rust/src/libstd/sys/unix/process2.rs
Alex Crichton eadc3bcd67 std: Unconditionally close all file descriptors
The logic for only closing file descriptors >= 3 was inherited from quite some
time ago and ends up meaning that some internal APIs are less consistent than
they should be. By unconditionally closing everything entering a `FileDesc` we
ensure that we're consistent in our behavior as well as robustly handling the
stdio case.
2015-04-10 01:03:38 -07:00

415 lines
15 KiB
Rust

// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use os::unix::prelude::*;
use collections::HashMap;
use env;
use ffi::{OsString, OsStr, CString, CStr};
use fmt;
use io::{self, Error, ErrorKind};
use libc::{self, pid_t, c_void, c_int, gid_t, uid_t};
use ptr;
use sys::pipe2::AnonPipe;
use sys::{self, retry, c, cvt};
use sys::fs2::{File, OpenOptions};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
#[derive(Clone)]
pub struct Command {
pub program: CString,
pub args: Vec<CString>,
pub env: Option<HashMap<OsString, OsString>>,
pub cwd: Option<CString>,
pub uid: Option<uid_t>,
pub gid: Option<gid_t>,
pub detach: bool, // not currently exposed in std::process
}
impl Command {
pub fn new(program: &OsStr) -> Command {
Command {
program: program.to_cstring().unwrap(),
args: Vec::new(),
env: None,
cwd: None,
uid: None,
gid: None,
detach: false,
}
}
pub fn arg(&mut self, arg: &OsStr) {
self.args.push(arg.to_cstring().unwrap())
}
pub fn args<'a, I: Iterator<Item = &'a OsStr>>(&mut self, args: I) {
self.args.extend(args.map(|s| s.to_cstring().unwrap()))
}
fn init_env_map(&mut self) {
if self.env.is_none() {
self.env = Some(env::vars_os().collect());
}
}
pub fn env(&mut self, key: &OsStr, val: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().insert(key.to_os_string(), val.to_os_string());
}
pub fn env_remove(&mut self, key: &OsStr) {
self.init_env_map();
self.env.as_mut().unwrap().remove(&key.to_os_string());
}
pub fn env_clear(&mut self) {
self.env = Some(HashMap::new())
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(dir.to_cstring().unwrap())
}
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
/// Unix exit statuses
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum ExitStatus {
/// Normal termination with an exit code.
Code(i32),
/// Termination by signal, with the signal number.
///
/// Never generated on Windows.
Signal(i32),
}
impl ExitStatus {
pub fn success(&self) -> bool {
*self == ExitStatus::Code(0)
}
pub fn code(&self) -> Option<i32> {
match *self {
ExitStatus::Code(c) => Some(c),
_ => None
}
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ExitStatus::Code(code) => write!(f, "exit code: {}", code),
ExitStatus::Signal(code) => write!(f, "signal: {}", code),
}
}
}
/// The unique id of the process (this should never be negative).
pub struct Process {
pid: pid_t
}
pub enum Stdio {
Inherit,
Piped(AnonPipe),
None,
}
const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
impl Process {
pub unsafe fn kill(&self) -> io::Result<()> {
try!(cvt(libc::funcs::posix88::signal::kill(self.pid, libc::SIGKILL)));
Ok(())
}
pub fn spawn(cfg: &Command,
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> io::Result<Process> {
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
let (envp, _a, _b) = make_envp(cfg.env.as_ref());
let (argv, _a) = make_argv(&cfg.program, &cfg.args);
let (input, output) = try!(sys::pipe2::anon_pipe());
let pid = unsafe {
match libc::fork() {
0 => {
drop(input);
Process::child_after_fork(cfg, output, argv, envp, dirp,
in_fd, out_fd, err_fd)
}
n if n < 0 => return Err(Error::last_os_error()),
n => n,
}
};
let p = Process{ pid: pid };
drop(output);
let mut bytes = [0; 8];
// loop to handle EINTR
loop {
match input.read(&mut bytes) {
Ok(0) => return Ok(p),
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
return Err(Error::from_raw_os_error(errno))
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
}
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
unsafe fn child_after_fork(cfg: &Command,
mut output: AnonPipe,
argv: *const *const libc::c_char,
envp: *const libc::c_void,
dirp: *const libc::c_char,
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> ! {
fn fail(output: &mut AnonPipe) -> ! {
let errno = sys::os::errno() as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic, and then we want
// to be sure we *don't* run at_exit destructors as we're being torn
// down regardless
assert!(output.write(&bytes).is_ok());
unsafe { libc::_exit(1) }
}
let setup = |src: Stdio, dst: c_int| {
let fd = match src {
Stdio::Inherit => return true,
Stdio::Piped(pipe) => pipe.into_fd(),
// If a stdio file descriptor is set to be ignored, we open up
// /dev/null into that file descriptor. Otherwise, the first
// file descriptor opened up in the child would be numbered as
// one of the stdio file descriptors, which is likely to wreak
// havoc.
