rust/library/std/src/env.rs
2020-09-04 14:00:09 -07:00

949 lines
27 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Inspection and manipulation of the process's environment.
//!
//! This module contains functions to inspect various aspects such as
//! environment variables, process arguments, the current directory, and various
//! other important directories.
//!
//! There are several functions and structs in this module that have a
//! counterpart ending in `os`. Those ending in `os` will return an [`OsString`]
//! and those without will return a [`String`].
#![stable(feature = "env", since = "1.0.0")]
#[cfg(test)]
mod tests;
use crate::error::Error;
use crate::ffi::{OsStr, OsString};
use crate::fmt;
use crate::io;
use crate::path::{Path, PathBuf};
use crate::sys;
use crate::sys::os as os_imp;
/// Returns the current working directory as a [`PathBuf`].
///
/// # Errors
///
/// Returns an [`Err`] if the current working directory value is invalid.
/// Possible cases:
///
/// * Current directory does not exist.
/// * There are insufficient permissions to access the current directory.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// fn main() -> std::io::Result<()> {
/// let path = env::current_dir()?;
/// println!("The current directory is {}", path.display());
/// Ok(())
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn current_dir() -> io::Result<PathBuf> {
os_imp::getcwd()
}
/// Changes the current working directory to the specified path.
///
/// Returns an [`Err`] if the operation fails.
///
/// # Examples
///
/// ```
/// use std::env;
/// use std::path::Path;
///
/// let root = Path::new("/");
/// assert!(env::set_current_dir(&root).is_ok());
/// println!("Successfully changed working directory to {}!", root.display());
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn set_current_dir<P: AsRef<Path>>(path: P) -> io::Result<()> {
os_imp::chdir(path.as_ref())
}
/// An iterator over a snapshot of the environment variables of this process.
///
/// This structure is created by [`env::vars()`]. See its documentation for more.
///
/// [`env::vars()`]: vars
#[stable(feature = "env", since = "1.0.0")]
pub struct Vars {
inner: VarsOs,
}
/// An iterator over a snapshot of the environment variables of this process.
///
/// This structure is created by [`env::vars_os()`]. See its documentation for more.
///
/// [`env::vars_os()`]: vars_os
#[stable(feature = "env", since = "1.0.0")]
pub struct VarsOs {
inner: os_imp::Env,
}
/// Returns an iterator of (variable, value) pairs of strings, for all the
/// environment variables of the current process.
///
/// The returned iterator contains a snapshot of the process's environment
/// variables at the time of this invocation. Modifications to environment
/// variables afterwards will not be reflected in the returned iterator.
///
/// # Panics
///
/// While iterating, the returned iterator will panic if any key or value in the
/// environment is not valid unicode. If this is not desired, consider using
/// [`env::vars_os()`].
///
/// # Examples
///
/// ```
/// use std::env;
///
/// // We will iterate through the references to the element returned by
/// // env::vars();
/// for (key, value) in env::vars() {
/// println!("{}: {}", key, value);
/// }
/// ```
///
/// [`env::vars_os()`]: vars_os
#[stable(feature = "env", since = "1.0.0")]
pub fn vars() -> Vars {
Vars { inner: vars_os() }
}
/// Returns an iterator of (variable, value) pairs of OS strings, for all the
/// environment variables of the current process.
///
/// The returned iterator contains a snapshot of the process's environment
/// variables at the time of this invocation. Modifications to environment
/// variables afterwards will not be reflected in the returned iterator.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// // We will iterate through the references to the element returned by
/// // env::vars_os();
/// for (key, value) in env::vars_os() {
/// println!("{:?}: {:?}", key, value);
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn vars_os() -> VarsOs {
VarsOs { inner: os_imp::env() }
}
#[stable(feature = "env", since = "1.0.0")]
impl Iterator for Vars {
type Item = (String, String);
fn next(&mut self) -> Option<(String, String)> {
self.inner.next().map(|(a, b)| (a.into_string().unwrap(), b.into_string().unwrap()))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Vars {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Vars { .. }")
}
}
#[stable(feature = "env", since = "1.0.0")]
impl Iterator for VarsOs {
type Item = (OsString, OsString);
fn next(&mut self) -> Option<(OsString, OsString)> {
self.inner.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for VarsOs {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("VarsOs { .. }")
}
}
/// Fetches the environment variable `key` from the current process.
