mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-26 00:34:06 +00:00
318 lines
12 KiB
Rust
318 lines
12 KiB
Rust
//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
|
|
//! fields. This file defines types that represent patterns in this way.
|
|
use std::fmt;
|
|
|
|
use smallvec::{smallvec, SmallVec};
|
|
|
|
use crate::constructor::{Constructor, Slice, SliceKind};
|
|
use crate::TypeCx;
|
|
|
|
use self::Constructor::*;
|
|
|
|
/// A globally unique id to distinguish patterns.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub(crate) struct PatId(u32);
|
|
impl PatId {
|
|
fn new() -> Self {
|
|
use std::sync::atomic::{AtomicU32, Ordering};
|
|
static PAT_ID: AtomicU32 = AtomicU32::new(0);
|
|
PatId(PAT_ID.fetch_add(1, Ordering::SeqCst))
|
|
}
|
|
}
|
|
|
|
/// Values and patterns can be represented as a constructor applied to some fields. This represents
|
|
/// a pattern in this form. A `DeconstructedPat` will almost always come from user input; the only
|
|
/// exception are some `Wildcard`s introduced during pattern lowering.
|
|
///
|
|
/// Note that the number of fields may not match the fields declared in the original struct/variant.
|
|
/// This happens if a private or `non_exhaustive` field is uninhabited, because the code mustn't
|
|
/// observe that it is uninhabited. In that case that field is not included in `fields`. Care must
|
|
/// be taken when converting to/from `thir::Pat`.
|
|
pub struct DeconstructedPat<Cx: TypeCx> {
|
|
ctor: Constructor<Cx>,
|
|
fields: Vec<DeconstructedPat<Cx>>,
|
|
ty: Cx::Ty,
|
|
/// Extra data to store in a pattern. `None` if the pattern is a wildcard that does not
|
|
/// correspond to a user-supplied pattern.
|
|
data: Option<Cx::PatData>,
|
|
/// Globally-unique id used to track usefulness at the level of subpatterns.
|
|
pub(crate) uid: PatId,
|
|
}
|
|
|
|
impl<Cx: TypeCx> DeconstructedPat<Cx> {
|
|
pub fn wildcard(ty: Cx::Ty) -> Self {
|
|
DeconstructedPat { ctor: Wildcard, fields: Vec::new(), ty, data: None, uid: PatId::new() }
|
|
}
|
|
|
|
pub fn new(
|
|
ctor: Constructor<Cx>,
|
|
fields: Vec<DeconstructedPat<Cx>>,
|
|
ty: Cx::Ty,
|
|
data: Cx::PatData,
|
|
) -> Self {
|
|
DeconstructedPat { ctor, fields, ty, data: Some(data), uid: PatId::new() }
|
|
}
|
|
|
|
pub(crate) fn is_or_pat(&self) -> bool {
|
|
matches!(self.ctor, Or)
|
|
}
|
|
|
|
pub fn ctor(&self) -> &Constructor<Cx> {
|
|
&self.ctor
|
|
}
|
|
pub fn ty(&self) -> &Cx::Ty {
|
|
&self.ty
|
|
}
|
|
/// Returns the extra data stored in a pattern. Returns `None` if the pattern is a wildcard that
|
|
/// does not correspond to a user-supplied pattern.
|
|
pub fn data(&self) -> Option<&Cx::PatData> {
|
|
self.data.as_ref()
|
|
}
|
|
|
|
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a DeconstructedPat<Cx>> {
|
|
self.fields.iter()
|
|
}
|
|
|
|
/// Specialize this pattern with a constructor.
|
|
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
|
|
pub(crate) fn specialize<'a>(
|
|
&'a self,
|
|
other_ctor: &Constructor<Cx>,
|
|
ctor_arity: usize,
|
|
) -> SmallVec<[PatOrWild<'a, Cx>; 2]> {
|
|
let wildcard_sub_tys = || (0..ctor_arity).map(|_| PatOrWild::Wild).collect();
|
|
match (&self.ctor, other_ctor) {
|
|
// Return a wildcard for each field of `other_ctor`.
|
|
(Wildcard, _) => wildcard_sub_tys(),
|
|
// The only non-trivial case: two slices of different arity. `other_slice` is
|
|
// guaranteed to have a larger arity, so we fill the middle part with enough
|
|
// wildcards to reach the length of the new, larger slice.
