vulkano/examples/src/bin/msaa-renderpass.rs

377 lines
14 KiB
Rust
Raw Normal View History

// Copyright (c) 2017 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
//! Multisampling anti-aliasing example, using a render pass resolve.
//!
//! # Introduction to multisampling
//!
//! When you draw an object on an image, this object occupies a certain set of pixels. Each pixel
//! of the image is either fully covered by the object, or not covered at all. There is no such
//! thing as a pixel that is half-covered by the object that you're drawing. What this means is
//! that you will sometimes see a "staircase effect" at the border of your object, also called
//! aliasing.
//!
//! The root cause of aliasing is that the resolution of the image is not high enough. If you
//! increase the size of the image you're drawing to, this effect will still exist but will be
//! much less visible.
//!
//! In order to decrease aliasing, some games and programs use what we call "Super-Sampling Anti
//! Aliasing" (SSAA). For example instead of drawing to an image of size 1024x1024, you draw to an
//! image of size 4096x4096. Then at the end, you scale down your image to 1024x1024 by merging
//! nearby pixels. Since the intermediate image is 4 times larger than the destination, this would
//! be x4 SSAA.
//!
//! However this technique is very expensive in terms of GPU power. The fragment shader and all
//! its calculations has to run four times more often.
//!
//! So instead of SSAA, a common alternative is MSAA (MultiSampling Anti Aliasing). The base
//! principle is more or less the same: you draw to an image of a larger dimension, and then at
//! the end you scale it down to the final size. The difference is that the fragment shader is
//! only run once per pixel of the final size, and its value is duplicated to fill to all the
//! pixels of the intermediate image that are covered by the object.
//!
//! For example, let's say that you use x4 MSAA, you draw to an intermediate image of size
//! 4096x4096, and your object covers the whole image. With MSAA, the fragment shader will only
//! be 1,048,576 times (1024 * 1024), compared to 16,777,216 times (4096 * 4096) with 4x SSAA.
//! Then the output of each fragment shader invocation is copied in each of the four pixels of the
//! intermediate image that correspond to each pixel of the final image.
//!
//! Now, let's say that your object doesn't cover the whole image. In this situation, only the
//! pixels of the intermediate image that are covered by the object will receive the output of the
//! fragment shader.
//!
//! Because of the way it works, this technique requires direct support from the hardware,
//! contrary to SSAA which can be done on any machine.
//!
//! # Multisampled images
//!
//! Using MSAA with Vulkan is done by creating a regular image, but with a number of samples per
//! pixel different from 1. For example if you want to use 4x MSAA, you should create an image with
//! 4 samples per pixel. Internally this image will have 4 times as many pixels as its dimensions
//! would normally require, but this is handled transparently for you. Drawing to a multisampled
//! image is exactly the same as drawing to a regular image.
//!
//! However multisampled images have some restrictions, for example you can't show them on the
//! screen (swapchain images are always single-sampled), and you can't copy them into a buffer.
//! Therefore when you have finished drawing, you have to blit your multisampled image to a
//! non-multisampled image. This operation is not a regular blit (blitting a multisampled image is
//! an error), instead it is called *resolving* the image.
//!
use bytemuck::{Pod, Zeroable};
use std::{fs::File, io::BufWriter, path::Path};
use vulkano::{
buffer::{BufferUsage, CpuAccessibleBuffer, TypedBufferAccess},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
CopyImageToBufferInfo, PrimaryCommandBuffer, RenderPassBeginInfo, SubpassContents,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
},
format::Format,
image::{view::ImageView, AttachmentImage, ImageDimensions, SampleCount, StorageImage},
impl_vertex,
instance::{Instance, InstanceCreateInfo},
pipeline::{
graphics::{
multisample::MultisampleState,
vertex_input::BuffersDefinition,
viewport::{Viewport, ViewportState},
},
GraphicsPipeline,
},
render_pass::{Framebuffer, FramebufferCreateInfo, Subpass},
sync::GpuFuture,
VulkanLibrary,
};
fn main() {
// The usual Vulkan initialization.
let library = VulkanLibrary::new().unwrap();
let required_extensions = vulkano_win::required_extensions(&library);
let instance = Instance::new(
library,
InstanceCreateInfo {
enabled_extensions: required_extensions,
// Enable enumerating devices that use non-conformant vulkan implementations. (ex. MoltenVK)
enumerate_portability: true,
..Default::default()
},
)
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.position(|q| q.queue_flags.graphics)
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
// Creating our intermediate multisampled image.