///
/// # Errors
///
/// * Environment variable is not present
/// * Environment variable is not valid unicode
///
/// # Panics
///
/// This function may panic if `key` is empty, contains an ASCII equals sign
/// `'='` or the NUL character `'\0'`, or when the value contains the NUL
/// character.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// let key = "HOME";
/// match env::var(key) {
/// Ok(val) => println!("{}: {:?}", key, val),
/// Err(e) => println!("couldn't interpret {}: {}", key, e),
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn var<K: AsRef<OsStr>>(key: K) -> Result<String, VarError> {
_var(key.as_ref())
}
fn _var(key: &OsStr) -> Result<String, VarError> {
match var_os(key) {
Some(s) => s.into_string().map_err(VarError::NotUnicode),
None => Err(VarError::NotPresent),
}
}
/// Fetches the environment variable `key` from the current process, returning
/// [`None`] if the variable isn't set.
///
/// # Panics
///
/// This function may panic if `key` is empty, contains an ASCII equals sign
/// `'='` or the NUL character `'\0'`, or when the value contains the NUL
/// character.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// let key = "HOME";
/// match env::var_os(key) {
/// Some(val) => println!("{}: {:?}", key, val),
/// None => println!("{} is not defined in the environment.", key)
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn var_os<K: AsRef<OsStr>>(key: K) -> Option<OsString> {
_var_os(key.as_ref())
}
fn _var_os(key: &OsStr) -> Option<OsString> {
os_imp::getenv(key)
.unwrap_or_else(|e| panic!("failed to get environment variable `{:?}`: {}", key, e))
}
/// The error type for operations interacting with environment variables.
/// Possibly returned from [`env::var()`].
///
/// [`env::var()`]: var
#[derive(Debug, PartialEq, Eq, Clone)]
#[stable(feature = "env", since = "1.0.0")]
pub enum VarError {
/// The specified environment variable was not present in the current
/// process's environment.
#[stable(feature = "env", since = "1.0.0")]
NotPresent,
/// The specified environment variable was found, but it did not contain
/// valid unicode data. The found data is returned as a payload of this
/// variant.
#[stable(feature = "env", since = "1.0.0")]
NotUnicode(#[stable(feature = "env", since = "1.0.0")] OsString),
}
#[stable(feature = "env", since = "1.0.0")]
impl fmt::Display for VarError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
VarError::NotPresent => write!(f, "environment variable not found"),
VarError::NotUnicode(ref s) => {
write!(f, "environment variable was not valid unicode: {:?}", s)
}
}
}
}
#[stable(feature = "env", since = "1.0.0")]
impl Error for VarError {
#[allow(deprecated)]
fn description(&self) -> &str {
match *self {
VarError::NotPresent => "environment variable not found",
VarError::NotUnicode(..) => "environment variable was not valid unicode",
}
}
}
/// Sets the environment variable `k` to the value `v` for the currently running
/// process.
///
/// Note that while concurrent access to environment variables is safe in Rust,
/// some platforms only expose inherently unsafe non-threadsafe APIs for
/// inspecting the environment. As a result, extra care needs to be taken when
/// auditing calls to unsafe external FFI functions to ensure that any external
/// environment accesses are properly synchronized with accesses in Rust.
///
/// Discussion of this unsafety on Unix may be found in:
///
/// - [Austin Group Bugzilla](http://austingroupbugs.net/view.php?id=188)
/// - [GNU C library Bugzilla](https://sourceware.org/bugzilla/show_bug.cgi?id=15607#c2)
///
/// # Panics
///
/// This function may panic if `key` is empty, contains an ASCII equals sign
/// `'='` or the NUL character `'\0'`, or when the value contains the NUL
/// character.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// let key = "KEY";
/// env::set_var(key, "VALUE");
/// assert_eq!(env::var(key), Ok("VALUE".to_string()));
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn set_var<K: AsRef<OsStr>, V: AsRef<OsStr>>(k: K, v: V) {
_set_var(k.as_ref(), v.as_ref())
}
fn _set_var(k: &OsStr, v: &OsStr) {
os_imp::setenv(k, v).unwrap_or_else(|e| {
panic!("failed to set environment variable `{:?}` to `{:?}`: {}", k, v, e)
})
}
/// Removes an environment variable from the environment of the currently running process.
