Empowering everyone to build reliable and efficient software.
Go to file
bors cab4bff3de Auto merge of #40601 - stjepang:sort-unstable, r=alexcrichton
Implement feature sort_unstable

Tracking issue for the feature: #40585

This is essentially integration of [pdqsort](https://github.com/stjepang/pdqsort) into libcore.

There's plenty of unsafe blocks to review. The heart of pdqsort is `fn partition_in_blocks` and is probably the most challenging function to understand. It requires some patience, but let me know if you find it too difficult - comments could always be improved.

#### Changes

* Added `sort_unstable` feature.
* Tweaked insertion sort constants for stable sort. Sorting integers is now up to 5% slower, but sorting big elements is much faster (in particular, `sort_large_big_random` is 35% faster). The old constants were highly optimized for sorting integers, so overall the configuration is more balanced now. A minor regression in case of integers is forgivable as we recently had performance improvements (#39538) that completely make up for it.
* Removed some uninteresting sort benchmarks.
* Added a new sort benchmark for string sorting.

#### Benchmarks

The following table compares stable and unstable sorting:
```
name                                 stable ns/iter        unstable ns/iter     diff ns/iter   diff %
slice::sort_large_ascending          7,240 (11049 MB/s)    7,380 (10840 MB/s)            140    1.93%
slice::sort_large_big_random         1,454,138 (880 MB/s)  910,269 (1406 MB/s)      -543,869  -37.40%
slice::sort_large_descending         13,450 (5947 MB/s)    10,895 (7342 MB/s)         -2,555  -19.00%
slice::sort_large_mostly_ascending   204,041 (392 MB/s)    88,639 (902 MB/s)        -115,402  -56.56%
slice::sort_large_mostly_descending  217,109 (368 MB/s)    99,009 (808 MB/s)        -118,100  -54.40%
slice::sort_large_random             477,257 (167 MB/s)    346,028 (231 MB/s)       -131,229  -27.50%
slice::sort_large_random_expensive   21,670,537 (3 MB/s)   22,710,238 (3 MB/s)     1,039,701    4.80%
slice::sort_large_strings            6,284,499 (38 MB/s)   6,410,896 (37 MB/s)       126,397    2.01%
slice::sort_medium_random            3,515 (227 MB/s)      3,327 (240 MB/s)             -188   -5.35%
slice::sort_small_ascending          42 (1904 MB/s)        41 (1951 MB/s)                 -1   -2.38%
slice::sort_small_big_random         503 (2544 MB/s)       514 (2490 MB/s)                11    2.19%
slice::sort_small_descending         72 (1111 MB/s)        69 (1159 MB/s)                 -3   -4.17%
slice::sort_small_random             369 (216 MB/s)        367 (217 MB/s)                 -2   -0.54%
```

Interesting cases:
* Expensive comparison function and string sorting - it's a really close race, but timsort performs a slightly smaller number of comparisons. This is a natural difference of bottom-up merging versus top-down partitioning.
* `large_descending` - unstable sort is faster, but both sorts should have equivalent performance. Both just check whether the slice is descending and if so, they reverse it. I blame LLVM for the discrepancy.

r? @alexcrichton
2017-03-21 19:50:17 +00:00
cargo@c995e9eb5a Update the cargo submodule again 2017-03-17 20:47:35 -07:00
man Update man pages 2016-08-31 15:54:34 +02:00
src Unit test heapsort 2017-03-21 20:46:20 +01:00
.gitattributes fix gitattributes for vendor 2017-02-13 13:41:13 -05:00
.gitignore include everything in the vendor directory 2017-02-13 13:41:17 -05:00
.gitmodules Import submodule for the book. 2017-03-20 10:10:15 -04:00
.mailmap Fix mailmap for @gifnksm 2017-02-09 02:10:14 +01:00
.travis.yml travis: Don't set RUST_LOG globally 2017-03-20 14:32:36 -07:00
appveyor.yml travis: Don't set RUST_LOG globally 2017-03-20 14:32:36 -07:00
configure Auto merge of #40383 - ishitatsuyuki:easy-dist-analysis, r=alexcrichton 2017-03-15 13:50:13 +00:00
CONTRIBUTING.md Update link to COMPILER_TESTS.md in CONTRIBUTING.md 2017-03-07 23:13:31 +05:30
COPYRIGHT Mention initial copyright year 2016-01-28 09:44:04 +05:30
LICENSE-APACHE
LICENSE-MIT Mention initial copyright year 2016-01-28 09:44:04 +05:30
README.md Updating README.md to point to the correct doc location 2017-03-13 01:04:59 -04:00
RELEASES.md Rollup merge of #40517 - rust-lang:release-notes-tweak, r=alexcrichton 2017-03-17 08:49:06 -04:00
x.py bootstrap.py: Report build status 2017-03-04 21:38:26 +03:00

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installing Rust" from The Book.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./x.py build && sudo ./x.py dist --install
    

    Note: Install locations can be adjusted by copying the config file from ./src/bootstrap/config.toml.example to ./config.toml, and adjusting the prefix option under [install]. Various other options are also supported, and are documented in the config file.

    When complete, sudo ./x.py dist --install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py dist --install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2013 (or later) so rustc can use its linker. Make sure to check the “C++ tools” option.

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"
python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in powershell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=ABI when invoking x.py commands, or by copying the config.toml file (as described in Building From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs between 600MiB and 1.5GiB to build, depending on platform. If it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.