//
// As explained in the introduction, we pass the same dimensions and format as for the final
// image. But we also pass the number of samples-per-pixel, which is 4 here.
let intermediary = ImageView::new_default(
AttachmentImage::transient_multisampled(
device.clone(),
[1024, 1024],
SampleCount::Sample4,
Format::R8G8B8A8_UNORM,
)
.unwrap(),
)
.unwrap();
// This is the final image that will receive the anti-aliased triangle.
let image = StorageImage::new(
device.clone(),
ImageDimensions::Dim2d {
width: 1024,
height: 1024,
array_layers: 1,
},
Format::R8G8B8A8_UNORM,
Some(queue.queue_family_index()),
)
.unwrap();
let view = ImageView::new_default(image.clone()).unwrap();
// In this example, we are going to perform the *resolve* (ie. turning a multisampled image
// into a non-multisampled one) as part of the render pass. This is the preferred method of
// doing so, as it the advantage that the Vulkan implementation doesn't have to write the
// content of the multisampled image back to memory at the end.
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
// The first framebuffer attachment is the intermediary image.
intermediary: {
load: Clear,
store: DontCare,
format: Format::R8G8B8A8_UNORM,
samples: 4, // This has to match the image definition.
},
// The second framebuffer attachment is the final image.
color: {
load: DontCare,
store: Store,
format: Format::R8G8B8A8_UNORM,
samples: 1, // Same here, this has to match.
}
},
pass: {
// When drawing, we have only one output which is the intermediary image.
color: [intermediary],
depth_stencil: {},
// The `resolve` array here must contain either zero entry (if you don't use
// multisampling), or one entry per color attachment. At the end of the pass, each
// color attachment will be *resolved* into the given image. In other words, here, at
// the end of the pass, the `intermediary` attachment will be copied to the attachment
// named `color`.
resolve: [color],
}
)
.unwrap();
// Creating the framebuffer, the calls to `add` match the list of attachments in order.
let framebuffer = Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![intermediary, view],
..Default::default()
},
)
.unwrap();
// Here is the "end" of the multisampling example, as starting from here everything is the same
// as in any other example.
// The pipeline, vertex buffer, and command buffer are created in exactly the same way as
// without multisampling.
// At the end of the example, we copy the content of `image` (ie. the final image) to a buffer,
// then read the content of that buffer and save it to a PNG file.
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"
}
}
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
2021-11-24 14:19:57 +00:00
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod)]
struct Vertex {
position: [f32; 2],
}
impl_vertex!(Vertex, position);
let vertices = [
Vertex {
position: [-0.5, -0.5],
},
Vertex {
position: [0.0, 0.5],
},
Vertex {
position: [0.5, -0.25],
},
];
let vertex_buffer = CpuAccessibleBuffer::from_iter(
device.clone(),
BufferUsage {
vertex_buffer: true,
..BufferUsage::empty()
},
false,
vertices,
)
.unwrap();
let subpass = Subpass::from(render_pass, 0).unwrap();
let pipeline = GraphicsPipeline::start()
.vertex_input_state(BuffersDefinition::new().vertex::<Vertex>())
.vertex_shader(vs.entry_point("main").unwrap(), ())
.viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant())
.fragment_shader(fs.entry_point("main").unwrap(), ())
.multisample_state(MultisampleState {
rasterization_samples: subpass.num_samples().unwrap(),
..Default::default()
})
.render_pass(subpass)
.build(device.clone())
.unwrap();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [1024.0, 1024.0],
depth_range: 0.0..1.0,
};
let command_buffer_allocator = StandardCommandBufferAllocator::new(device.clone());
let buf = CpuAccessibleBuffer::from_iter(
device,
BufferUsage {
transfer_dst: true,
..BufferUsage::empty()
},
false,
(0..1024 * 1024 * 4).map(|_| 0u8),
)
.unwrap();
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![Some([0.0, 0.0, 1.0, 1.0].into()), None],
..RenderPassBeginInfo::framebuffer(framebuffer)
},
SubpassContents::Inline,
)
.unwrap()
.set_viewport(0, [viewport])
.bind_pipeline_graphics(pipeline)
.bind_vertex_buffers(0, vertex_buffer.clone())
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap()
.copy_image_to_buffer(CopyImageToBufferInfo::image_buffer(image, buf.clone()))
.unwrap();
let command_buffer = builder.build().unwrap();
let finished = command_buffer.execute(queue).unwrap();
finished
.then_signal_fence_and_flush()
.unwrap()
.wait(None)
.unwrap();
let buffer_content = buf.read().unwrap();
let path = Path::new("triangle.png");
let file = File::create(path).unwrap();
let w = &mut BufWriter::new(file);
let mut encoder = png::Encoder::new(w, 1024, 1024); // Width is 2 pixels and height is 1.
2021-09-04 04:21:15 +00:00
encoder.set_color(png::ColorType::Rgba);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&buffer_content).unwrap();
if let Ok(path) = path.canonicalize() {
println!("Saved to {}", path.display());
}
}