mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-10 00:47:45 +00:00
1873 lines
70 KiB
Rust
1873 lines
70 KiB
Rust
pub use self::freshen::TypeFreshener;
|
|
pub use self::lexical_region_resolve::RegionResolutionError;
|
|
pub use self::LateBoundRegionConversionTime::*;
|
|
pub use self::RegionVariableOrigin::*;
|
|
pub use self::SubregionOrigin::*;
|
|
pub use self::ValuePairs::*;
|
|
|
|
use self::opaque_types::OpaqueTypeStorage;
|
|
pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
|
|
|
|
use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine};
|
|
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_data_structures::sync::Lrc;
|
|
use rustc_data_structures::undo_log::Rollback;
|
|
use rustc_data_structures::unify as ut;
|
|
use rustc_errors::DiagnosticBuilder;
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
|
|
use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
|
|
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
|
|
use rustc_middle::mir::interpret::ErrorHandled;
|
|
use rustc_middle::mir::interpret::EvalToConstValueResult;
|
|
use rustc_middle::traits::select;
|
|
use rustc_middle::ty::error::{ExpectedFound, TypeError};
|
|
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
|
|
use rustc_middle::ty::relate::RelateResult;
|
|
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
|
|
pub use rustc_middle::ty::IntVarValue;
|
|
use rustc_middle::ty::{self, GenericParamDefKind, InferConst, Ty, TyCtxt};
|
|
use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
|
|
use rustc_session::config::BorrowckMode;
|
|
use rustc_span::symbol::Symbol;
|
|
use rustc_span::Span;
|
|
|
|
use std::cell::{Cell, Ref, RefCell};
|
|
use std::collections::BTreeMap;
|
|
use std::fmt;
|
|
|
|
use self::combine::CombineFields;
|
|
use self::free_regions::RegionRelations;
|
|
use self::lexical_region_resolve::LexicalRegionResolutions;
|
|
use self::outlives::env::OutlivesEnvironment;
|
|
use self::region_constraints::{GenericKind, RegionConstraintData, VarInfos, VerifyBound};
|
|
use self::region_constraints::{
|
|
RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
|
|
};
|
|
use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
|
|
|
|
pub mod at;
|
|
pub mod canonical;
|
|
mod combine;
|
|
mod equate;
|
|
pub mod error_reporting;
|
|
pub mod free_regions;
|
|
mod freshen;
|
|
mod fudge;
|
|
mod glb;
|
|
mod higher_ranked;
|
|
pub mod lattice;
|
|
mod lexical_region_resolve;
|
|
mod lub;
|
|
pub mod nll_relate;
|
|
pub mod opaque_types;
|
|
pub mod outlives;
|
|
mod projection;
|
|
pub mod region_constraints;
|
|
pub mod resolve;
|
|
mod sub;
|
|
pub mod type_variable;
|
|
mod undo_log;
|
|
|
|
use crate::infer::canonical::OriginalQueryValues;
|
|
pub use rustc_middle::infer::unify_key;
|
|
|
|
#[must_use]
|
|
#[derive(Debug)]
|
|
pub struct InferOk<'tcx, T> {
|
|
pub value: T,
|
|
pub obligations: PredicateObligations<'tcx>,
|
|
}
|
|
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
|
|
|
|
pub type Bound<T> = Option<T>;
|
|
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
|
|
pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
|
|
|
|
pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
|
|
ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
|
|
>;
|
|
|
|
/// How we should handle region solving.
|
|
///
|
|
/// This is used so that the region values inferred by HIR region solving are
|
|
/// not exposed, and so that we can avoid doing work in HIR typeck that MIR
|
|
/// typeck will also do.
|
|
#[derive(Copy, Clone, Debug, Default)]
|
|
pub enum RegionckMode {
|
|
/// The default mode: report region errors, don't erase regions.
|
|
#[default]
|
|
Solve,
|
|
/// Erase the results of region after solving.
|
|
Erase {
|
|
/// A flag that is used to suppress region errors, when we are doing
|
|
/// region checks that the NLL borrow checker will also do -- it might
|
|
/// be set to true.
|
|
suppress_errors: bool,
|
|
},
|
|
}
|
|
|
|
impl RegionckMode {
|
|
/// Indicates that the MIR borrowck will repeat these region
|
|
/// checks, so we should ignore errors if NLL is (unconditionally)
|
|
/// enabled.
|
|
pub fn for_item_body(tcx: TyCtxt<'_>) -> Self {
|
|
// FIXME(Centril): Once we actually remove `::Migrate` also make
|
|
// this always `true` and then proceed to eliminate the dead code.
|
|
match tcx.borrowck_mode() {
|
|
// If we're on Migrate mode, report AST region errors
|
|
BorrowckMode::Migrate => RegionckMode::Erase { suppress_errors: false },
|
|
|
|
// If we're on MIR, don't report AST region errors as they should be reported by NLL
|
|
BorrowckMode::Mir => RegionckMode::Erase { suppress_errors: true },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This type contains all the things within `InferCtxt` that sit within a
|
|
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
|
|
/// operations are hot enough that we want only one call to `borrow_mut` per
|
|
/// call to `start_snapshot` and `rollback_to`.
|
|
pub struct InferCtxtInner<'tcx> {
|
|
/// Cache for projections. This cache is snapshotted along with the infcx.
|
|
///
|
|
/// Public so that `traits::project` can use it.
|
|
pub projection_cache: traits::ProjectionCacheStorage<'tcx>,
|
|
|
|
/// We instantiate `UnificationTable` with `bounds<Ty>` because the types
|
|
/// that might instantiate a general type variable have an order,
|
|
/// represented by its upper and lower bounds.
|
|
type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
|
|
|
|
/// Map from const parameter variable to the kind of const it represents.
|
|
const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
|
|
|
|
/// Map from integral variable to the kind of integer it represents.
|
|
int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
|
|
|
|
/// Map from floating variable to the kind of float it represents.
|
|
float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
|
|
|
|
/// Tracks the set of region variables and the constraints between them.
|
|
/// This is initially `Some(_)` but when
|
|
/// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
|
|
/// -- further attempts to perform unification, etc., may fail if new
|
|
/// region constraints would've been added.
|
|
region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
|
|
|
|
/// A set of constraints that regionck must validate. Each
|
|
/// constraint has the form `T:'a`, meaning "some type `T` must
|
|
/// outlive the lifetime 'a". These constraints derive from
|
|
/// instantiated type parameters. So if you had a struct defined
|
|
/// like
|
|
///
|
|
/// struct Foo<T:'static> { ... }
|
|
///
|
|
/// then in some expression `let x = Foo { ... }` it will
|
|
/// instantiate the type parameter `T` with a fresh type `$0`. At
|
|
/// the same time, it will record a region obligation of
|
|
/// `$0:'static`. This will get checked later by regionck. (We
|
|
/// can't generally check these things right away because we have
|
|
/// to wait until types are resolved.)
|
|
///
|
|
/// These are stored in a map keyed to the id of the innermost
|
|
/// enclosing fn body / static initializer expression. This is
|
|
/// because the location where the obligation was incurred can be
|
|
/// relevant with respect to which sublifetime assumptions are in
|
|
/// place. The reason that we store under the fn-id, and not
|
|
/// something more fine-grained, is so that it is easier for
|
|
/// regionck to be sure that it has found *all* the region
|
|
/// obligations (otherwise, it's easy to fail to walk to a
|
|
/// particular node-id).
|
|
///
|
|
/// Before running `resolve_regions_and_report_errors`, the creator
|
|
/// of the inference context is expected to invoke
|
|
/// `process_region_obligations` (defined in `self::region_obligations`)
|
|
/// for each body-id in this map, which will process the
|
|
/// obligations within. This is expected to be done 'late enough'
|
|
/// that all type inference variables have been bound and so forth.
|
|
region_obligations: Vec<(hir::HirId, RegionObligation<'tcx>)>,
|
|
|
|
/// Caches for opaque type inference.