|
|
(
|
|
&Slice(self_slice @ Slice { kind: SliceKind::VarLen(prefix, suffix), .. }),
|
|
&Slice(other_slice),
|
|
) if self_slice.arity() != other_slice.arity() => {
|
|
// Start with a slice of wildcards of the appropriate length.
|
|
let mut fields: SmallVec<[_; 2]> = wildcard_sub_tys();
|
|
// Fill in the fields from both ends.
|
|
let new_arity = fields.len();
|
|
for i in 0..prefix {
|
|
fields[i] = PatOrWild::Pat(&self.fields[i]);
|
|
}
|
|
for i in 0..suffix {
|
|
fields[new_arity - 1 - i] =
|
|
PatOrWild::Pat(&self.fields[self.fields.len() - 1 - i]);
|
|
}
|
|
fields
|
|
}
|
|
_ => self.fields.iter().map(PatOrWild::Pat).collect(),
|
|
}
|
|
}
|
|
|
|
/// Walk top-down and call `it` in each place where a pattern occurs
|
|
/// starting with the root pattern `walk` is called on. If `it` returns
|
|
/// false then we will descend no further but siblings will be processed.
|
|
pub fn walk<'a>(&'a self, it: &mut impl FnMut(&'a Self) -> bool) {
|
|
if !it(self) {
|
|
return;
|
|
}
|
|
|
|
for p in self.iter_fields() {
|
|
p.walk(it)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This is best effort and not good enough for a `Display` impl.
|
|
impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
let pat = self;
|
|
let mut first = true;
|
|
let mut start_or_continue = |s| {
|
|
if first {
|
|
first = false;
|
|
""
|
|
} else {
|
|
s
|
|
}
|
|
};
|
|
let mut start_or_comma = || start_or_continue(", ");
|
|
|
|
match pat.ctor() {
|
|
Struct | Variant(_) | UnionField => {
|
|
Cx::write_variant_name(f, pat)?;
|
|
// Without `cx`, we can't know which field corresponds to which, so we can't
|
|
// get the names of the fields. Instead we just display everything as a tuple
|
|
// struct, which should be good enough.
|
|
write!(f, "(")?;
|
|
for p in pat.iter_fields() {
|
|
write!(f, "{}", start_or_comma())?;
|
|
write!(f, "{p:?}")?;
|
|
}
|
|
write!(f, ")")
|
|
}
|
|
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
|
// be careful to detect strings here. However a string literal pattern will never
|
|
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
|
|
Ref => {
|
|
let subpattern = pat.iter_fields().next().unwrap();
|
|
write!(f, "&{:?}", subpattern)
|
|
}
|
|
Slice(slice) => {
|
|
let mut subpatterns = pat.iter_fields();
|
|
write!(f, "[")?;
|
|
match slice.kind {
|
|
SliceKind::FixedLen(_) => {
|
|
for p in subpatterns {
|
|
write!(f, "{}{:?}", start_or_comma(), p)?;
|
|
}
|
|
}
|
|
SliceKind::VarLen(prefix_len, _) => {
|
|
for p in subpatterns.by_ref().take(prefix_len) {
|
|
write!(f, "{}{:?}", start_or_comma(), p)?;
|
|
}
|
|
write!(f, "{}", start_or_comma())?;
|
|
write!(f, "..")?;
|
|
for p in subpatterns {
|
|
write!(f, "{}{:?}", start_or_comma(), p)?;
|
|
}
|
|
}
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
Bool(b) => write!(f, "{b}"),
|
|
// Best-effort, will render signed ranges incorrectly
|
|
IntRange(range) => write!(f, "{range:?}"),
|
|
F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
|
F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
|
Str(value) => write!(f, "{value:?}"),
|
|
Opaque(..) => write!(f, "<constant pattern>"),
|
|
Or => {
|
|
for pat in pat.iter_fields() {
|
|
write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", pat.ty()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Represents either a pattern obtained from user input or a wildcard constructed during the
|
|
/// algorithm. Do not use `Wild` to represent a wildcard pattern comping from user input.
|
|
///
|
|
/// This is morally `Option<&'p DeconstructedPat>` where `None` is interpreted as a wildcard.
|
|
pub(crate) enum PatOrWild<'p, Cx: TypeCx> {
|
|
/// A non-user-provided wildcard, created during specialization.
