Empowering everyone to build reliable and efficient software.
Go to file
bors c1230e137b Auto merge of #95249 - HeroicKatora:set-ptr-value, r=dtolnay
Refactor set_ptr_value as with_metadata_of

Replaces `set_ptr_value` (#75091) with methods of reversed argument order:

```rust
impl<T: ?Sized> *mut T {
    pub fn with_metadata_of<U: ?Sized>(self, val: *mut U) -> *mut U;
}

impl<T: ?Sized> *const T {
    pub fn with_metadata_of<U: ?Sized>(self, val: *const U) -> *const U;
}
```

By reversing the arguments we achieve several clarifications:

- The function closely resembles `cast` with an argument to
  initialize the metadata. This is easier to teach and answers a long
  outstanding question that had restricted cast to `Sized` pointee
  targets. See multiples reviews of
  <https://github.com/rust-lang/rust/pull/47631>
- The 'object identity', in the form of provenance, is now preserved
  from the receiver argument to the result. This helps explain the method as
  a builder-style, instead of some kind of setter that would modify
  something in-place. Ensuring that the result has the identity of the
  `self` argument is also beneficial for an intuition of effects.
- An outstanding concern, 'Correct argument type', is avoided by not
  committing to any specific argument type. This is consistent with cast
  which does not require its receiver to be a 'raw address'.

Hopefully the usage examples in `sync/rc.rs` serve as sufficient examples of the style to convince the reader of the readability improvements of this style, when compared to the previous order of arguments.

I want to take the opportunity to motivate inclusion of this method _separate_ from metadata API, separate from `feature(ptr_metadata)`. It does _not_ involve the `Pointee` trait in any form. This may be regarded as a very, very light form that does not commit to any details of the pointee trait, or its associated metadata. There are several use cases for which this is already sufficient and no further inspection of metadata is necessary.

- Storing the coercion of `*mut T` into `*mut dyn Trait` as a way to dynamically cast some an arbitrary instance of the same type to a dyn trait instance. In particular, one can have a field of type `Option<*mut dyn io::Seek>` to memorize if a particular writer is seekable. Then a method `fn(self: &T) -> Option<&dyn Seek>` can be provided, which does _not_ involve the static trait bound `T: Seek`. This makes it possible to create an API that is capable of utilizing seekable streams and non-seekable streams (instead of a possible less efficient manner such as more buffering) through the same entry-point.

- Enabling more generic forms of unsizing for no-`std` smart pointers. Using the stable APIs only few concrete cases are available. One can unsize arrays to `[T]` by `ptr::slice_from_raw_parts` but unsizing a custom smart pointer to, e.g., `dyn Iterator`, `dyn Future`, `dyn Debug`, can't easily be done generically. Exposing `with_metadata_of` would allow smart pointers to offer their own `unsafe` escape hatch with similar parameters where the caller provides the unsized metadata. This is particularly interesting for embedded where `dyn`-trait usage can drastically reduce code size.
2022-03-28 22:47:31 +00:00
.github Merge remote-tracking branch 'upstream/master' into rustup 2022-03-24 14:22:35 +01:00
compiler Rollup merge of #95328 - DrMeepster:box_gep_err, r=oli-obk 2022-03-28 20:41:51 +02:00
library Auto merge of #95249 - HeroicKatora:set-ptr-value, r=dtolnay 2022-03-28 22:47:31 +00:00
src Rollup merge of #95328 - DrMeepster:box_gep_err, r=oli-obk 2022-03-28 20:41:51 +02:00
.editorconfig Add .editorconfig 2021-02-02 18:13:18 +01:00
.gitattributes Remove rustfmt tests from top-level .gitattributes 2021-06-04 09:04:54 -04:00
.gitignore Add package.json in gitignore 2022-02-01 17:14:59 +01:00
.gitmodules Update to LLVM 14.0.0 final 2022-03-23 11:42:13 -07:00
.mailmap deduplicate lcnr in mailmap 2022-02-08 11:30:59 +01:00
Cargo.lock upgrade chalk 2022-03-23 00:01:20 -07:00
Cargo.toml Avoid once_cell unstable feature in cg_clif.rs 2022-03-15 19:25:33 +01:00
CODE_OF_CONDUCT.md Remove the code of conduct; instead link https://www.rust-lang.org/conduct.html 2019-10-05 22:55:19 +02:00
config.toml.example bootstrap: untangle static-libstdcpp & llvm-tools 2022-03-10 18:04:38 -08:00
configure Enforce Python 3 as much as possible 2020-04-10 09:09:58 -04:00
CONTRIBUTING.md Give people a single link they can click in the contributing guide 2021-11-22 13:10:22 -06:00
COPYRIGHT Rebase to the llvm-project monorepo 2019-01-25 15:39:54 -08:00
LICENSE-APACHE Remove appendix from LICENCE-APACHE 2019-12-30 14:25:53 +00:00
LICENSE-MIT LICENSE-MIT: Remove inaccurate (misattributed) copyright notice 2017-07-26 16:51:58 -07:00
README.md Give people a single link they can click in the contributing guide 2021-11-22 13:10:22 -06:00
RELEASES.md all: fix some typos 2022-03-03 19:47:23 +08:00
rustfmt.toml Merge commit 'dc5423ad448877e33cca28db2f1445c9c4473c75' into clippyup 2022-03-14 12:02:53 +01:00
triagebot.toml Add a team for '@rustbot ping fuchsia' 2022-03-03 15:33:05 -08:00
x.py Choose the version of python at runtime (portable version) 2021-01-14 21:00:42 -05:00

