rust/compiler/rustc_mir_transform/src/coverage/mod.rs
Nicholas Nethercote 9570023ce1 Only compute the crate hash when necessary.
The crate hash is needed:
- if debug assertions are enabled, or
- if incr. comp. is enabled, or
- if metadata is being generated, or
- if `-C instrumentation-coverage` is enabled.

This commit avoids computing the crate hash when these conditions are
all false, such as when doing a release build of a binary crate.

It uses `Option` to store the hashes when needed, rather than
computing them on demand, because some of them are needed in multiple
places and computing them on demand would make compilation slower.

The commit also removes `Owner::hash_without_bodies`. There is no
benefit to pre-computing that one, it can just be done in the normal
fashion.
2023-03-08 09:30:22 +11:00

582 lines
23 KiB
Rust

pub mod query;
mod counters;
mod debug;
mod graph;
mod spans;
#[cfg(test)]
mod tests;
use counters::CoverageCounters;
use graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph};
use spans::{CoverageSpan, CoverageSpans};
use crate::MirPass;
use rustc_data_structures::graph::WithNumNodes;
use rustc_data_structures::sync::Lrc;
use rustc_index::vec::IndexVec;
use rustc_middle::hir;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::coverage::*;
use rustc_middle::mir::dump_enabled;
use rustc_middle::mir::{
self, BasicBlock, BasicBlockData, Coverage, SourceInfo, Statement, StatementKind, Terminator,
TerminatorKind,
};
use rustc_middle::ty::TyCtxt;
use rustc_span::def_id::DefId;
use rustc_span::source_map::SourceMap;
use rustc_span::{CharPos, ExpnKind, Pos, SourceFile, Span, Symbol};
/// A simple error message wrapper for `coverage::Error`s.
#[derive(Debug)]
struct Error {
message: String,
}
impl Error {
pub fn from_string<T>(message: String) -> Result<T, Error> {
Err(Self { message })
}
}
/// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected
/// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen
/// to construct the coverage map.
pub struct InstrumentCoverage;
impl<'tcx> MirPass<'tcx> for InstrumentCoverage {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.instrument_coverage()
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
let mir_source = mir_body.source;
// If the InstrumentCoverage pass is called on promoted MIRs, skip them.
// See: https://github.com/rust-lang/rust/pull/73011#discussion_r438317601
if mir_source.promoted.is_some() {
trace!(
"InstrumentCoverage skipped for {:?} (already promoted for Miri evaluation)",
mir_source.def_id()
);
return;
}
let is_fn_like =
tcx.hir().get_by_def_id(mir_source.def_id().expect_local()).fn_kind().is_some();
// Only instrument functions, methods, and closures (not constants since they are evaluated
// at compile time by Miri).
// FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
// expressions get coverage spans, we will probably have to "carve out" space for const
// expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
// be tricky if const expressions have no corresponding statements in the enclosing MIR.
// Closures are carved out by their initial `Assign` statement.)
if !is_fn_like {
trace!("InstrumentCoverage skipped for {:?} (not an fn-like)", mir_source.def_id());
return;
}
match mir_body.basic_blocks[mir::START_BLOCK].terminator().kind {
TerminatorKind::Unreachable => {
trace!("InstrumentCoverage skipped for unreachable `START_BLOCK`");
return;
}
_ => {}
}
let codegen_fn_attrs = tcx.codegen_fn_attrs(mir_source.def_id());
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NO_COVERAGE) {
return;
}
trace!("InstrumentCoverage starting for {:?}", mir_source.def_id());
Instrumentor::new(&self.name(), tcx, mir_body).inject_counters();
trace!("InstrumentCoverage done for {:?}", mir_source.def_id());
}
}
struct Instrumentor<'a, 'tcx> {
pass_name: &'a str,
tcx: TyCtxt<'tcx>,
