rust/compiler/rustc_parse/src/parser/mod.rs
Esteban Küber e5f83bcd04 Detect blocks that could be struct expr bodies
This approach lives exclusively in the parser, so struct expr bodies
that are syntactically correct on their own but are otherwise incorrect
will still emit confusing errors, like in the following case:

```rust
fn foo() -> Foo {
    bar: Vec::new()
}
```

```
error[E0425]: cannot find value `bar` in this scope
 --> src/file.rs:5:5
  |
5 |     bar: Vec::new()
  |     ^^^ expecting a type here because of type ascription

error[E0214]: parenthesized type parameters may only be used with a `Fn` trait
 --> src/file.rs:5:15
  |
5 |     bar: Vec::new()
  |               ^^^^^ only `Fn` traits may use parentheses

error[E0107]: wrong number of type arguments: expected 1, found 0
 --> src/file.rs:5:10
  |
5 |     bar: Vec::new()
  |          ^^^^^^^^^^ expected 1 type argument
  ```

If that field had a trailing comma, that would be a parse error and it
would trigger the new, more targetted, error:

```
error: struct literal body without path
 --> file.rs:4:17
  |
4 |   fn foo() -> Foo {
  |  _________________^
5 | |     bar: Vec::new(),
6 | | }
  | |_^
  |
help: you might have forgotten to add the struct literal inside the block
  |
4 | fn foo() -> Foo { Path {
5 |     bar: Vec::new(),
6 | } }
  |
```

Partially address last part of #34255.
2020-10-07 13:40:52 -07:00

1301 lines
48 KiB
Rust

pub mod attr;
mod diagnostics;
mod expr;
mod generics;
mod item;
mod nonterminal;
mod pat;
mod path;
mod stmt;
mod ty;
use crate::lexer::UnmatchedBrace;
pub use diagnostics::AttemptLocalParseRecovery;
use diagnostics::Error;
pub use path::PathStyle;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, DelimToken, Token, TokenKind};
use rustc_ast::tokenstream::{self, DelimSpan, TokenStream, TokenTree, TreeAndSpacing};
use rustc_ast::DUMMY_NODE_ID;
use rustc_ast::{self as ast, AttrStyle, AttrVec, Const, CrateSugar, Extern, Unsafe};
use rustc_ast::{Async, MacArgs, MacDelimiter, Mutability, StrLit, Visibility, VisibilityKind};
use rustc_ast_pretty::pprust;
use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, FatalError, PResult};
use rustc_session::parse::ParseSess;
use rustc_span::source_map::{Span, DUMMY_SP};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use tracing::debug;
use std::{cmp, mem, slice};
bitflags::bitflags! {
struct Restrictions: u8 {
const STMT_EXPR = 1 << 0;
const NO_STRUCT_LITERAL = 1 << 1;
}
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum SemiColonMode {
Break,
Ignore,
Comma,
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum BlockMode {
Break,
Ignore,
}
/// Like `maybe_whole_expr`, but for things other than expressions.
#[macro_export]
macro_rules! maybe_whole {
($p:expr, $constructor:ident, |$x:ident| $e:expr) => {
if let token::Interpolated(nt) = &$p.token.kind {
if let token::$constructor(x) = &**nt {
let $x = x.clone();
$p.bump();
return Ok($e);
}
}
};
}
/// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`.
#[macro_export]
macro_rules! maybe_recover_from_interpolated_ty_qpath {
($self: expr, $allow_qpath_recovery: expr) => {
if $allow_qpath_recovery && $self.look_ahead(1, |t| t == &token::ModSep) {
if let token::Interpolated(nt) = &$self.token.kind {
if let token::NtTy(ty) = &**nt {
let ty = ty.clone();
$self.bump();
return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_token.span, ty);
}
}
}
};
}
#[derive(Clone)]
pub struct Parser<'a> {
pub sess: &'a ParseSess,
/// The current token.
pub token: Token,
/// The previous token.
pub prev_token: Token,
restrictions: Restrictions,
expected_tokens: Vec<TokenType>,
token_cursor: TokenCursor,
desugar_doc_comments: bool,
/// This field is used to keep track of how many left angle brackets we have seen. This is
/// required in order to detect extra leading left angle brackets (`<` characters) and error
/// appropriately.
///
/// See the comments in the `parse_path_segment` function for more details.
unmatched_angle_bracket_count: u32,
max_angle_bracket_count: u32,
/// A list of all unclosed delimiters found by the lexer. If an entry is used for error recovery
/// it gets removed from here. Every entry left at the end gets emitted as an independent
/// error.
pub(super) unclosed_delims: Vec<UnmatchedBrace>,
last_unexpected_token_span: Option<Span>,
/// Span pointing at the `:` for the last type ascription the parser has seen, and whether it
/// looked like it could have been a mistyped path or literal `Option:Some(42)`).
pub last_type_ascription: Option<(Span, bool /* likely path typo */)>,
/// If present, this `Parser` is not parsing Rust code but rather a macro call.