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Note: this README is for users rather than contributors. If you wish to contribute to the compiler, you should read the Getting Started section of the rustc-dev-guide instead. You can ask for help in the #new members Zulip stream.

Quick Start

Read "Installation" from The Book.

Installing from Source

The Rust build system uses a Python script called x.py to build the compiler, which manages the bootstrapping process. It lives in the root of the project.

The x.py command can be run directly on most systems in the following format:

./x.py <subcommand> [flags]

This is how the documentation and examples assume you are running x.py.

Systems such as Ubuntu 20.04 LTS do not create the necessary python command by default when Python is installed that allows x.py to be run directly. In that case you can either create a symlink for python (Ubuntu provides the python-is-python3 package for this), or run x.py using Python itself:

# Python 3
python3 x.py <subcommand> [flags]

# Python 2.7
python2.7 x.py <subcommand> [flags]

More information about x.py can be found by running it with the --help flag or reading the rustc dev guide.

Building on a Unix-like system

  1. Make sure you have installed the dependencies:

    • g++ 5.1 or later or clang++ 3.5 or later
    • python 3 or 2.7
    • GNU make 3.81 or later
    • cmake 3.13.4 or later
    • ninja
    • curl
    • git
    • ssl which comes in libssl-dev or openssl-devel
    • pkg-config if you are compiling on Linux and targeting Linux
  2. Clone the source with git:

    git clone https://github.com/rust-lang/rust.git
    cd rust
    
  1. Configure the build settings:

    The Rust build system uses a file named config.toml in the root of the source tree to determine various configuration settings for the build. Copy the default config.toml.example to config.toml to get started.

    cp config.toml.example config.toml
    

    If you plan to use x.py install to create an installation, it is recommended that you set the prefix value in the [install] section to a directory.

    Create install directory if you are not installing in default directory

  2. Build and install:

    ./x.py build && ./x.py install
    

    When complete, ./x.py install will place several programs into $PREFIX/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager. To build and install Cargo, you may run ./x.py install cargo or set the build.extended key in config.toml to true to build and install all tools.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2', 'cmake' and 'ninja'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc \
                mingw-w64-x86_64-ninja
    
  4. Navigate to Rust's source code (or clone it), then build it:

    ./x.py build && ./x.py install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2017 (or later) so rustc can use its linker. The simplest way is to get the Visual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.

(If you're installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn't get included under “Individual components”.)

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

python x.py build

Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed and the build system doesn't understand, you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking x.py commands, or by copying the config.toml file (as described in Installing From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

./configure
make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, 10, ...)
Linux (kernel 2.6.32, glibc 2.11 or later)
macOS (10.7 Lion or later) (*)

(*): Apple dropped support for running 32-bit binaries starting from macOS 10.15 and iOS 11. Due to this decision from Apple, the targets are no longer useful to our users. Please read our blog post for more info.

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Getting Help

The Rust community congregates in a few places:

Contributing

If you are interested in contributing to the Rust project, please take a look at the Getting Started guide in the rustc-dev-guide.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Trademark

The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).

If you want to use these names or brands, please read the media guide.

Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.