mir_body: &'a mut mir::Body<'tcx>,
source_file: Lrc<SourceFile>,
fn_sig_span: Span,
body_span: Span,
basic_coverage_blocks: CoverageGraph,
coverage_counters: CoverageCounters,
}
impl<'a, 'tcx> Instrumentor<'a, 'tcx> {
fn new(pass_name: &'a str, tcx: TyCtxt<'tcx>, mir_body: &'a mut mir::Body<'tcx>) -> Self {
let source_map = tcx.sess.source_map();
let def_id = mir_body.source.def_id();
let (some_fn_sig, hir_body) = fn_sig_and_body(tcx, def_id);
let body_span = get_body_span(tcx, hir_body, mir_body);
let source_file = source_map.lookup_source_file(body_span.lo());
let fn_sig_span = match some_fn_sig.filter(|fn_sig| {
fn_sig.span.eq_ctxt(body_span)
&& Lrc::ptr_eq(&source_file, &source_map.lookup_source_file(fn_sig.span.lo()))
}) {
Some(fn_sig) => fn_sig.span.with_hi(body_span.lo()),
None => body_span.shrink_to_lo(),
};
debug!(
"instrumenting {}: {:?}, fn sig span: {:?}, body span: {:?}",
if tcx.is_closure(def_id) { "closure" } else { "function" },
def_id,
fn_sig_span,
body_span
);
let function_source_hash = hash_mir_source(tcx, hir_body);
let basic_coverage_blocks = CoverageGraph::from_mir(mir_body);
Self {
pass_name,
tcx,
mir_body,
source_file,
fn_sig_span,
body_span,
basic_coverage_blocks,
coverage_counters: CoverageCounters::new(function_source_hash),
}
}
fn inject_counters(&'a mut self) {
let tcx = self.tcx;
let mir_source = self.mir_body.source;
let def_id = mir_source.def_id();
let fn_sig_span = self.fn_sig_span;
let body_span = self.body_span;
let mut graphviz_data = debug::GraphvizData::new();
let mut debug_used_expressions = debug::UsedExpressions::new();
let dump_mir = dump_enabled(tcx, self.pass_name, def_id);
let dump_graphviz = dump_mir && tcx.sess.opts.unstable_opts.dump_mir_graphviz;
let dump_spanview = dump_mir && tcx.sess.opts.unstable_opts.dump_mir_spanview.is_some();
if dump_graphviz {
graphviz_data.enable();
self.coverage_counters.enable_debug();
}
if dump_graphviz || level_enabled!(tracing::Level::DEBUG) {
debug_used_expressions.enable();
}
////////////////////////////////////////////////////
// Compute `CoverageSpan`s from the `CoverageGraph`.
let coverage_spans = CoverageSpans::generate_coverage_spans(
&self.mir_body,
fn_sig_span,
body_span,
&self.basic_coverage_blocks,
);
if dump_spanview {
debug::dump_coverage_spanview(
tcx,
self.mir_body,
&self.basic_coverage_blocks,
self.pass_name,
body_span,
&coverage_spans,
);
}
////////////////////////////////////////////////////
// Create an optimized mix of `Counter`s and `Expression`s for the `CoverageGraph`. Ensure
// every `CoverageSpan` has a `Counter` or `Expression` assigned to its `BasicCoverageBlock`
// and all `Expression` dependencies (operands) are also generated, for any other
// `BasicCoverageBlock`s not already associated with a `CoverageSpan`.
//
// Intermediate expressions (used to compute other `Expression` values), which have no
// direct associate to any `BasicCoverageBlock`, are returned in the method `Result`.
let intermediate_expressions_or_error = self
.coverage_counters
.make_bcb_counters(&mut self.basic_coverage_blocks, &coverage_spans);
let (result, intermediate_expressions) = match intermediate_expressions_or_error {
Ok(intermediate_expressions) => {
// If debugging, add any intermediate expressions (which are not associated with any
// BCB) to the `debug_used_expressions` map.
if debug_used_expressions.is_enabled() {
for intermediate_expression in &intermediate_expressions {
debug_used_expressions.add_expression_operands(intermediate_expression);
}
}
////////////////////////////////////////////////////
// Remove the counter or edge counter from of each `CoverageSpan`s associated
// `BasicCoverageBlock`, and inject a `Coverage` statement into the MIR.
//
// `Coverage` statements injected from `CoverageSpan`s will include the code regions
// (source code start and end positions) to be counted by the associated counter.