subparser_name: Option<&'static str>,
}
impl<'a> Drop for Parser<'a> {
fn drop(&mut self) {
emit_unclosed_delims(&mut self.unclosed_delims, &self.sess);
}
}
#[derive(Clone)]
struct TokenCursor {
frame: TokenCursorFrame,
stack: Vec<TokenCursorFrame>,
cur_token: Option<TreeAndSpacing>,
collecting: Option<Collecting>,
}
#[derive(Clone)]
struct TokenCursorFrame {
delim: token::DelimToken,
span: DelimSpan,
open_delim: bool,
tree_cursor: tokenstream::Cursor,
close_delim: bool,
}
/// Used to track additional state needed by `collect_tokens`
#[derive(Clone, Debug)]
struct Collecting {
/// Holds the current tokens captured during the most
/// recent call to `collect_tokens`
buf: Vec<TreeAndSpacing>,
/// The depth of the `TokenCursor` stack at the time
/// collection was started. When we encounter a `TokenTree::Delimited`,
/// we want to record the `TokenTree::Delimited` itself,
/// but *not* any of the inner tokens while we are inside
/// the new frame (this would cause us to record duplicate tokens).
///
/// This `depth` fields tracks stack depth we are recording tokens.
/// Only tokens encountered at this depth will be recorded. See
/// `TokenCursor::next` for more details.
depth: usize,
}
impl TokenCursorFrame {
fn new(span: DelimSpan, delim: DelimToken, tts: &TokenStream) -> Self {
TokenCursorFrame {
delim,
span,
open_delim: delim == token::NoDelim,
tree_cursor: tts.clone().into_trees(),
close_delim: delim == token::NoDelim,
}
}
}
impl TokenCursor {
fn next(&mut self) -> Token {
loop {
let tree = if !self.frame.open_delim {
self.frame.open_delim = true;
TokenTree::open_tt(self.frame.span, self.frame.delim).into()
} else if let Some(tree) = self.frame.tree_cursor.next_with_spacing() {
tree
} else if !self.frame.close_delim {
self.frame.close_delim = true;
TokenTree::close_tt(self.frame.span, self.frame.delim).into()
} else if let Some(frame) = self.stack.pop() {
self.frame = frame;
continue;
} else {
return Token::new(token::Eof, DUMMY_SP);
};
// Don't set an open delimiter as our current token - we want
// to leave it as the full `TokenTree::Delimited` from the previous
// iteration of this loop
if !matches!(tree.0, TokenTree::Token(Token { kind: TokenKind::OpenDelim(_), .. })) {
self.cur_token = Some(tree.clone());
}
if let Some(collecting) = &mut self.collecting {
if collecting.depth == self.stack.len() {
debug!(
"TokenCursor::next(): collected {:?} at depth {:?}",
tree,
self.stack.len()
);
collecting.buf.push(tree.clone())
}
}
match tree.0 {
TokenTree::Token(token) => return token,
TokenTree::Delimited(sp, delim, tts) => {
let frame = TokenCursorFrame::new(sp, delim, &tts);
self.stack.push(mem::replace(&mut self.frame, frame));
}
}
}
}
fn next_desugared(&mut self) -> Token {
let (data, attr_style, sp) = match self.next() {
Token { kind: token::DocComment(_, attr_style, data), span } => {
(data, attr_style, span)
}
tok => return tok,
};
// Searches for the occurrences of `"#*` and returns the minimum number of `#`s
// required to wrap the text.
let mut num_of_hashes = 0;
let mut count = 0;
for ch in data.as_str().chars() {
count = match ch {
'"' => 1,
'#' if count > 0 => count + 1,
_ => 0,
};
num_of_hashes = cmp::max(num_of_hashes, count);
}
let delim_span = DelimSpan::from_single(sp);
let body = TokenTree::Delimited(
delim_span,
token::Bracket,
[
TokenTree::token(token::Ident(sym::doc, false), sp),
TokenTree::token(token::Eq, sp),
TokenTree::token(TokenKind::lit(token::StrRaw(num_of_hashes), data, None), sp),
]
.iter()
.cloned()
.collect::<TokenStream>(),
);
self.stack.push(mem::replace(
&mut self.frame,
TokenCursorFrame::new(
delim_span,
token::NoDelim,
&if attr_style == AttrStyle::Inner {
[TokenTree::token(token::Pound, sp), TokenTree::token(token::Not, sp), body]
.iter()
.cloned()
.collect::<TokenStream>()
} else {
[TokenTree::token(token::Pound, sp), body]
.iter()
.cloned()
.collect::<TokenStream>()
},
),
));
self.next()
}
}
#[derive(Clone, PartialEq)]
enum TokenType {
Token(TokenKind),
Keyword(Symbol),
Operator,
Lifetime,
Ident,
Path,
Type,
Const,
}
impl TokenType {
fn to_string(&self) -> String {
match *self {
TokenType::Token(ref t) => format!("`{}`", pprust::token_kind_to_string(t)),
TokenType::Keyword(kw) => format!("`{}`", kw),
TokenType::Operator => "an operator".to_string(),
TokenType::Lifetime => "lifetime".to_string(),
TokenType::Ident => "identifier".to_string(),
TokenType::Path => "path".to_string(),
TokenType::Type => "type".to_string(),
TokenType::Const => "const".to_string(),
}
}
}
#[derive(Copy, Clone, Debug)]
enum TokenExpectType {
Expect,
NoExpect,
}
/// A sequence separator.