Stdio::None => {
let mut opts = OpenOptions::new();
opts.read(dst == libc::STDIN_FILENO);
opts.write(dst != libc::STDIN_FILENO);
let devnull = CStr::from_ptr(b"/dev/null\0".as_ptr()
as *const _);
if let Ok(f) = File::open_c(devnull, &opts) {
f.into_fd()
} else {
return false
}
}
};
retry(|| libc::dup2(fd.raw(), dst)) != -1
};
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
if let Some(u) = cfg.gid {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
}
}
if let Some(u) = cfg.uid {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
let _ = c::setgroups(0, ptr::null());
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
if cfg.detach {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && libc::chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
*sys::os::environ() = envp as *const _;
}
let _ = libc::execvp(*argv, argv as *mut _);
fail(&mut output)
}
pub fn wait(&self) -> io::Result<ExitStatus> {
let mut status = 0 as c_int;
try!(cvt(retry(|| unsafe { c::waitpid(self.pid, &mut status, 0) })));
Ok(translate_status(status))
}
pub fn try_wait(&self) -> Option<ExitStatus> {
let mut status = 0 as c_int;
match retry(|| unsafe {
c::waitpid(self.pid, &mut status, c::WNOHANG)
}) {
n if n == self.pid => Some(translate_status(status)),
0 => None,
n => panic!("unknown waitpid error `{:?}`: {:?}", n,
super::last_error()),
}
}
}
fn make_argv(prog: &CString, args: &[CString])
-> (*const *const libc::c_char, Vec<*const libc::c_char>)
{
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
// Convert the CStrings into an array of pointers. Note: the
// lifetime of the various CStrings involved is guaranteed to be
// larger than the lifetime of our invocation of cb, but this is
// technically unsafe as the callback could leak these pointers
// out of our scope.
ptrs.push(prog.as_ptr());
ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));
// Add a terminating null pointer (required by libc).
ptrs.push(ptr::null());
(ptrs.as_ptr(), ptrs)
}
fn make_envp(env: Option<&HashMap<OsString, OsString>>)
-> (*const c_void, Vec<Vec<u8>>, Vec<*const libc::c_char>)
{
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\0" strings. Since we must create
// these strings locally, yet expose a raw pointer to them, we
// create a temporary vector to own the CStrings that outlives the
// call to cb.
if let Some(env) = env {
let mut tmps = Vec::with_capacity(env.len());
for pair in env {
let mut kv = Vec::new();
kv.push_all(pair.0.as_bytes());
kv.push('=' as u8);
kv.push_all(pair.1.as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
(ptrs.as_ptr() as *const _, tmps, ptrs)
} else {
(0 as *const _, Vec::new(), Vec::new())
}
}
fn translate_status(status: c_int) -> ExitStatus {
#![allow(non_snake_case)]
#[cfg(any(target_os = "linux", target_os = "android"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
}
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "bitrig",
target_os = "openbsd"))]
mod imp {
pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
}
if imp::WIFEXITED(status) {
ExitStatus::Code(imp::WEXITSTATUS(status))
} else {
ExitStatus::Signal(imp::WTERMSIG(status))
}
}