///
/// Note that while concurrent access to environment variables is safe in Rust,
/// some platforms only expose inherently unsafe non-threadsafe APIs for
/// inspecting the environment. As a result extra care needs to be taken when
/// auditing calls to unsafe external FFI functions to ensure that any external
/// environment accesses are properly synchronized with accesses in Rust.
///
/// Discussion of this unsafety on Unix may be found in:
///
/// - [Austin Group Bugzilla](http://austingroupbugs.net/view.php?id=188)
/// - [GNU C library Bugzilla](https://sourceware.org/bugzilla/show_bug.cgi?id=15607#c2)
///
/// # Panics
///
/// This function may panic if `key` is empty, contains an ASCII equals sign
/// `'='` or the NUL character `'\0'`, or when the value contains the NUL
/// character.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// let key = "KEY";
/// env::set_var(key, "VALUE");
/// assert_eq!(env::var(key), Ok("VALUE".to_string()));
///
/// env::remove_var(key);
/// assert!(env::var(key).is_err());
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn remove_var<K: AsRef<OsStr>>(k: K) {
_remove_var(k.as_ref())
}
fn _remove_var(k: &OsStr) {
os_imp::unsetenv(k)
.unwrap_or_else(|e| panic!("failed to remove environment variable `{:?}`: {}", k, e))
}
/// An iterator that splits an environment variable into paths according to
/// platform-specific conventions.
///
/// The iterator element type is [`PathBuf`].
///
/// This structure is created by [`env::split_paths()`]. See its
/// documentation for more.
///
/// [`env::split_paths()`]: split_paths
#[stable(feature = "env", since = "1.0.0")]
pub struct SplitPaths<'a> {
inner: os_imp::SplitPaths<'a>,
}
/// Parses input according to platform conventions for the `PATH`
/// environment variable.
///
/// Returns an iterator over the paths contained in `unparsed`. The iterator
/// element type is [`PathBuf`].
///
/// # Examples
///
/// ```
/// use std::env;
///
/// let key = "PATH";
/// match env::var_os(key) {
/// Some(paths) => {
/// for path in env::split_paths(&paths) {
/// println!("'{}'", path.display());
/// }
/// }
/// None => println!("{} is not defined in the environment.", key)
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn split_paths<T: AsRef<OsStr> + ?Sized>(unparsed: &T) -> SplitPaths<'_> {
SplitPaths { inner: os_imp::split_paths(unparsed.as_ref()) }
}
#[stable(feature = "env", since = "1.0.0")]
impl<'a> Iterator for SplitPaths<'a> {
type Item = PathBuf;
fn next(&mut self) -> Option<PathBuf> {
self.inner.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for SplitPaths<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("SplitPaths { .. }")
}
}
/// The error type for operations on the `PATH` variable. Possibly returned from
/// [`env::join_paths()`].
///
/// [`env::join_paths()`]: join_paths
#[derive(Debug)]
#[stable(feature = "env", since = "1.0.0")]
pub struct JoinPathsError {
inner: os_imp::JoinPathsError,
}
/// Joins a collection of [`Path`]s appropriately for the `PATH`
/// environment variable.
///
/// # Errors
///
/// Returns an [`Err`] (containing an error message) if one of the input
/// [`Path`]s contains an invalid character for constructing the `PATH`
/// variable (a double quote on Windows or a colon on Unix).