|
|
pub opaque_type_storage: OpaqueTypeStorage<'tcx>,
|
|
|
|
undo_log: InferCtxtUndoLogs<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> InferCtxtInner<'tcx> {
|
|
fn new() -> InferCtxtInner<'tcx> {
|
|
InferCtxtInner {
|
|
projection_cache: Default::default(),
|
|
type_variable_storage: type_variable::TypeVariableStorage::new(),
|
|
undo_log: InferCtxtUndoLogs::default(),
|
|
const_unification_storage: ut::UnificationTableStorage::new(),
|
|
int_unification_storage: ut::UnificationTableStorage::new(),
|
|
float_unification_storage: ut::UnificationTableStorage::new(),
|
|
region_constraint_storage: Some(RegionConstraintStorage::new()),
|
|
region_obligations: vec![],
|
|
opaque_type_storage: Default::default(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn region_obligations(&self) -> &[(hir::HirId, RegionObligation<'tcx>)] {
|
|
&self.region_obligations
|
|
}
|
|
|
|
#[inline]
|
|
pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
|
|
self.projection_cache.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
|
|
self.type_variable_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
|
|
self.opaque_type_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn int_unification_table(
|
|
&mut self,
|
|
) -> ut::UnificationTable<
|
|
ut::InPlace<
|
|
ty::IntVid,
|
|
&mut ut::UnificationStorage<ty::IntVid>,
|
|
&mut InferCtxtUndoLogs<'tcx>,
|
|
>,
|
|
> {
|
|
self.int_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn float_unification_table(
|
|
&mut self,
|
|
) -> ut::UnificationTable<
|
|
ut::InPlace<
|
|
ty::FloatVid,
|
|
&mut ut::UnificationStorage<ty::FloatVid>,
|
|
&mut InferCtxtUndoLogs<'tcx>,
|
|
>,
|
|
> {
|
|
self.float_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
fn const_unification_table(
|
|
&mut self,
|
|
) -> ut::UnificationTable<
|
|
ut::InPlace<
|
|
ty::ConstVid<'tcx>,
|
|
&mut ut::UnificationStorage<ty::ConstVid<'tcx>>,
|
|
&mut InferCtxtUndoLogs<'tcx>,
|
|
>,
|
|
> {
|
|
self.const_unification_storage.with_log(&mut self.undo_log)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
|
|
self.region_constraint_storage
|
|
.as_mut()
|
|
.expect("region constraints already solved")
|
|
.with_log(&mut self.undo_log)
|
|
}
|
|
}
|
|
|
|
pub struct InferCtxt<'a, 'tcx> {
|
|
pub tcx: TyCtxt<'tcx>,
|
|
|
|
/// The `DefId` of the item in whose context we are performing inference or typeck.
|
|
/// It is used to check whether an opaque type use is a defining use.
|
|
///
|
|
/// If it is `None`, we can't resolve opaque types here and need to bubble up
|
|
/// the obligation. This frequently happens for
|
|
/// short lived InferCtxt within queries. The opaque type obligations are forwarded
|
|
/// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
|
|
pub defining_use_anchor: Option<LocalDefId>,
|
|
|
|
/// During type-checking/inference of a body, `in_progress_typeck_results`
|
|
/// contains a reference to the typeck results being built up, which are
|
|
/// used for reading closure kinds/signatures as they are inferred,
|
|
/// and for error reporting logic to read arbitrary node types.
|
|
pub in_progress_typeck_results: Option<&'a RefCell<ty::TypeckResults<'tcx>>>,
|
|
|
|
pub inner: RefCell<InferCtxtInner<'tcx>>,
|
|
|
|
/// If set, this flag causes us to skip the 'leak check' during
|
|
/// higher-ranked subtyping operations. This flag is a temporary one used
|
|
/// to manage the removal of the leak-check: for the time being, we still run the
|
|
/// leak-check, but we issue warnings. This flag can only be set to true
|
|
/// when entering a snapshot.
|
|
skip_leak_check: Cell<bool>,
|
|
|
|
/// Once region inference is done, the values for each variable.
|
|
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
|
|
|
|
/// Caches the results of trait selection. This cache is used
|
|
/// for things that have to do with the parameters in scope.
|
|
pub selection_cache: select::SelectionCache<'tcx>,
|
|
|
|
/// Caches the results of trait evaluation.
|
|
pub evaluation_cache: select::EvaluationCache<'tcx>,
|
|
|
|
/// the set of predicates on which errors have been reported, to
|
|
/// avoid reporting the same error twice.
|
|
pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
|
|
|
|
pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
|
|
|
|
/// When an error occurs, we want to avoid reporting "derived"
|
|
/// errors that are due to this original failure. Normally, we
|
|
/// handle this with the `err_count_on_creation` count, which
|
|
/// basically just tracks how many errors were reported when we
|
|
/// started type-checking a fn and checks to see if any new errors
|
|
/// have been reported since then. Not great, but it works.
|
|
///
|
|
/// However, when errors originated in other passes -- notably
|
|
/// resolve -- this heuristic breaks down. Therefore, we have this
|
|
/// auxiliary flag that one can set whenever one creates a
|
|
/// type-error that is due to an error in a prior pass.
|
|
///
|
|
/// Don't read this flag directly, call `is_tainted_by_errors()`
|
|
/// and `set_tainted_by_errors()`.
|
|
tainted_by_errors_flag: Cell<bool>,
|
|
|
|
/// Track how many errors were reported when this infcx is created.
|
|
/// If the number of errors increases, that's also a sign (line
|
|
/// `tained_by_errors`) to avoid reporting certain kinds of errors.
|
|
// FIXME(matthewjasper) Merge into `tainted_by_errors_flag`
|
|
err_count_on_creation: usize,
|
|
|
|
/// This flag is true while there is an active snapshot.
|
|
in_snapshot: Cell<bool>,
|
|
|
|
/// What is the innermost universe we have created? Starts out as
|
|
/// `UniverseIndex::root()` but grows from there as we enter
|
|
/// universal quantifiers.
|
|
///
|
|
/// N.B., at present, we exclude the universal quantifiers on the
|
|
/// item we are type-checking, and just consider those names as
|
|
/// part of the root universe. So this would only get incremented
|
|
/// when we enter into a higher-ranked (`for<..>`) type or trait
|
|
/// bound.
|
|
universe: Cell<ty::UniverseIndex>,
|
|
}
|
|
|
|
/// See the `error_reporting` module for more details.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable)]
|
|
pub enum ValuePairs<'tcx> {
|
|
Types(ExpectedFound<Ty<'tcx>>),
|
|
Regions(ExpectedFound<ty::Region<'tcx>>),
|
|
Consts(ExpectedFound<&'tcx ty::Const<'tcx>>),
|
|
TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
|
|
PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
|
|
}
|
|
|
|
/// The trace designates the path through inference that we took to
|
|
/// encounter an error or subtyping constraint.
|
|
///
|
|
/// See the `error_reporting` module for more details.
|
|
#[derive(Clone, Debug)]
|
|
pub struct TypeTrace<'tcx> {
|
|
cause: ObligationCause<'tcx>,
|
|
values: ValuePairs<'tcx>,
|
|
}
|
|
|
|
/// The origin of a `r1 <= r2` constraint.
|
|
///
|
|
/// See `error_reporting` module for more details
|
|
#[derive(Clone, Debug)]
|
|
pub enum SubregionOrigin<'tcx> {
|
|
/// Arose from a subtyping relation
|
|
Subtype(Box<TypeTrace<'tcx>>),
|
|
|
|
/// When casting `&'a T` to an `&'b Trait` object,
|
|
/// relating `'a` to `'b`
|
|
RelateObjectBound(Span),
|
|
|
|
/// Some type parameter was instantiated with the given type,
|
|
/// and that type must outlive some region.
|
|
RelateParamBound(Span, Ty<'tcx>, Option<Span>),
|
|
|
|
/// The given region parameter was instantiated with a region
|
|
/// that must outlive some other region.
|
|
RelateRegionParamBound(Span),
|
|
|
|
/// Creating a pointer `b` to contents of another reference
|
|
Reborrow(Span),
|
|
|
|
/// Creating a pointer `b` to contents of an upvar
|
|
ReborrowUpvar(Span, ty::UpvarId),
|
|
|
|
/// Data with type `Ty<'tcx>` was borrowed
|
|
DataBorrowed(Ty<'tcx>, Span),
|
|
|
|
/// (&'a &'b T) where a >= b
|
|
ReferenceOutlivesReferent(Ty<'tcx>, Span),
|
|
|
|
/// Comparing the signature and requirements of an impl method against
|
|
/// the containing trait.