struct SeqSep {
/// The separator token.
sep: Option<TokenKind>,
/// `true` if a trailing separator is allowed.
trailing_sep_allowed: bool,
}
impl SeqSep {
fn trailing_allowed(t: TokenKind) -> SeqSep {
SeqSep { sep: Some(t), trailing_sep_allowed: true }
}
fn none() -> SeqSep {
SeqSep { sep: None, trailing_sep_allowed: false }
}
}
pub enum FollowedByType {
Yes,
No,
}
fn token_descr_opt(token: &Token) -> Option<&'static str> {
Some(match token.kind {
_ if token.is_special_ident() => "reserved identifier",
_ if token.is_used_keyword() => "keyword",
_ if token.is_unused_keyword() => "reserved keyword",
token::DocComment(..) => "doc comment",
_ => return None,
})
}
pub(super) fn token_descr(token: &Token) -> String {
let token_str = pprust::token_to_string(token);
match token_descr_opt(token) {
Some(prefix) => format!("{} `{}`", prefix, token_str),
_ => format!("`{}`", token_str),
}
}
impl<'a> Parser<'a> {
pub fn new(
sess: &'a ParseSess,
tokens: TokenStream,
desugar_doc_comments: bool,
subparser_name: Option<&'static str>,
) -> Self {
let mut parser = Parser {
sess,
token: Token::dummy(),
prev_token: Token::dummy(),
restrictions: Restrictions::empty(),
expected_tokens: Vec::new(),
token_cursor: TokenCursor {
frame: TokenCursorFrame::new(DelimSpan::dummy(), token::NoDelim, &tokens),
stack: Vec::new(),
cur_token: None,
collecting: None,
},
desugar_doc_comments,
unmatched_angle_bracket_count: 0,
max_angle_bracket_count: 0,
unclosed_delims: Vec::new(),
last_unexpected_token_span: None,
last_type_ascription: None,
subparser_name,
};
// Make parser point to the first token.
parser.bump();
parser
}
fn next_tok(&mut self, fallback_span: Span) -> Token {
let mut next = if self.desugar_doc_comments {
self.token_cursor.next_desugared()
} else {
self.token_cursor.next()
};
if next.span.is_dummy() {
// Tweak the location for better diagnostics, but keep syntactic context intact.
next.span = fallback_span.with_ctxt(next.span.ctxt());
}
next
}
pub fn unexpected<T>(&mut self) -> PResult<'a, T> {
match self.expect_one_of(&[], &[]) {
Err(e) => Err(e),
// We can get `Ok(true)` from `recover_closing_delimiter`
// which is called in `expected_one_of_not_found`.
Ok(_) => FatalError.raise(),
}
}
/// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
pub fn expect(&mut self, t: &TokenKind) -> PResult<'a, bool /* recovered */> {
if self.expected_tokens.is_empty() {
if self.token == *t {
self.bump();
Ok(false)
} else {
self.unexpected_try_recover(t)
}
} else {
self.expect_one_of(slice::from_ref(t), &[])
}
}
/// Expect next token to be edible or inedible token. If edible,
/// then consume it; if inedible, then return without consuming
/// anything. Signal a fatal error if next token is unexpected.
pub fn expect_one_of(
&mut self,
edible: &[TokenKind],
inedible: &[TokenKind],
) -> PResult<'a, bool /* recovered */> {
if edible.contains(&self.token.kind) {
self.bump();
Ok(false)
} else if inedible.contains(&self.token.kind) {
// leave it in the input
Ok(false)
} else if self.last_unexpected_token_span == Some(self.token.span) {
FatalError.raise();
} else {
self.expected_one_of_not_found(edible, inedible)
}
}
// Public for rustfmt usage.
pub fn parse_ident(&mut self) -> PResult<'a, Ident> {
self.parse_ident_common(true)
}
fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, Ident> {
match self.token.ident() {
Some((ident, is_raw)) => {
if !is_raw && ident.is_reserved() {
let mut err = self.expected_ident_found();
if recover {
err.emit();
} else {
return Err(err);
}
}
self.bump();
Ok(ident)
}
_ => Err(match self.prev_token.kind {
TokenKind::DocComment(..) => {
self.span_fatal_err(self.prev_token.span, Error::UselessDocComment)
}
_ => self.expected_ident_found(),
}),
}
}
/// Checks if the next token is `tok`, and returns `true` if so.
///
/// This method will automatically add `tok` to `expected_tokens` if `tok` is not
/// encountered.
fn check(&mut self, tok: &TokenKind) -> bool {
let is_present = self.token == *tok;
if !is_present {
self.expected_tokens.push(TokenType::Token(tok.clone()));
}
is_present
}
/// Consumes a token 'tok' if it exists. Returns whether the given token was present.
pub fn eat(&mut self, tok: &TokenKind) -> bool {
let is_present = self.check(tok);
if is_present {
self.bump()
}
is_present
}
/// If the next token is the given keyword, returns `true` without eating it.
