rust/compiler/rustc_mir_transform/src/sroa.rs
lcnr 9cba14b95b use TypingEnv when no infcx is available
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
2024-11-18 10:38:56 +01:00

457 lines
17 KiB
Rust

use rustc_abi::{FIRST_VARIANT, FieldIdx};
use rustc_data_structures::flat_map_in_place::FlatMapInPlace;
use rustc_hir::LangItem;
use rustc_index::IndexVec;
use rustc_index::bit_set::{BitSet, GrowableBitSet};
use rustc_middle::bug;
use rustc_middle::mir::patch::MirPatch;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_mir_dataflow::value_analysis::{excluded_locals, iter_fields};
use tracing::{debug, instrument};
pub(super) struct ScalarReplacementOfAggregates;
impl<'tcx> crate::MirPass<'tcx> for ScalarReplacementOfAggregates {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 2
}
#[instrument(level = "debug", skip(self, tcx, body))]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
debug!(def_id = ?body.source.def_id());
// Avoid query cycles (coroutines require optimized MIR for layout).
if tcx.type_of(body.source.def_id()).instantiate_identity().is_coroutine() {
return;
}
let mut excluded = excluded_locals(body);
let typing_env = body.typing_env(tcx);
loop {
debug!(?excluded);
let escaping = escaping_locals(tcx, typing_env, &excluded, body);
debug!(?escaping);
let replacements = compute_flattening(tcx, typing_env, body, escaping);
debug!(?replacements);
let all_dead_locals = replace_flattened_locals(tcx, body, replacements);
if !all_dead_locals.is_empty() {
excluded.union(&all_dead_locals);
excluded = {
let mut growable = GrowableBitSet::from(excluded);
growable.ensure(body.local_decls.len());
growable.into()
};
} else {
break;
}
}
}
}
/// Identify all locals that are not eligible for SROA.
///
/// There are 3 cases:
/// - the aggregated local is used or passed to other code (function parameters and arguments);
/// - the locals is a union or an enum;
/// - the local's address is taken, and thus the relative addresses of the fields are observable to
/// client code.
fn escaping_locals<'tcx>(
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
excluded: &BitSet<Local>,
body: &Body<'tcx>,
) -> BitSet<Local> {
let is_excluded_ty = |ty: Ty<'tcx>| {
if ty.is_union() || ty.is_enum() {
return true;
}
if let ty::Adt(def, _args) = ty.kind() {
if def.repr().simd() {
// Exclude #[repr(simd)] types so that they are not de-optimized into an array
return true;
}
if tcx.is_lang_item(def.did(), LangItem::DynMetadata) {
// codegen wants to see the `DynMetadata<T>`,
// not the inner reference-to-opaque-type.
return true;
}
// We already excluded unions and enums, so this ADT must have one variant
let variant = def.variant(FIRST_VARIANT);
if variant.fields.len() > 1 {
// If this has more than one field, it cannot be a wrapper that only provides a
// niche, so we do not want to automatically exclude it.
return false;
}
let Ok(layout) = tcx.layout_of(typing_env.as_query_input(ty)) else {
// We can't get the layout
return true;
};
if layout.layout.largest_niche().is_some() {
// This type has a niche
return true;
}
}
// Default for non-ADTs
false
};
let mut set = BitSet::new_empty(body.local_decls.len());
set.insert_range(RETURN_PLACE..=Local::from_usize(body.arg_count));
for (local, decl) in body.local_decls().iter_enumerated() {
if excluded.contains(local) || is_excluded_ty(decl.ty) {
set.insert(local);
}
}
let mut visitor = EscapeVisitor { set };
visitor.visit_body(body);
return visitor.set;
struct EscapeVisitor {
set: BitSet<Local>,
}
impl<'tcx> Visitor<'tcx> for EscapeVisitor {
fn visit_local(&mut self, local: Local, _: PlaceContext, _: Location) {
self.set.insert(local);
}
fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
// Mirror the implementation in PreFlattenVisitor.
if let &[PlaceElem::Field(..), ..] = &place.projection[..] {
return;
}
self.super_place(place, context, location);
}
fn visit_assign(
&mut self,
lvalue: &Place<'tcx>,
rvalue: &Rvalue<'tcx>,
location: Location,
) {
if lvalue.as_local().is_some() {
match rvalue {
// Aggregate assignments are expanded in run_pass.
Rvalue::Aggregate(..) | Rvalue::Use(..) => {
self.visit_rvalue(rvalue, location);
return;
}
_ => {}
}
}
self.super_assign(lvalue, rvalue, location)
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match statement.kind {
// Storage statements are expanded in run_pass.
