rust/compiler/rustc_lexer/src/lib.rs
2024-10-30 01:13:18 +00:00

1004 lines
33 KiB
Rust

//! Low-level Rust lexer.
//!
//! The idea with `rustc_lexer` is to make a reusable library,
//! by separating out pure lexing and rustc-specific concerns, like spans,
//! error reporting, and interning. So, rustc_lexer operates directly on `&str`,
//! produces simple tokens which are a pair of type-tag and a bit of original text,
//! and does not report errors, instead storing them as flags on the token.
//!
//! Tokens produced by this lexer are not yet ready for parsing the Rust syntax.
//! For that see [`rustc_parse::lexer`], which converts this basic token stream
//! into wide tokens used by actual parser.
//!
//! The purpose of this crate is to convert raw sources into a labeled sequence
//! of well-known token types, so building an actual Rust token stream will
//! be easier.
//!
//! The main entity of this crate is the [`TokenKind`] enum which represents common
//! lexeme types.
//!
//! [`rustc_parse::lexer`]: ../rustc_parse/lexer/index.html
// tidy-alphabetical-start
// We want to be able to build this crate with a stable compiler,
// so no `#![feature]` attributes should be added.
#![deny(unstable_features)]
#![warn(unreachable_pub)]
// tidy-alphabetical-end
mod cursor;
pub mod unescape;
#[cfg(test)]
mod tests;
use unicode_properties::UnicodeEmoji;
use self::LiteralKind::*;
use self::TokenKind::*;
pub use crate::cursor::Cursor;
use crate::cursor::EOF_CHAR;
/// Parsed token.
/// It doesn't contain information about data that has been parsed,
/// only the type of the token and its size.
#[derive(Debug)]
pub struct Token {
pub kind: TokenKind,
pub len: u32,
}
impl Token {
fn new(kind: TokenKind, len: u32) -> Token {
Token { kind, len }
}
}
/// Enum representing common lexeme types.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TokenKind {
// Multi-char tokens:
/// "// comment"
LineComment { doc_style: Option<DocStyle> },
/// `/* block comment */`
///
/// Block comments can be recursive, so a sequence like `/* /* */`
/// will not be considered terminated and will result in a parsing error.
BlockComment { doc_style: Option<DocStyle>, terminated: bool },
/// Any whitespace character sequence.
Whitespace,
/// "ident" or "continue"
///
/// At this step, keywords are also considered identifiers.
Ident,
/// Like the above, but containing invalid unicode codepoints.
InvalidIdent,
/// "r#ident"
RawIdent,
/// An unknown prefix, like `foo#`, `foo'`, `foo"`.
///
/// Note that only the
/// prefix (`foo`) is included in the token, not the separator (which is
/// lexed as its own distinct token). In Rust 2021 and later, reserved
/// prefixes are reported as errors; in earlier editions, they result in a
/// (allowed by default) lint, and are treated as regular identifier
/// tokens.
UnknownPrefix,
/// An unknown prefix in a lifetime, like `'foo#`.
///
/// Note that like above, only the `'` and prefix are included in the token
/// and not the separator.
UnknownPrefixLifetime,
/// `'r#lt`, which in edition < 2021 is split into several tokens: `'r # lt`.
RawLifetime,
/// Similar to the above, but *always* an error on every edition. This is used
/// for emoji identifier recovery, as those are not meant to be ever accepted.
InvalidPrefix,
/// Guarded string literal prefix: `#"` or `##`.
///
/// Used for reserving "guarded strings" (RFC 3598) in edition 2024.
/// Split into the component tokens on older editions.
GuardedStrPrefix,
/// Examples: `12u8`, `1.0e-40`, `b"123"`. Note that `_` is an invalid
/// suffix, but may be present here on string and float literals. Users of
/// this type will need to check for and reject that case.
///
/// See [LiteralKind] for more details.
Literal { kind: LiteralKind, suffix_start: u32 },
/// "'a"
Lifetime { starts_with_number: bool },
// One-char tokens:
/// ";"
Semi,
/// ","
Comma,
/// "."