/// An expectation is also added for diagnostics purposes.
fn check_keyword(&mut self, kw: Symbol) -> bool {
self.expected_tokens.push(TokenType::Keyword(kw));
self.token.is_keyword(kw)
}
/// If the next token is the given keyword, eats it and returns `true`.
/// Otherwise, returns `false`. An expectation is also added for diagnostics purposes.
// Public for rustfmt usage.
pub fn eat_keyword(&mut self, kw: Symbol) -> bool {
if self.check_keyword(kw) {
self.bump();
true
} else {
false
}
}
fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool {
if self.token.is_keyword(kw) {
self.bump();
true
} else {
false
}
}
/// If the given word is not a keyword, signals an error.
/// If the next token is not the given word, signals an error.
/// Otherwise, eats it.
fn expect_keyword(&mut self, kw: Symbol) -> PResult<'a, ()> {
if !self.eat_keyword(kw) { self.unexpected() } else { Ok(()) }
}
/// Is the given keyword `kw` followed by a non-reserved identifier?
fn is_kw_followed_by_ident(&self, kw: Symbol) -> bool {
self.token.is_keyword(kw) && self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident())
}
fn check_or_expected(&mut self, ok: bool, typ: TokenType) -> bool {
if ok {
true
} else {
self.expected_tokens.push(typ);
false
}
}
fn check_ident(&mut self) -> bool {
self.check_or_expected(self.token.is_ident(), TokenType::Ident)
}
fn check_path(&mut self) -> bool {
self.check_or_expected(self.token.is_path_start(), TokenType::Path)
}
fn check_type(&mut self) -> bool {
self.check_or_expected(self.token.can_begin_type(), TokenType::Type)
}
fn check_const_arg(&mut self) -> bool {
self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const)
}
/// Checks to see if the next token is either `+` or `+=`.
/// Otherwise returns `false`.
fn check_plus(&mut self) -> bool {
self.check_or_expected(
self.token.is_like_plus(),
TokenType::Token(token::BinOp(token::Plus)),
)
}
/// Eats the expected token if it's present possibly breaking
/// compound tokens like multi-character operators in process.
/// Returns `true` if the token was eaten.
fn break_and_eat(&mut self, expected: TokenKind) -> bool {
if self.token.kind == expected {
self.bump();
return true;
}
match self.token.kind.break_two_token_op() {
Some((first, second)) if first == expected => {
let first_span = self.sess.source_map().start_point(self.token.span);
let second_span = self.token.span.with_lo(first_span.hi());
self.token = Token::new(first, first_span);
self.bump_with(Token::new(second, second_span));
true
}
_ => {
self.expected_tokens.push(TokenType::Token(expected));
false
}
}
}
/// Eats `+` possibly breaking tokens like `+=` in process.
fn eat_plus(&mut self) -> bool {
self.break_and_eat(token::BinOp(token::Plus))
}
/// Eats `&` possibly breaking tokens like `&&` in process.
/// Signals an error if `&` is not eaten.
fn expect_and(&mut self) -> PResult<'a, ()> {
if self.break_and_eat(token::BinOp(token::And)) { Ok(()) } else { self.unexpected() }
}
/// Eats `|` possibly breaking tokens like `||` in process.
/// Signals an error if `|` was not eaten.
fn expect_or(&mut self) -> PResult<'a, ()> {
if self.break_and_eat(token::BinOp(token::Or)) { Ok(()) } else { self.unexpected() }
}
/// Eats `<` possibly breaking tokens like `<<` in process.
fn eat_lt(&mut self) -> bool {
let ate = self.break_and_eat(token::Lt);
if ate {
// See doc comment for `unmatched_angle_bracket_count`.
self.unmatched_angle_bracket_count += 1;
self.max_angle_bracket_count += 1;
debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
}
ate
}
/// Eats `<` possibly breaking tokens like `<<` in process.
/// Signals an error if `<` was not eaten.
fn expect_lt(&mut self) -> PResult<'a, ()> {
if self.eat_lt() { Ok(()) } else { self.unexpected() }
}
/// Eats `>` possibly breaking tokens like `>>` in process.
/// Signals an error if `>` was not eaten.
fn expect_gt(&mut self) -> PResult<'a, ()> {
if self.break_and_eat(token::Gt) {
// See doc comment for `unmatched_angle_bracket_count`.
if self.unmatched_angle_bracket_count > 0 {
self.unmatched_angle_bracket_count -= 1;
debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
}
Ok(())
} else {
self.unexpected()
}
}
fn expect_any_with_type(&mut self, kets: &[&TokenKind], expect: TokenExpectType) -> bool {
kets.iter().any(|k| match expect {
TokenExpectType::Expect => self.check(k),
TokenExpectType::NoExpect => self.token == **k,
})
}
fn parse_seq_to_before_tokens<T>(
&mut self,
kets: &[&TokenKind],
sep: SeqSep,
expect: TokenExpectType,
mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool /* trailing */, bool /* recovered */)> {
let mut first = true;
let mut recovered = false;
let mut trailing = false;
let mut v = vec![];
while !self.expect_any_with_type(kets, expect) {
if let token::CloseDelim(..) | token::Eof = self.token.kind {
break;
}
if let Some(ref t) = sep.sep {
if first {
first = false;
} else {
match self.expect(t) {
Ok(false) => {}
Ok(true) => {
recovered = true;
break;
}
Err(mut expect_err) => {
let sp = self.prev_token.span.shrink_to_hi();
let token_str = pprust::token_kind_to_string(t);
// Attempt to keep parsing if it was a similar separator.
