mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-22 23:04:33 +00:00
1184 lines
34 KiB
Rust
1184 lines
34 KiB
Rust
//@ run-pass
|
|
// This test exercises cases where cyclic structure is legal,
|
|
// including when the cycles go through data-structures such
|
|
// as `Vec` or `TypedArena`.
|
|
//
|
|
// The intent is to cover as many such cases as possible, ensuring
|
|
// that if the compiler did not complain circa Rust 1.x (1.2 as of
|
|
// this writing), then it will continue to not complain in the future.
|
|
//
|
|
// Note that while some of the tests are only exercising using the
|
|
// given collection as a "backing store" for a set of nodes that hold
|
|
// the actual cycle (and thus the cycle does not go through the
|
|
// collection itself in such cases), in general we *do* want to make
|
|
// sure to have at least one example exercising a cycle that goes
|
|
// through the collection, for every collection type that supports
|
|
// this.
|
|
|
|
// HIGH LEVEL DESCRIPTION OF THE TEST ARCHITECTURE
|
|
// -----------------------------------------------
|
|
//
|
|
// We pick a data structure and want to make a cyclic construction
|
|
// from it. Each test of interest is labelled starting with "Cycle N:
|
|
// { ... }" where N is the test number and the "..."`is filled in with
|
|
// a graphviz-style description of the graph structure that the
|
|
// author believes is being made. So "{ a -> b, b -> (c,d), (c,d) -> e }"
|
|
// describes a line connected to a diamond:
|
|
//
|
|
// c
|
|
// / \
|
|
// a - b e
|
|
// \ /
|
|
// d
|
|
//
|
|
// (Note that the above directed graph is actually acyclic.)
|
|
//
|
|
// The different graph structures are often composed of different data
|
|
// types. Some may be built atop `Vec`, others atop `HashMap`, etc.
|
|
//
|
|
// For each graph structure, we actually *confirm* that a cycle exists
|
|
// (as a safe-guard against a test author accidentally leaving it out)
|
|
// by traversing each graph and "proving" that a cycle exists within it.
|
|
//
|
|
// To do this, while trying to keep the code uniform (despite working
|
|
// with different underlying collection and smart-pointer types), we
|
|
// have a standard traversal API:
|
|
//
|
|
// 1. every node in the graph carries a `mark` (a u32, init'ed to 0).
|
|
//
|
|
// 2. every node provides a method to visit its children
|
|
//
|
|
// 3. a traversal attmepts to visit the nodes of the graph and prove that
|
|
// it sees the same node twice. It does this by setting the mark of each
|
|
// node to a fresh non-zero value, and if it sees the current mark, it
|
|
// "knows" that it must have found a cycle, and stops attempting further
|
|
// traversal.
|
|
//
|
|
// 4. each traversal is controlled by a bit-string that tells it which child
|
|
// it visit when it can take different paths. As a simple example,
|
|
// in a binary tree, 0 could mean "left" (and 1, "right"), so that
|
|
// "00010" means "left, left, left, right, left". (In general it will
|
|
// read as many bits as it needs to choose one child.)
|
|
//
|
|
// The graphs in this test are all meant to be very small, and thus
|
|
// short bitstrings of less than 64 bits should always suffice.
|
|
//
|
|
// (An earlier version of this test infrastructure simply had any
|
|
// given traversal visit all children it encountered, in a
|
|
// depth-first manner; one problem with this approach is that an
|
|
// acyclic graph can still have sharing, which would then be treated
|
|
// as a repeat mark and reported as a detected cycle.)
|
|
//
|
|
// The travseral code is a little more complicated because it has been
|
|
// programmed in a somewhat defensive manner. For example it also has
|
|
// a max threshold for the number of nodes it will visit, to guard
|
|
// against scenarios where the nodes are not correctly setting their
|
|
// mark when asked. There are various other methods not discussed here
|
|
// that are for aiding debugging the test when it runs, such as the
|
|
// `name` method that all nodes provide.
|
|
//
|
|
// So each test:
|
|
//
|
|
// 1. allocates the nodes in the graph,
|
|
//
|
|
// 2. sets up the links in the graph,
|
|
//
|
|
// 3. clones the "ContextData"
|
|
//
|
|
// 4. chooses a new current mark value for this test
|
|
//
|
|
// 5. initiates a traversal, potentially from multiple starting points
|
|
// (aka "roots"), with a given control-string (potentially a
|
|
// different string for each root). if it does start from a
|
|
// distinct root, then such a test should also increment the
|
|
// current mark value, so that this traversal is considered
|
|
// distinct from the prior one on this graph structure.