StatementKind::StorageLive(..)
| StatementKind::StorageDead(..)
| StatementKind::Deinit(..) => return,
_ => self.super_statement(statement, location),
}
}
// We ignore anything that happens in debuginfo, since we expand it using
// `VarDebugInfoFragment`.
fn visit_var_debug_info(&mut self, _: &VarDebugInfo<'tcx>) {}
}
}
#[derive(Default, Debug)]
struct ReplacementMap<'tcx> {
/// Pre-computed list of all "new" locals for each "old" local. This is used to expand storage
/// and deinit statement and debuginfo.
fragments: IndexVec<Local, Option<IndexVec<FieldIdx, Option<(Ty<'tcx>, Local)>>>>,
}
impl<'tcx> ReplacementMap<'tcx> {
fn replace_place(&self, tcx: TyCtxt<'tcx>, place: PlaceRef<'tcx>) -> Option<Place<'tcx>> {
let &[PlaceElem::Field(f, _), ref rest @ ..] = place.projection else {
return None;
};
let fields = self.fragments[place.local].as_ref()?;
let (_, new_local) = fields[f]?;
Some(Place { local: new_local, projection: tcx.mk_place_elems(rest) })
}
fn place_fragments(
&self,
place: Place<'tcx>,
) -> Option<impl Iterator<Item = (FieldIdx, Ty<'tcx>, Local)> + '_> {
let local = place.as_local()?;
let fields = self.fragments[local].as_ref()?;
Some(fields.iter_enumerated().filter_map(|(field, &opt_ty_local)| {
let (ty, local) = opt_ty_local?;
Some((field, ty, local))
}))
}
}
/// Compute the replacement of flattened places into locals.
///
/// For each eligible place, we assign a new local to each accessed field.
/// The replacement will be done later in `ReplacementVisitor`.
fn compute_flattening<'tcx>(
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
body: &mut Body<'tcx>,
escaping: BitSet<Local>,
) -> ReplacementMap<'tcx> {
let mut fragments = IndexVec::from_elem(None, &body.local_decls);
for local in body.local_decls.indices() {
if escaping.contains(local) {
continue;
}
let decl = body.local_decls[local].clone();
let ty = decl.ty;
iter_fields(ty, tcx, typing_env, |variant, field, field_ty| {
if variant.is_some() {
// Downcasts are currently not supported.
return;
};
let new_local =
body.local_decls.push(LocalDecl { ty: field_ty, user_ty: None, ..decl.clone() });
fragments.get_or_insert_with(local, IndexVec::new).insert(field, (field_ty, new_local));
});
}
ReplacementMap { fragments }
}
/// Perform the replacement computed by `compute_flattening`.
fn replace_flattened_locals<'tcx>(
tcx: TyCtxt<'tcx>,
body: &mut Body<'tcx>,
replacements: ReplacementMap<'tcx>,
) -> BitSet<Local> {
let mut all_dead_locals = BitSet::new_empty(replacements.fragments.len());
for (local, replacements) in replacements.fragments.iter_enumerated() {
if replacements.is_some() {
all_dead_locals.insert(local);
}
}
debug!(?all_dead_locals);
if all_dead_locals.is_empty() {
return all_dead_locals;
}
let mut visitor = ReplacementVisitor {
tcx,
local_decls: &body.local_decls,
replacements: &replacements,
all_dead_locals,
patch: MirPatch::new(body),
};
for (bb, data) in body.basic_blocks.as_mut_preserves_cfg().iter_enumerated_mut() {
visitor.visit_basic_block_data(bb, data);
}
for scope in &mut body.source_scopes {
visitor.visit_source_scope_data(scope);
}
for (index, annotation) in body.user_type_annotations.iter_enumerated_mut() {
visitor.visit_user_type_annotation(index, annotation);
}
visitor.expand_var_debug_info(&mut body.var_debug_info);
let ReplacementVisitor { patch, all_dead_locals, .. } = visitor;
patch.apply(body);
all_dead_locals
}
struct ReplacementVisitor<'tcx, 'll> {
tcx: TyCtxt<'tcx>,
/// This is only used to compute the type for `VarDebugInfoFragment`.
local_decls: &'ll LocalDecls<'tcx>,
/// Work to do.
replacements: &'ll ReplacementMap<'tcx>,
/// This is used to check that we are not leaving references to replaced locals behind.