//
// These `CoverageSpan`-associated counters are removed from their associated
// `BasicCoverageBlock`s so that the only remaining counters in the `CoverageGraph`
// are indirect counters (to be injected next, without associated code regions).
self.inject_coverage_span_counters(
coverage_spans,
&mut graphviz_data,
&mut debug_used_expressions,
);
////////////////////////////////////////////////////
// For any remaining `BasicCoverageBlock` counters (that were not associated with
// any `CoverageSpan`), inject `Coverage` statements (_without_ code region `Span`s)
// to ensure `BasicCoverageBlock` counters that other `Expression`s may depend on
// are in fact counted, even though they don't directly contribute to counting
// their own independent code region's coverage.
self.inject_indirect_counters(&mut graphviz_data, &mut debug_used_expressions);
// Intermediate expressions will be injected as the final step, after generating
// debug output, if any.
////////////////////////////////////////////////////
(Ok(()), intermediate_expressions)
}
Err(e) => (Err(e), Vec::new()),
};
if graphviz_data.is_enabled() {
// Even if there was an error, a partial CoverageGraph can still generate a useful
// graphviz output.
debug::dump_coverage_graphviz(
tcx,
self.mir_body,
self.pass_name,
&self.basic_coverage_blocks,
&self.coverage_counters.debug_counters,
&graphviz_data,
&intermediate_expressions,
&debug_used_expressions,
);
}
if let Err(e) = result {
bug!("Error processing: {:?}: {:?}", self.mir_body.source.def_id(), e.message)
};
// Depending on current `debug_options()`, `alert_on_unused_expressions()` could panic, so
// this check is performed as late as possible, to allow other debug output (logs and dump
// files), which might be helpful in analyzing unused expressions, to still be generated.
debug_used_expressions.alert_on_unused_expressions(&self.coverage_counters.debug_counters);
////////////////////////////////////////////////////
// Finally, inject the intermediate expressions collected along the way.
for intermediate_expression in intermediate_expressions {
inject_intermediate_expression(self.mir_body, intermediate_expression);
}
}
/// Inject a counter for each `CoverageSpan`. There can be multiple `CoverageSpan`s for a given
/// BCB, but only one actual counter needs to be incremented per BCB. `bb_counters` maps each
/// `bcb` to its `Counter`, when injected. Subsequent `CoverageSpan`s for a BCB that already has
/// a `Counter` will inject an `Expression` instead, and compute its value by adding `ZERO` to
/// the BCB `Counter` value.
///
/// If debugging, add every BCB `Expression` associated with a `CoverageSpan`s to the
/// `used_expression_operands` map.
fn inject_coverage_span_counters(
&mut self,
coverage_spans: Vec<CoverageSpan>,
graphviz_data: &mut debug::GraphvizData,
debug_used_expressions: &mut debug::UsedExpressions,
) {
let tcx = self.tcx;
let source_map = tcx.sess.source_map();
let body_span = self.body_span;
let file_name = Symbol::intern(&self.source_file.name.prefer_remapped().to_string_lossy());
let mut bcb_counters = IndexVec::from_elem_n(None, self.basic_coverage_blocks.num_nodes());
for covspan in coverage_spans {
let bcb = covspan.bcb;
let span = covspan.span;
let counter_kind = if let Some(&counter_operand) = bcb_counters[bcb].as_ref() {
self.coverage_counters.make_identity_counter(counter_operand)
} else if let Some(counter_kind) = self.bcb_data_mut(bcb).take_counter() {
bcb_counters[bcb] = Some(counter_kind.as_operand_id());
debug_used_expressions.add_expression_operands(&counter_kind);
counter_kind
} else {
bug!("Every BasicCoverageBlock should have a Counter or Expression");
};
graphviz_data.add_bcb_coverage_span_with_counter(bcb, &covspan, &counter_kind);
debug!(
"Calling make_code_region(file_name={}, source_file={:?}, span={}, body_span={})",
file_name,
self.source_file,
source_map.span_to_diagnostic_string(span),
source_map.span_to_diagnostic_string(body_span)
);
inject_statement(
self.mir_body,
counter_kind,
self.bcb_leader_bb(bcb),
Some(make_code_region(source_map, file_name, &self.source_file, span, body_span)),
);
}
}
/// `inject_coverage_span_counters()` looped through the `CoverageSpan`s and injected the
/// counter from the `CoverageSpan`s `BasicCoverageBlock`, removing it from the BCB in the
/// process (via `take_counter()`).