Dot,
/// "("
OpenParen,
/// ")"
CloseParen,
/// "{"
OpenBrace,
/// "}"
CloseBrace,
/// "["
OpenBracket,
/// "]"
CloseBracket,
/// "@"
At,
/// "#"
Pound,
/// "~"
Tilde,
/// "?"
Question,
/// ":"
Colon,
/// "$"
Dollar,
/// "="
Eq,
/// "!"
Bang,
/// "<"
Lt,
/// ">"
Gt,
/// "-"
Minus,
/// "&"
And,
/// "|"
Or,
/// "+"
Plus,
/// "*"
Star,
/// "/"
Slash,
/// "^"
Caret,
/// "%"
Percent,
/// Unknown token, not expected by the lexer, e.g. "№"
Unknown,
/// End of input.
Eof,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DocStyle {
Outer,
Inner,
}
/// Enum representing the literal types supported by the lexer.
///
/// Note that the suffix is *not* considered when deciding the `LiteralKind` in
/// this type. This means that float literals like `1f32` are classified by this
/// type as `Int`. (Compare against `rustc_ast::token::LitKind` and
/// `rustc_ast::ast::LitKind`).
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum LiteralKind {
/// `12_u8`, `0o100`, `0b120i99`, `1f32`.
Int { base: Base, empty_int: bool },
/// `12.34f32`, `1e3`, but not `1f32`.
Float { base: Base, empty_exponent: bool },
/// `'a'`, `'\\'`, `'''`, `';`
Char { terminated: bool },
/// `b'a'`, `b'\\'`, `b'''`, `b';`
Byte { terminated: bool },
/// `"abc"`, `"abc`
Str { terminated: bool },
/// `b"abc"`, `b"abc`
ByteStr { terminated: bool },
/// `c"abc"`, `c"abc`
CStr { terminated: bool },
/// `r"abc"`, `r#"abc"#`, `r####"ab"###"c"####`, `r#"a`. `None` indicates
/// an invalid literal.
RawStr { n_hashes: Option<u8> },
/// `br"abc"`, `br#"abc"#`, `br####"ab"###"c"####`, `br#"a`. `None`
/// indicates an invalid literal.
RawByteStr { n_hashes: Option<u8> },
/// `cr"abc"`, "cr#"abc"#", `cr#"a`. `None` indicates an invalid literal.
RawCStr { n_hashes: Option<u8> },
}
/// `#"abc"#`, `##"a"` (fewer closing), or even `#"a` (unterminated).
///
/// Can capture fewer closing hashes than starting hashes,
/// for more efficient lexing and better backwards diagnostics.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct GuardedStr {
pub n_hashes: u32,
pub terminated: bool,
pub token_len: u32,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum RawStrError {
/// Non `#` characters exist between `r` and `"`, e.g. `r##~"abcde"##`
InvalidStarter { bad_char: char },
/// The string was not terminated, e.g. `r###"abcde"##`.
/// `possible_terminator_offset` is the number of characters after `r` or
/// `br` where they may have intended to terminate it.
NoTerminator { expected: u32, found: u32, possible_terminator_offset: Option<u32> },
/// More than 255 `#`s exist.
TooManyDelimiters { found: u32 },
}
/// Base of numeric literal encoding according to its prefix.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Base {
/// Literal starts with "0b".
Binary = 2,
/// Literal starts with "0o".
Octal = 8,
/// Literal doesn't contain a prefix.
Decimal = 10,
/// Literal starts with "0x".
Hexadecimal = 16,
}
/// `rustc` allows files to have a shebang, e.g. "#!/usr/bin/rustrun",
/// but shebang isn't a part of rust syntax.
pub fn strip_shebang(input: &str) -> Option<usize> {
// Shebang must start with `#!` literally, without any preceding whitespace.
