vulkano/examples/src/bin/push-descriptors/main.rs

404 lines
13 KiB
Rust
Raw Normal View History

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use bytemuck::{Pod, Zeroable};
use std::{io::Cursor, sync::Arc};
use vulkano::{
buffer::{BufferUsage, CpuAccessibleBuffer, TypedBufferAccess},
command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, SubpassContents},
descriptor_set::WriteDescriptorSet,
device::{
physical::{PhysicalDevice, PhysicalDeviceType},
Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo,
},
format::Format,
image::{
view::ImageView, ImageAccess, ImageDimensions, ImageUsage, ImmutableImage, MipmapsCount,
SwapchainImage,
},
impl_vertex,
instance::{Instance, InstanceCreateInfo},
pipeline::{
graphics::{
color_blend::ColorBlendState,
input_assembly::{InputAssemblyState, PrimitiveTopology},
vertex_input::BuffersDefinition,
viewport::{Viewport, ViewportState},
},
GraphicsPipeline, Pipeline, PipelineBindPoint,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
sampler::{Filter, Sampler, SamplerAddressMode, SamplerCreateInfo},
swapchain::{
acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError,
},
sync::{self, FlushError, GpuFuture},
};
use vulkano_win::VkSurfaceBuild;
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::{Window, WindowBuilder},
};
fn main() {
let required_extensions = vulkano_win::required_extensions();
let instance = Instance::new(InstanceCreateInfo {
enabled_extensions: required_extensions,
..Default::default()
})
.unwrap();
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
khr_push_descriptor: true,
..DeviceExtensions::none()
};
let (physical_device, queue_family) = PhysicalDevice::enumerate(&instance)
.filter(|&p| p.supported_extensions().is_superset_of(&device_extensions))
.filter_map(|p| {
p.queue_families()
.find(|&q| q.supports_graphics() && q.supports_surface(&surface).unwrap_or(false))
.map(|q| (p, q))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
})
.expect("No suitable physical device found");
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: physical_device
.required_extensions()
.union(&device_extensions),
queue_create_infos: vec![QueueCreateInfo::family(queue_family)],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = physical_device
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = Some(
physical_device
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count,
image_format,
image_extent: surface.window().inner_size().into(),
image_usage: ImageUsage::color_attachment(),
composite_alpha: surface_capabilities
.supported_composite_alpha
.iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
2021-11-24 14:19:57 +00:00
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Zeroable, Pod)]
struct Vertex {
position: [f32; 2],
}
impl_vertex!(Vertex, position);
let vertices = [
Vertex {
position: [-0.5, -0.5],
},
Vertex {
position: [-0.5, 0.5],
},
Vertex {
position: [0.5, -0.5],
},
Vertex {
position: [0.5, 0.5],
},
];
let vertex_buffer = CpuAccessibleBuffer::<[Vertex]>::from_iter(
device.clone(),
BufferUsage::all(),
false,
vertices,
)
.unwrap();
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
let render_pass = vulkano::single_pass_renderpass!(device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.image_format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
)
.unwrap();
let (texture, tex_future) = {
let png_bytes = include_bytes!("image_img.png").to_vec();
let cursor = Cursor::new(png_bytes);
let decoder = png::Decoder::new(cursor);
let mut reader = decoder.read_info().unwrap();
let info = reader.info();
let dimensions = ImageDimensions::Dim2d {
width: info.width,
height: info.height,
array_layers: 1,
};
let mut image_data = Vec::new();
image_data.resize((info.width * info.height * 4) as usize, 0);
reader.next_frame(&mut image_data).unwrap();
let (image, future) = ImmutableImage::from_iter(
image_data,
dimensions,
MipmapsCount::One,
Format::R8G8B8A8_SRGB,
queue.clone(),
)
.unwrap();
(ImageView::new_default(image).unwrap(), future)
};
let sampler = Sampler::new(
device.clone(),
SamplerCreateInfo {
mag_filter: Filter::Linear,
min_filter: Filter::Linear,
address_mode: [SamplerAddressMode::Repeat; 3],
..Default::default()
},
)
.unwrap();
let subpass = Subpass::from(render_pass.clone(), 0).unwrap();
let pipeline = GraphicsPipeline::start()
.vertex_input_state(BuffersDefinition::new().vertex::<Vertex>())
.vertex_shader(vs.entry_point("main").unwrap(), ())
.input_assembly_state(InputAssemblyState::new().topology(PrimitiveTopology::TriangleStrip))
.viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant())
.fragment_shader(fs.entry_point("main").unwrap(), ())
.color_blend_state(ColorBlendState::new(subpass.num_color_attachments()).blend_alpha())
.render_pass(subpass)
.with_auto_layout(device.clone(), |layout_create_infos| {
let create_info = &mut layout_create_infos[0];
let binding = create_info.bindings.get_mut(&0).unwrap();
create_info.push_descriptor = true;
binding.immutable_samplers = vec![sampler];
})
.unwrap();
let mut viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [0.0, 0.0],
depth_range: 0.0..1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(tex_future.boxed());
event_loop.run(move |event, _, control_flow| match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) = match swapchain.recreate(SwapchainCreateInfo {
image_extent: surface.window().inner_size().into(),
..swapchain.create_info()
}) {
Ok(r) => r,
Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return,
Err(e) => panic!("Failed to recreate swapchain: {:?}", e),
};
swapchain = new_swapchain;
framebuffers =
window_size_dependent_setup(&new_images, render_pass.clone(), &mut viewport);
recreate_swapchain = false;
}
let (image_num, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {:?}", e),
};
if suboptimal {
recreate_swapchain = true;
}
let clear_values = vec![[0.0, 0.0, 1.0, 1.0].into()];
let mut builder = AutoCommandBufferBuilder::primary(
device.clone(),
queue.family(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
framebuffers[image_num].clone(),
SubpassContents::Inline,
clear_values,
)
.unwrap()
.set_viewport(0, [viewport.clone()])
.bind_pipeline_graphics(pipeline.clone())
.push_descriptor_set(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
[WriteDescriptorSet::image_view(0, texture.clone())],
)
.bind_vertex_buffers(0, vertex_buffer.clone())
.draw(vertex_buffer.len() as u32, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("Failed to flush future: {:?}", e);
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
_ => (),
});
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let dimensions = images[0].dimensions().width_height();
viewport.dimensions = [dimensions[0] as f32, dimensions[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>()
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position + vec2(0.5);
}"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0) uniform sampler2D tex;
void main() {
f_color = texture(tex, tex_coords);
}"
}
}