vulkano/examples/msaa-renderpass/main.rs

442 lines
16 KiB
Rust
Raw Normal View History

// Multisampling anti-aliasing example, using a render pass resolve.
//
// # Introduction to multisampling
//
// When you draw an object on an image, this object occupies a certain set of pixels. Each pixel of
// the image is either fully covered by the object, or not covered at all. There is no such thing
// as a pixel that is half-covered by the object that you're drawing. What this means is that you
// will sometimes see a "staircase effect" at the border of your object, also called aliasing.
//
// The root cause of aliasing is that the resolution of the image is not high enough. If you
// increase the size of the image you're drawing to, this effect will still exist but will be much
// less visible.
//
// In order to decrease aliasing, some games and programs use what we call "SuperSample Anti-
// Aliasing" (SSAA). For example instead of drawing to an image of size 1024x1024, you draw to an
// image of size 2048x2048. Then at the end, you scale down your image to 1024x1024 by merging
// nearby pixels. Since the intermediate image is 4 times larger than the destination, this would
// be 4x SSAA.
//
// However this technique is very expensive in terms of GPU power. The fragment shader and all its
// calculations has to run four times more often.
//
// So instead of SSAA, a common alternative is MSAA (MultiSample Anti-Aliasing). The base principle
// is more or less the same: you draw to an image of a larger dimension, and then at the end you
// scale it down to the final size. The difference is that the fragment shader is only run once per
// pixel of the final size, and its value is duplicated to fill to all the pixels of the
// intermediate image that are covered by the object.
//
// For example, let's say that you use 4x MSAA, you draw to an intermediate image of size
// 2048x2048, and your object covers the whole image. With MSAA, the fragment shader will only be
// run 1,048,576 times (1024 * 1024), compared to 4,194,304 times (2048 * 2048) with 4x SSAA. Then
// the output of each fragment shader invocation is copied in each of the four pixels of the
// intermediate image that correspond to each pixel of the final image.
//
// Now, let's say that your object doesn't cover the whole image. In this situation, only the
// pixels of the intermediate image that are covered by the object will receive the output of the
// fragment shader.
//
// Because of the way it works, this technique requires direct support from the hardware, contrary
// to SSAA which can be done on any machine.
//
// # Multisampled images
//
// Using MSAA with Vulkan is done by creating a regular image, but with a number of samples per
// pixel different from 1. For example if you want to use 4x MSAA, you should create an image with
// 4 samples per pixel. Internally this image will have 4 times as many pixels as its extent
// would normally require, but this is handled transparently for you. Drawing to a multisampled
// image is exactly the same as drawing to a regular image.
//
// However multisampled images have some restrictions, for example you can't show them on the
// screen (swapchain images are always single-sampled), and you can't copy them into a buffer.
// Therefore when you have finished drawing, you have to blit your multisampled image to a
// non-multisampled image. This operation is not a regular blit (blitting a multisampled image is
// an error), instead it is called *resolving* the image.
use std::{fs::File, io::BufWriter, path::Path, sync::Arc};
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, CopyImageToBufferInfo, RecordingCommandBuffer, RenderPassBeginInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
format::Format,
image::{view::ImageView, Image, ImageCreateInfo, ImageType, ImageUsage, SampleCount},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{Framebuffer, FramebufferCreateInfo, Subpass},
sync::GpuFuture,
VulkanLibrary,
};
fn main() {
// The usual Vulkan initialization.
let library = VulkanLibrary::new().unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.intersects(QueueFlags::GRAPHICS))
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
2022-10-26 14:25:01 +00:00
// Creating our intermediate multisampled image.
//
// As explained in the introduction, we pass the same extent and format as for the final
// image. But we also pass the number of samples-per-pixel, which is 4 here.
let intermediary = ImageView::new_default(
Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::R8G8B8A8_UNORM,
extent: [1024, 1024, 1],
usage: ImageUsage::COLOR_ATTACHMENT | ImageUsage::TRANSIENT_ATTACHMENT,
samples: SampleCount::Sample4,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap(),
)
.unwrap();
// This is the final image that will receive the anti-aliased triangle.
let image = Image::new(
memory_allocator.clone(),
ImageCreateInfo {
image_type: ImageType::Dim2d,
format: Format::R8G8B8A8_UNORM,
extent: [1024, 1024, 1],
usage: ImageUsage::TRANSFER_SRC
| ImageUsage::TRANSFER_DST
| ImageUsage::COLOR_ATTACHMENT
| ImageUsage::STORAGE,
..Default::default()
},
AllocationCreateInfo::default(),
)
.unwrap();
let view = ImageView::new_default(image.clone()).unwrap();
// In this example, we are going to perform the *resolve* (ie. turning a multisampled image
// into a non-multisampled one) as part of the render pass. This is the preferred method of
// doing so, as it the advantage that the Vulkan implementation doesn't have to write the
// content of the multisampled image back to memory at the end.
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
// The first framebuffer attachment is the intermediary image.
intermediary: {
format: Format::R8G8B8A8_UNORM,
// This has to match the image definition.
samples: 4,
load_op: Clear,
store_op: DontCare,
},
// The second framebuffer attachment is the final image.
color: {
format: Format::R8G8B8A8_UNORM,
// Same here, this has to match.
samples: 1,
load_op: DontCare,
store_op: Store,
},
},
pass: {
// When drawing, we have only one output which is the intermediary image.