///
/// # Examples
///
/// Joining paths on a Unix-like platform:
///
/// ```
/// use std::env;
/// use std::ffi::OsString;
/// use std::path::Path;
///
/// fn main() -> Result<(), env::JoinPathsError> {
/// # if cfg!(unix) {
/// let paths = [Path::new("/bin"), Path::new("/usr/bin")];
/// let path_os_string = env::join_paths(paths.iter())?;
/// assert_eq!(path_os_string, OsString::from("/bin:/usr/bin"));
/// # }
/// Ok(())
/// }
/// ```
///
/// Joining a path containing a colon on a Unix-like platform results in an
/// error:
///
/// ```
/// # if cfg!(unix) {
/// use std::env;
/// use std::path::Path;
///
/// let paths = [Path::new("/bin"), Path::new("/usr/bi:n")];
/// assert!(env::join_paths(paths.iter()).is_err());
/// # }
/// ```
///
/// Using `env::join_paths()` with [`env::split_paths()`] to append an item to
/// the `PATH` environment variable:
///
/// ```
/// use std::env;
/// use std::path::PathBuf;
///
/// fn main() -> Result<(), env::JoinPathsError> {
/// if let Some(path) = env::var_os("PATH") {
/// let mut paths = env::split_paths(&path).collect::<Vec<_>>();
/// paths.push(PathBuf::from("/home/xyz/bin"));
/// let new_path = env::join_paths(paths)?;
/// env::set_var("PATH", &new_path);
/// }
///
/// Ok(())
/// }
/// ```
///
/// [`env::split_paths()`]: split_paths
#[stable(feature = "env", since = "1.0.0")]
pub fn join_paths<I, T>(paths: I) -> Result<OsString, JoinPathsError>
where
I: IntoIterator<Item = T>,
T: AsRef<OsStr>,
{
os_imp::join_paths(paths.into_iter()).map_err(|e| JoinPathsError { inner: e })
}
#[stable(feature = "env", since = "1.0.0")]
impl fmt::Display for JoinPathsError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.inner.fmt(f)
}
}
#[stable(feature = "env", since = "1.0.0")]
impl Error for JoinPathsError {
#[allow(deprecated, deprecated_in_future)]
fn description(&self) -> &str {
self.inner.description()
}
}
/// Returns the path of the current user's home directory if known.
///
/// # Unix
///
/// - Returns the value of the 'HOME' environment variable if it is set
/// (including to an empty string).
/// - Otherwise, it tries to determine the home directory by invoking the `getpwuid_r` function
/// using the UID of the current user. An empty home directory field returned from the
/// `getpwuid_r` function is considered to be a valid value.
/// - Returns `None` if the current user has no entry in the /etc/passwd file.
///
/// # Windows
///
/// - Returns the value of the 'HOME' environment variable if it is set
/// (including to an empty string).
/// - Otherwise, returns the value of the 'USERPROFILE' environment variable if it is set
/// (including to an empty string).
/// - If both do not exist, [`GetUserProfileDirectory`][msdn] is used to return the path.
///
/// [msdn]: https://docs.microsoft.com/en-us/windows/win32/api/userenv/nf-userenv-getuserprofiledirectorya
///
/// # Examples
///
/// ```
/// use std::env;
///
/// match env::home_dir() {
/// Some(path) => println!("Your home directory, probably: {}", path.display()),
/// None => println!("Impossible to get your home dir!"),
/// }
/// ```
#[rustc_deprecated(
since = "1.29.0",
reason = "This function's behavior is unexpected and probably not what you want. \
Consider using a crate from crates.io instead."
)]
#[stable(feature = "env", since = "1.0.0")]
pub fn home_dir() -> Option<PathBuf> {
os_imp::home_dir()
}
/// Returns the path of a temporary directory.
///
/// # Unix
///
/// Returns the value of the `TMPDIR` environment variable if it is
/// set, otherwise for non-Android it returns `/tmp`. If Android, since there
/// is no global temporary folder (it is usually allocated per-app), it returns
/// `/data/local/tmp`.
///
/// # Windows
///
/// Returns the value of, in order, the `TMP`, `TEMP`,
/// `USERPROFILE` environment variable if any are set and not the empty
/// string. Otherwise, `temp_dir` returns the path of the Windows directory.
/// This behavior is identical to that of [`GetTempPath`][msdn], which this
/// function uses internally.
///
/// [msdn]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-gettemppatha
///
/// ```no_run
/// use std::env;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let mut dir = env::temp_dir();
/// dir.push("foo.txt");
///
/// let f = File::create(dir)?;
/// Ok(())
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn temp_dir() -> PathBuf {
os_imp::temp_dir()
}
/// Returns the full filesystem path of the current running executable.
///
/// # Platform-specific behavior
///
/// If the executable was invoked through a symbolic link, some platforms will
/// return the path of the symbolic link and other platforms will return the
/// path of the symbolic links target.
///
/// # Errors
///
/// Acquiring the path of the current executable is a platform-specific operation
/// that can fail for a good number of reasons. Some errors can include, but not
/// be limited to, filesystem operations failing or general syscall failures.