|
|
//
|
|
// Note that most of the tests work with the default control string
|
|
// of all-zeroes.
|
|
//
|
|
// 6. assert that the context confirms that it actually saw a cycle (since a traversal
|
|
// might have terminated, e.g., on a tree structure that contained no cycles).
|
|
|
|
use std::cell::{Cell, RefCell};
|
|
use std::cmp::Ordering;
|
|
use std::collections::BinaryHeap;
|
|
use std::collections::HashMap;
|
|
use std::collections::LinkedList;
|
|
use std::collections::VecDeque;
|
|
use std::collections::btree_map::BTreeMap;
|
|
use std::collections::btree_set::BTreeSet;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::rc::Rc;
|
|
use std::sync::{Arc, RwLock, Mutex};
|
|
|
|
const PRINT: bool = false;
|
|
|
|
pub fn main() {
|
|
let c_orig = ContextData {
|
|
curr_depth: 0,
|
|
max_depth: 3,
|
|
visited: 0,
|
|
max_visits: 1000,
|
|
skipped: 0,
|
|
curr_mark: 0,
|
|
saw_prev_marked: false,
|
|
control_bits: 0,
|
|
};
|
|
|
|
// SANITY CHECK FOR TEST SUITE (thus unnumbered)
|
|
// Not a cycle: { v[0] -> (v[1], v[2]), v[1] -> v[3], v[2] -> v[3] };
|
|
let v: Vec<S2> = vec![Named::new("s0"),
|
|
Named::new("s1"),
|
|
Named::new("s2"),
|
|
Named::new("s3")];
|
|
v[0].next.set((Some(&v[1]), Some(&v[2])));
|
|
v[1].next.set((Some(&v[3]), None));
|
|
v[2].next.set((Some(&v[3]), None));
|
|
v[3].next.set((None, None));
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 10;
|
|
assert!(!c.saw_prev_marked);
|
|
v[0].descend_into_self(&mut c);
|
|
assert!(!c.saw_prev_marked); // <-- different from below, b/c acyclic above
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 1: { v[0] -> v[1], v[1] -> v[0] };
|
|
// does not exercise `v` itself
|
|
let v: Vec<S> = vec![Named::new("s0"),
|
|
Named::new("s1")];
|
|
v[0].next.set(Some(&v[1]));
|
|
v[1].next.set(Some(&v[0]));
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 10;
|
|
assert!(!c.saw_prev_marked);
|
|
v[0].descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 2: { v[0] -> v, v[1] -> v }
|
|
let v: V = Named::new("v");
|
|
v.contents[0].set(Some(&v));
|
|
v.contents[1].set(Some(&v));
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 20;
|
|
assert!(!c.saw_prev_marked);
|
|
v.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 3: { hk0 -> hv0, hv0 -> hk0, hk1 -> hv1, hv1 -> hk1 };
|
|
// does not exercise `h` itself
|
|
|
|
let mut h: HashMap<H,H> = HashMap::new();
|
|
h.insert(Named::new("hk0"), Named::new("hv0"));
|
|
h.insert(Named::new("hk1"), Named::new("hv1"));
|
|
for (key, val) in h.iter() {
|
|
val.next.set(Some(key));
|
|
key.next.set(Some(val));
|
|
}
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 30;
|
|
for (key, _) in h.iter() {
|
|
c.curr_mark += 1;
|
|
c.saw_prev_marked = false;
|
|
key.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
}
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 4: { h -> (hmk0,hmv0,hmk1,hmv1), {hmk0,hmv0,hmk1,hmv1} -> h }
|
|
|
|
let mut h: HashMap<HM,HM> = HashMap::new();
|
|
h.insert(Named::new("hmk0"), Named::new("hmv0"));
|
|
h.insert(Named::new("hmk0"), Named::new("hmv0"));
|
|
for (key, val) in h.iter() {
|
|
val.contents.set(Some(&h));
|
|
key.contents.set(Some(&h));
|
|
}
|
|
|
|
let mut c = c_orig.clone();
|
|
c.max_depth = 2;
|
|
c.curr_mark = 40;
|
|
for (key, _) in h.iter() {
|
|
c.curr_mark += 1;
|
|
c.saw_prev_marked = false;
|
|
key.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
// break;
|
|
}
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 5: { vd[0] -> vd[1], vd[1] -> vd[0] };
|
|
// does not exercise vd itself
|
|
let mut vd: VecDeque<S> = VecDeque::new();
|
|
vd.push_back(Named::new("d0"));
|
|
vd.push_back(Named::new("d1"));