// For simplicity we consider any line starting with `#!` a shebang,
// regardless of restrictions put on shebangs by specific platforms.
if let Some(input_tail) = input.strip_prefix("#!") {
// Ok, this is a shebang but if the next non-whitespace token is `[`,
// then it may be valid Rust code, so consider it Rust code.
let next_non_whitespace_token = tokenize(input_tail).map(|tok| tok.kind).find(|tok| {
!matches!(
tok,
TokenKind::Whitespace
| TokenKind::LineComment { doc_style: None }
| TokenKind::BlockComment { doc_style: None, .. }
)
});
if next_non_whitespace_token != Some(TokenKind::OpenBracket) {
// No other choice than to consider this a shebang.
return Some(2 + input_tail.lines().next().unwrap_or_default().len());
}
}
None
}
/// Validates a raw string literal. Used for getting more information about a
/// problem with a `RawStr`/`RawByteStr` with a `None` field.
#[inline]
pub fn validate_raw_str(input: &str, prefix_len: u32) -> Result<(), RawStrError> {
debug_assert!(!input.is_empty());
let mut cursor = Cursor::new(input);
// Move past the leading `r` or `br`.
for _ in 0..prefix_len {
cursor.bump().unwrap();
}
cursor.raw_double_quoted_string(prefix_len).map(|_| ())
}
/// Creates an iterator that produces tokens from the input string.
pub fn tokenize(input: &str) -> impl Iterator<Item = Token> + '_ {
let mut cursor = Cursor::new(input);
std::iter::from_fn(move || {
let token = cursor.advance_token();
if token.kind != TokenKind::Eof { Some(token) } else { None }
})
}
/// True if `c` is considered a whitespace according to Rust language definition.
/// See [Rust language reference](https://doc.rust-lang.org/reference/whitespace.html)
/// for definitions of these classes.
pub fn is_whitespace(c: char) -> bool {
// This is Pattern_White_Space.
//
// Note that this set is stable (ie, it doesn't change with different
// Unicode versions), so it's ok to just hard-code the values.
matches!(
c,
// Usual ASCII suspects
'\u{0009}' // \t
| '\u{000A}' // \n
| '\u{000B}' // vertical tab
| '\u{000C}' // form feed
| '\u{000D}' // \r
| '\u{0020}' // space
// NEXT LINE from latin1
| '\u{0085}'
// Bidi markers
| '\u{200E}' // LEFT-TO-RIGHT MARK
| '\u{200F}' // RIGHT-TO-LEFT MARK
// Dedicated whitespace characters from Unicode
| '\u{2028}' // LINE SEPARATOR
| '\u{2029}' // PARAGRAPH SEPARATOR
)
}
/// True if `c` is valid as a first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_start(c: char) -> bool {
// This is XID_Start OR '_' (which formally is not a XID_Start).
c == '_' || unicode_xid::UnicodeXID::is_xid_start(c)
}
/// True if `c` is valid as a non-first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_continue(c: char) -> bool {
unicode_xid::UnicodeXID::is_xid_continue(c)
}
/// The passed string is lexically an identifier.
pub fn is_ident(string: &str) -> bool {
let mut chars = string.chars();
if let Some(start) = chars.next() {
is_id_start(start) && chars.all(is_id_continue)
} else {
false
}
}
impl Cursor<'_> {
/// Parses a token from the input string.
pub fn advance_token(&mut self) -> Token {
let first_char = match self.bump() {
Some(c) => c,
None => return Token::new(TokenKind::Eof, 0),
};
let token_kind = match first_char {
// Slash, comment or block comment.
'/' => match self.first() {
'/' => self.line_comment(),
'*' => self.block_comment(),
_ => Slash,
},
// Whitespace sequence.
c if is_whitespace(c) => self.whitespace(),
// Raw identifier, raw string literal or identifier.
'r' => match (self.first(), self.second()) {
('#', c1) if is_id_start(c1) => self.raw_ident(),
('#', _) | ('"', _) => {
let res = self.raw_double_quoted_string(1);
let suffix_start = self.pos_within_token();
if res.is_ok() {
self.eat_literal_suffix();
}
let kind = RawStr { n_hashes: res.ok() };
Literal { kind, suffix_start }
}
_ => self.ident_or_unknown_prefix(),
},
// Byte literal, byte string literal, raw byte string literal or identifier.