|
|
CompareImplMethodObligation { span: Span, impl_item_def_id: DefId, trait_item_def_id: DefId },
|
|
|
|
/// Comparing the signature and requirements of an impl associated type
|
|
/// against the containing trait
|
|
CompareImplTypeObligation { span: Span, impl_item_def_id: DefId, trait_item_def_id: DefId },
|
|
}
|
|
|
|
// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
|
|
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
|
|
static_assert_size!(SubregionOrigin<'_>, 32);
|
|
|
|
/// Times when we replace late-bound regions with variables:
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum LateBoundRegionConversionTime {
|
|
/// when a fn is called
|
|
FnCall,
|
|
|
|
/// when two higher-ranked types are compared
|
|
HigherRankedType,
|
|
|
|
/// when projecting an associated type
|
|
AssocTypeProjection(DefId),
|
|
}
|
|
|
|
/// Reasons to create a region inference variable
|
|
///
|
|
/// See `error_reporting` module for more details
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum RegionVariableOrigin {
|
|
/// Region variables created for ill-categorized reasons,
|
|
/// mostly indicates places in need of refactoring
|
|
MiscVariable(Span),
|
|
|
|
/// Regions created by a `&P` or `[...]` pattern
|
|
PatternRegion(Span),
|
|
|
|
/// Regions created by `&` operator
|
|
AddrOfRegion(Span),
|
|
|
|
/// Regions created as part of an autoref of a method receiver
|
|
Autoref(Span),
|
|
|
|
/// Regions created as part of an automatic coercion
|
|
Coercion(Span),
|
|
|
|
/// Region variables created as the values for early-bound regions
|
|
EarlyBoundRegion(Span, Symbol),
|
|
|
|
/// Region variables created for bound regions
|
|
/// in a function or method that is called
|
|
LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
|
|
|
|
UpvarRegion(ty::UpvarId, Span),
|
|
|
|
/// This origin is used for the inference variables that we create
|
|
/// during NLL region processing.
|
|
Nll(NllRegionVariableOrigin),
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum NllRegionVariableOrigin {
|
|
/// During NLL region processing, we create variables for free
|
|
/// regions that we encounter in the function signature and
|
|
/// elsewhere. This origin indices we've got one of those.
|
|
FreeRegion,
|
|
|
|
/// "Universal" instantiation of a higher-ranked region (e.g.,
|
|
/// from a `for<'a> T` binder). Meant to represent "any region".
|
|
Placeholder(ty::PlaceholderRegion),
|
|
|
|
/// The variable we create to represent `'empty(U0)`.
|
|
RootEmptyRegion,
|
|
|
|
Existential {
|
|
/// If this is true, then this variable was created to represent a lifetime
|
|
/// bound in a `for` binder. For example, it might have been created to
|
|
/// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
|
|
/// Such variables are created when we are trying to figure out if there
|
|
/// is any valid instantiation of `'a` that could fit into some scenario.
|
|
///
|
|
/// This is used to inform error reporting: in the case that we are trying to
|
|
/// determine whether there is any valid instantiation of a `'a` variable that meets
|
|
/// some constraint C, we want to blame the "source" of that `for` type,
|
|
/// rather than blaming the source of the constraint C.
|
|
from_forall: bool,
|
|
},
|
|
}
|
|
|
|
// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum FixupError<'tcx> {
|
|
UnresolvedIntTy(IntVid),
|
|
UnresolvedFloatTy(FloatVid),
|
|
UnresolvedTy(TyVid),
|
|
UnresolvedConst(ConstVid<'tcx>),
|
|
}
|
|
|
|
/// See the `region_obligations` field for more information.
|
|
#[derive(Clone)]
|
|
pub struct RegionObligation<'tcx> {
|
|
pub sub_region: ty::Region<'tcx>,
|
|
pub sup_type: Ty<'tcx>,
|
|
pub origin: SubregionOrigin<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> fmt::Display for FixupError<'tcx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use self::FixupError::*;
|
|
|
|
match *self {
|
|
UnresolvedIntTy(_) => write!(
|
|
f,
|
|
"cannot determine the type of this integer; \
|
|
add a suffix to specify the type explicitly"
|
|
),
|
|
UnresolvedFloatTy(_) => write!(
|
|
f,
|
|
"cannot determine the type of this number; \
|
|
add a suffix to specify the type explicitly"
|
|
),
|
|
UnresolvedTy(_) => write!(f, "unconstrained type"),
|
|
UnresolvedConst(_) => write!(f, "unconstrained const value"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper type of a temporary returned by `tcx.infer_ctxt()`.
|
|
/// Necessary because we can't write the following bound:
|
|
/// `F: for<'b, 'tcx> where 'tcx FnOnce(InferCtxt<'b, 'tcx>)`.
|
|
pub struct InferCtxtBuilder<'tcx> {
|
|
tcx: TyCtxt<'tcx>,
|
|
fresh_typeck_results: Option<RefCell<ty::TypeckResults<'tcx>>>,
|
|
defining_use_anchor: Option<LocalDefId>,
|
|
}
|
|
|
|
pub trait TyCtxtInferExt<'tcx> {
|
|
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
|
|
}
|
|
|
|
impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
|
|
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
|
|
InferCtxtBuilder { tcx: self, defining_use_anchor: None, fresh_typeck_results: None }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferCtxtBuilder<'tcx> {
|
|
/// Used only by `rustc_typeck` during body type-checking/inference,
|
|
/// will initialize `in_progress_typeck_results` with fresh `TypeckResults`.
|
|
/// Will also change the scope for opaque type defining use checks to the given owner.
|
|
pub fn with_fresh_in_progress_typeck_results(mut self, table_owner: LocalDefId) -> Self {
|
|
self.fresh_typeck_results = Some(RefCell::new(ty::TypeckResults::new(table_owner)));
|
|
self.with_opaque_type_inference(table_owner)
|
|
}
|
|
|
|
/// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
|
|
/// you need to call this function. Otherwise the opaque type will be treated opaquely.
|
|
///
|
|
/// It is only meant to be called in two places, for typeck
|
|
/// (via `with_fresh_in_progress_typeck_results`) and for the inference context used
|
|
/// in mir borrowck.
|
|
pub fn with_opaque_type_inference(mut self, defining_use_anchor: LocalDefId) -> Self {
|
|
self.defining_use_anchor = Some(defining_use_anchor);
|
|
self
|
|
}
|
|
|
|
/// Given a canonical value `C` as a starting point, create an
|
|
/// inference context that contains each of the bound values
|
|
/// within instantiated as a fresh variable. The `f` closure is
|
|
/// invoked with the new infcx, along with the instantiated value
|
|
/// `V` and a substitution `S`. This substitution `S` maps from
|
|
/// the bound values in `C` to their instantiated values in `V`
|
|
/// (in other words, `S(C) = V`).
|
|
pub fn enter_with_canonical<T, R>(
|
|
&mut self,
|
|
span: Span,
|
|
canonical: &Canonical<'tcx, T>,
|
|
f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>, T, CanonicalVarValues<'tcx>) -> R,
|
|
) -> R
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
self.enter(|infcx| {
|
|
let (value, subst) =
|
|
infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
|
|
f(infcx, value, subst)
|
|
})
|
|
}
|
|
|
|
pub fn enter<R>(&mut self, f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>) -> R) -> R {
|
|
let InferCtxtBuilder { tcx, defining_use_anchor, ref fresh_typeck_results } = *self;
|
|
let in_progress_typeck_results = fresh_typeck_results.as_ref();
|
|
f(InferCtxt {
|
|
tcx,
|
|
defining_use_anchor,
|
|
in_progress_typeck_results,
|
|
inner: RefCell::new(InferCtxtInner::new()),
|
|
lexical_region_resolutions: RefCell::new(None),
|
|
selection_cache: Default::default(),
|
|
evaluation_cache: Default::default(),
|
|
reported_trait_errors: Default::default(),
|
|
reported_closure_mismatch: Default::default(),
|
|
tainted_by_errors_flag: Cell::new(false),
|
|
err_count_on_creation: tcx.sess.err_count(),
|
|
in_snapshot: Cell::new(false),
|
|
skip_leak_check: Cell::new(false),
|
|
universe: Cell::new(ty::UniverseIndex::ROOT),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<'tcx, T> InferOk<'tcx, T> {
|
|
pub fn unit(self) -> InferOk<'tcx, ()> {
|
|
InferOk { value: (), obligations: self.obligations }
|
|
}
|
|
|
|
/// Extracts `value`, registering any obligations into `fulfill_cx`.
|
|
pub fn into_value_registering_obligations(
|
|
self,
|
|
infcx: &InferCtxt<'_, 'tcx>,
|
|
fulfill_cx: &mut dyn TraitEngine<'tcx>,
|
|
) -> T {
|
|
let InferOk { value, obligations } = self;
|
|
for obligation in obligations {
|
|
fulfill_cx.register_predicate_obligation(infcx, obligation);
|
|
}
|
|
value
|
|
}
|
|
}
|
|
|
|
impl<'tcx> InferOk<'tcx, ()> {
|
|
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
|
|
self.obligations
|
|
}
|
|
}
|
|
|
|
#[must_use = "once you start a snapshot, you should always consume it"]
|
|
pub struct CombinedSnapshot<'a, 'tcx> {
|
|
undo_snapshot: Snapshot<'tcx>,
|
|
region_constraints_snapshot: RegionSnapshot,
|
|
universe: ty::UniverseIndex,
|
|
was_in_snapshot: bool,
|
|
_in_progress_typeck_results: Option<Ref<'a, ty::TypeckResults<'tcx>>>,
|
|
}
|
|
|
|
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
|
|
/// calls `tcx.try_unify_abstract_consts` after
|
|
/// canonicalizing the consts.