|
|
vd[0].next.set(Some(&vd[1]));
|
|
vd[1].next.set(Some(&vd[0]));
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 50;
|
|
assert!(!c.saw_prev_marked);
|
|
vd[0].descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 6: { vd -> (vd0, vd1), {vd0, vd1} -> vd }
|
|
let mut vd: VecDeque<VD> = VecDeque::new();
|
|
vd.push_back(Named::new("vd0"));
|
|
vd.push_back(Named::new("vd1"));
|
|
vd[0].contents.set(Some(&vd));
|
|
vd[1].contents.set(Some(&vd));
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 60;
|
|
assert!(!c.saw_prev_marked);
|
|
vd[0].descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 7: { vm -> (vm0, vm1), {vm0, vm1} -> vm }
|
|
let mut vm: HashMap<usize, VM> = HashMap::new();
|
|
vm.insert(0, Named::new("vm0"));
|
|
vm.insert(1, Named::new("vm1"));
|
|
vm[&0].contents.set(Some(&vm));
|
|
vm[&1].contents.set(Some(&vm));
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 70;
|
|
assert!(!c.saw_prev_marked);
|
|
vm[&0].descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 8: { ll -> (ll0, ll1), {ll0, ll1} -> ll }
|
|
let mut ll: LinkedList<LL> = LinkedList::new();
|
|
ll.push_back(Named::new("ll0"));
|
|
ll.push_back(Named::new("ll1"));
|
|
for e in &ll {
|
|
e.contents.set(Some(&ll));
|
|
}
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 80;
|
|
for e in &ll {
|
|
c.curr_mark += 1;
|
|
c.saw_prev_marked = false;
|
|
e.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
// break;
|
|
}
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 9: { bh -> (bh0, bh1), {bh0, bh1} -> bh }
|
|
let mut bh: BinaryHeap<BH> = BinaryHeap::new();
|
|
bh.push(Named::new("bh0"));
|
|
bh.push(Named::new("bh1"));
|
|
for b in bh.iter() {
|
|
b.contents.set(Some(&bh));
|
|
}
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 90;
|
|
for b in &bh {
|
|
c.curr_mark += 1;
|
|
c.saw_prev_marked = false;
|
|
b.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
// break;
|
|
}
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 10: { btm -> (btk0, btv1), {bt0, bt1} -> btm }
|
|
let mut btm: BTreeMap<BTM, BTM> = BTreeMap::new();
|
|
btm.insert(Named::new("btk0"), Named::new("btv0"));
|
|
btm.insert(Named::new("btk1"), Named::new("btv1"));
|
|
for (k, v) in btm.iter() {
|
|
k.contents.set(Some(&btm));
|
|
v.contents.set(Some(&btm));
|
|
}
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 100;
|
|
for (k, _) in &btm {
|
|
c.curr_mark += 1;
|
|
c.saw_prev_marked = false;
|
|
k.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
// break;
|
|
}
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 10: { bts -> (bts0, bts1), {bts0, bts1} -> btm }
|
|
let mut bts: BTreeSet<BTS> = BTreeSet::new();
|
|
bts.insert(Named::new("bts0"));
|
|
bts.insert(Named::new("bts1"));
|
|
for v in bts.iter() {
|
|
v.contents.set(Some(&bts));
|
|
}
|
|
|
|
let mut c = c_orig.clone();
|
|
c.curr_mark = 100;
|
|
for b in &bts {
|
|
c.curr_mark += 1;
|
|
c.saw_prev_marked = false;
|
|
b.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
// break;
|
|
}
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 11: { rc0 -> (rc1, rc2), rc1 -> (), rc2 -> rc0 }
|
|
let (rc0, rc1, rc2): (RCRC, RCRC, RCRC);
|
|
rc0 = RCRC::new("rcrc0");
|
|
rc1 = RCRC::new("rcrc1");
|
|
rc2 = RCRC::new("rcrc2");
|
|
rc0.0.borrow_mut().children.0 = Some(&rc1);
|
|
rc0.0.borrow_mut().children.1 = Some(&rc2);
|
|
rc2.0.borrow_mut().children.0 = Some(&rc0);
|
|
|
|
let mut c = c_orig.clone();
|
|
c.control_bits = 0b1;
|
|
c.curr_mark = 110;
|
|
assert!(!c.saw_prev_marked);
|
|
rc0.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// We want to take the previous Rc case and generalize it to Arc.