'b' => self.c_or_byte_string(
|terminated| ByteStr { terminated },
|n_hashes| RawByteStr { n_hashes },
Some(|terminated| Byte { terminated }),
),
// c-string literal, raw c-string literal or identifier.
'c' => self.c_or_byte_string(
|terminated| CStr { terminated },
|n_hashes| RawCStr { n_hashes },
None,
),
// Identifier (this should be checked after other variant that can
// start as identifier).
c if is_id_start(c) => self.ident_or_unknown_prefix(),
// Numeric literal.
c @ '0'..='9' => {
let literal_kind = self.number(c);
let suffix_start = self.pos_within_token();
self.eat_literal_suffix();
TokenKind::Literal { kind: literal_kind, suffix_start }
}
// Guarded string literal prefix: `#"` or `##`
'#' if matches!(self.first(), '"' | '#') => {
self.bump();
TokenKind::GuardedStrPrefix
}
// One-symbol tokens.
';' => Semi,
',' => Comma,
'.' => Dot,
'(' => OpenParen,
')' => CloseParen,
'{' => OpenBrace,
'}' => CloseBrace,
'[' => OpenBracket,
']' => CloseBracket,
'@' => At,
'#' => Pound,
'~' => Tilde,
'?' => Question,
':' => Colon,
'$' => Dollar,
'=' => Eq,
'!' => Bang,
'<' => Lt,
'>' => Gt,
'-' => Minus,
'&' => And,
'|' => Or,
'+' => Plus,
'*' => Star,
'^' => Caret,
'%' => Percent,
// Lifetime or character literal.
'\'' => self.lifetime_or_char(),
// String literal.
'"' => {
let terminated = self.double_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = Str { terminated };
Literal { kind, suffix_start }
}
// Identifier starting with an emoji. Only lexed for graceful error recovery.
c if !c.is_ascii() && c.is_emoji_char() => self.fake_ident_or_unknown_prefix(),
_ => Unknown,
};
let res = Token::new(token_kind, self.pos_within_token());
self.reset_pos_within_token();
res
}
fn line_comment(&mut self) -> TokenKind {
debug_assert!(self.prev() == '/' && self.first() == '/');
self.bump();
let doc_style = match self.first() {
// `//!` is an inner line doc comment.
'!' => Some(DocStyle::Inner),
// `////` (more than 3 slashes) is not considered a doc comment.
'/' if self.second() != '/' => Some(DocStyle::Outer),
_ => None,
};
self.eat_while(|c| c != '\n');
LineComment { doc_style }
}
fn block_comment(&mut self) -> TokenKind {
debug_assert!(self.prev() == '/' && self.first() == '*');
self.bump();
let doc_style = match self.first() {
// `/*!` is an inner block doc comment.
'!' => Some(DocStyle::Inner),
// `/***` (more than 2 stars) is not considered a doc comment.
// `/**/` is not considered a doc comment.
'*' if !matches!(self.second(), '*' | '/') => Some(DocStyle::Outer),
_ => None,
};
let mut depth = 1usize;
while let Some(c) = self.bump() {
match c {
'/' if self.first() == '*' => {
self.bump();
depth += 1;
}
'*' if self.first() == '/' => {
self.bump();
depth -= 1;
if depth == 0 {
// This block comment is closed, so for a construction like "/* */ */"
// there will be a successfully parsed block comment "/* */"
// and " */" will be processed separately.
break;
}
}
_ => (),
}
}
BlockComment { doc_style, terminated: depth == 0 }
}
fn whitespace(&mut self) -> TokenKind {
debug_assert!(is_whitespace(self.prev()));
self.eat_while(is_whitespace);
Whitespace
}
fn raw_ident(&mut self) -> TokenKind {
debug_assert!(self.prev() == 'r' && self.first() == '#' && is_id_start(self.second()));
// Eat "#" symbol.
self.bump();
// Eat the identifier part of RawIdent.
self.eat_identifier();
RawIdent
}
fn ident_or_unknown_prefix(&mut self) -> TokenKind {
debug_assert!(is_id_start(self.prev()));
// Start is already eaten, eat the rest of identifier.
