rust/compiler/rustc_pattern_analysis/src/pat.rs
Nicholas Nethercote 665821cb60 Add blank lines after module-level //! comments.
Most modules have such a blank line, but some don't. Inserting the blank
line makes it clearer that the `//!` comments are describing the entire
module, rather than the `use` declaration(s) that immediately follows.
2024-06-20 09:23:20 +10:00

293 lines
9.7 KiB
Rust

//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
//! fields. This file defines types that represent patterns in this way.
use std::fmt;
use smallvec::{smallvec, SmallVec};
use crate::constructor::{Constructor, Slice, SliceKind};
use crate::{PatCx, PrivateUninhabitedField};
use self::Constructor::*;
/// A globally unique id to distinguish patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub(crate) struct PatId(u32);
impl PatId {
fn new() -> Self {
use std::sync::atomic::{AtomicU32, Ordering};
static PAT_ID: AtomicU32 = AtomicU32::new(0);
PatId(PAT_ID.fetch_add(1, Ordering::SeqCst))
}
}
/// A pattern with an index denoting which field it corresponds to.
pub struct IndexedPat<Cx: PatCx> {
pub idx: usize,
pub pat: DeconstructedPat<Cx>,
}
/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form. A `DeconstructedPat` will almost always come from user input; the only
/// exception are some `Wildcard`s introduced during pattern lowering.
pub struct DeconstructedPat<Cx: PatCx> {
ctor: Constructor<Cx>,
fields: Vec<IndexedPat<Cx>>,
/// The number of fields in this pattern. E.g. if the pattern is `SomeStruct { field12: true, ..
/// }` this would be the total number of fields of the struct.
/// This is also the same as `self.ctor.arity(self.ty)`.
arity: usize,
ty: Cx::Ty,
/// Extra data to store in a pattern.
data: Cx::PatData,
/// Globally-unique id used to track usefulness at the level of subpatterns.
pub(crate) uid: PatId,
}
impl<Cx: PatCx> DeconstructedPat<Cx> {
pub fn new(
ctor: Constructor<Cx>,
fields: Vec<IndexedPat<Cx>>,
arity: usize,
ty: Cx::Ty,
data: Cx::PatData,
) -> Self {
DeconstructedPat { ctor, fields, arity, ty, data, uid: PatId::new() }
}
pub fn at_index(self, idx: usize) -> IndexedPat<Cx> {
IndexedPat { idx, pat: self }
}
pub(crate) fn is_or_pat(&self) -> bool {
matches!(self.ctor, Or)
}
pub fn ctor(&self) -> &Constructor<Cx> {
&self.ctor
}
pub fn ty(&self) -> &Cx::Ty {
&self.ty
}
/// Returns the extra data stored in a pattern.
pub fn data(&self) -> &Cx::PatData {
&self.data
}
pub fn arity(&self) -> usize {
self.arity
}
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a IndexedPat<Cx>> {
self.fields.iter()
}
/// Specialize this pattern with a constructor.
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
pub(crate) fn specialize<'a>(
&'a self,
other_ctor: &Constructor<Cx>,
other_ctor_arity: usize,
) -> SmallVec<[PatOrWild<'a, Cx>; 2]> {
if matches!(other_ctor, PrivateUninhabited) {
// Skip this column.
return smallvec![];
}
// Start with a slice of wildcards of the appropriate length.
let mut fields: SmallVec<[_; 2]> = (0..other_ctor_arity).map(|_| PatOrWild::Wild).collect();
// Fill `fields` with our fields. The arities are known to be compatible.
match self.ctor {
// The only non-trivial case: two slices of different arity. `other_ctor` is guaranteed
// to have a larger arity, so we adjust the indices of the patterns in the suffix so
// that they are correctly positioned in the larger slice.
Slice(Slice { kind: SliceKind::VarLen(prefix, _), .. })
if self.arity != other_ctor_arity =>
{
for ipat in &self.fields {
let new_idx = if ipat.idx < prefix {
ipat.idx
} else {
// Adjust the indices in the suffix.
ipat.idx + other_ctor_arity - self.arity
};
fields[new_idx] = PatOrWild::Pat(&ipat.pat);
}
}
_ => {
for ipat in &self.fields {
fields[ipat.idx] = PatOrWild::Pat(&ipat.pat);
}
}
}
fields
}
/// Walk top-down and call `it` in each place where a pattern occurs
/// starting with the root pattern `walk` is called on. If `it` returns
/// false then we will descend no further but siblings will be processed.
pub fn walk<'a>(&'a self, it: &mut impl FnMut(&'a Self) -> bool) {
if !it(self) {
return;
}
for p in self.iter_fields() {
p.pat.walk(it)
}
}
}
/// This is best effort and not good enough for a `Display` impl.
impl<Cx: PatCx> fmt::Debug for DeconstructedPat<Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut fields: Vec<_> = (0..self.arity).map(|_| PatOrWild::Wild).collect();
for ipat in self.iter_fields() {
fields[ipat.idx] = PatOrWild::Pat(&ipat.pat);
}
self.ctor().fmt_fields(f, self.ty(), fields.into_iter())
}
}
/// Represents either a pattern obtained from user input or a wildcard constructed during the
/// algorithm. Do not use `Wild` to represent a wildcard pattern comping from user input.