|
|
//
|
|
// We can use refcells if we're single-threaded (as this test is).
|
|
// If one were to generalize these constructions to a
|
|
// multi-threaded context, then it might seem like we could choose
|
|
// between either an RwLock or a Mutex to hold the owned arcs on
|
|
// each node.
|
|
//
|
|
// Part of the point of this test is to actually confirm that the
|
|
// cycle exists by traversing it. We can do that just fine with an
|
|
// RwLock (since we can grab the child pointers in read-only
|
|
// mode), but we cannot lock a std::sync::Mutex to guard reading
|
|
// from each node via the same pattern, since once you hit the
|
|
// cycle, you'll be trying to acquiring the same lock twice.
|
|
// (We deal with this by exiting the traversal early if try_lock fails.)
|
|
|
|
// Cycle 12: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, refcells
|
|
let (arc0, arc1, arc2): (ARCRC, ARCRC, ARCRC);
|
|
arc0 = ARCRC::new("arcrc0");
|
|
arc1 = ARCRC::new("arcrc1");
|
|
arc2 = ARCRC::new("arcrc2");
|
|
arc0.0.borrow_mut().children.0 = Some(&arc1);
|
|
arc0.0.borrow_mut().children.1 = Some(&arc2);
|
|
arc2.0.borrow_mut().children.0 = Some(&arc0);
|
|
|
|
let mut c = c_orig.clone();
|
|
c.control_bits = 0b1;
|
|
c.curr_mark = 110;
|
|
assert!(!c.saw_prev_marked);
|
|
arc0.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 13: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, rwlocks
|
|
let (arc0, arc1, arc2): (ARCRW, ARCRW, ARCRW);
|
|
arc0 = ARCRW::new("arcrw0");
|
|
arc1 = ARCRW::new("arcrw1");
|
|
arc2 = ARCRW::new("arcrw2");
|
|
arc0.0.write().unwrap().children.0 = Some(&arc1);
|
|
arc0.0.write().unwrap().children.1 = Some(&arc2);
|
|
arc2.0.write().unwrap().children.0 = Some(&arc0);
|
|
|
|
let mut c = c_orig.clone();
|
|
c.control_bits = 0b1;
|
|
c.curr_mark = 110;
|
|
assert!(!c.saw_prev_marked);
|
|
arc0.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
|
|
if PRINT { println!(); }
|
|
|
|
// Cycle 14: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, mutexs
|
|
let (arc0, arc1, arc2): (ARCM, ARCM, ARCM);
|
|
arc0 = ARCM::new("arcm0");
|
|
arc1 = ARCM::new("arcm1");
|
|
arc2 = ARCM::new("arcm2");
|
|
arc0.1.lock().unwrap().children.0 = Some(&arc1);
|
|
arc0.1.lock().unwrap().children.1 = Some(&arc2);
|
|
arc2.1.lock().unwrap().children.0 = Some(&arc0);
|
|
|
|
let mut c = c_orig.clone();
|
|
c.control_bits = 0b1;
|
|
c.curr_mark = 110;
|
|
assert!(!c.saw_prev_marked);
|
|
arc0.descend_into_self(&mut c);
|
|
assert!(c.saw_prev_marked);
|
|
}
|
|
|
|
trait Named {
|
|
fn new(_: &'static str) -> Self;
|
|
fn name(&self) -> &str;
|
|
}
|
|
|
|
trait Marked<M> {
|
|
fn mark(&self) -> M;
|
|
fn set_mark(&self, mark: M);
|
|
}
|
|
|
|
struct S<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
next: Cell<Option<&'a S<'a>>>,
|
|
}
|
|
|
|
impl<'a> Named for S<'a> {
|
|
fn new(name: &'static str) -> S<'a> {
|
|
S { name: name, mark: Cell::new(0), next: Cell::new(None) }
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for S<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
struct S2<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
next: Cell<(Option<&'a S2<'a>>, Option<&'a S2<'a>>)>,
|
|
}
|
|
|
|
impl<'a> Named for S2<'a> {
|
|
fn new(name: &'static str) -> S2<'a> {
|
|
S2 { name: name, mark: Cell::new(0), next: Cell::new((None, None)) }
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for S2<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) {
|
|
self.mark.set(mark);
|
|
}
|
|
}
|
|
|
|
struct V<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Vec<Cell<Option<&'a V<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for V<'a> {
|
|
fn new(name: &'static str) -> V<'a> {
|
|
V { name: name,
|
|
mark: Cell::new(0),
|
|
contents: vec![Cell::new(None), Cell::new(None)]
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for V<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
#[derive(Eq)]
|
|
struct H<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