|
|
pub fn try_unify_abstract_consts(
|
|
&self,
|
|
a: ty::Unevaluated<'tcx, ()>,
|
|
b: ty::Unevaluated<'tcx, ()>,
|
|
) -> bool {
|
|
let canonical = self.canonicalize_query((a, b), &mut OriginalQueryValues::default());
|
|
debug!("canonical consts: {:?}", &canonical.value);
|
|
|
|
self.tcx.try_unify_abstract_consts(canonical.value)
|
|
}
|
|
|
|
pub fn is_in_snapshot(&self) -> bool {
|
|
self.in_snapshot.get()
|
|
}
|
|
|
|
pub fn freshen<T: TypeFoldable<'tcx>>(&self, t: T) -> T {
|
|
t.fold_with(&mut self.freshener())
|
|
}
|
|
|
|
/// Returns the origin of the type variable identified by `vid`, or `None`
|
|
/// if this is not a type variable.
|
|
///
|
|
/// No attempt is made to resolve `ty`.
|
|
pub fn type_var_origin(&'a self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
|
|
match *ty.kind() {
|
|
ty::Infer(ty::TyVar(vid)) => {
|
|
Some(*self.inner.borrow_mut().type_variables().var_origin(vid))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
|
|
freshen::TypeFreshener::new(self, false)
|
|
}
|
|
|
|
/// Like `freshener`, but does not replace `'static` regions.
|
|
pub fn freshener_keep_static<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
|
|
freshen::TypeFreshener::new(self, true)
|
|
}
|
|
|
|
pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let mut vars: Vec<Ty<'_>> = inner
|
|
.type_variables()
|
|
.unsolved_variables()
|
|
.into_iter()
|
|
.map(|t| self.tcx.mk_ty_var(t))
|
|
.collect();
|
|
vars.extend(
|
|
(0..inner.int_unification_table().len())
|
|
.map(|i| ty::IntVid { index: i as u32 })
|
|
.filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
|
|
.map(|v| self.tcx.mk_int_var(v)),
|
|
);
|
|
vars.extend(
|
|
(0..inner.float_unification_table().len())
|
|
.map(|i| ty::FloatVid { index: i as u32 })
|
|
.filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
|
|
.map(|v| self.tcx.mk_float_var(v)),
|
|
);
|
|
vars
|
|
}
|
|
|
|
fn combine_fields(
|
|
&'a self,
|
|
trace: TypeTrace<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
) -> CombineFields<'a, 'tcx> {
|
|
CombineFields {
|
|
infcx: self,
|
|
trace,
|
|
cause: None,
|
|
param_env,
|
|
obligations: PredicateObligations::new(),
|
|
}
|
|
}
|
|
|
|
/// Clear the "currently in a snapshot" flag, invoke the closure,
|
|
/// then restore the flag to its original value. This flag is a
|
|
/// debugging measure designed to detect cases where we start a
|
|
/// snapshot, create type variables, and register obligations
|
|
/// which may involve those type variables in the fulfillment cx,
|
|
/// potentially leaving "dangling type variables" behind.
|
|
/// In such cases, an assertion will fail when attempting to
|
|
/// register obligations, within a snapshot. Very useful, much
|
|
/// better than grovelling through megabytes of `RUSTC_LOG` output.
|
|
///
|
|
/// HOWEVER, in some cases the flag is unhelpful. In particular, we
|
|
/// sometimes create a "mini-fulfilment-cx" in which we enroll
|
|
/// obligations. As long as this fulfillment cx is fully drained
|
|
/// before we return, this is not a problem, as there won't be any
|
|
/// escaping obligations in the main cx. In those cases, you can
|
|
/// use this function.
|
|
pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
|
|
where
|
|
F: FnOnce(&Self) -> R,
|
|
{
|
|
let flag = self.in_snapshot.replace(false);
|
|
let result = func(self);
|
|
self.in_snapshot.set(flag);
|
|
result
|
|
}
|
|
|
|
fn start_snapshot(&self) -> CombinedSnapshot<'a, 'tcx> {
|
|
debug!("start_snapshot()");
|
|
|
|
let in_snapshot = self.in_snapshot.replace(true);
|
|
|
|
let mut inner = self.inner.borrow_mut();
|
|
|
|
CombinedSnapshot {
|
|
undo_snapshot: inner.undo_log.start_snapshot(),
|
|
region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
|
|
universe: self.universe(),
|
|
was_in_snapshot: in_snapshot,
|
|
// Borrow typeck results "in progress" (i.e., during typeck)
|
|
// to ban writes from within a snapshot to them.
|
|
_in_progress_typeck_results: self
|
|
.in_progress_typeck_results
|
|
.map(|typeck_results| typeck_results.borrow()),
|
|
}
|
|
}
|
|
|
|
#[instrument(skip(self, snapshot), level = "debug")]
|
|
fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'a, 'tcx>) {
|
|
let CombinedSnapshot {
|
|
undo_snapshot,
|
|
region_constraints_snapshot,
|
|
universe,
|
|
was_in_snapshot,
|
|
_in_progress_typeck_results,
|
|
} = snapshot;
|
|
|
|
self.in_snapshot.set(was_in_snapshot);
|
|
self.universe.set(universe);
|
|
|
|
let mut inner = self.inner.borrow_mut();
|
|
inner.rollback_to(undo_snapshot);
|
|
inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
|
|
}
|
|
|
|
#[instrument(skip(self, snapshot), level = "debug")]
|
|
fn commit_from(&self, snapshot: CombinedSnapshot<'a, 'tcx>) {
|
|
let CombinedSnapshot {
|
|
undo_snapshot,
|
|
region_constraints_snapshot: _,
|
|
universe: _,
|
|
was_in_snapshot,
|
|
_in_progress_typeck_results,
|
|
} = snapshot;
|
|
|
|
self.in_snapshot.set(was_in_snapshot);
|
|
|
|
self.inner.borrow_mut().commit(undo_snapshot);
|
|
}
|
|
|
|
/// Executes `f` and commit the bindings.
|
|
#[instrument(skip(self, f), level = "debug")]
|
|
pub fn commit_unconditionally<R, F>(&self, f: F) -> R
|
|
where
|
|
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
|
|
{
|
|
let snapshot = self.start_snapshot();
|
|
let r = f(&snapshot);
|
|
self.commit_from(snapshot);
|
|
r
|
|
}
|
|
|
|
/// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
|
|
#[instrument(skip(self, f), level = "debug")]
|
|
pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
|
|
where
|
|
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> Result<T, E>,
|
|
{
|
|
let snapshot = self.start_snapshot();
|
|
let r = f(&snapshot);
|
|
debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
|
|
match r {
|
|
Ok(_) => {
|
|
self.commit_from(snapshot);
|
|
}
|
|
Err(_) => {
|
|
self.rollback_to("commit_if_ok -- error", snapshot);
|
|
}
|
|
}
|
|
r
|
|
}
|
|
|
|
/// Execute `f` then unroll any bindings it creates.
|
|
#[instrument(skip(self, f), level = "debug")]
|
|
pub fn probe<R, F>(&self, f: F) -> R
|
|
where
|
|
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
|
|
{
|
|
let snapshot = self.start_snapshot();
|
|
let r = f(&snapshot);
|
|
self.rollback_to("probe", snapshot);
|
|
r
|
|
}
|
|
|
|
/// If `should_skip` is true, then execute `f` then unroll any bindings it creates.
|
|
#[instrument(skip(self, f), level = "debug")]
|
|
pub fn probe_maybe_skip_leak_check<R, F>(&self, should_skip: bool, f: F) -> R
|
|
where
|
|
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
|
|
{
|
|
let snapshot = self.start_snapshot();
|
|
let was_skip_leak_check = self.skip_leak_check.get();
|
|
if should_skip {
|
|
self.skip_leak_check.set(true);
|
|
}
|
|
let r = f(&snapshot);
|
|
self.rollback_to("probe", snapshot);
|
|
self.skip_leak_check.set(was_skip_leak_check);
|
|
r
|
|
}
|
|
|
|
/// Scan the constraints produced since `snapshot` began and returns:
|
|
///
|
|
/// - `None` -- if none of them involve "region outlives" constraints
|
|
/// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder
|
|
/// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders
|
|
pub fn region_constraints_added_in_snapshot(
|
|
&self,
|
|
snapshot: &CombinedSnapshot<'a, 'tcx>,
|
|
) -> Option<bool> {
|
|
self.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
|
|
}
|
|
|
|
pub fn add_given(&self, sub: ty::Region<'tcx>, sup: ty::RegionVid) {
|
|
self.inner.borrow_mut().unwrap_region_constraints().add_given(sub, sup);
|
|
}
|
|
|
|
pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
|
|
where
|
|
T: at::ToTrace<'tcx>,
|
|
{
|
|
let origin = &ObligationCause::dummy();
|
|
self.probe(|_| {
|
|
self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
|
|
// Ignore obligations, since we are unrolling
|
|
// everything anyway.