///
/// # Security
///
/// The output of this function should not be used in anything that might have
/// security implications. For example:
///
/// ```
/// fn main() {
/// println!("{:?}", std::env::current_exe());
/// }
/// ```
///
/// On Linux systems, if this is compiled as `foo`:
///
/// ```bash
/// $ rustc foo.rs
/// $ ./foo
/// Ok("/home/alex/foo")
/// ```
///
/// And you make a hard link of the program:
///
/// ```bash
/// $ ln foo bar
/// ```
///
/// When you run it, you wont get the path of the original executable, youll
/// get the path of the hard link:
///
/// ```bash
/// $ ./bar
/// Ok("/home/alex/bar")
/// ```
///
/// This sort of behavior has been known to [lead to privilege escalation] when
/// used incorrectly.
///
/// [lead to privilege escalation]: https://securityvulns.com/Wdocument183.html
///
/// # Examples
///
/// ```
/// use std::env;
///
/// match env::current_exe() {
/// Ok(exe_path) => println!("Path of this executable is: {}",
/// exe_path.display()),
/// Err(e) => println!("failed to get current exe path: {}", e),
/// };
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn current_exe() -> io::Result<PathBuf> {
os_imp::current_exe()
}
/// An iterator over the arguments of a process, yielding a [`String`] value for
/// each argument.
///
/// This struct is created by [`env::args()`]. See its documentation
/// for more.
///
/// The first element is traditionally the path of the executable, but it can be
/// set to arbitrary text, and may not even exist. This means this property
/// should not be relied upon for security purposes.
///
/// [`env::args()`]: args
#[stable(feature = "env", since = "1.0.0")]
pub struct Args {
inner: ArgsOs,
}
/// An iterator over the arguments of a process, yielding an [`OsString`] value
/// for each argument.
///
/// This struct is created by [`env::args_os()`]. See its documentation
/// for more.
///
/// The first element is traditionally the path of the executable, but it can be
/// set to arbitrary text, and may not even exist. This means this property
/// should not be relied upon for security purposes.
///
/// [`env::args_os()`]: args_os
#[stable(feature = "env", since = "1.0.0")]
pub struct ArgsOs {
inner: sys::args::Args,
}
/// Returns the arguments that this program was started with (normally passed
/// via the command line).
///
/// The first element is traditionally the path of the executable, but it can be
/// set to arbitrary text, and may not even exist. This means this property should
/// not be relied upon for security purposes.
///
/// On Unix systems the shell usually expands unquoted arguments with glob patterns
/// (such as `*` and `?`). On Windows this is not done, and such arguments are
/// passed as-is.
///
/// On glibc Linux systems, arguments are retrieved by placing a function in `.init_array`.
/// Glibc passes `argc`, `argv`, and `envp` to functions in `.init_array`, as a non-standard
/// extension. This allows `std::env::args` to work even in a `cdylib` or `staticlib`, as it
/// does on macOS and Windows.
///
/// # Panics
///
/// The returned iterator will panic during iteration if any argument to the
/// process is not valid unicode. If this is not desired,
/// use the [`args_os`] function instead.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// // Prints each argument on a separate line
/// for argument in env::args() {
/// println!("{}", argument);
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn args() -> Args {
Args { inner: args_os() }
}
/// Returns the arguments which this program was started with (normally passed
/// via the command line).
///
/// The first element is traditionally the path of the executable, but it can be
/// set to arbitrary text, and it may not even exist, so this property should
/// not be relied upon for security purposes.
///
/// On glibc Linux systems, arguments are retrieved by placing a function in ".init_array".
/// Glibc passes argc, argv, and envp to functions in ".init_array", as a non-standard extension.
/// This allows `std::env::args` to work even in a `cdylib` or `staticlib`, as it does on macOS
/// and Windows.