if let Some(ref tokens) = t.similar_tokens() {
if tokens.contains(&self.token.kind) {
self.bump();
}
}
// If this was a missing `@` in a binding pattern
// bail with a suggestion
// https://github.com/rust-lang/rust/issues/72373
if self.prev_token.is_ident() && self.token.kind == token::DotDot {
let msg = format!(
"if you meant to bind the contents of \
the rest of the array pattern into `{}`, use `@`",
pprust::token_to_string(&self.prev_token)
);
expect_err
.span_suggestion_verbose(
self.prev_token.span.shrink_to_hi().until(self.token.span),
&msg,
" @ ".to_string(),
Applicability::MaybeIncorrect,
)
.emit();
break;
}
// Attempt to keep parsing if it was an omitted separator.
match f(self) {
Ok(t) => {
// Parsed successfully, therefore most probably the code only
// misses a separator.
let mut exp_span = self.sess.source_map().next_point(sp);
if self.sess.source_map().is_multiline(exp_span) {
exp_span = sp;
}
expect_err
.span_suggestion_short(
exp_span,
&format!("missing `{}`", token_str),
token_str,
Applicability::MaybeIncorrect,
)
.emit();
v.push(t);
continue;
}
Err(mut e) => {
// Parsing failed, therefore it must be something more serious
// than just a missing separator.
expect_err.emit();
e.cancel();
break;
}
}
}
}
}
}
if sep.trailing_sep_allowed && self.expect_any_with_type(kets, expect) {
trailing = true;
break;
}
let t = f(self)?;
v.push(t);
}
Ok((v, trailing, recovered))
}
/// Parses a sequence, not including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
fn parse_seq_to_before_end<T>(
&mut self,
ket: &TokenKind,
sep: SeqSep,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool, bool)> {
self.parse_seq_to_before_tokens(&[ket], sep, TokenExpectType::Expect, f)
}
/// Parses a sequence, including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
fn parse_seq_to_end<T>(
&mut self,
ket: &TokenKind,
sep: SeqSep,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool /* trailing */)> {
let (val, trailing, recovered) = self.parse_seq_to_before_end(ket, sep, f)?;
if !recovered {
self.eat(ket);
}
Ok((val, trailing))
}
/// Parses a sequence, including the closing delimiter. The function
/// `f` must consume tokens until reaching the next separator or
/// closing bracket.
fn parse_unspanned_seq<T>(
&mut self,
bra: &TokenKind,
ket: &TokenKind,
sep: SeqSep,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool)> {
self.expect(bra)?;
self.parse_seq_to_end(ket, sep, f)
}
fn parse_delim_comma_seq<T>(
&mut self,
delim: DelimToken,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool)> {
self.parse_unspanned_seq(
&token::OpenDelim(delim),
&token::CloseDelim(delim),
SeqSep::trailing_allowed(token::Comma),
f,
)
}
fn parse_paren_comma_seq<T>(
&mut self,
f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
) -> PResult<'a, (Vec<T>, bool)> {
self.parse_delim_comma_seq(token::Paren, f)
}
/// Advance the parser by one token using provided token as the next one.
fn bump_with(&mut self, next_token: Token) {
// Bumping after EOF is a bad sign, usually an infinite loop.
if self.prev_token.kind == TokenKind::Eof {
let msg = "attempted to bump the parser past EOF (may be stuck in a loop)";
self.span_bug(self.token.span, msg);
}
// Update the current and previous tokens.
self.prev_token = mem::replace(&mut self.token, next_token);
// Diagnostics.
self.expected_tokens.clear();
}
/// Advance the parser by one token.
pub fn bump(&mut self) {
let next_token = self.next_tok(self.token.span);
self.bump_with(next_token);
}
/// Look-ahead `dist` tokens of `self.token` and get access to that token there.
/// When `dist == 0` then the current token is looked at.
pub fn look_ahead<R>(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R {
if dist == 0 {
return looker(&self.token);
}
let frame = &self.token_cursor.frame;
looker(&match frame.tree_cursor.look_ahead(dist - 1) {
Some(tree) => match tree {
TokenTree::Token(token) => token,
TokenTree::Delimited(dspan, delim, _) => {
Token::new(token::OpenDelim(delim), dspan.open)
}
},
None => Token::new(token::CloseDelim(frame.delim), frame.span.close),
})
}
/// Returns whether any of the given keywords are `dist` tokens ahead of the current one.
fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool {
self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
}
/// Parses asyncness: `async` or nothing.
fn parse_asyncness(&mut self) -> Async {
if self.eat_keyword(kw::Async) {
let span = self.prev_token.uninterpolated_span();
Async::Yes { span, closure_id: DUMMY_NODE_ID, return_impl_trait_id: DUMMY_NODE_ID }
} else {
Async::No
}
}
/// Parses unsafety: `unsafe` or nothing.