|
|
})
|
|
})
|
|
}
|
|
|
|
pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
|
|
where
|
|
T: at::ToTrace<'tcx>,
|
|
{
|
|
let origin = &ObligationCause::dummy();
|
|
self.probe(|_| {
|
|
self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
|
|
// Ignore obligations, since we are unrolling
|
|
// everything anyway.
|
|
})
|
|
})
|
|
}
|
|
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn sub_regions(
|
|
&self,
|
|
origin: SubregionOrigin<'tcx>,
|
|
a: ty::Region<'tcx>,
|
|
b: ty::Region<'tcx>,
|
|
) {
|
|
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
|
|
}
|
|
|
|
/// Require that the region `r` be equal to one of the regions in
|
|
/// the set `regions`.
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn member_constraint(
|
|
&self,
|
|
opaque_type_def_id: DefId,
|
|
definition_span: Span,
|
|
hidden_ty: Ty<'tcx>,
|
|
region: ty::Region<'tcx>,
|
|
in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
|
|
) {
|
|
self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
|
|
opaque_type_def_id,
|
|
definition_span,
|
|
hidden_ty,
|
|
region,
|
|
in_regions,
|
|
);
|
|
}
|
|
|
|
/// Processes a `Coerce` predicate from the fulfillment context.
|
|
/// This is NOT the preferred way to handle coercion, which is to
|
|
/// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
|
|
///
|
|
/// This method here is actually a fallback that winds up being
|
|
/// invoked when `FnCtxt::coerce` encounters unresolved type variables
|
|
/// and records a coercion predicate. Presently, this method is equivalent
|
|
/// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
|
|
/// actually requiring `a <: b`. This is of course a valid coercion,
|
|
/// but it's not as flexible as `FnCtxt::coerce` would be.
|
|
///
|
|
/// (We may refactor this in the future, but there are a number of
|
|
/// practical obstacles. Among other things, `FnCtxt::coerce` presently
|
|
/// records adjustments that are required on the HIR in order to perform
|
|
/// the coercion, and we don't currently have a way to manage that.)
|
|
pub fn coerce_predicate(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
predicate: ty::PolyCoercePredicate<'tcx>,
|
|
) -> Option<InferResult<'tcx, ()>> {
|
|
let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
|
|
a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
|
|
a: p.a,
|
|
b: p.b,
|
|
});
|
|
self.subtype_predicate(cause, param_env, subtype_predicate)
|
|
}
|
|
|
|
pub fn subtype_predicate(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
predicate: ty::PolySubtypePredicate<'tcx>,
|
|
) -> Option<InferResult<'tcx, ()>> {
|
|
// Check for two unresolved inference variables, in which case we can
|
|
// make no progress. This is partly a micro-optimization, but it's
|
|
// also an opportunity to "sub-unify" the variables. This isn't
|
|
// *necessary* to prevent cycles, because they would eventually be sub-unified
|
|
// anyhow during generalization, but it helps with diagnostics (we can detect
|
|
// earlier that they are sub-unified).
|
|
//
|
|
// Note that we can just skip the binders here because
|
|
// type variables can't (at present, at
|
|
// least) capture any of the things bound by this binder.
|
|
//
|
|
// Note that this sub here is not just for diagnostics - it has semantic
|
|
// effects as well.
|
|
let r_a = self.shallow_resolve(predicate.skip_binder().a);
|
|
let r_b = self.shallow_resolve(predicate.skip_binder().b);
|
|
match (r_a.kind(), r_b.kind()) {
|
|
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
|
|
self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
|
|
return None;
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
Some(self.commit_if_ok(|_snapshot| {
|
|
let ty::SubtypePredicate { a_is_expected, a, b } =
|
|
self.replace_bound_vars_with_placeholders(predicate);
|
|
|
|
let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
|
|
|
|
Ok(ok.unit())
|
|
}))
|
|
}
|
|
|
|
pub fn region_outlives_predicate(
|
|
&self,
|
|
cause: &traits::ObligationCause<'tcx>,
|
|
predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
|
|
) -> UnitResult<'tcx> {
|
|
self.commit_if_ok(|_snapshot| {
|
|
let ty::OutlivesPredicate(r_a, r_b) =
|
|
self.replace_bound_vars_with_placeholders(predicate);
|
|
let origin = SubregionOrigin::from_obligation_cause(cause, || {
|
|
RelateRegionParamBound(cause.span)
|
|
});
|
|
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
|
|
Ok(())
|
|
})
|
|
}
|
|
|
|
/// Number of type variables created so far.
|
|
pub fn num_ty_vars(&self) -> usize {
|
|
self.inner.borrow_mut().type_variables().num_vars()
|
|
}
|
|
|
|
pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
|
|
self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
|
|
}
|
|
|
|
pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
|
|
self.tcx.mk_ty_var(self.next_ty_var_id(origin))
|
|
}
|
|
|
|
pub fn next_ty_var_in_universe(
|
|
&self,
|
|
origin: TypeVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> Ty<'tcx> {
|
|
let vid = self.inner.borrow_mut().type_variables().new_var(universe, origin);
|
|
self.tcx.mk_ty_var(vid)
|
|
}
|
|
|
|
pub fn next_const_var(
|
|
&self,
|
|
ty: Ty<'tcx>,
|
|
origin: ConstVariableOrigin,
|
|
) -> &'tcx ty::Const<'tcx> {
|
|
self.tcx.mk_const_var(self.next_const_var_id(origin), ty)
|
|
}
|
|
|
|
pub fn next_const_var_in_universe(
|
|
&self,
|
|
ty: Ty<'tcx>,
|
|
origin: ConstVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> &'tcx ty::Const<'tcx> {
|
|
let vid = self
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
|
|
self.tcx.mk_const_var(vid, ty)
|
|
}
|
|
|
|
pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
|
|
self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
|
|
origin,
|
|
val: ConstVariableValue::Unknown { universe: self.universe() },
|
|
})
|
|
}
|
|
|
|
fn next_int_var_id(&self) -> IntVid {
|
|
self.inner.borrow_mut().int_unification_table().new_key(None)
|
|
}
|
|
|
|
pub fn next_int_var(&self) -> Ty<'tcx> {
|
|
self.tcx.mk_int_var(self.next_int_var_id())
|
|
}
|
|
|
|
fn next_float_var_id(&self) -> FloatVid {
|
|
self.inner.borrow_mut().float_unification_table().new_key(None)
|
|
}
|
|
|
|
pub fn next_float_var(&self) -> Ty<'tcx> {
|
|
self.tcx.mk_float_var(self.next_float_var_id())
|
|
}
|
|
|
|
/// Creates a fresh region variable with the next available index.
|
|
/// The variable will be created in the maximum universe created
|
|
/// thus far, allowing it to name any region created thus far.
|
|
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
|
|
self.next_region_var_in_universe(origin, self.universe())
|
|
}
|
|
|
|
/// Creates a fresh region variable with the next available index
|
|
/// in the given universe; typically, you can use
|
|
/// `next_region_var` and just use the maximal universe.
|
|
pub fn next_region_var_in_universe(
|
|
&self,
|
|
origin: RegionVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Region<'tcx> {
|
|
let region_var =
|
|
self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
|
|
self.tcx.mk_region(ty::ReVar(region_var))
|
|
}
|
|
|
|
/// Return the universe that the region `r` was created in. For
|
|
/// most regions (e.g., `'static`, named regions from the user,
|
|
/// etc) this is the root universe U0. For inference variables or
|
|
/// placeholders, however, it will return the universe which which
|
|
/// they are associated.
|
|
pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
|
|
self.inner.borrow_mut().unwrap_region_constraints().universe(r)
|
|
}
|
|
|
|
/// Number of region variables created so far.
|
|
pub fn num_region_vars(&self) -> usize {
|
|
self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
|
|
}
|
|
|
|
/// Just a convenient wrapper of `next_region_var` for using during NLL.