///
/// # Examples
///
/// ```
/// use std::env;
///
/// // Prints each argument on a separate line
/// for argument in env::args_os() {
/// println!("{:?}", argument);
/// }
/// ```
#[stable(feature = "env", since = "1.0.0")]
pub fn args_os() -> ArgsOs {
ArgsOs { inner: sys::args::args() }
}
#[stable(feature = "env_unimpl_send_sync", since = "1.26.0")]
impl !Send for Args {}
#[stable(feature = "env_unimpl_send_sync", since = "1.26.0")]
impl !Sync for Args {}
#[stable(feature = "env", since = "1.0.0")]
impl Iterator for Args {
type Item = String;
fn next(&mut self) -> Option<String> {
self.inner.next().map(|s| s.into_string().unwrap())
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "env", since = "1.0.0")]
impl ExactSizeIterator for Args {
fn len(&self) -> usize {
self.inner.len()
}
fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
#[stable(feature = "env_iterators", since = "1.12.0")]
impl DoubleEndedIterator for Args {
fn next_back(&mut self) -> Option<String> {
self.inner.next_back().map(|s| s.into_string().unwrap())
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Args {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Args").field("inner", &self.inner.inner.inner_debug()).finish()
}
}
#[stable(feature = "env_unimpl_send_sync", since = "1.26.0")]
impl !Send for ArgsOs {}
#[stable(feature = "env_unimpl_send_sync", since = "1.26.0")]
impl !Sync for ArgsOs {}
#[stable(feature = "env", since = "1.0.0")]
impl Iterator for ArgsOs {
type Item = OsString;
fn next(&mut self) -> Option<OsString> {
self.inner.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "env", since = "1.0.0")]
impl ExactSizeIterator for ArgsOs {
fn len(&self) -> usize {
self.inner.len()
}
fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
#[stable(feature = "env_iterators", since = "1.12.0")]
impl DoubleEndedIterator for ArgsOs {
fn next_back(&mut self) -> Option<OsString> {
self.inner.next_back()
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for ArgsOs {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ArgsOs").field("inner", &self.inner.inner_debug()).finish()
}
}
/// Constants associated with the current target
#[stable(feature = "env", since = "1.0.0")]
pub mod consts {
use crate::sys::env::os;
/// A string describing the architecture of the CPU that is currently
/// in use.
///
/// Some possible values:
///
/// - x86
/// - x86_64
/// - arm
/// - aarch64
/// - mips
/// - mips64
/// - powerpc
/// - powerpc64
/// - riscv64
/// - s390x
/// - sparc64
#[stable(feature = "env", since = "1.0.0")]
pub const ARCH: &str = env!("STD_ENV_ARCH");
/// The family of the operating system. Example value is `unix`.
///
/// Some possible values:
///
/// - unix
/// - windows
#[stable(feature = "env", since = "1.0.0")]
pub const FAMILY: &str = os::FAMILY;
/// A string describing the specific operating system in use.
/// Example value is `linux`.
///
/// Some possible values:
///
/// - linux
/// - macos
/// - ios
/// - freebsd
/// - dragonfly
/// - netbsd
/// - openbsd
/// - solaris
/// - android
/// - windows
#[stable(feature = "env", since = "1.0.0")]
pub const OS: &str = os::OS;
/// Specifies the filename prefix used for shared libraries on this
/// platform. Example value is `lib`.
///
/// Some possible values:
///
/// - lib
/// - `""` (an empty string)
#[stable(feature = "env", since = "1.0.0")]
pub const DLL_PREFIX: &str = os::DLL_PREFIX;
/// Specifies the filename suffix used for shared libraries on this
/// platform. Example value is `.so`.
///
/// Some possible values:
///
/// - .so
/// - .dylib
/// - .dll
#[stable(feature = "env", since = "1.0.0")]
pub const DLL_SUFFIX: &str = os::DLL_SUFFIX;
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot. Example value is `so`.
///
/// Some possible values:
///
/// - so
/// - dylib
/// - dll
#[stable(feature = "env", since = "1.0.0")]
pub const DLL_EXTENSION: &str = os::DLL_EXTENSION;
/// Specifies the filename suffix used for executable binaries on this
/// platform. Example value is `.exe`.
///
/// Some possible values:
///
/// - .exe
/// - .nexe
/// - .pexe
/// - `""` (an empty string)
#[stable(feature = "env", since = "1.0.0")]
pub const EXE_SUFFIX: &str = os::EXE_SUFFIX;
/// Specifies the file extension, if any, used for executable binaries
/// on this platform. Example value is `exe`.
///
/// Some possible values:
///
/// - exe
/// - `""` (an empty string)
#[stable(feature = "env", since = "1.0.0")]
pub const EXE_EXTENSION: &str = os::EXE_EXTENSION;
}