rust/compiler/rustc_lint/src/ptr_nulls.rs

260 lines
10 KiB
Rust

use rustc_ast::LitKind;
use rustc_hir::{BinOpKind, Expr, ExprKind, TyKind};
use rustc_middle::ty::RawPtr;
use rustc_session::{declare_lint, declare_lint_pass};
use rustc_span::{Span, sym};
use crate::lints::{InvalidNullArgumentsDiag, UselessPtrNullChecksDiag};
use crate::utils::peel_casts;
use crate::{LateContext, LateLintPass, LintContext};
declare_lint! {
/// The `useless_ptr_null_checks` lint checks for useless null checks against pointers
/// obtained from non-null types.
///
/// ### Example
///
/// ```rust
/// # fn test() {}
/// let fn_ptr: fn() = /* somehow obtained nullable function pointer */
/// # test;
///
/// if (fn_ptr as *const ()).is_null() { /* ... */ }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Function pointers and references are assumed to be non-null, checking them for null
/// will always return false.
USELESS_PTR_NULL_CHECKS,
Warn,
"useless checking of non-null-typed pointer"
}
declare_lint! {
/// The `invalid_null_arguments` lint checks for invalid usage of null pointers in arguments.
///
/// ### Example
///
/// ```rust,compile_fail
/// # use std::{slice, ptr};
/// // Undefined behavior
/// # let _slice: &[u8] =
/// unsafe { slice::from_raw_parts(ptr::null(), 0) };
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// Calling methods whos safety invariants requires non-null ptr with a null pointer
/// is [Undefined Behavior](https://doc.rust-lang.org/reference/behavior-considered-undefined.html)!
INVALID_NULL_ARGUMENTS,
Deny,
"invalid null pointer in arguments"
}
declare_lint_pass!(PtrNullChecks => [USELESS_PTR_NULL_CHECKS, INVALID_NULL_ARGUMENTS]);
/// This function checks if the expression is from a series of consecutive casts,
/// ie. `(my_fn as *const _ as *mut _).cast_mut()` and whether the original expression is either
/// a fn ptr, a reference, or a function call whose definition is
/// annotated with `#![rustc_never_returns_null_ptr]`.
/// If this situation is present, the function returns the appropriate diagnostic.
fn useless_check<'a, 'tcx: 'a>(
cx: &'a LateContext<'tcx>,
mut e: &'a Expr<'a>,
) -> Option<UselessPtrNullChecksDiag<'tcx>> {
let mut had_at_least_one_cast = false;
loop {
e = e.peel_blocks();
if let ExprKind::MethodCall(_, _expr, [], _) = e.kind
&& let Some(def_id) = cx.typeck_results().type_dependent_def_id(e.hir_id)
&& cx.tcx.has_attr(def_id, sym::rustc_never_returns_null_ptr)
&& let Some(fn_name) = cx.tcx.opt_item_ident(def_id)
{
return Some(UselessPtrNullChecksDiag::FnRet { fn_name });
} else if let ExprKind::Call(path, _args) = e.kind
&& let ExprKind::Path(ref qpath) = path.kind
&& let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
&& cx.tcx.has_attr(def_id, sym::rustc_never_returns_null_ptr)
&& let Some(fn_name) = cx.tcx.opt_item_ident(def_id)
{
return Some(UselessPtrNullChecksDiag::FnRet { fn_name });
}
e = if let ExprKind::Cast(expr, t) = e.kind
&& let TyKind::Ptr(_) = t.kind
{
had_at_least_one_cast = true;
expr
} else if let ExprKind::MethodCall(_, expr, [], _) = e.kind
&& let Some(def_id) = cx.typeck_results().type_dependent_def_id(e.hir_id)
&& matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::ptr_cast | sym::ptr_cast_mut))
{
had_at_least_one_cast = true;
expr
} else if had_at_least_one_cast {
let orig_ty = cx.typeck_results().expr_ty(e);
return if orig_ty.is_fn() {
Some(UselessPtrNullChecksDiag::FnPtr { orig_ty, label: e.span })
} else if orig_ty.is_ref() {
Some(UselessPtrNullChecksDiag::Ref { orig_ty, label: e.span })
} else {
None
};
} else {
return None;
};
}
}
/// Checks if the given expression is a null pointer (modulo casting)
fn is_null_ptr<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> Option<Span> {
let (expr, _) = peel_casts(cx, expr);
if let ExprKind::Call(path, []) = expr.kind
&& let ExprKind::Path(ref qpath) = path.kind
&& let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
&& let Some(diag_item) = cx.tcx.get_diagnostic_name(def_id)
{
(diag_item == sym::ptr_null || diag_item == sym::ptr_null_mut).then_some(expr.span)
} else if let ExprKind::Lit(spanned) = expr.kind
&& let LitKind::Int(v, _) = spanned.node
{
(v == 0).then_some(expr.span)
} else {
None
}
}
impl<'tcx> LateLintPass<'tcx> for PtrNullChecks {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
match expr.kind {
// Catching:
// <*<const/mut> <ty>>::is_null(fn_ptr as *<const/mut> <ty>)
ExprKind::Call(path, [arg])
if let ExprKind::Path(ref qpath) = path.kind
&& let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
&& matches!(
cx.tcx.get_diagnostic_name(def_id),
Some(sym::ptr_const_is_null | sym::ptr_is_null)
)
&& let Some(diag) = useless_check(cx, arg) =>
{
cx.emit_span_lint(USELESS_PTR_NULL_CHECKS, expr.span, diag)
}
// Catching:
// <path>(arg...) where `arg` is null-ptr and `path` is a fn that expect non-null-ptr
ExprKind::Call(path, args)
if let ExprKind::Path(ref qpath) = path.kind
&& let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
&& let Some(diag_name) = cx.tcx.get_diagnostic_name(def_id) =>
{
// `arg` positions where null would cause U.B and whenever ZST are allowed.