fn parse_unsafety(&mut self) -> Unsafe {
if self.eat_keyword(kw::Unsafe) {
Unsafe::Yes(self.prev_token.uninterpolated_span())
} else {
Unsafe::No
}
}
/// Parses constness: `const` or nothing.
fn parse_constness(&mut self) -> Const {
if self.eat_keyword(kw::Const) {
Const::Yes(self.prev_token.uninterpolated_span())
} else {
Const::No
}
}
/// Parses mutability (`mut` or nothing).
fn parse_mutability(&mut self) -> Mutability {
if self.eat_keyword(kw::Mut) { Mutability::Mut } else { Mutability::Not }
}
/// Possibly parses mutability (`const` or `mut`).
fn parse_const_or_mut(&mut self) -> Option<Mutability> {
if self.eat_keyword(kw::Mut) {
Some(Mutability::Mut)
} else if self.eat_keyword(kw::Const) {
Some(Mutability::Not)
} else {
None
}
}
fn parse_field_name(&mut self) -> PResult<'a, Ident> {
if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind
{
self.expect_no_suffix(self.token.span, "a tuple index", suffix);
self.bump();
Ok(Ident::new(symbol, self.prev_token.span))
} else {
self.parse_ident_common(false)
}
}
fn parse_mac_args(&mut self) -> PResult<'a, P<MacArgs>> {
self.parse_mac_args_common(true).map(P)
}
fn parse_attr_args(&mut self) -> PResult<'a, MacArgs> {
self.parse_mac_args_common(false)
}
fn parse_mac_args_common(&mut self, delimited_only: bool) -> PResult<'a, MacArgs> {
Ok(
if self.check(&token::OpenDelim(DelimToken::Paren))
|| self.check(&token::OpenDelim(DelimToken::Bracket))
|| self.check(&token::OpenDelim(DelimToken::Brace))
{
match self.parse_token_tree() {
TokenTree::Delimited(dspan, delim, tokens) =>
// We've confirmed above that there is a delimiter so unwrapping is OK.
{
MacArgs::Delimited(dspan, MacDelimiter::from_token(delim).unwrap(), tokens)
}
_ => unreachable!(),
}
} else if !delimited_only {
if self.eat(&token::Eq) {
let eq_span = self.prev_token.span;
let mut is_interpolated_expr = false;
if let token::Interpolated(nt) = &self.token.kind {
if let token::NtExpr(..) = **nt {
is_interpolated_expr = true;
}
}
let token_tree = if is_interpolated_expr {
// We need to accept arbitrary interpolated expressions to continue
// supporting things like `doc = $expr` that work on stable.
// Non-literal interpolated expressions are rejected after expansion.
self.parse_token_tree()
} else {
self.parse_unsuffixed_lit()?.token_tree()
};
MacArgs::Eq(eq_span, token_tree.into())
} else {
MacArgs::Empty
}
} else {
return self.unexpected();
},
)
}
fn parse_or_use_outer_attributes(
&mut self,
already_parsed_attrs: Option<AttrVec>,
) -> PResult<'a, AttrVec> {
if let Some(attrs) = already_parsed_attrs {
Ok(attrs)
} else {
self.parse_outer_attributes().map(|a| a.into())
}
}
/// Parses a single token tree from the input.
pub(crate) fn parse_token_tree(&mut self) -> TokenTree {
match self.token.kind {
token::OpenDelim(..) => {
let frame = mem::replace(
&mut self.token_cursor.frame,
self.token_cursor.stack.pop().unwrap(),
);
self.token = Token::new(TokenKind::CloseDelim(frame.delim), frame.span.close);
self.bump();
TokenTree::Delimited(frame.span, frame.delim, frame.tree_cursor.stream)
}
token::CloseDelim(_) | token::Eof => unreachable!(),
_ => {
self.bump();
TokenTree::Token(self.prev_token.clone())
}
}
}
/// Parses a stream of tokens into a list of `TokenTree`s, up to EOF.
pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec<TokenTree>> {
let mut tts = Vec::new();
while self.token != token::Eof {
tts.push(self.parse_token_tree());
}
Ok(tts)
}
pub fn parse_tokens(&mut self) -> TokenStream {
let mut result = Vec::new();
loop {
match self.token.kind {
token::Eof | token::CloseDelim(..) => break,
_ => result.push(self.parse_token_tree().into()),
}
}
TokenStream::new(result)
}
/// Evaluates the closure with restrictions in place.
///
/// Afters the closure is evaluated, restrictions are reset.
fn with_res<T>(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T {
let old = self.restrictions;
self.restrictions = res;
let res = f(self);
self.restrictions = old;
res
}
fn is_crate_vis(&self) -> bool {
self.token.is_keyword(kw::Crate) && self.look_ahead(1, |t| t != &token::ModSep)
}
/// Parses `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `crate` for `pub(crate)`,
/// `pub(self)` for `pub(in self)` and `pub(super)` for `pub(in super)`.
/// If the following element can't be a tuple (i.e., it's a function definition), then
/// it's not a tuple struct field), and the contents within the parentheses isn't valid,
/// so emit a proper diagnostic.
