|
||
|
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
|
||
|
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
|
||
|
[(queue_family, 0.5)].iter().cloned()).unwrap();
|
||
|
|
||
|
let queue = queues.next().unwrap();
|
||
|
|
||
|
let (mut swapchain, images) = {
|
||
|
let caps = surface.capabilities(physical).unwrap();
|
||
|
let usage = caps.supported_usage_flags;
|
||
|
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
|
||
|
let format = caps.supported_formats[0].0;
|
||
|
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||
|
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||
|
[dimensions.0, dimensions.1]
|
||
|
} else {
|
||
|
return;
|
||
|
};
|
||
|
|
||
|
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
|
||
|
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
|
||
|
PresentMode::Fifo, true, None).unwrap()
|
||
|
};
|
||
|
|
||
|
// We now create a buffer that will store the shape of our triangle.
|
||
|
// This triangle is identical to the one in the `triangle.rs` example.
|
||
|
let triangle_vertex_buffer = {
|
||
|
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
|
||
|
Vertex { position: [-0.5, -0.25] },
|
||
|
Vertex { position: [0.0, 0.5] },
|
||
|
Vertex { position: [0.25, -0.1] }
|
||
|
].iter().cloned()).unwrap()
|
||
|
};
|
||
|
|
||
|
// Now we create another buffer that will store the unique data per instance.
|
||
|
// For this example, we'll have the instances form a 10x10 grid that slowly gets larger.
|
||
|
let instance_data_buffer = {
|
||
|
let rows = 10;
|
||
|
let cols = 10;
|
||
|
let n_instances = rows * cols;
|
||
|
let mut data = Vec::new();
|
||
|
for c in 0..cols {
|
||
|
for r in 0..rows {
|
||
|
let half_cell_w = 0.5 / cols as f32;
|
||
|
let half_cell_h = 0.5 / rows as f32;
|
||
|
let x = half_cell_w + (c as f32 / cols as f32) * 2.0 - 1.0;
|
||
|
let y = half_cell_h + (r as f32 / rows as f32) * 2.0 - 1.0;
|
||
|
let position_offset = [x, y];
|
||
|
let scale = (2.0 / rows as f32) * (c * rows + r) as f32 / n_instances as f32;
|
||
|
data.push(InstanceData { position_offset, scale });
|
||
|
}
|
||
|
}
|
||
|
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data.iter().cloned())
|
||
|
.unwrap()
|
||
|
};
|
||
|
|
||
|
mod vs {
|
||
|
vulkano_shaders::shader!{
|
||
|
ty: "vertex",
|
||
|
src: "
|
||
|
#version 450
|
||
|
|
||
|
// The triangle vertex positions.
|
||
|
layout(location = 0) in vec2 position;
|
||
|
|
||
|
// The per-instance data.
|
||
|
layout(location = 1) in vec2 position_offset;
|
||
|
layout(location = 2) in float scale;
|
||
|
|
||
|
void main() {
|
||
|
// Apply the scale and offset for the instance.
|
||
|
gl_Position = vec4(position * scale + position_offset, 0.0, 1.0);
|
||
|
}"
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mod fs {
|
||
|
vulkano_shaders::shader!{
|
||
|
ty: "fragment",
|
||
|
src: "
|
||
|
#version 450
|
||
|
|
||
|
layout(location = 0) out vec4 f_color;
|
||
|
|
||
|
void main() {
|
||
|
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
||
|
}
|
||
|
"
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let vs = vs::Shader::load(device.clone()).unwrap();
|
||
|
let fs = fs::Shader::load(device.clone()).unwrap();
|
||
|
|
||
|
let render_pass = Arc::new(single_pass_renderpass!(
|
||
|
device.clone(),
|
||
|
attachments: {
|
||
|
color: {
|
||
|
load: Clear,
|
||
|
store: Store,
|
||
|
format: swapchain.format(),
|
||
|
samples: 1,
|
||
|
}
|
||
|
},
|
||
|
pass: {
|
||
|
color: [color],
|
||
|
depth_stencil: {}
|
||
|
}
|
||
|
).unwrap());
|
||
|
|
||
|
let pipeline = Arc::new(GraphicsPipeline::start()
|
||
|
// Use the `OneVertexOneInstanceDefinition` to describe to vulkano how the two vertex types
|
||
|
// are expected to be used.