next: Cell<Option<&'a H<'a>>>,
|
|
}
|
|
|
|
impl<'a> Named for H<'a> {
|
|
fn new(name: &'static str) -> H<'a> {
|
|
H { name: name, mark: Cell::new(0), next: Cell::new(None) }
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for H<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> PartialEq for H<'a> {
|
|
fn eq(&self, rhs: &H<'a>) -> bool {
|
|
self.name == rhs.name
|
|
}
|
|
}
|
|
|
|
impl<'a> Hash for H<'a> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.name.hash(state)
|
|
}
|
|
}
|
|
|
|
#[derive(Eq)]
|
|
struct HM<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a HashMap<HM<'a>, HM<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for HM<'a> {
|
|
fn new(name: &'static str) -> HM<'a> {
|
|
HM { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for HM<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> PartialEq for HM<'a> {
|
|
fn eq(&self, rhs: &HM<'a>) -> bool {
|
|
self.name == rhs.name
|
|
}
|
|
}
|
|
|
|
impl<'a> Hash for HM<'a> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.name.hash(state)
|
|
}
|
|
}
|
|
|
|
|
|
struct VD<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a VecDeque<VD<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for VD<'a> {
|
|
fn new(name: &'static str) -> VD<'a> {
|
|
VD { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for VD<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
struct VM<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a HashMap<usize, VM<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for VM<'a> {
|
|
fn new(name: &'static str) -> VM<'a> {
|
|
VM { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for VM<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
struct LL<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a LinkedList<LL<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for LL<'a> {
|
|
fn new(name: &'static str) -> LL<'a> {
|
|
LL { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for LL<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
struct BH<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a BinaryHeap<BH<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for BH<'a> {
|
|
fn new(name: &'static str) -> BH<'a> {
|
|
BH { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for BH<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Eq for BH<'a> { }
|
|
|
|
impl<'a> PartialEq for BH<'a> {
|
|
fn eq(&self, rhs: &BH<'a>) -> bool {
|
|
self.name == rhs.name
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialOrd for BH<'a> {
|
|
fn partial_cmp(&self, rhs: &BH<'a>) -> Option<Ordering> {
|
|
Some(self.cmp(rhs))
|
|
}
|
|
}
|
|
|
|
impl<'a> Ord for BH<'a> {
|
|
fn cmp(&self, rhs: &BH<'a>) -> Ordering {
|
|
self.name.cmp(rhs.name)
|
|
}
|
|
}
|
|
|
|
struct BTM<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a BTreeMap<BTM<'a>, BTM<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for BTM<'a> {
|
|
fn new(name: &'static str) -> BTM<'a> {
|
|
BTM { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for BTM<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Eq for BTM<'a> { }
|
|
|
|
impl<'a> PartialEq for BTM<'a> {
|
|
fn eq(&self, rhs: &BTM<'a>) -> bool {
|
|
self.name == rhs.name
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialOrd for BTM<'a> {
|
|
fn partial_cmp(&self, rhs: &BTM<'a>) -> Option<Ordering> {
|
|
Some(self.cmp(rhs))
|
|
}
|
|
}
|
|
|
|
impl<'a> Ord for BTM<'a> {
|
|
fn cmp(&self, rhs: &BTM<'a>) -> Ordering {
|
|
self.name.cmp(rhs.name)
|
|
}
|
|
}
|
|
|
|
struct BTS<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
contents: Cell<Option<&'a BTreeSet<BTS<'a>>>>,
|
|
}
|
|
|
|
impl<'a> Named for BTS<'a> {
|
|
fn new(name: &'static str) -> BTS<'a> {
|
|
BTS { name: name,
|
|
mark: Cell::new(0),
|
|
contents: Cell::new(None)
|
|
}
|
|
}
|
|
fn name(&self) -> &str { self.name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for BTS<'a> {
|
|
fn mark(&self) -> u32 { self.mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Eq for BTS<'a> { }
|
|
|
|
