vulkano/examples/deferred/main.rs

293 lines
11 KiB
Rust
Raw Normal View History

// Welcome to the deferred lighting example!
//
// The idea behind deferred lighting is to render the scene in two steps.
//
// First you draw all the objects of the scene. But instead of calculating the color they will have
// on the screen, you output their characteristics such as their diffuse color and their normals,
// and write this to images.
//
// After all the objects are drawn, you should obtain several images that contain the
// characteristics of each pixel.
//
// Then you apply lighting to the scene. In other words you draw to the final image by taking these
// intermediate images and the various lights of the scene as input.
//
// This technique allows you to apply tons of light sources to a scene, which would be too
// expensive otherwise. It has some drawbacks, which are the fact that transparent objects must be
// drawn after the lighting, and that the whole process consumes more memory.
use crate::{
frame::{FrameSystem, Pass},
triangle_draw_system::TriangleDrawSystem,
};
use cgmath::{Matrix4, SquareMatrix, Vector3};
use std::{error::Error, sync::Arc};
use vulkano::{
2023-10-25 09:01:30 +00:00
command_buffer::allocator::{
StandardCommandBufferAllocator, StandardCommandBufferAllocatorCreateInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
QueueFlags,
},
image::{view::ImageView, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
2022-10-26 14:25:01 +00:00
memory::allocator::StandardMemoryAllocator,
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, VulkanError, VulkanLibrary,
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
mod frame;
mod triangle_draw_system;
fn main() -> Result<(), impl Error> {
// Basic initialization. See the triangle example if you want more details about this.
let event_loop = EventLoop::new().unwrap();
let library = VulkanLibrary::new().unwrap();
let required_extensions = Surface::required_extensions(&event_loop).unwrap();
let instance = Instance::new(
library,
InstanceCreateInfo {
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let window = Arc::new(WindowBuilder::new().build(&event_loop).unwrap());
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, mut images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
let (swapchain, images) = Swapchain::new(
device.clone(),
2023-05-12 18:26:49 +00:00
surface,
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap();
let images = images
.into_iter()
.map(|image| ImageView::new_default(image).unwrap())
.collect::<Vec<_>>();
(swapchain, images)
};
2022-10-26 14:25:01 +00:00
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
2023-10-25 09:01:30 +00:00
StandardCommandBufferAllocatorCreateInfo {
secondary_buffer_count: 32,
..Default::default()
},
));
// Here is the basic initialization for the deferred system.
let mut frame_system = FrameSystem::new(
queue.clone(),
swapchain.image_format(),
2022-10-26 14:25:01 +00:00
memory_allocator.clone(),
command_buffer_allocator.clone(),
);
let triangle_draw_system = TriangleDrawSystem::new(
queue.clone(),
frame_system.deferred_subpass(),
memory_allocator.clone(),
command_buffer_allocator,
);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
event_loop.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
elwt.exit();
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => {
let image_extent: [u32; 2] = window.inner_size().into();
if image_extent.contains(&0) {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..swapchain.create_info()
})
.expect("failed to recreate swapchain");
let new_images = new_images
.into_iter()
.map(|image| ImageView::new_default(image).unwrap())
.collect::<Vec<_>>();
swapchain = new_swapchain;
images = new_images;
recreate_swapchain = false;
}
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let future = previous_frame_end.take().unwrap().join(acquire_future);
let mut frame = frame_system.frame(
future,
images[image_index as usize].clone(),
Matrix4::identity(),
);
let mut after_future = None;
while let Some(pass) = frame.next_pass() {
match pass {
Pass::Deferred(mut draw_pass) => {
let cb = triangle_draw_system.draw(draw_pass.viewport_dimensions());
draw_pass.execute(cb);
}
Pass::Lighting(mut lighting) => {
lighting.ambient_light([0.1, 0.1, 0.1]);
lighting
.directional_light(Vector3::new(0.2, -0.1, -0.7), [0.6, 0.6, 0.6]);
lighting.point_light(Vector3::new(0.5, -0.5, -0.1), [1.0, 0.0, 0.0]);
lighting.point_light(Vector3::new(-0.9, 0.2, -0.15), [0.0, 1.0, 0.0]);
lighting.point_light(Vector3::new(0.0, 0.5, -0.05), [0.0, 0.0, 1.0]);
}
Pass::Finished(af) => {
after_future = Some(af);
}
}
}
let future = after_future
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
Event::AboutToWait => window.request_redraw(),
_ => (),
}
})
}