vulkano/examples/src/bin/buffer-pool.rs

349 lines
12 KiB
Rust
Raw Normal View History

// Copyright (c) 2020 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
// BufferPool Example
//
// Modified triangle example to show BufferPool
// Using a pool allows multiple buffers to be "in-flight" simultaneously
// and is suited to highly dynamic, similar sized chunks of data
//
// NOTE:(jdnewman85) ATM (5/4/2020) CpuBufferPool.next() and .chunk() have identical documentation
// I was unable to get next() to work. The compiler complained that the resulting buffer
// didn't implement VertexSource. Similar issues have been reported.
// See: https://github.com/vulkano-rs/vulkano/issues/1221
// Finally, I have not profiled CpuBufferPool against CpuAccessibleBuffer
use std::sync::Arc;
use std::time::{SystemTime, UNIX_EPOCH};
use vulkano::buffer::CpuBufferPool;
use vulkano::command_buffer::{AutoCommandBufferBuilder, CommandBufferUsage, SubpassContents};
use vulkano::device::physical::{PhysicalDevice, PhysicalDeviceType};
use vulkano::device::{Device, DeviceCreateInfo, DeviceExtensions, QueueCreateInfo};
use vulkano::image::view::ImageView;
use vulkano::image::{ImageAccess, ImageUsage, SwapchainImage};
use vulkano::instance::{Instance, InstanceCreateInfo};
use vulkano::pipeline::graphics::input_assembly::InputAssemblyState;
use vulkano::pipeline::graphics::vertex_input::BuffersDefinition;
use vulkano::pipeline::graphics::viewport::{Viewport, ViewportState};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::render_pass::{Framebuffer, RenderPass, Subpass};
use vulkano::swapchain::{self, AcquireError, Swapchain, SwapchainCreationError};
use vulkano::sync::{self, FlushError, GpuFuture};
use vulkano_win::VkSurfaceBuild;
use winit::event::{Event, WindowEvent};
use winit::event_loop::{ControlFlow, EventLoop};
use winit::window::{Window, WindowBuilder};
2021-11-24 14:19:57 +00:00
#[repr(C)]
#[derive(Default, Debug, Clone)]
struct Vertex {
position: [f32; 2],
}
vulkano::impl_vertex!(Vertex, position);
fn main() {
let required_extensions = vulkano_win::required_extensions();
let instance = Instance::new(InstanceCreateInfo {
enabled_extensions: required_extensions,
..Default::default()
})
.unwrap();
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::none()
};
let (physical_device, queue_family) = PhysicalDevice::enumerate(&instance)
.filter(|&p| p.supported_extensions().is_superset_of(&device_extensions))
.filter_map(|p| {
p.queue_families()
.find(|&q| q.supports_graphics() && surface.is_supported(q).unwrap_or(false))
.map(|q| (p, q))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: physical_device
.required_extensions()
.union(&device_extensions),
queue_create_infos: vec![QueueCreateInfo::family(queue_family)],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let caps = surface.capabilities(physical_device).unwrap();
let composite_alpha = caps.supported_composite_alpha.iter().next().unwrap();
let format = caps.supported_formats[0].0;
let dimensions: [u32; 2] = surface.window().inner_size().into();
Swapchain::start(device.clone(), surface.clone())
.num_images(caps.min_image_count)
.format(format)
.dimensions(dimensions)
.usage(ImageUsage::color_attachment())
.sharing_mode(&queue)
.composite_alpha(composite_alpha)
.build()
.unwrap()
};
// Vertex Buffer Pool
let buffer_pool: CpuBufferPool<Vertex> = CpuBufferPool::vertex_buffer(device.clone());
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
}
"
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
"
}
}
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
)
.unwrap();
let pipeline = GraphicsPipeline::start()
.vertex_input_state(BuffersDefinition::new().vertex::<Vertex>())
.vertex_shader(vs.entry_point("main").unwrap(), ())
.input_assembly_state(InputAssemblyState::new())
.viewport_state(ViewportState::viewport_dynamic_scissor_irrelevant())
.fragment_shader(fs.entry_point("main").unwrap(), ())
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap();
let mut viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [0.0, 0.0],
depth_range: 0.0..1.0,
};
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut viewport);
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
event_loop.run(move |event, _, control_flow| {
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::RedrawEventsCleared => {
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let dimensions: [u32; 2] = surface.window().inner_size().into();
let (new_swapchain, new_images) =
match swapchain.recreate().dimensions(dimensions).build() {
Ok(r) => r,
Err(SwapchainCreationError::UnsupportedDimensions) => return,
Err(e) => panic!("Failed to recreate swapchain: {:?}", e),
};
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(
&new_images,
render_pass.clone(),
&mut viewport,
);
recreate_swapchain = false;
}
let (image_num, suboptimal, acquire_future) =
match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("Failed to acquire next image: {:?}", e),
};
if suboptimal {
recreate_swapchain = true;
}
let clear_values = vec![[0.0, 0.0, 1.0, 1.0].into()];
// Rotate once (PI*2) every 5 seconds
let elapsed = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs_f64();
const DURATION: f64 = 5.0;
let remainder = elapsed.rem_euclid(DURATION);
let delta = (remainder / DURATION) as f32;
let angle = delta * std::f32::consts::PI * 2.0;
const RADIUS: f32 = 0.5;
// 120Degree offset in radians
const ANGLE_OFFSET: f32 = (std::f32::consts::PI * 2.0) / 3.0;
// Calculate vertices
let data = [
Vertex {
position: [angle.cos() * RADIUS, angle.sin() * RADIUS],
},
Vertex {
position: [
(angle + ANGLE_OFFSET).cos() * RADIUS,
(angle + ANGLE_OFFSET).sin() * RADIUS,
],
},
Vertex {
position: [
(angle - ANGLE_OFFSET).cos() * RADIUS,
(angle - ANGLE_OFFSET).sin() * RADIUS,
],
},
];
let num_vertices = data.len() as u32;
// Allocate a new chunk from buffer_pool
let buffer = buffer_pool.chunk(data.to_vec()).unwrap();
let mut builder = AutoCommandBufferBuilder::primary(
device.clone(),
queue.family(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
framebuffers[image_num].clone(),
SubpassContents::Inline,
clear_values,
)
.unwrap()
.set_viewport(0, [viewport.clone()])
// Draw our buffer
.bind_pipeline_graphics(pipeline.clone())
.bind_vertex_buffers(0, buffer)
.draw(num_vertices, 1, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(Box::new(future) as Box<_>);
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box<_>);
}
Err(e) => {
println!("Failed to flush future: {:?}", e);
previous_frame_end = Some(Box::new(sync::now(device.clone())) as Box<_>);
}
}
}
_ => (),
}
});
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<RenderPass>,
viewport: &mut Viewport,
) -> Vec<Arc<Framebuffer>> {
let dimensions = images[0].dimensions().width_height();
viewport.dimensions = [dimensions[0] as f32, dimensions[1] as f32];
images
.iter()
.map(|image| {
let view = ImageView::new(image.clone()).unwrap();
Framebuffer::start(render_pass.clone())
.add(view)
.unwrap()
.build()
.unwrap()
})
.collect::<Vec<_>>()
}