impl<'a> PartialEq for BTS<'a> {
|
|
fn eq(&self, rhs: &BTS<'a>) -> bool {
|
|
self.name == rhs.name
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialOrd for BTS<'a> {
|
|
fn partial_cmp(&self, rhs: &BTS<'a>) -> Option<Ordering> {
|
|
Some(self.cmp(rhs))
|
|
}
|
|
}
|
|
|
|
impl<'a> Ord for BTS<'a> {
|
|
fn cmp(&self, rhs: &BTS<'a>) -> Ordering {
|
|
self.name.cmp(rhs.name)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct RCRCData<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
children: (Option<&'a RCRC<'a>>, Option<&'a RCRC<'a>>),
|
|
}
|
|
#[derive(Clone)]
|
|
struct RCRC<'a>(Rc<RefCell<RCRCData<'a>>>);
|
|
|
|
impl<'a> Named for RCRC<'a> {
|
|
fn new(name: &'static str) -> Self {
|
|
RCRC(Rc::new(RefCell::new(RCRCData {
|
|
name: name, mark: Cell::new(0), children: (None, None), })))
|
|
}
|
|
fn name(&self) -> &str { self.0.borrow().name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for RCRC<'a> {
|
|
fn mark(&self) -> u32 { self.0.borrow().mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.0.borrow().mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Children<'a> for RCRC<'a> {
|
|
fn count_children(&self) -> usize { 2 }
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
let children = &self.0.borrow().children;
|
|
let child = match index {
|
|
0 => if let Some(child) = children.0 { child } else { return; },
|
|
1 => if let Some(child) = children.1 { child } else { return; },
|
|
_ => panic!("bad children"),
|
|
};
|
|
// println!("S2 {} descending into child {} at index {}", self.name, child.name, index);
|
|
child.descend_into_self(context);
|
|
}
|
|
}
|
|
#[derive(Clone)]
|
|
struct ARCRCData<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
children: (Option<&'a ARCRC<'a>>, Option<&'a ARCRC<'a>>),
|
|
}
|
|
#[derive(Clone)]
|
|
struct ARCRC<'a>(Arc<RefCell<ARCRCData<'a>>>);
|
|
|
|
impl<'a> Named for ARCRC<'a> {
|
|
fn new(name: &'static str) -> Self {
|
|
ARCRC(Arc::new(RefCell::new(ARCRCData {
|
|
name: name, mark: Cell::new(0), children: (None, None), })))
|
|
}
|
|
fn name(&self) -> &str { self.0.borrow().name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for ARCRC<'a> {
|
|
fn mark(&self) -> u32 { self.0.borrow().mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.0.borrow().mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Children<'a> for ARCRC<'a> {
|
|
fn count_children(&self) -> usize { 2 }
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
let children = &self.0.borrow().children;
|
|
match index {
|
|
0 => if let Some(ref child) = children.0 {
|
|
child.descend_into_self(context);
|
|
},
|
|
1 => if let Some(ref child) = children.1 {
|
|
child.descend_into_self(context);
|
|
},
|
|
_ => panic!("bad children!"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct ARCMData<'a> {
|
|
mark: Cell<u32>,
|
|
children: (Option<&'a ARCM<'a>>, Option<&'a ARCM<'a>>),
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct ARCM<'a>(&'static str, Arc<Mutex<ARCMData<'a>>>);
|
|
|
|
impl<'a> Named for ARCM<'a> {
|
|
fn new(name: &'static str) -> Self {
|
|
ARCM(name, Arc::new(Mutex::new(ARCMData {
|
|
mark: Cell::new(0), children: (None, None), })))
|
|
}
|
|
fn name(&self) -> &str { self.0 }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for ARCM<'a> {
|
|
fn mark(&self) -> u32 { self.1.lock().unwrap().mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.1.lock().unwrap().mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Children<'a> for ARCM<'a> {
|
|
fn count_children(&self) -> usize { 2 }
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
let ref children = if let Ok(data) = self.1.try_lock() {
|
|
data.children
|
|
} else { return; };
|
|
match index {
|
|
0 => if let Some(ref child) = children.0 {
|
|
child.descend_into_self(context);
|
|
},
|
|
1 => if let Some(ref child) = children.1 {
|
|
child.descend_into_self(context);
|
|
},
|
|
_ => panic!("bad children!"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct ARCRWData<'a> {