|
|
pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
|
|
self.next_region_var(RegionVariableOrigin::Nll(origin))
|
|
}
|
|
|
|
/// Just a convenient wrapper of `next_region_var` for using during NLL.
|
|
pub fn next_nll_region_var_in_universe(
|
|
&self,
|
|
origin: NllRegionVariableOrigin,
|
|
universe: ty::UniverseIndex,
|
|
) -> ty::Region<'tcx> {
|
|
self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
|
|
}
|
|
|
|
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
|
|
match param.kind {
|
|
GenericParamDefKind::Lifetime => {
|
|
// Create a region inference variable for the given
|
|
// region parameter definition.
|
|
self.next_region_var(EarlyBoundRegion(span, param.name)).into()
|
|
}
|
|
GenericParamDefKind::Type { .. } => {
|
|
// Create a type inference variable for the given
|
|
// type parameter definition. The substitutions are
|
|
// for actual parameters that may be referred to by
|
|
// the default of this type parameter, if it exists.
|
|
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
|
|
// used in a path such as `Foo::<T, U>::new()` will
|
|
// use an inference variable for `C` with `[T, U]`
|
|
// as the substitutions for the default, `(T, U)`.
|
|
let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
|
|
self.universe(),
|
|
TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::TypeParameterDefinition(
|
|
param.name,
|
|
Some(param.def_id),
|
|
),
|
|
span,
|
|
},
|
|
);
|
|
|
|
self.tcx.mk_ty_var(ty_var_id).into()
|
|
}
|
|
GenericParamDefKind::Const { .. } => {
|
|
let origin = ConstVariableOrigin {
|
|
kind: ConstVariableOriginKind::ConstParameterDefinition(
|
|
param.name,
|
|
param.def_id,
|
|
),
|
|
span,
|
|
};
|
|
let const_var_id =
|
|
self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
|
|
origin,
|
|
val: ConstVariableValue::Unknown { universe: self.universe() },
|
|
});
|
|
self.tcx.mk_const_var(const_var_id, self.tcx.type_of(param.def_id)).into()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a set of generics defined on a type or impl, returns a substitution mapping each
|
|
/// type/region parameter to a fresh inference variable.
|
|
pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
|
|
InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
|
|
}
|
|
|
|
/// Returns `true` if errors have been reported since this infcx was
|
|
/// created. This is sometimes used as a heuristic to skip
|
|
/// reporting errors that often occur as a result of earlier
|
|
/// errors, but where it's hard to be 100% sure (e.g., unresolved
|
|
/// inference variables, regionck errors).
|
|
pub fn is_tainted_by_errors(&self) -> bool {
|
|
debug!(
|
|
"is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
|
|
tainted_by_errors_flag={})",
|
|
self.tcx.sess.err_count(),
|
|
self.err_count_on_creation,
|
|
self.tainted_by_errors_flag.get()
|
|
);
|
|
|
|
if self.tcx.sess.err_count() > self.err_count_on_creation {
|
|
return true; // errors reported since this infcx was made
|
|
}
|
|
self.tainted_by_errors_flag.get()
|
|
}
|
|
|
|
/// Set the "tainted by errors" flag to true. We call this when we
|
|
/// observe an error from a prior pass.
|
|
pub fn set_tainted_by_errors(&self) {
|
|
debug!("set_tainted_by_errors()");
|
|
self.tainted_by_errors_flag.set(true)
|
|
}
|
|
|
|
/// Process the region constraints and return any any errors that
|
|
/// result. After this, no more unification operations should be
|
|
/// done -- or the compiler will panic -- but it is legal to use
|
|
/// `resolve_vars_if_possible` as well as `fully_resolve`.
|
|
pub fn resolve_regions(
|
|
&self,
|
|
region_context: DefId,
|
|
outlives_env: &OutlivesEnvironment<'tcx>,
|
|
mode: RegionckMode,
|
|
) -> Vec<RegionResolutionError<'tcx>> {
|
|
let (var_infos, data) = {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let inner = &mut *inner;
|
|
assert!(
|
|
self.is_tainted_by_errors() || inner.region_obligations.is_empty(),
|
|
"region_obligations not empty: {:#?}",
|
|
inner.region_obligations
|
|
);
|
|
inner
|
|
.region_constraint_storage
|
|
.take()
|
|
.expect("regions already resolved")
|
|
.with_log(&mut inner.undo_log)
|
|
.into_infos_and_data()
|
|
};
|
|
|
|
let region_rels =
|
|
&RegionRelations::new(self.tcx, region_context, outlives_env.free_region_map());
|
|
|
|
let (lexical_region_resolutions, errors) =
|
|
lexical_region_resolve::resolve(region_rels, var_infos, data, mode);
|
|
|
|
let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
|
|
assert!(old_value.is_none());
|
|
|
|
errors
|
|
}
|
|
|
|
/// Process the region constraints and report any errors that
|
|
/// result. After this, no more unification operations should be
|
|
/// done -- or the compiler will panic -- but it is legal to use
|
|
/// `resolve_vars_if_possible` as well as `fully_resolve`.
|
|
pub fn resolve_regions_and_report_errors(
|
|
&self,
|
|
region_context: DefId,
|
|
outlives_env: &OutlivesEnvironment<'tcx>,
|
|
mode: RegionckMode,
|
|
) {
|
|
let errors = self.resolve_regions(region_context, outlives_env, mode);
|
|
|
|
if !self.is_tainted_by_errors() {
|
|
// As a heuristic, just skip reporting region errors
|
|
// altogether if other errors have been reported while
|
|
// this infcx was in use. This is totally hokey but
|
|
// otherwise we have a hard time separating legit region
|
|
// errors from silly ones.
|
|
self.report_region_errors(&errors);
|
|
}
|
|
}
|
|
|
|
/// Obtains (and clears) the current set of region
|
|
/// constraints. The inference context is still usable: further
|
|
/// unifications will simply add new constraints.
|
|
///
|
|
/// This method is not meant to be used with normal lexical region
|
|
/// resolution. Rather, it is used in the NLL mode as a kind of
|
|
/// interim hack: basically we run normal type-check and generate
|
|
/// region constraints as normal, but then we take them and
|
|
/// translate them into the form that the NLL solver
|
|
/// understands. See the NLL module for mode details.
|
|
pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
|
|
assert!(
|
|
self.inner.borrow().region_obligations.is_empty(),
|
|
"region_obligations not empty: {:#?}",
|
|
self.inner.borrow().region_obligations
|
|
);
|
|
|
|
self.inner.borrow_mut().unwrap_region_constraints().take_and_reset_data()
|
|
}
|
|
|
|
/// Gives temporary access to the region constraint data.
|
|
pub fn with_region_constraints<R>(
|
|
&self,
|
|
op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
|
|
) -> R {
|
|
let mut inner = self.inner.borrow_mut();
|
|
op(inner.unwrap_region_constraints().data())
|
|
}
|
|
|
|
pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let inner = &mut *inner;
|
|
inner
|
|
.region_constraint_storage
|
|
.as_mut()
|
|
.expect("regions already resolved")
|
|
.with_log(&mut inner.undo_log)
|
|
.var_origin(vid)
|
|
}
|
|
|
|
/// Takes ownership of the list of variable regions. This implies
|
|
/// that all the region constraints have already been taken, and
|
|
/// hence that `resolve_regions_and_report_errors` can never be
|
|
/// called. This is used only during NLL processing to "hand off" ownership
|
|
/// of the set of region variables into the NLL region context.
|
|
pub fn take_region_var_origins(&self) -> VarInfos {
|
|
let mut inner = self.inner.borrow_mut();
|
|
let (var_infos, data) = inner
|
|
.region_constraint_storage
|
|
.take()
|
|
.expect("regions already resolved")
|
|
.with_log(&mut inner.undo_log)
|
|
.into_infos_and_data();
|
|
assert!(data.is_empty());
|
|
var_infos
|
|
}
|
|
|
|
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
|
|
self.resolve_vars_if_possible(t).to_string()
|
|
}
|
|
|
|
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
|
|
/// universe index of `TyVar(vid)`.
|
|
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
match self.inner.borrow_mut().type_variables().probe(vid) {
|
|
TypeVariableValue::Known { value } => Ok(value),
|
|
TypeVariableValue::Unknown { universe } => Err(universe),
|
|
}
|
|
}
|
|
|
|
/// Resolve any type variables found in `value` -- but only one
|
|
/// level. So, if the variable `?X` is bound to some type
|
|
/// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
|
|
/// itself be bound to a type).
|
|
///
|
|
/// Useful when you only need to inspect the outermost level of
|
|
/// the type and don't care about nested types (or perhaps you
|
|
/// will be resolving them as well, e.g. in a loop).