|
||
|
.vertex_input(OneVertexOneInstanceDefinition::<Vertex, InstanceData>::new())
|
||
|
.vertex_shader(vs.main_entry_point(), ())
|
||
|
.triangle_list()
|
||
|
.viewports_dynamic_scissors_irrelevant(1)
|
||
|
.fragment_shader(fs.main_entry_point(), ())
|
||
|
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
|
||
|
.build(device.clone())
|
||
|
.unwrap());
|
||
|
|
||
|
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
|
||
|
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
|
||
|
let mut recreate_swapchain = false;
|
||
|
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<GpuFuture>;
|
||
|
|
||
|
loop {
|
||
|
previous_frame_end.cleanup_finished();
|
||
|
|
||
|
if recreate_swapchain {
|
||
|
let dimensions = if let Some(dimensions) = window.get_inner_size() {
|
||
|
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
|
||
|
[dimensions.0, dimensions.1]
|
||
|
} else {
|
||
|
return;
|
||
|
};
|
||
|
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
|
||
|
Ok(r) => r,
|
||
|
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
|
||
|
Err(err) => panic!("{:?}", err)
|
||
|
};
|
||
|
swapchain = new_swapchain;
|
||
|
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
|
||
|
recreate_swapchain = false;
|
||
|
}
|
||
|
|
||
|
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
|
||
|
Ok(r) => r,
|
||
|
Err(AcquireError::OutOfDate) => {
|
||
|
recreate_swapchain = true;
|
||
|
continue;
|
||
|
},
|
||
|
Err(err) => panic!("{:?}", err)
|
||
|
};
|
||
|
|
||
|
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
|
||
|
|
||
|
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
|
||
|
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
|
||
|
.unwrap()
|
||
|
.draw(
|
||
|
pipeline.clone(),
|
||
|
&dynamic_state,
|
||
|
// We pass both our lists of vertices here.
|
||
|
(triangle_vertex_buffer.clone(), instance_data_buffer.clone()),
|
||
|
(),
|
||
|
(),
|
||
|
)
|
||
|
.unwrap()
|
||
|
.end_render_pass()
|
||
|
.unwrap()
|
||
|
.build().unwrap();
|
||
|
|
||
|
let future = previous_frame_end.join(acquire_future)
|
||
|
.then_execute(queue.clone(), command_buffer).unwrap()
|
||
|
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
|
||
|
.then_signal_fence_and_flush();
|
||
|
|
||
|
match future {
|
||
|
Ok(future) => {
|
||
|
previous_frame_end = Box::new(future) as Box<_>;
|
||
|
}
|
||
|
Err(FlushError::OutOfDate) => {
|
||
|
recreate_swapchain = true;
|
||
|
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||
|
}
|
||
|
Err(e) => {
|
||
|
println!("{:?}", e);
|
||
|
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let mut done = false;
|
||
|
events_loop.poll_events(|ev| {
|
||
|
match ev {
|
||
|
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
|
||
|
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
|
||
|
_ => ()
|
||
|
}
|
||
|
});
|
||
|
if done { return; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// This method is called once during initialization, then again whenever the window is resized
|
||
|
fn window_size_dependent_setup(
|
||
|
images: &[Arc<SwapchainImage<Window>>],
|
||
|
render_pass: Arc<RenderPassAbstract + Send + Sync>,
|
||
|
dynamic_state: &mut DynamicState
|
||
|
) -> Vec<Arc<FramebufferAbstract + Send + Sync>> {
|
||
|
let dimensions = images[0].dimensions();
|
||
|
|
||
|
let viewport = Viewport {
|
||
|
origin: [0.0, 0.0],
|
||
|
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
|
||
|
depth_range: 0.0 .. 1.0,
|
||
|
};
|
||
|
dynamic_state.viewports = Some(vec!(viewport));
|
||
|
|
||
|
images.iter().map(|image| {
|
||
|
Arc::new(
|
||
|
Framebuffer::start(render_pass.clone())
|
||
|
.add(image.clone()).unwrap()
|
||
|
.build().unwrap()
|
||
|
) as Arc<FramebufferAbstract + Send + Sync>
|
||
|
}).collect::<Vec<_>>()
|
||
|
}
|