// Public for rustfmt usage.
pub fn parse_visibility(&mut self, fbt: FollowedByType) -> PResult<'a, Visibility> {
maybe_whole!(self, NtVis, |x| x);
self.expected_tokens.push(TokenType::Keyword(kw::Crate));
if self.is_crate_vis() {
self.bump(); // `crate`
self.sess.gated_spans.gate(sym::crate_visibility_modifier, self.prev_token.span);
return Ok(Visibility {
span: self.prev_token.span,
kind: VisibilityKind::Crate(CrateSugar::JustCrate),
tokens: None,
});
}
if !self.eat_keyword(kw::Pub) {
// We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
// keyword to grab a span from for inherited visibility; an empty span at the
// beginning of the current token would seem to be the "Schelling span".
return Ok(Visibility {
span: self.token.span.shrink_to_lo(),
kind: VisibilityKind::Inherited,
tokens: None,
});
}
let lo = self.prev_token.span;
if self.check(&token::OpenDelim(token::Paren)) {
// We don't `self.bump()` the `(` yet because this might be a struct definition where
// `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
// Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
// by the following tokens.
if self.is_keyword_ahead(1, &[kw::Crate]) && self.look_ahead(2, |t| t != &token::ModSep)
// account for `pub(crate::foo)`
{
// Parse `pub(crate)`.
self.bump(); // `(`
self.bump(); // `crate`
self.expect(&token::CloseDelim(token::Paren))?; // `)`
let vis = VisibilityKind::Crate(CrateSugar::PubCrate);
return Ok(Visibility {
span: lo.to(self.prev_token.span),
kind: vis,
tokens: None,
});
} else if self.is_keyword_ahead(1, &[kw::In]) {
// Parse `pub(in path)`.
self.bump(); // `(`
self.bump(); // `in`
let path = self.parse_path(PathStyle::Mod)?; // `path`
self.expect(&token::CloseDelim(token::Paren))?; // `)`
let vis = VisibilityKind::Restricted { path: P(path), id: ast::DUMMY_NODE_ID };
return Ok(Visibility {
span: lo.to(self.prev_token.span),
kind: vis,
tokens: None,
});
} else if self.look_ahead(2, |t| t == &token::CloseDelim(token::Paren))
&& self.is_keyword_ahead(1, &[kw::Super, kw::SelfLower])
{
// Parse `pub(self)` or `pub(super)`.
self.bump(); // `(`
let path = self.parse_path(PathStyle::Mod)?; // `super`/`self`
self.expect(&token::CloseDelim(token::Paren))?; // `)`
let vis = VisibilityKind::Restricted { path: P(path), id: ast::DUMMY_NODE_ID };
return Ok(Visibility {
span: lo.to(self.prev_token.span),
kind: vis,
tokens: None,
});
} else if let FollowedByType::No = fbt {
// Provide this diagnostic if a type cannot follow;
// in particular, if this is not a tuple struct.
self.recover_incorrect_vis_restriction()?;
// Emit diagnostic, but continue with public visibility.
}
}
Ok(Visibility { span: lo, kind: VisibilityKind::Public, tokens: None })
}
/// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }`
fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> {
self.bump(); // `(`
let path = self.parse_path(PathStyle::Mod)?;
self.expect(&token::CloseDelim(token::Paren))?; // `)`
let msg = "incorrect visibility restriction";
let suggestion = r##"some possible visibility restrictions are:
`pub(crate)`: visible only on the current crate
`pub(super)`: visible only in the current module's parent
`pub(in path::to::module)`: visible only on the specified path"##;
let path_str = pprust::path_to_string(&path);
struct_span_err!(self.sess.span_diagnostic, path.span, E0704, "{}", msg)
.help(suggestion)
.span_suggestion(
path.span,
&format!("make this visible only to module `{}` with `in`", path_str),
format!("in {}", path_str),
Applicability::MachineApplicable,
)
.emit();
Ok(())
}
/// Parses `extern string_literal?`.
fn parse_extern(&mut self) -> PResult<'a, Extern> {
Ok(if self.eat_keyword(kw::Extern) {
Extern::from_abi(self.parse_abi())
} else {
Extern::None
})
}
/// Parses a string literal as an ABI spec.
fn parse_abi(&mut self) -> Option<StrLit> {
match self.parse_str_lit() {
Ok(str_lit) => Some(str_lit),
Err(Some(lit)) => match lit.kind {
ast::LitKind::Err(_) => None,
_ => {
self.struct_span_err(lit.span, "non-string ABI literal")
.span_suggestion(
lit.span,
"specify the ABI with a string literal",
"\"C\"".to_string(),
Applicability::MaybeIncorrect,
)
.emit();
None
}
},
Err(None) => None,
}
}
/// Records all tokens consumed by the provided callback,
/// including the current token. These tokens are collected
/// into a `TokenStream`, and returned along with the result
/// of the callback.
///
/// Note: If your callback consumes an opening delimiter
/// (including the case where you call `collect_tokens`
/// when the current token is an opening delimeter),
/// you must also consume the corresponding closing delimiter.