|
|
pub fn shallow_resolve<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
value.fold_with(&mut ShallowResolver { infcx: self })
|
|
}
|
|
|
|
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
|
|
self.inner.borrow_mut().type_variables().root_var(var)
|
|
}
|
|
|
|
/// Where possible, replaces type/const variables in
|
|
/// `value` with their final value. Note that region variables
|
|
/// are unaffected. If a type/const variable has not been unified, it
|
|
/// is left as is. This is an idempotent operation that does
|
|
/// not affect inference state in any way and so you can do it
|
|
/// at will.
|
|
pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
if !value.needs_infer() {
|
|
return value; // Avoid duplicated subst-folding.
|
|
}
|
|
let mut r = resolve::OpportunisticVarResolver::new(self);
|
|
value.fold_with(&mut r)
|
|
}
|
|
|
|
/// Returns the first unresolved variable contained in `T`. In the
|
|
/// process of visiting `T`, this will resolve (where possible)
|
|
/// type variables in `T`, but it never constructs the final,
|
|
/// resolved type, so it's more efficient than
|
|
/// `resolve_vars_if_possible()`.
|
|
pub fn unresolved_type_vars<T>(&self, value: &T) -> Option<(Ty<'tcx>, Option<Span>)>
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
value.visit_with(&mut resolve::UnresolvedTypeFinder::new(self)).break_value()
|
|
}
|
|
|
|
pub fn probe_const_var(
|
|
&self,
|
|
vid: ty::ConstVid<'tcx>,
|
|
) -> Result<&'tcx ty::Const<'tcx>, ty::UniverseIndex> {
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
|
|
ConstVariableValue::Known { value } => Ok(value),
|
|
ConstVariableValue::Unknown { universe } => Err(universe),
|
|
}
|
|
}
|
|
|
|
pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: T) -> FixupResult<'tcx, T> {
|
|
/*!
|
|
* Attempts to resolve all type/region/const variables in
|
|
* `value`. Region inference must have been run already (e.g.,
|
|
* by calling `resolve_regions_and_report_errors`). If some
|
|
* variable was never unified, an `Err` results.
|
|
*
|
|
* This method is idempotent, but it not typically not invoked
|
|
* except during the writeback phase.
|
|
*/
|
|
|
|
resolve::fully_resolve(self, value)
|
|
}
|
|
|
|
// [Note-Type-error-reporting]
|
|
// An invariant is that anytime the expected or actual type is Error (the special
|
|
// error type, meaning that an error occurred when typechecking this expression),
|
|
// this is a derived error. The error cascaded from another error (that was already
|
|
// reported), so it's not useful to display it to the user.
|
|
// The following methods implement this logic.
|
|
// They check if either the actual or expected type is Error, and don't print the error
|
|
// in this case. The typechecker should only ever report type errors involving mismatched
|
|
// types using one of these methods, and should not call span_err directly for such
|
|
// errors.
|
|
|
|
pub fn type_error_struct_with_diag<M>(
|
|
&self,
|
|
sp: Span,
|
|
mk_diag: M,
|
|
actual_ty: Ty<'tcx>,
|
|
) -> DiagnosticBuilder<'tcx>
|
|
where
|
|
M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
|
|
{
|
|
let actual_ty = self.resolve_vars_if_possible(actual_ty);
|
|
debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
|
|
|
|
// Don't report an error if actual type is `Error`.
|
|
if actual_ty.references_error() {
|
|
return self.tcx.sess.diagnostic().struct_dummy();
|
|
}
|
|
|
|
mk_diag(self.ty_to_string(actual_ty))
|
|
}
|
|
|
|
pub fn report_mismatched_types(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
expected: Ty<'tcx>,
|
|
actual: Ty<'tcx>,
|
|
err: TypeError<'tcx>,
|
|
) -> DiagnosticBuilder<'tcx> {
|
|
let trace = TypeTrace::types(cause, true, expected, actual);
|
|
self.report_and_explain_type_error(trace, &err)
|
|
}
|
|
|
|
pub fn report_mismatched_consts(
|
|
&self,
|
|
cause: &ObligationCause<'tcx>,
|
|
expected: &'tcx ty::Const<'tcx>,
|
|
actual: &'tcx ty::Const<'tcx>,
|
|
err: TypeError<'tcx>,
|
|
) -> DiagnosticBuilder<'tcx> {
|
|
let trace = TypeTrace::consts(cause, true, expected, actual);
|
|
self.report_and_explain_type_error(trace, &err)
|
|
}
|
|
|
|
pub fn replace_bound_vars_with_fresh_vars<T>(
|
|
&self,
|
|
span: Span,
|
|
lbrct: LateBoundRegionConversionTime,
|
|
value: ty::Binder<'tcx, T>,
|
|
) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
|
|
where
|
|
T: TypeFoldable<'tcx>,
|
|
{
|
|
let fld_r =
|
|
|br: ty::BoundRegion| self.next_region_var(LateBoundRegion(span, br.kind, lbrct));
|
|
let fld_t = |_| {
|
|
self.next_ty_var(TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::MiscVariable,
|
|
span,
|
|
})
|
|
};
|
|
let fld_c = |_, ty| {
|
|
self.next_const_var(
|
|
ty,
|
|
ConstVariableOrigin { kind: ConstVariableOriginKind::MiscVariable, span },
|
|
)
|
|
};
|
|
self.tcx.replace_bound_vars(value, fld_r, fld_t, fld_c)
|
|
}
|
|
|
|
/// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
|
|
pub fn verify_generic_bound(
|
|
&self,
|
|
origin: SubregionOrigin<'tcx>,
|
|
kind: GenericKind<'tcx>,
|
|
a: ty::Region<'tcx>,
|
|
bound: VerifyBound<'tcx>,
|
|
) {
|
|
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
|
|
|
|
self.inner
|
|
.borrow_mut()
|
|
.unwrap_region_constraints()
|
|
.verify_generic_bound(origin, kind, a, bound);
|
|
}
|
|
|
|
/// Obtains the latest type of the given closure; this may be a
|
|
/// closure in the current function, in which case its
|
|
/// `ClosureKind` may not yet be known.
|
|
pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
|
|
let closure_kind_ty = closure_substs.as_closure().kind_ty();
|
|
let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
|
|
closure_kind_ty.to_opt_closure_kind()
|
|
}
|
|
|
|
/// Clears the selection, evaluation, and projection caches. This is useful when
|
|
/// repeatedly attempting to select an `Obligation` while changing only
|
|
/// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
|
|
pub fn clear_caches(&self) {
|
|
self.selection_cache.clear();
|
|
self.evaluation_cache.clear();
|
|
self.inner.borrow_mut().projection_cache().clear();
|
|
}
|
|
|
|
pub fn universe(&self) -> ty::UniverseIndex {
|
|
self.universe.get()
|
|
}
|
|
|
|
/// Creates and return a fresh universe that extends all previous
|
|
/// universes. Updates `self.universe` to that new universe.
|
|
pub fn create_next_universe(&self) -> ty::UniverseIndex {
|
|
let u = self.universe.get().next_universe();
|
|
self.universe.set(u);
|
|
u
|
|
}
|
|
|
|
/// Resolves and evaluates a constant.
|
|
///
|
|
/// The constant can be located on a trait like `<A as B>::C`, in which case the given
|
|
/// substitutions and environment are used to resolve the constant. Alternatively if the
|
|
/// constant has generic parameters in scope the substitutions are used to evaluate the value of
|
|
/// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
|
|
/// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
|
|
/// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
|
|
/// returned.
|
|
///
|
|
/// This handles inferences variables within both `param_env` and `substs` by
|
|
/// performing the operation on their respective canonical forms.
|
|
pub fn const_eval_resolve(
|
|
&self,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
unevaluated: ty::Unevaluated<'tcx>,
|
|
span: Option<Span>,
|
|
) -> EvalToConstValueResult<'tcx> {
|
|
let substs = self.resolve_vars_if_possible(unevaluated.substs);
|
|
|
|
// Postpone the evaluation of constants whose substs depend on inference
|
|
// variables
|
|
if substs.has_infer_types_or_consts() {
|
|
return Err(ErrorHandled::TooGeneric);
|
|
}
|
|
|
|
let param_env_erased = self.tcx.erase_regions(param_env);
|
|
let substs_erased = self.tcx.erase_regions(substs);
|
|
|
|
let unevaluated = ty::Unevaluated {
|
|
def: unevaluated.def,
|
|
substs: substs_erased,
|
|
promoted: unevaluated.promoted,
|
|
};
|
|
|
|
// The return value is the evaluated value which doesn't contain any reference to inference
|
|
// variables, thus we don't need to substitute back the original values.