self.eat_while(is_id_continue);
// Known prefixes must have been handled earlier. So if
// we see a prefix here, it is definitely an unknown prefix.
match self.first() {
'#' | '"' | '\'' => UnknownPrefix,
c if !c.is_ascii() && c.is_emoji_char() => self.fake_ident_or_unknown_prefix(),
_ => Ident,
}
}
fn fake_ident_or_unknown_prefix(&mut self) -> TokenKind {
// Start is already eaten, eat the rest of identifier.
self.eat_while(|c| {
unicode_xid::UnicodeXID::is_xid_continue(c)
|| (!c.is_ascii() && c.is_emoji_char())
|| c == '\u{200d}'
});
// Known prefixes must have been handled earlier. So if
// we see a prefix here, it is definitely an unknown prefix.
match self.first() {
'#' | '"' | '\'' => InvalidPrefix,
_ => InvalidIdent,
}
}
fn c_or_byte_string(
&mut self,
mk_kind: impl FnOnce(bool) -> LiteralKind,
mk_kind_raw: impl FnOnce(Option<u8>) -> LiteralKind,
single_quoted: Option<fn(bool) -> LiteralKind>,
) -> TokenKind {
match (self.first(), self.second(), single_quoted) {
('\'', _, Some(mk_kind)) => {
self.bump();
let terminated = self.single_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = mk_kind(terminated);
Literal { kind, suffix_start }
}
('"', _, _) => {
self.bump();
let terminated = self.double_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = mk_kind(terminated);
Literal { kind, suffix_start }
}
('r', '"', _) | ('r', '#', _) => {
self.bump();
let res = self.raw_double_quoted_string(2);
let suffix_start = self.pos_within_token();
if res.is_ok() {
self.eat_literal_suffix();
}
let kind = mk_kind_raw(res.ok());
Literal { kind, suffix_start }
}
_ => self.ident_or_unknown_prefix(),
}
}
fn number(&mut self, first_digit: char) -> LiteralKind {
debug_assert!('0' <= self.prev() && self.prev() <= '9');
let mut base = Base::Decimal;
if first_digit == '0' {
// Attempt to parse encoding base.
match self.first() {
'b' => {
base = Base::Binary;
self.bump();
if !self.eat_decimal_digits() {
return Int { base, empty_int: true };
}
}
'o' => {
base = Base::Octal;
self.bump();
if !self.eat_decimal_digits() {
return Int { base, empty_int: true };
}
}
'x' => {
base = Base::Hexadecimal;
self.bump();
if !self.eat_hexadecimal_digits() {
return Int { base, empty_int: true };
}
}
// Not a base prefix; consume additional digits.
'0'..='9' | '_' => {
self.eat_decimal_digits();
}
// Also not a base prefix; nothing more to do here.
'.' | 'e' | 'E' => {}
// Just a 0.
_ => return Int { base, empty_int: false },
}
} else {
// No base prefix, parse number in the usual way.
self.eat_decimal_digits();
};
match self.first() {
// Don't be greedy if this is actually an
// integer literal followed by field/method access or a range pattern
// (`0..2` and `12.foo()`)
'.' if self.second() != '.' && !is_id_start(self.second()) => {
// might have stuff after the ., and if it does, it needs to start
// with a number
self.bump();
let mut empty_exponent = false;
if self.first().is_ascii_digit() {
self.eat_decimal_digits();
match self.first() {
'e' | 'E' => {
self.bump();
empty_exponent = !self.eat_float_exponent();
}
_ => (),
}
}
Float { base, empty_exponent }
}
'e' | 'E' => {
self.bump();
let empty_exponent = !self.eat_float_exponent();
Float { base, empty_exponent }
}
_ => Int { base, empty_int: false },
}
}
fn lifetime_or_char(&mut self) -> TokenKind {
debug_assert!(self.prev() == '\'');
let can_be_a_lifetime = if self.second() == '\'' {
// It's surely not a lifetime.
false
} else {
// If the first symbol is valid for identifier, it can be a lifetime.