///
/// That is, you can consume
/// `something ([{ }])` or `([{}])`, but not `([{}]`
///
/// This restriction shouldn't be an issue in practice,
/// since this function is used to record the tokens for
/// a parsed AST item, which always has matching delimiters.
pub fn collect_tokens<R>(
&mut self,
f: impl FnOnce(&mut Self) -> PResult<'a, R>,
) -> PResult<'a, (R, TokenStream)> {
// Record all tokens we parse when parsing this item.
let tokens: Vec<TreeAndSpacing> = self.token_cursor.cur_token.clone().into_iter().collect();
debug!("collect_tokens: starting with {:?}", tokens);
// We need special handling for the case where `collect_tokens` is called
// on an opening delimeter (e.g. '('). At this point, we have already pushed
// a new frame - however, we want to record the original `TokenTree::Delimited`,
// for consistency with the case where we start recording one token earlier.
// See `TokenCursor::next` to see how `cur_token` is set up.
let prev_depth =
if matches!(self.token_cursor.cur_token, Some((TokenTree::Delimited(..), _))) {
if self.token_cursor.stack.is_empty() {
// There is nothing below us in the stack that
// the function could consume, so the only thing it can legally
// capture is the entire contents of the current frame.
return Ok((f(self)?, TokenStream::new(tokens)));
}
// We have already recorded the full `TokenTree::Delimited` when we created
// our `tokens` vector at the start of this function. We are now inside
// a new frame corresponding to the `TokenTree::Delimited` we already recoreded.
// We don't want to record any of the tokens inside this frame, since they
// will be duplicates of the tokens nested inside the `TokenTree::Delimited`.
// Therefore, we set our recording depth to the *previous* frame. This allows
// us to record a sequence like: `(foo).bar()`: the `(foo)` will be recored
// as our initial `cur_token`, while the `.bar()` will be recored after we
// pop the `(foo)` frame.
self.token_cursor.stack.len() - 1
} else {
self.token_cursor.stack.len()
};
let prev_collecting =
self.token_cursor.collecting.replace(Collecting { buf: tokens, depth: prev_depth });
let ret = f(self);
let mut collected_tokens = if let Some(collecting) = self.token_cursor.collecting.take() {
collecting.buf
} else {
let msg = "our vector went away?";
debug!("collect_tokens: {}", msg);
self.sess.span_diagnostic.delay_span_bug(self.token.span, &msg);
// This can happen due to a bad interaction of two unrelated recovery mechanisms
// with mismatched delimiters *and* recovery lookahead on the likely typo
// `pub ident(` (#62895, different but similar to the case above).
return Ok((ret?, TokenStream::default()));
};
debug!("collect_tokens: got raw tokens {:?}", collected_tokens);
// If we're not at EOF our current token wasn't actually consumed by
// `f`, but it'll still be in our list that we pulled out. In that case
// put it back.
let extra_token = if self.token != token::Eof { collected_tokens.pop() } else { None };
if let Some(mut collecting) = prev_collecting {
// If we were previously collecting at the same depth,
// then the previous call to `collect_tokens` needs to see
// the tokens we just recorded.
//
// If we were previously recording at an lower `depth`,
// then the previous `collect_tokens` call already recorded
// this entire frame in the form of a `TokenTree::Delimited`,
// so there is nothing else for us to do.
if collecting.depth == prev_depth {
collecting.buf.extend(collected_tokens.iter().cloned());
collecting.buf.extend(extra_token);
debug!("collect_tokens: updating previous buf to {:?}", collecting);
}
self.token_cursor.collecting = Some(collecting)
}
Ok((ret?, TokenStream::new(collected_tokens)))
}
/// `::{` or `::*`
fn is_import_coupler(&mut self) -> bool {
self.check(&token::ModSep)
&& self.look_ahead(1, |t| {
*t == token::OpenDelim(token::Brace) || *t == token::BinOp(token::Star)
})
}
pub fn clear_expected_tokens(&mut self) {
self.expected_tokens.clear();
}
}
crate fn make_unclosed_delims_error(
unmatched: UnmatchedBrace,
sess: &ParseSess,
) -> Option<DiagnosticBuilder<'_>> {
// `None` here means an `Eof` was found. We already emit those errors elsewhere, we add them to
// `unmatched_braces` only for error recovery in the `Parser`.
let found_delim = unmatched.found_delim?;
let mut err = sess.span_diagnostic.struct_span_err(
unmatched.found_span,
&format!(
"mismatched closing delimiter: `{}`",
pprust::token_kind_to_string(&token::CloseDelim(found_delim)),
),
);
err.span_label(unmatched.found_span, "mismatched closing delimiter");
if let Some(sp) = unmatched.candidate_span {
err.span_label(sp, "closing delimiter possibly meant for this");
}
if let Some(sp) = unmatched.unclosed_span {
err.span_label(sp, "unclosed delimiter");
}
Some(err)
}
pub fn emit_unclosed_delims(unclosed_delims: &mut Vec<UnmatchedBrace>, sess: &ParseSess) {
*sess.reached_eof.borrow_mut() |=
unclosed_delims.iter().any(|unmatched_delim| unmatched_delim.found_delim.is_none());
for unmatched in unclosed_delims.drain(..) {
if let Some(mut e) = make_unclosed_delims_error(unmatched, sess) {
e.emit();
}
}
}