|
|
name: &'static str,
|
|
mark: Cell<u32>,
|
|
children: (Option<&'a ARCRW<'a>>, Option<&'a ARCRW<'a>>),
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct ARCRW<'a>(Arc<RwLock<ARCRWData<'a>>>);
|
|
|
|
impl<'a> Named for ARCRW<'a> {
|
|
fn new(name: &'static str) -> Self {
|
|
ARCRW(Arc::new(RwLock::new(ARCRWData {
|
|
name: name, mark: Cell::new(0), children: (None, None), })))
|
|
}
|
|
fn name(&self) -> &str { self.0.read().unwrap().name }
|
|
}
|
|
|
|
impl<'a> Marked<u32> for ARCRW<'a> {
|
|
fn mark(&self) -> u32 { self.0.read().unwrap().mark.get() }
|
|
fn set_mark(&self, mark: u32) { self.0.read().unwrap().mark.set(mark); }
|
|
}
|
|
|
|
impl<'a> Children<'a> for ARCRW<'a> {
|
|
fn count_children(&self) -> usize { 2 }
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
let children = &self.0.read().unwrap().children;
|
|
match index {
|
|
0 => if let Some(ref child) = children.0 {
|
|
child.descend_into_self(context);
|
|
},
|
|
1 => if let Some(ref child) = children.1 {
|
|
child.descend_into_self(context);
|
|
},
|
|
_ => panic!("bad children!"),
|
|
}
|
|
}
|
|
}
|
|
|
|
trait Context {
|
|
fn next_index(&mut self, len: usize) -> usize;
|
|
fn should_act(&self) -> bool;
|
|
fn increase_visited(&mut self);
|
|
fn increase_skipped(&mut self);
|
|
fn increase_depth(&mut self);
|
|
fn decrease_depth(&mut self);
|
|
}
|
|
|
|
trait PrePost<T> {
|
|
fn pre(&mut self, _: &T);
|
|
fn post(&mut self, _: &T);
|
|
fn hit_limit(&mut self, _: &T);
|
|
}
|
|
|
|
trait Children<'a> {
|
|
fn count_children(&self) -> usize;
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized;
|
|
|
|
fn next_child<C>(&self, context: &mut C)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
let index = context.next_index(self.count_children());
|
|
self.descend_one_child(context, index);
|
|
}
|
|
|
|
fn descend_into_self<C>(&self, context: &mut C)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
context.pre(self);
|
|
if context.should_act() {
|
|
context.increase_visited();
|
|
context.increase_depth();
|
|
self.next_child(context);
|
|
context.decrease_depth();
|
|
} else {
|
|
context.hit_limit(self);
|
|
context.increase_skipped();
|
|
}
|
|
context.post(self);
|
|
}
|
|
|
|
fn descend<'b, C>(&self, c: &Cell<Option<&'b Self>>, context: &mut C)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
if let Some(r) = c.get() {
|
|
r.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for S<'a> {
|
|
fn count_children(&self) -> usize { 1 }
|
|
fn descend_one_child<C>(&self, context: &mut C, _: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized {
|
|
self.descend(&self.next, context);
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for S2<'a> {
|
|
fn count_children(&self) -> usize { 2 }
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
let children = self.next.get();
|
|
let child = match index {
|
|
0 => if let Some(child) = children.0 { child } else { return; },
|
|
1 => if let Some(child) = children.1 { child } else { return; },
|
|
_ => panic!("bad children"),
|
|
};
|
|
// println!("S2 {} descending into child {} at index {}", self.name, child.name, index);
|
|
child.descend_into_self(context);
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for V<'a> {
|
|
fn count_children(&self) -> usize { self.contents.len() }
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
if let Some(child) = self.contents[index].get() {
|
|
child.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for H<'a> {
|
|
fn count_children(&self) -> usize { 1 }
|
|
fn descend_one_child<C>(&self, context: &mut C, _: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
self.descend(&self.next, context);
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for HM<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(m) = self.contents.get() { 2 * m.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
if let Some(ref hm) = self.contents.get() {
|
|
if let Some((k, v)) = hm.iter().nth(index / 2) {
|
|