all_dead_locals: BitSet<Local>,
patch: MirPatch<'tcx>,
}
impl<'tcx> ReplacementVisitor<'tcx, '_> {
#[instrument(level = "trace", skip(self))]
fn expand_var_debug_info(&mut self, var_debug_info: &mut Vec<VarDebugInfo<'tcx>>) {
var_debug_info.flat_map_in_place(|mut var_debug_info| {
let place = match var_debug_info.value {
VarDebugInfoContents::Const(_) => return vec![var_debug_info],
VarDebugInfoContents::Place(ref mut place) => place,
};
if let Some(repl) = self.replacements.replace_place(self.tcx, place.as_ref()) {
*place = repl;
return vec![var_debug_info];
}
let Some(parts) = self.replacements.place_fragments(*place) else {
return vec![var_debug_info];
};
let ty = place.ty(self.local_decls, self.tcx).ty;
parts
.map(|(field, field_ty, replacement_local)| {
let mut var_debug_info = var_debug_info.clone();
let composite = var_debug_info.composite.get_or_insert_with(|| {
Box::new(VarDebugInfoFragment { ty, projection: Vec::new() })
});
composite.projection.push(PlaceElem::Field(field, field_ty));
var_debug_info.value = VarDebugInfoContents::Place(replacement_local.into());
var_debug_info
})
.collect()
});
}
}
impl<'tcx, 'll> MutVisitor<'tcx> for ReplacementVisitor<'tcx, 'll> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if let Some(repl) = self.replacements.replace_place(self.tcx, place.as_ref()) {
*place = repl
} else {
self.super_place(place, context, location)
}
}
#[instrument(level = "trace", skip(self))]
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
match statement.kind {
// Duplicate storage and deinit statements, as they pretty much apply to all fields.
StatementKind::StorageLive(l) => {
if let Some(final_locals) = self.replacements.place_fragments(l.into()) {
for (_, _, fl) in final_locals {
self.patch.add_statement(location, StatementKind::StorageLive(fl));
}
statement.make_nop();
}
return;
}
StatementKind::StorageDead(l) => {
if let Some(final_locals) = self.replacements.place_fragments(l.into()) {
for (_, _, fl) in final_locals {
self.patch.add_statement(location, StatementKind::StorageDead(fl));
}
statement.make_nop();
}
return;
}
StatementKind::Deinit(box place) => {
if let Some(final_locals) = self.replacements.place_fragments(place) {
for (_, _, fl) in final_locals {
self.patch
.add_statement(location, StatementKind::Deinit(Box::new(fl.into())));
}
statement.make_nop();
return;
}
}
// We have `a = Struct { 0: x, 1: y, .. }`.
// We replace it by
// ```
// a_0 = x
// a_1 = y
// ...
// ```
StatementKind::Assign(box (place, Rvalue::Aggregate(_, ref mut operands))) => {
if let Some(local) = place.as_local()
&& let Some(final_locals) = &self.replacements.fragments[local]
{
// This is ok as we delete the statement later.
let operands = std::mem::take(operands);
for (&opt_ty_local, mut operand) in final_locals.iter().zip(operands) {
if let Some((_, new_local)) = opt_ty_local {
// Replace mentions of SROA'd locals that appear in the operand.
self.visit_operand(&mut operand, location);
let rvalue = Rvalue::Use(operand);
self.patch.add_statement(
location,
StatementKind::Assign(Box::new((new_local.into(), rvalue))),
);
}
}
statement.make_nop();
return;
}
}
// We have `a = some constant`
// We add the projections.
// ```
// a_0 = a.0
// a_1 = a.1
// ...
// ```
// ConstProp will pick up the pieces and replace them by actual constants.
StatementKind::Assign(box (place, Rvalue::Use(Operand::Constant(_)))) => {
if let Some(final_locals) = self.replacements.place_fragments(place) {
// Put the deaggregated statements *after* the original one.
let location = location.successor_within_block();
for (field, ty, new_local) in final_locals {
let rplace = self.tcx.mk_place_field(place, field, ty);
let rvalue = Rvalue::Use(Operand::Move(rplace));
self.patch.add_statement(
location,
StatementKind::Assign(Box::new((new_local.into(), rvalue))),
);
}
// We still need `place.local` to exist, so don't make it nop.
return;
}
}
// We have `a = move? place`
// We replace it by
// ```
// a_0 = move? place.0
// a_1 = move? place.1
// ...
// ```
StatementKind::Assign(box (lhs, Rvalue::Use(ref op))) => {
let (rplace, copy) = match *op {
Operand::Copy(rplace) => (rplace, true),
Operand::Move(rplace) => (rplace, false),
Operand::Constant(_) => bug!(),
};
if let Some(final_locals) = self.replacements.place_fragments(lhs) {
for (field, ty, new_local) in final_locals {
let rplace = self.tcx.mk_place_field(rplace, field, ty);
debug!(?rplace);
let rplace = self
.replacements
.replace_place(self.tcx, rplace.as_ref())
.unwrap_or(rplace);
debug!(?rplace);
let rvalue = if copy {
Rvalue::Use(Operand::Copy(rplace))
} else {
Rvalue::Use(Operand::Move(rplace))
};
self.patch.add_statement(
location,
StatementKind::Assign(Box::new((new_local.into(), rvalue))),
);
}
statement.make_nop();
return;
}
}
_ => {}
}
self.super_statement(statement, location)
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert!(!self.all_dead_locals.contains(*local));
}
}