///
/// Any other counter associated with a `BasicCoverageBlock`, or its incoming edge, but not
/// associated with a `CoverageSpan`, should only exist if the counter is an `Expression`
/// dependency (one of the expression operands). Collect them, and inject the additional
/// counters into the MIR, without a reportable coverage span.
fn inject_indirect_counters(
&mut self,
graphviz_data: &mut debug::GraphvizData,
debug_used_expressions: &mut debug::UsedExpressions,
) {
let mut bcb_counters_without_direct_coverage_spans = Vec::new();
for (target_bcb, target_bcb_data) in self.basic_coverage_blocks.iter_enumerated_mut() {
if let Some(counter_kind) = target_bcb_data.take_counter() {
bcb_counters_without_direct_coverage_spans.push((None, target_bcb, counter_kind));
}
if let Some(edge_counters) = target_bcb_data.take_edge_counters() {
for (from_bcb, counter_kind) in edge_counters {
bcb_counters_without_direct_coverage_spans.push((
Some(from_bcb),
target_bcb,
counter_kind,
));
}
}
}
// If debug is enabled, validate that every BCB or edge counter not directly associated
// with a coverage span is at least indirectly associated (it is a dependency of a BCB
// counter that _is_ associated with a coverage span).
debug_used_expressions.validate(&bcb_counters_without_direct_coverage_spans);
for (edge_from_bcb, target_bcb, counter_kind) in bcb_counters_without_direct_coverage_spans
{
debug_used_expressions.add_unused_expression_if_not_found(
&counter_kind,
edge_from_bcb,
target_bcb,
);
match counter_kind {
CoverageKind::Counter { .. } => {
let inject_to_bb = if let Some(from_bcb) = edge_from_bcb {
// The MIR edge starts `from_bb` (the outgoing / last BasicBlock in
// `from_bcb`) and ends at `to_bb` (the incoming / first BasicBlock in the
// `target_bcb`; also called the `leader_bb`).
let from_bb = self.bcb_last_bb(from_bcb);
let to_bb = self.bcb_leader_bb(target_bcb);
let new_bb = inject_edge_counter_basic_block(self.mir_body, from_bb, to_bb);
graphviz_data.set_edge_counter(from_bcb, new_bb, &counter_kind);
debug!(
"Edge {:?} (last {:?}) -> {:?} (leader {:?}) requires a new MIR \
BasicBlock {:?}, for unclaimed edge counter {}",
edge_from_bcb,
from_bb,
target_bcb,
to_bb,
new_bb,
self.format_counter(&counter_kind),
);
new_bb
} else {
let target_bb = self.bcb_last_bb(target_bcb);
graphviz_data.add_bcb_dependency_counter(target_bcb, &counter_kind);
debug!(
"{:?} ({:?}) gets a new Coverage statement for unclaimed counter {}",
target_bcb,
target_bb,
self.format_counter(&counter_kind),
);
target_bb
};
inject_statement(self.mir_body, counter_kind, inject_to_bb, None);
}
CoverageKind::Expression { .. } => {
inject_intermediate_expression(self.mir_body, counter_kind)
}
_ => bug!("CoverageKind should be a counter"),
}
}
}
#[inline]
fn bcb_leader_bb(&self, bcb: BasicCoverageBlock) -> BasicBlock {
self.bcb_data(bcb).leader_bb()
}
#[inline]
fn bcb_last_bb(&self, bcb: BasicCoverageBlock) -> BasicBlock {
self.bcb_data(bcb).last_bb()
}
#[inline]
fn bcb_data(&self, bcb: BasicCoverageBlock) -> &BasicCoverageBlockData {
&self.basic_coverage_blocks[bcb]
}
#[inline]
fn bcb_data_mut(&mut self, bcb: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
&mut self.basic_coverage_blocks[bcb]
}
#[inline]
fn format_counter(&self, counter_kind: &CoverageKind) -> String {
self.coverage_counters.debug_counters.format_counter(counter_kind)
}
}
fn inject_edge_counter_basic_block(
mir_body: &mut mir::Body<'_>,
from_bb: BasicBlock,
to_bb: BasicBlock,
) -> BasicBlock {
let span = mir_body[from_bb].terminator().source_info.span.shrink_to_hi();
let new_bb = mir_body.basic_blocks_mut().push(BasicBlockData {
statements: vec![], // counter will be injected here
terminator: Some(Terminator {
source_info: SourceInfo::outermost(span),
kind: TerminatorKind::Goto { target: to_bb },
}),
is_cleanup: false,
});
let edge_ref = mir_body[from_bb]
.terminator_mut()
.successors_mut()
.find(|successor| **successor == to_bb)
.expect("from_bb should have a successor for to_bb");
*edge_ref = new_bb;
new_bb
}
fn inject_statement(
mir_body: &mut mir::Body<'_>,
counter_kind: CoverageKind,
bb: BasicBlock,
some_code_region: Option<CodeRegion>,
) {
debug!(
" injecting statement {:?} for {:?} at code region: {:?}",
counter_kind, bb, some_code_region
);
let data = &mut mir_body[bb];
let source_info = data.terminator().source_info;
let statement = Statement {
source_info,
kind: StatementKind::Coverage(Box::new(Coverage {
kind: counter_kind,
code_region: some_code_region,
})),
};
data.statements.insert(0, statement);
}
// Non-code expressions are injected into the coverage map, without generating executable code.