// Also check if it's a number for a better error reporting (so '0 will
// be reported as invalid lifetime and not as unterminated char literal).
is_id_start(self.first()) || self.first().is_ascii_digit()
};
if !can_be_a_lifetime {
let terminated = self.single_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = Char { terminated };
return Literal { kind, suffix_start };
}
if self.first() == 'r' && self.second() == '#' && is_id_start(self.third()) {
// Eat "r" and `#`, and identifier start characters.
self.bump();
self.bump();
self.bump();
self.eat_while(is_id_continue);
match self.first() {
'\'' => {
// Check if after skipping literal contents we've met a closing
// single quote (which means that user attempted to create a
// string with single quotes).
self.bump();
let kind = Char { terminated: true };
return Literal { kind, suffix_start: self.pos_within_token() };
}
_ => return RawLifetime,
}
}
// Either a lifetime or a character literal with
// length greater than 1.
let starts_with_number = self.first().is_ascii_digit();
// Skip the literal contents.
// First symbol can be a number (which isn't a valid identifier start),
// so skip it without any checks.
self.bump();
self.eat_while(is_id_continue);
match self.first() {
// Check if after skipping literal contents we've met a closing
// single quote (which means that user attempted to create a
// string with single quotes).
'\'' => {
self.bump();
let kind = Char { terminated: true };
Literal { kind, suffix_start: self.pos_within_token() }
}
'#' if !starts_with_number => UnknownPrefixLifetime,
_ => Lifetime { starts_with_number },
}
}
fn single_quoted_string(&mut self) -> bool {
debug_assert!(self.prev() == '\'');
// Check if it's a one-symbol literal.
if self.second() == '\'' && self.first() != '\\' {
self.bump();
self.bump();
return true;
}
// Literal has more than one symbol.
// Parse until either quotes are terminated or error is detected.
loop {
match self.first() {
// Quotes are terminated, finish parsing.
'\'' => {
self.bump();
return true;
}
// Probably beginning of the comment, which we don't want to include
// to the error report.
'/' => break,
// Newline without following '\'' means unclosed quote, stop parsing.
'\n' if self.second() != '\'' => break,
// End of file, stop parsing.
EOF_CHAR if self.is_eof() => break,
// Escaped slash is considered one character, so bump twice.
'\\' => {
self.bump();
self.bump();
}
// Skip the character.
_ => {
self.bump();
}
}
}
// String was not terminated.
false
}
/// Eats double-quoted string and returns true
/// if string is terminated.
fn double_quoted_string(&mut self) -> bool {
debug_assert!(self.prev() == '"');
while let Some(c) = self.bump() {
match c {
'"' => {
return true;
}
'\\' if self.first() == '\\' || self.first() == '"' => {
// Bump again to skip escaped character.
self.bump();
}
_ => (),
}
}
// End of file reached.
false
}
/// Attempt to lex for a guarded string literal.
///
/// Used by `rustc_parse::lexer` to lex for guarded strings
/// conditionally based on edition.
///
/// Note: this will not reset the `Cursor` when a
/// guarded string is not found. It is the caller's
/// responsibility to do so.
pub fn guarded_double_quoted_string(&mut self) -> Option<GuardedStr> {
debug_assert!(self.prev() != '#');
let mut n_start_hashes: u32 = 0;
while self.first() == '#' {
n_start_hashes += 1;
self.bump();
}
if self.first() != '"' {
return None;
}
self.bump();
debug_assert!(self.prev() == '"');
// Lex the string itself as a normal string literal
// so we can recover that for older editions later.
let terminated = self.double_quoted_string();
if !terminated {
let token_len = self.pos_within_token();
self.reset_pos_within_token();
return Some(GuardedStr { n_hashes: n_start_hashes, terminated: false, token_len });
}
// Consume closing '#' symbols.