[k, v][index % 2].descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for VD<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(d) = self.contents.get() { d.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<Self>, Self: Sized
|
|
{
|
|
if let Some(ref vd) = self.contents.get() {
|
|
if let Some(r) = vd.iter().nth(index) {
|
|
r.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for VM<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(m) = self.contents.get() { m.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<VM<'a>>
|
|
{
|
|
if let Some(ref vd) = self.contents.get() {
|
|
if let Some((_idx, r)) = vd.iter().nth(index) {
|
|
r.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for LL<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(l) = self.contents.get() { l.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<LL<'a>>
|
|
{
|
|
if let Some(ref ll) = self.contents.get() {
|
|
if let Some(r) = ll.iter().nth(index) {
|
|
r.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for BH<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(h) = self.contents.get() { h.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<BH<'a>>
|
|
{
|
|
if let Some(ref bh) = self.contents.get() {
|
|
if let Some(r) = bh.iter().nth(index) {
|
|
r.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for BTM<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(m) = self.contents.get() { 2 * m.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<BTM<'a>>
|
|
{
|
|
if let Some(ref bh) = self.contents.get() {
|
|
if let Some((k, v)) = bh.iter().nth(index / 2) {
|
|
[k, v][index % 2].descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Children<'a> for BTS<'a> {
|
|
fn count_children(&self) -> usize {
|
|
if let Some(s) = self.contents.get() { s.iter().count() } else { 0 }
|
|
}
|
|
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
|
where C: Context + PrePost<BTS<'a>>
|
|
{
|
|
if let Some(ref bh) = self.contents.get() {
|
|
if let Some(r) = bh.iter().nth(index) {
|
|
r.descend_into_self(context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
struct ContextData {
|
|
curr_depth: usize,
|
|
max_depth: usize,
|
|
visited: usize,
|
|
max_visits: usize,
|
|
skipped: usize,
|
|
curr_mark: u32,
|
|
saw_prev_marked: bool,
|
|
control_bits: u64,
|
|
}
|
|
|
|
impl Context for ContextData {
|
|
fn next_index(&mut self, len: usize) -> usize {
|
|
if len < 2 { return 0; }
|
|
let mut pow2 = len.next_power_of_two();
|
|
let _pow2_orig = pow2;
|
|
let mut idx = 0;
|
|
let mut bits = self.control_bits;
|
|
while pow2 > 1 {
|
|
idx = (idx << 1) | (bits & 1) as usize;
|
|
bits = bits >> 1;
|
|
pow2 = pow2 >> 1;
|
|
}
|
|
idx = idx % len;
|
|
// println!("next_index({} [{:b}]) says {}, pre(bits): {:b} post(bits): {:b}",
|
|
// len, _pow2_orig, idx, self.control_bits, bits);
|
|
self.control_bits = bits;
|
|
return idx;
|
|
}
|
|
fn should_act(&self) -> bool {
|
|
self.curr_depth < self.max_depth && self.visited < self.max_visits
|
|
}
|
|
fn increase_visited(&mut self) { self.visited += 1; }
|
|
fn increase_skipped(&mut self) { self.skipped += 1; }
|
|
fn increase_depth(&mut self) { self.curr_depth += 1; }
|
|
fn decrease_depth(&mut self) { self.curr_depth -= 1; }
|
|
}
|
|
|
|
impl<T:Named+Marked<u32>> PrePost<T> for ContextData {
|
|
fn pre(&mut self, t: &T) {
|
|
for _ in 0..self.curr_depth {
|
|
if PRINT { print!(" "); }
|
|
}
|
|
if PRINT { println!("prev {}", t.name()); }
|
|
if t.mark() == self.curr_mark {
|
|
for _ in 0..self.curr_depth {
|
|
if PRINT { print!(" "); }
|
|
}
|
|
if PRINT { println!("(probably previously marked)"); }
|
|
self.saw_prev_marked = true;
|
|
}
|
|
t.set_mark(self.curr_mark);
|
|
}
|
|
fn post(&mut self, t: &T) {
|
|
for _ in 0..self.curr_depth {
|
|
if PRINT { print!(" "); }
|
|
}
|
|
if PRINT { println!("post {}", t.name()); }
|
|
}
|
|
fn hit_limit(&mut self, t: &T) {
|
|
for _ in 0..self.curr_depth {
|
|
if PRINT { print!(" "); }
|
|
}
|
|
if PRINT { println!("LIMIT {}", t.name()); }
|
|
}
|
|
}
|