vulkano/examples/src/bin/instancing.rs

306 lines
11 KiB
Rust
Raw Normal View History

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
// Welcome to the instancing example!
//
// This is a simple, modified version of the `triangle.rs` example that demonstrates how we can use
// the "instancing" technique with vulkano to draw many instances of the triangle.
#[macro_use]
extern crate vulkano;
extern crate vulkano_shaders;
extern crate winit;
extern crate vulkano_win;
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::device::{Device, DeviceExtensions};
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::SwapchainImage;
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::pipeline::vertex::OneVertexOneInstanceDefinition;
use vulkano::pipeline::viewport::Viewport;
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use vulkano_win::VkSurfaceBuild;
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
use std::sync::Arc;
// # Vertex Types
//
// Seeing as we are going to use the `OneVertexOneInstanceDefinition` vertex definition for our
// graphics pipeline, we need to define two vertex types:
//
// 1. `Vertex` is the vertex type that we will use to describe the triangle's geometry.
#[derive(Debug, Clone)]
struct Vertex {
position: [f32; 2],
}
impl_vertex!(Vertex, position);
// 2. `InstanceData` is the vertex type that describes the unique data per instance.
#[derive(Debug, Clone)]
struct InstanceData {
position_offset: [f32; 2],
scale: f32,
}
impl_vertex!(InstanceData, position_offset, scale);
fn main() {
let instance = {
let extensions = vulkano_win::required_extensions();
Instance::new(None, &extensions, None).unwrap()
};
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
let mut events_loop = EventsLoop::new();
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
let queue_family = physical.queue_families().find(|&q| {
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
}).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let caps = surface.capabilities(physical).unwrap();
let usage = caps.supported_usage_flags;
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
let format = caps.supported_formats[0].0;
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
// We now create a buffer that will store the shape of our triangle.
// This triangle is identical to the one in the `triangle.rs` example.
let triangle_vertex_buffer = {
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
Vertex { position: [-0.5, -0.25] },
Vertex { position: [0.0, 0.5] },
Vertex { position: [0.25, -0.1] }
].iter().cloned()).unwrap()
};
// Now we create another buffer that will store the unique data per instance.
// For this example, we'll have the instances form a 10x10 grid that slowly gets larger.
let instance_data_buffer = {
let rows = 10;
let cols = 10;
let n_instances = rows * cols;
let mut data = Vec::new();
for c in 0..cols {
for r in 0..rows {
let half_cell_w = 0.5 / cols as f32;
let half_cell_h = 0.5 / rows as f32;
let x = half_cell_w + (c as f32 / cols as f32) * 2.0 - 1.0;
let y = half_cell_h + (r as f32 / rows as f32) * 2.0 - 1.0;
let position_offset = [x, y];
let scale = (2.0 / rows as f32) * (c * rows + r) as f32 / n_instances as f32;
data.push(InstanceData { position_offset, scale });
}
}
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data.iter().cloned())
.unwrap()
};
mod vs {
vulkano_shaders::shader!{
ty: "vertex",
src: "
#version 450
// The triangle vertex positions.
layout(location = 0) in vec2 position;
// The per-instance data.
layout(location = 1) in vec2 position_offset;
layout(location = 2) in float scale;
void main() {
// Apply the scale and offset for the instance.
gl_Position = vec4(position * scale + position_offset, 0.0, 1.0);
}"
}
}
mod fs {
vulkano_shaders::shader!{
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"
}
}
let vs = vs::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
let render_pass = Arc::new(single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
).unwrap());
let pipeline = Arc::new(GraphicsPipeline::start()
// Use the `OneVertexOneInstanceDefinition` to describe to vulkano how the two vertex types
// are expected to be used.
.vertex_input(OneVertexOneInstanceDefinition::<Vertex, InstanceData>::new())
.vertex_shader(vs.main_entry_point(), ())
.triangle_list()
.viewports_dynamic_scissors_irrelevant(1)
.fragment_shader(fs.main_entry_point(), ())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap());
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
let mut recreate_swapchain = false;
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<GpuFuture>;
loop {
previous_frame_end.cleanup_finished();
if recreate_swapchain {
let dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
Ok(r) => r,
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
recreate_swapchain = false;
}
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
},
Err(err) => panic!("{:?}", err)
};
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
.draw(
pipeline.clone(),
&dynamic_state,
// We pass both our lists of vertices here.
(triangle_vertex_buffer.clone(), instance_data_buffer.clone()),
(),
(),
)
.unwrap()
.end_render_pass()
.unwrap()
.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(queue.clone(), command_buffer).unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
let mut done = false;
events_loop.poll_events(|ev| {
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => ()
}
});
if done { return; }
}
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState
) -> Vec<Arc<FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0 .. 1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}