//
// We should probably have a `rustc` attribute, but checking them is costly,
// maybe if we checked for null ptr first, it would be acceptable?
let (arg_indices, are_zsts_allowed): (&[_], _) = match diag_name {
sym::ptr_read
| sym::ptr_read_unaligned
| sym::ptr_read_volatile
| sym::ptr_replace
| sym::ptr_write
| sym::ptr_write_bytes
| sym::ptr_write_unaligned
| sym::ptr_write_volatile => (&[0], true),
sym::slice_from_raw_parts | sym::slice_from_raw_parts_mut => (&[0], false),
sym::ptr_copy
| sym::ptr_copy_nonoverlapping
| sym::ptr_swap
| sym::ptr_swap_nonoverlapping => (&[0, 1], true),
_ => return,
};
for &arg_idx in arg_indices {
if let Some(arg) = args.get(arg_idx)
&& let Some(null_span) = is_null_ptr(cx, arg)
&& let Some(ty) = cx.typeck_results().expr_ty_opt(arg)
&& let RawPtr(ty, _mutbl) = ty.kind()
{
// If ZST are fine, don't lint on them
let typing_env = cx.typing_env();
if are_zsts_allowed
&& cx
.tcx
.layout_of(typing_env.as_query_input(*ty))
.is_ok_and(|layout| layout.is_1zst())
{
break;
}
let diag = if arg.span.contains(null_span) {
InvalidNullArgumentsDiag::NullPtrInline { null_span }
} else {
InvalidNullArgumentsDiag::NullPtrThroughBinding { null_span }
};
cx.emit_span_lint(INVALID_NULL_ARGUMENTS, expr.span, diag)
}
}
}
// Catching:
// (fn_ptr as *<const/mut> <ty>).is_null()
ExprKind::MethodCall(_, receiver, _, _)
if let Some(def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
&& matches!(
cx.tcx.get_diagnostic_name(def_id),
Some(sym::ptr_const_is_null | sym::ptr_is_null)
)
&& let Some(diag) = useless_check(cx, receiver) =>
{
cx.emit_span_lint(USELESS_PTR_NULL_CHECKS, expr.span, diag)
}
ExprKind::Binary(op, left, right) if matches!(op.node, BinOpKind::Eq) => {
let to_check: &Expr<'_>;
let diag: UselessPtrNullChecksDiag<'_>;
if let Some(ddiag) = useless_check(cx, left) {
to_check = right;
diag = ddiag;
} else if let Some(ddiag) = useless_check(cx, right) {
to_check = left;
diag = ddiag;
} else {
return;
}
match to_check.kind {
// Catching:
// (fn_ptr as *<const/mut> <ty>) == (0 as <ty>)
ExprKind::Cast(cast_expr, _)
if let ExprKind::Lit(spanned) = cast_expr.kind
&& let LitKind::Int(v, _) = spanned.node
&& v == 0 =>
{
cx.emit_span_lint(USELESS_PTR_NULL_CHECKS, expr.span, diag)
}
// Catching:
// (fn_ptr as *<const/mut> <ty>) == std::ptr::null()
ExprKind::Call(path, [])
if let ExprKind::Path(ref qpath) = path.kind
&& let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
&& let Some(diag_item) = cx.tcx.get_diagnostic_name(def_id)
&& (diag_item == sym::ptr_null || diag_item == sym::ptr_null_mut) =>
{
cx.emit_span_lint(USELESS_PTR_NULL_CHECKS, expr.span, diag)
}
_ => {}
}
}
_ => {}
}
}
}