// Note that this will not consume extra trailing `#` characters:
// `###"abcde"####` is lexed as a `GuardedStr { n_end_hashes: 3, .. }`
// followed by a `#` token.
let mut n_end_hashes = 0;
while self.first() == '#' && n_end_hashes < n_start_hashes {
n_end_hashes += 1;
self.bump();
}
// Reserved syntax, always an error, so it doesn't matter if
// `n_start_hashes != n_end_hashes`.
self.eat_literal_suffix();
let token_len = self.pos_within_token();
self.reset_pos_within_token();
Some(GuardedStr { n_hashes: n_start_hashes, terminated: true, token_len })
}
/// Eats the double-quoted string and returns `n_hashes` and an error if encountered.
fn raw_double_quoted_string(&mut self, prefix_len: u32) -> Result<u8, RawStrError> {
// Wrap the actual function to handle the error with too many hashes.
// This way, it eats the whole raw string.
let n_hashes = self.raw_string_unvalidated(prefix_len)?;
// Only up to 255 `#`s are allowed in raw strings
match u8::try_from(n_hashes) {
Ok(num) => Ok(num),
Err(_) => Err(RawStrError::TooManyDelimiters { found: n_hashes }),
}
}
fn raw_string_unvalidated(&mut self, prefix_len: u32) -> Result<u32, RawStrError> {
debug_assert!(self.prev() == 'r');
let start_pos = self.pos_within_token();
let mut possible_terminator_offset = None;
let mut max_hashes = 0;
// Count opening '#' symbols.
let mut eaten = 0;
while self.first() == '#' {
eaten += 1;
self.bump();
}
let n_start_hashes = eaten;
// Check that string is started.
match self.bump() {
Some('"') => (),
c => {
let c = c.unwrap_or(EOF_CHAR);
return Err(RawStrError::InvalidStarter { bad_char: c });
}
}
// Skip the string contents and on each '#' character met, check if this is
// a raw string termination.
loop {
self.eat_while(|c| c != '"');
if self.is_eof() {
return Err(RawStrError::NoTerminator {
expected: n_start_hashes,
found: max_hashes,
possible_terminator_offset,
});
}
// Eat closing double quote.
self.bump();
// Check that amount of closing '#' symbols
// is equal to the amount of opening ones.
// Note that this will not consume extra trailing `#` characters:
// `r###"abcde"####` is lexed as a `RawStr { n_hashes: 3 }`
// followed by a `#` token.
let mut n_end_hashes = 0;
while self.first() == '#' && n_end_hashes < n_start_hashes {
n_end_hashes += 1;
self.bump();
}
if n_end_hashes == n_start_hashes {
return Ok(n_start_hashes);
} else if n_end_hashes > max_hashes {
// Keep track of possible terminators to give a hint about
// where there might be a missing terminator
possible_terminator_offset =
Some(self.pos_within_token() - start_pos - n_end_hashes + prefix_len);
max_hashes = n_end_hashes;
}
}
}
fn eat_decimal_digits(&mut self) -> bool {
let mut has_digits = false;
loop {
match self.first() {
'_' => {
self.bump();
}
'0'..='9' => {
has_digits = true;
self.bump();
}
_ => break,
}
}
has_digits
}
fn eat_hexadecimal_digits(&mut self) -> bool {
let mut has_digits = false;
loop {
match self.first() {
'_' => {
self.bump();
}
'0'..='9' | 'a'..='f' | 'A'..='F' => {
has_digits = true;
self.bump();
}
_ => break,
}
}
has_digits
}
/// Eats the float exponent. Returns true if at least one digit was met,
/// and returns false otherwise.
fn eat_float_exponent(&mut self) -> bool {
debug_assert!(self.prev() == 'e' || self.prev() == 'E');
if self.first() == '-' || self.first() == '+' {
self.bump();
}
self.eat_decimal_digits()
}
// Eats the suffix of the literal, e.g. "u8".
fn eat_literal_suffix(&mut self) {
self.eat_identifier();
}
// Eats the identifier. Note: succeeds on `_`, which isn't a valid
// identifier.
fn eat_identifier(&mut self) {
if !is_id_start(self.first()) {
return;
}
self.bump();
self.eat_while(is_id_continue);
}
}