//
// At the end of the pass, each color attachment will be *resolved* into the image
// given under `color_resolve`. In other words, here, at the end of the pass, the
// `intermediary` attachment will be copied to the attachment named `color`.
//
// For depth/stencil attachments, there is also a `depth_stencil_resolve` field.
// When you specify this, you must also specify at least one of the
// `depth_resolve_mode` and `stencil_resolve_mode` fields.
// We don't need that here, so it's skipped.
color: [intermediary],
color_resolve: [color],
depth_stencil: {},
},
)
.unwrap();
// Creating the framebuffer, the calls to `add` match the list of attachments in order.
let framebuffer = Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![intermediary, view],
..Default::default()
},
)
.unwrap();
// Here is the "end" of the multisampling example, as starting from here everything is the same
// as in any other example. The pipeline, vertex buffer, and command buffer are created in
// exactly the same way as without multisampling. At the end of the example, we copy the
// content of `image` (ie. the final image) to a buffer, then read the content of that buffer
// and save it to a PNG file.
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
#[derive(BufferContents, Vertex)]
2021-11-24 14:19:57 +00:00
#[repr(C)]
struct Vertex {
Refactor Vertex trait to allow user-defined formats (#2106) * Refactor Vertex trait to not rely on ShaderInterfaceEntryType::to_format and instead rely on Format provided by VertexMember trait. * Add test for impl_vertex macro, remove tuple implementations as they do not implement Pod, minor cleanups to impl_vertex macro. * #[derive(Vertex)] proc-macro implementation with support for format and name attributes. Tests are implemented for both attributes and inferral matching impl_vertex macro * Rename num_elements into num_locations to make purpose clear, add helper function to calculate num_components and check them properly in BufferDefinition's VertexDefinition implementation. * Rename num_locations back to num_elements to make distinction to locations clear. Updated VertexDefinition implementation for BuffersDefinition to support double precision formats exceeding a single location. * Add additional validation for vertex attributes with formats exceeding their location. * Collect unnecessary, using iterator in loop to avoid unnecessary allocations. * Use field type directly and avoid any form of unsafe blocks. * Match shader scalar type directly in GraphicsPipelineBuilder * Rename impl_vertex test to fit macro name * Add VertexMember implementatinos for nalgebra and cgmath (incl matrices). * Add missing copyright headers to new files in proc macro crate * Document derive vertex with field-attribute options on the Vertex trait * Add example for vertex derive approach. * Do not publish internal macros crate as it is re-exported by vulkano itself * Deprecate impl_vertex and VertexMember and update documentation for Vertex accordingly * Make format field-level attribute mandatory for derive vertex * Update all examples to derive Vertex trait instead of impl_vertex macro * Fix doctests by adding missing imports and re-exporting crate self as vulkano to workaround limitations of distinguishing doctests in proc-macros
2022-12-28 10:23:36 +00:00
#[format(R32G32_SFLOAT)]
position: [f32; 2],
}
let vertices = [
Vertex {
position: [-0.5, -0.5],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.5, -0.25],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator.clone(),
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
let pipeline = {
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let vertex_input_state = Vertex::per_vertex()
.definition(&vs.info().input_interface)
.unwrap();
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
let layout = PipelineLayout::new(
device.clone(),
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
let subpass = Subpass::from(render_pass, 0).unwrap();
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
vertex_input_state: Some(vertex_input_state),
input_assembly_state: Some(InputAssemblyState::default()),
viewport_state: Some(ViewportState::default()),
rasterization_state: Some(RasterizationState::default()),
multisample_state: Some(MultisampleState {
rasterization_samples: subpass.num_samples().unwrap(),
..Default::default()
}),
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.num_color_attachments(),
ColorBlendAttachmentState::default(),
)),
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
let viewport = Viewport {
offset: [0.0, 0.0],
extent: [1024.0, 1024.0],
depth_range: 0.0..=1.0,
};
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device,
Default::default(),
));
let buf = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::TRANSFER_DST,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_HOST
| MemoryTypeFilter::HOST_RANDOM_ACCESS,
..Default::default()
},
(0..1024 * 1024 * 4).map(|_| 0u8),
)
.unwrap();
let mut builder = RecordingCommandBuffer::new(
command_buffer_allocator,
queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into()), None],
..RenderPassBeginInfo::framebuffer(framebuffer)
},
Default::default(),
)
.unwrap()
.set_viewport(0, [viewport].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(pipeline)
.unwrap()
.bind_vertex_buffers(0, vertex_buffer.clone())
.unwrap();
unsafe {
builder.draw(vertex_buffer.len() as u32, 1, 0, 0).unwrap();
}
builder
.end_render_pass(Default::default())
.unwrap()
.copy_image_to_buffer(CopyImageToBufferInfo::image_buffer(image, buf.clone()))
.unwrap();
let command_buffer = builder.end().unwrap();
let finished = command_buffer.execute(queue).unwrap();
finished
.then_signal_fence_and_flush()
.unwrap()
.wait(None)
.unwrap();
let buffer_content = buf.read().unwrap();
let path = Path::new(env!("CARGO_MANIFEST_DIR")).join("triangle.png");
let file = File::create(&path).unwrap();
let w = &mut BufWriter::new(file);
let mut encoder = png::Encoder::new(w, 1024, 1024); // Width is 2 pixels and height is 1.
2021-09-04 04:21:15 +00:00
encoder.set_color(png::ColorType::Rgba);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&buffer_content).unwrap();
if let Ok(path) = path.canonicalize() {
println!("Saved to {}", path.display());
}
}