///
/// This is morally `Option<&'p DeconstructedPat>` where `None` is interpreted as a wildcard.
pub(crate) enum PatOrWild<'p, Cx: PatCx> {
/// A non-user-provided wildcard, created during specialization.
Wild,
/// A user-provided pattern.
Pat(&'p DeconstructedPat<Cx>),
}
impl<'p, Cx: PatCx> Clone for PatOrWild<'p, Cx> {
fn clone(&self) -> Self {
match self {
PatOrWild::Wild => PatOrWild::Wild,
PatOrWild::Pat(pat) => PatOrWild::Pat(pat),
}
}
}
impl<'p, Cx: PatCx> Copy for PatOrWild<'p, Cx> {}
impl<'p, Cx: PatCx> PatOrWild<'p, Cx> {
pub(crate) fn as_pat(&self) -> Option<&'p DeconstructedPat<Cx>> {
match self {
PatOrWild::Wild => None,
PatOrWild::Pat(pat) => Some(pat),
}
}
pub(crate) fn ctor(self) -> &'p Constructor<Cx> {
match self {
PatOrWild::Wild => &Wildcard,
PatOrWild::Pat(pat) => pat.ctor(),
}
}
pub(crate) fn is_or_pat(&self) -> bool {
match self {
PatOrWild::Wild => false,
PatOrWild::Pat(pat) => pat.is_or_pat(),
}
}
/// Expand this (possibly-nested) or-pattern into its alternatives.
pub(crate) fn flatten_or_pat(self) -> SmallVec<[Self; 1]> {
match self {
PatOrWild::Pat(pat) if pat.is_or_pat() => pat
.iter_fields()
.flat_map(|ipat| PatOrWild::Pat(&ipat.pat).flatten_or_pat())
.collect(),
_ => smallvec![self],
}
}
/// Specialize this pattern with a constructor.
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
pub(crate) fn specialize(
&self,
other_ctor: &Constructor<Cx>,
ctor_arity: usize,
) -> SmallVec<[PatOrWild<'p, Cx>; 2]> {
match self {
PatOrWild::Wild => (0..ctor_arity).map(|_| PatOrWild::Wild).collect(),
PatOrWild::Pat(pat) => pat.specialize(other_ctor, ctor_arity),
}
}
}
impl<'p, Cx: PatCx> fmt::Debug for PatOrWild<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PatOrWild::Wild => write!(f, "_"),
PatOrWild::Pat(pat) => pat.fmt(f),
}
}
}
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
/// purposes. As such they don't use interning and can be cloned.
pub struct WitnessPat<Cx: PatCx> {
ctor: Constructor<Cx>,
pub(crate) fields: Vec<WitnessPat<Cx>>,
ty: Cx::Ty,
}
impl<Cx: PatCx> Clone for WitnessPat<Cx> {
fn clone(&self) -> Self {
Self { ctor: self.ctor.clone(), fields: self.fields.clone(), ty: self.ty.clone() }
}
}
impl<Cx: PatCx> WitnessPat<Cx> {
pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self {
Self { ctor, fields, ty }
}
/// Create a wildcard pattern for this type. If the type is empty, we create a `!` pattern.
pub(crate) fn wildcard(cx: &Cx, ty: Cx::Ty) -> Self {
let is_empty = cx.ctors_for_ty(&ty).is_ok_and(|ctors| ctors.all_empty());
let ctor = if is_empty { Never } else { Wildcard };
Self::new(ctor, Vec::new(), ty)
}
/// Construct a pattern that matches everything that starts with this constructor.
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
/// `Some(_)`.
pub(crate) fn wild_from_ctor(cx: &Cx, ctor: Constructor<Cx>, ty: Cx::Ty) -> Self {
if matches!(ctor, Wildcard) {
return Self::wildcard(cx, ty);
}
let fields = cx
.ctor_sub_tys(&ctor, &ty)
.filter(|(_, PrivateUninhabitedField(skip))| !skip)
.map(|(ty, _)| Self::wildcard(cx, ty))
.collect();
Self::new(ctor, fields, ty)
}
pub fn ctor(&self) -> &Constructor<Cx> {
&self.ctor
}
pub fn ty(&self) -> &Cx::Ty {
&self.ty
}
pub fn is_never_pattern(&self) -> bool {
match self.ctor() {
Never => true,
Or => self.fields.iter().all(|p| p.is_never_pattern()),
_ => self.fields.iter().any(|p| p.is_never_pattern()),
}
}
pub fn iter_fields(&self) -> impl Iterator<Item = &WitnessPat<Cx>> {
self.fields.iter()
}
}
/// This is best effort and not good enough for a `Display` impl.
impl<Cx: PatCx> fmt::Debug for WitnessPat<Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.ctor().fmt_fields(f, self.ty(), self.fields.iter())
}
}