|
|
self.tcx.const_eval_resolve(param_env_erased, unevaluated, span)
|
|
}
|
|
|
|
/// If `typ` is a type variable of some kind, resolve it one level
|
|
/// (but do not resolve types found in the result). If `typ` is
|
|
/// not a type variable, just return it unmodified.
|
|
// FIXME(eddyb) inline into `ShallowResolver::visit_ty`.
|
|
fn shallow_resolve_ty(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
|
|
match *typ.kind() {
|
|
ty::Infer(ty::TyVar(v)) => {
|
|
// Not entirely obvious: if `typ` is a type variable,
|
|
// it can be resolved to an int/float variable, which
|
|
// can then be recursively resolved, hence the
|
|
// recursion. Note though that we prevent type
|
|
// variables from unifying to other type variables
|
|
// directly (though they may be embedded
|
|
// structurally), and we prevent cycles in any case,
|
|
// so this recursion should always be of very limited
|
|
// depth.
|
|
//
|
|
// Note: if these two lines are combined into one we get
|
|
// dynamic borrow errors on `self.inner`.
|
|
let known = self.inner.borrow_mut().type_variables().probe(v).known();
|
|
known.map_or(typ, |t| self.shallow_resolve_ty(t))
|
|
}
|
|
|
|
ty::Infer(ty::IntVar(v)) => self
|
|
.inner
|
|
.borrow_mut()
|
|
.int_unification_table()
|
|
.probe_value(v)
|
|
.map(|v| v.to_type(self.tcx))
|
|
.unwrap_or(typ),
|
|
|
|
ty::Infer(ty::FloatVar(v)) => self
|
|
.inner
|
|
.borrow_mut()
|
|
.float_unification_table()
|
|
.probe_value(v)
|
|
.map(|v| v.to_type(self.tcx))
|
|
.unwrap_or(typ),
|
|
|
|
_ => typ,
|
|
}
|
|
}
|
|
|
|
/// `ty_or_const_infer_var_changed` is equivalent to one of these two:
|
|
/// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
|
|
/// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
|
|
///
|
|
/// However, `ty_or_const_infer_var_changed` is more efficient. It's always
|
|
/// inlined, despite being large, because it has only two call sites that
|
|
/// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
|
|
/// inference variables), and it handles both `Ty` and `ty::Const` without
|
|
/// having to resort to storing full `GenericArg`s in `stalled_on`.
|
|
#[inline(always)]
|
|
pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
|
|
match infer_var {
|
|
TyOrConstInferVar::Ty(v) => {
|
|
use self::type_variable::TypeVariableValue;
|
|
|
|
// If `inlined_probe` returns a `Known` value, it never equals
|
|
// `ty::Infer(ty::TyVar(v))`.
|
|
match self.inner.borrow_mut().type_variables().inlined_probe(v) {
|
|
TypeVariableValue::Unknown { .. } => false,
|
|
TypeVariableValue::Known { .. } => true,
|
|
}
|
|
}
|
|
|
|
TyOrConstInferVar::TyInt(v) => {
|
|
// If `inlined_probe_value` returns a value it's always a
|
|
// `ty::Int(_)` or `ty::UInt(_)`, which never matches a
|
|
// `ty::Infer(_)`.
|
|
self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
|
|
}
|
|
|
|
TyOrConstInferVar::TyFloat(v) => {
|
|
// If `probe_value` returns a value it's always a
|
|
// `ty::Float(_)`, which never matches a `ty::Infer(_)`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
|
|
}
|
|
|
|
TyOrConstInferVar::Const(v) => {
|
|
// If `probe_value` returns a `Known` value, it never equals
|
|
// `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
|
|
//
|
|
// Not `inlined_probe_value(v)` because this call site is colder.
|
|
match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
|
|
ConstVariableValue::Unknown { .. } => false,
|
|
ConstVariableValue::Known { .. } => true,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper for `ty_or_const_infer_var_changed` (see comment on that), currently
|
|
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum TyOrConstInferVar<'tcx> {
|
|
/// Equivalent to `ty::Infer(ty::TyVar(_))`.
|
|
Ty(TyVid),
|
|
/// Equivalent to `ty::Infer(ty::IntVar(_))`.
|
|
TyInt(IntVid),
|
|
/// Equivalent to `ty::Infer(ty::FloatVar(_))`.
|
|
TyFloat(FloatVid),
|
|
|
|
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
|
|
Const(ConstVid<'tcx>),
|
|
}
|
|
|
|
impl<'tcx> TyOrConstInferVar<'tcx> {
|
|
/// Tries to extract an inference variable from a type or a constant, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
|
|
match arg.unpack() {
|
|
GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
|
|
GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
|
|
GenericArgKind::Lifetime(_) => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a type, returns `None`
|
|
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
|
|
pub fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
|
|
match *ty.kind() {
|
|
ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
|
|
ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
|
|
ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to extract an inference variable from a constant, returns `None`
|
|
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
|
|
pub fn maybe_from_const(ct: &'tcx ty::Const<'tcx>) -> Option<Self> {
|
|
match ct.val {
|
|
ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ShallowResolver<'a, 'tcx> {
|
|
infcx: &'a InferCtxt<'a, 'tcx>,
|
|
}
|
|
|
|
impl<'a, 'tcx> TypeFolder<'tcx> for ShallowResolver<'a, 'tcx> {
|
|
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
|
|
self.infcx.tcx
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
self.infcx.shallow_resolve_ty(ty)
|
|
}
|
|
|
|
fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
|
|
if let ty::Const { val: ty::ConstKind::Infer(InferConst::Var(vid)), .. } = ct {
|
|
self.infcx
|
|
.inner
|
|
.borrow_mut()
|
|
.const_unification_table()
|
|
.probe_value(*vid)
|
|
.val
|
|
.known()
|
|
.unwrap_or(ct)
|
|
} else {
|
|
ct
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeTrace<'tcx> {
|
|
pub fn span(&self) -> Span {
|
|
self.cause.span
|
|
}
|
|
|
|
pub fn types(
|
|
cause: &ObligationCause<'tcx>,
|
|
a_is_expected: bool,
|
|
a: Ty<'tcx>,
|
|
b: Ty<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace { cause: cause.clone(), values: Types(ExpectedFound::new(a_is_expected, a, b)) }
|
|
}
|
|
|
|
pub fn consts(
|
|
cause: &ObligationCause<'tcx>,
|
|
a_is_expected: bool,
|
|
a: &'tcx ty::Const<'tcx>,
|
|
b: &'tcx ty::Const<'tcx>,
|
|
) -> TypeTrace<'tcx> {
|
|
TypeTrace { cause: cause.clone(), values: Consts(ExpectedFound::new(a_is_expected, a, b)) }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> SubregionOrigin<'tcx> {
|
|
pub fn span(&self) -> Span {
|
|
match *self {
|
|
Subtype(ref a) => a.span(),
|
|
RelateObjectBound(a) => a,
|
|
RelateParamBound(a, ..) => a,
|
|
RelateRegionParamBound(a) => a,
|
|
Reborrow(a) => a,
|
|
ReborrowUpvar(a, _) => a,
|
|
DataBorrowed(_, a) => a,
|
|
ReferenceOutlivesReferent(_, a) => a,
|
|
CompareImplMethodObligation { span, .. } => span,
|
|
CompareImplTypeObligation { span, .. } => span,
|
|
}
|
|
}
|
|
|
|
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
|
|
where
|
|
F: FnOnce() -> Self,
|
|
{
|
|
match *cause.code() {
|
|
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
|
|
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
|
|
}
|
|
|
|
traits::ObligationCauseCode::CompareImplMethodObligation {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
} => SubregionOrigin::CompareImplMethodObligation {
|
|
span: cause.span,
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
},
|
|
|
|
traits::ObligationCauseCode::CompareImplTypeObligation {
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
} => SubregionOrigin::CompareImplTypeObligation {
|
|
span: cause.span,
|
|
impl_item_def_id,
|
|
trait_item_def_id,
|
|
},
|
|
|
|
_ => default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl RegionVariableOrigin {
|
|
pub fn span(&self) -> Span {
|
|
match *self {
|
|
MiscVariable(a)
|
|
| PatternRegion(a)
|
|
| AddrOfRegion(a)
|
|
| Autoref(a)
|
|
| Coercion(a)
|
|
| EarlyBoundRegion(a, ..)
|
|
| LateBoundRegion(a, ..)
|
|
| UpvarRegion(_, a) => a,
|
|
Nll(..) => bug!("NLL variable used with `span`"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(
|
|
f,
|
|
"RegionObligation(sub_region={:?}, sup_type={:?})",
|
|
self.sub_region, self.sup_type
|
|
)
|
|
}
|
|
}
|