fn inject_intermediate_expression(mir_body: &mut mir::Body<'_>, expression: CoverageKind) {
debug_assert!(matches!(expression, CoverageKind::Expression { .. }));
debug!(" injecting non-code expression {:?}", expression);
let inject_in_bb = mir::START_BLOCK;
let data = &mut mir_body[inject_in_bb];
let source_info = data.terminator().source_info;
let statement = Statement {
source_info,
kind: StatementKind::Coverage(Box::new(Coverage { kind: expression, code_region: None })),
};
data.statements.push(statement);
}
/// Convert the Span into its file name, start line and column, and end line and column
fn make_code_region(
source_map: &SourceMap,
file_name: Symbol,
source_file: &Lrc<SourceFile>,
span: Span,
body_span: Span,
) -> CodeRegion {
let (start_line, mut start_col) = source_file.lookup_file_pos(span.lo());
let (end_line, end_col) = if span.hi() == span.lo() {
let (end_line, mut end_col) = (start_line, start_col);
// Extend an empty span by one character so the region will be counted.
let CharPos(char_pos) = start_col;
if span.hi() == body_span.hi() {
start_col = CharPos(char_pos - 1);
} else {
end_col = CharPos(char_pos + 1);
}
(end_line, end_col)
} else {
source_file.lookup_file_pos(span.hi())
};
let start_line = source_map.doctest_offset_line(&source_file.name, start_line);
let end_line = source_map.doctest_offset_line(&source_file.name, end_line);
CodeRegion {
file_name,
start_line: start_line as u32,
start_col: start_col.to_u32() + 1,
end_line: end_line as u32,
end_col: end_col.to_u32() + 1,
}
}
fn fn_sig_and_body(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> (Option<&rustc_hir::FnSig<'_>>, &rustc_hir::Body<'_>) {
// FIXME(#79625): Consider improving MIR to provide the information needed, to avoid going back
// to HIR for it.
let hir_node = tcx.hir().get_if_local(def_id).expect("expected DefId is local");
let (_, fn_body_id) =
hir::map::associated_body(hir_node).expect("HIR node is a function with body");
(hir_node.fn_sig(), tcx.hir().body(fn_body_id))
}
fn get_body_span<'tcx>(
tcx: TyCtxt<'tcx>,
hir_body: &rustc_hir::Body<'tcx>,
mir_body: &mut mir::Body<'tcx>,
) -> Span {
let mut body_span = hir_body.value.span;
let def_id = mir_body.source.def_id();
if tcx.is_closure(def_id) {
// If the MIR function is a closure, and if the closure body span
// starts from a macro, but it's content is not in that macro, try
// to find a non-macro callsite, and instrument the spans there
// instead.
loop {
let expn_data = body_span.ctxt().outer_expn_data();
if expn_data.is_root() {
break;
}
if let ExpnKind::Macro { .. } = expn_data.kind {
body_span = expn_data.call_site;
} else {
break;
}
}
}
body_span
}
fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx rustc_hir::Body<'tcx>) -> u64 {
// FIXME(cjgillot) Stop hashing HIR manually here.
let owner = hir_body.id().hir_id.owner;
tcx.hir_owner_nodes(owner).unwrap().opt_hash_including_bodies.unwrap().to_smaller_hash()
}