|
|
Wild,
|
|
/// A user-provided pattern.
|
|
Pat(&'p DeconstructedPat<Cx>),
|
|
}
|
|
|
|
impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> {
|
|
fn clone(&self) -> Self {
|
|
match self {
|
|
PatOrWild::Wild => PatOrWild::Wild,
|
|
PatOrWild::Pat(pat) => PatOrWild::Pat(pat),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'p, Cx: TypeCx> Copy for PatOrWild<'p, Cx> {}
|
|
|
|
impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
|
|
pub(crate) fn as_pat(&self) -> Option<&'p DeconstructedPat<Cx>> {
|
|
match self {
|
|
PatOrWild::Wild => None,
|
|
PatOrWild::Pat(pat) => Some(pat),
|
|
}
|
|
}
|
|
pub(crate) fn ctor(self) -> &'p Constructor<Cx> {
|
|
match self {
|
|
PatOrWild::Wild => &Wildcard,
|
|
PatOrWild::Pat(pat) => pat.ctor(),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn is_or_pat(&self) -> bool {
|
|
match self {
|
|
PatOrWild::Wild => false,
|
|
PatOrWild::Pat(pat) => pat.is_or_pat(),
|
|
}
|
|
}
|
|
|
|
/// Expand this (possibly-nested) or-pattern into its alternatives.
|
|
pub(crate) fn flatten_or_pat(self) -> SmallVec<[Self; 1]> {
|
|
match self {
|
|
PatOrWild::Pat(pat) if pat.is_or_pat() => {
|
|
pat.iter_fields().flat_map(|p| PatOrWild::Pat(p).flatten_or_pat()).collect()
|
|
}
|
|
_ => smallvec![self],
|
|
}
|
|
}
|
|
|
|
/// Specialize this pattern with a constructor.
|
|
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
|
|
pub(crate) fn specialize(
|
|
&self,
|
|
other_ctor: &Constructor<Cx>,
|
|
ctor_arity: usize,
|
|
) -> SmallVec<[PatOrWild<'p, Cx>; 2]> {
|
|
match self {
|
|
PatOrWild::Wild => (0..ctor_arity).map(|_| PatOrWild::Wild).collect(),
|
|
PatOrWild::Pat(pat) => pat.specialize(other_ctor, ctor_arity),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
PatOrWild::Wild => write!(f, "_"),
|
|
PatOrWild::Pat(pat) => pat.fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
|
|
/// purposes. As such they don't use interning and can be cloned.
|
|
#[derive(Debug)]
|
|
pub struct WitnessPat<Cx: TypeCx> {
|
|
ctor: Constructor<Cx>,
|
|
pub(crate) fields: Vec<WitnessPat<Cx>>,
|
|
ty: Cx::Ty,
|
|
}
|
|
|
|
impl<Cx: TypeCx> Clone for WitnessPat<Cx> {
|
|
fn clone(&self) -> Self {
|
|
Self { ctor: self.ctor.clone(), fields: self.fields.clone(), ty: self.ty.clone() }
|
|
}
|
|
}
|
|
|
|
impl<Cx: TypeCx> WitnessPat<Cx> {
|
|
pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self {
|
|
Self { ctor, fields, ty }
|
|
}
|
|
pub(crate) fn wildcard(ty: Cx::Ty) -> Self {
|
|
Self::new(Wildcard, Vec::new(), ty)
|
|
}
|
|
|
|
/// Construct a pattern that matches everything that starts with this constructor.
|
|
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
|
|
/// `Some(_)`.
|
|
pub(crate) fn wild_from_ctor(cx: &Cx, ctor: Constructor<Cx>, ty: Cx::Ty) -> Self {
|
|
let fields = cx.ctor_sub_tys(&ctor, &ty).map(|ty| Self::wildcard(ty)).collect();
|
|
Self::new(ctor, fields, ty)
|
|
}
|
|
|
|
pub fn ctor(&self) -> &Constructor<Cx> {
|
|
&self.ctor
|
|
}
|
|
pub fn ty(&self) -> &Cx::Ty {
|
|
&self.ty
|
|
}
|
|
|
|
pub fn iter_fields(&self) -> impl Iterator<Item = &WitnessPat<Cx>> {
|
|
self.fields.iter()
|
|
}
|
|
}
|