rust/tests/ui-fulldeps/stable-mir/crate-info.rs
Celina G. Val f91ccf9ace Remove tcx from SMIR run macro and accept closures
Simplify the `run` macro to avoid sometimes unnecessary dependency
on `TyCtxt`. Instead, users can use the new internal method `tcx()`.
Additionally, extend the macro to accept closures that may capture
variables.

These are non-backward compatible changes, but they only affect
internal APIs which are provided today as helper functions until we
have a stable API to start the compiler.
2024-01-16 11:17:51 -08:00

251 lines
7.8 KiB
Rust

// run-pass
// Test that users are able to use stable mir APIs to retrieve information of the current crate
// ignore-stage1
// ignore-cross-compile
// ignore-remote
// ignore-windows-gnu mingw has troubles with linking https://github.com/rust-lang/rust/pull/116837
// edition: 2021
#![feature(rustc_private)]
#![feature(assert_matches)]
#![feature(control_flow_enum)]
extern crate rustc_hir;
#[macro_use]
extern crate rustc_smir;
extern crate rustc_driver;
extern crate rustc_interface;
extern crate stable_mir;
use rustc_hir::def::DefKind;
use rustc_smir::rustc_internal;
use stable_mir::ItemKind;
use stable_mir::crate_def::CrateDef;
use stable_mir::mir::mono::Instance;
use stable_mir::ty::{RigidTy, TyKind};
use std::assert_matches::assert_matches;
use std::io::Write;
use std::ops::ControlFlow;
const CRATE_NAME: &str = "input";
/// This function uses the Stable MIR APIs to get information about the test crate.
fn test_stable_mir() -> ControlFlow<()> {
// Get the local crate using stable_mir API.
let local = stable_mir::local_crate();
assert_eq!(&local.name, CRATE_NAME);
assert_eq!(stable_mir::entry_fn(), None);
// Find items in the local crate.
let items = stable_mir::all_local_items();
assert!(get_item(&items, (DefKind::Fn, "foo::bar")).is_some());
// Find the `std` crate and assert that there is only one of it.
assert!(stable_mir::find_crates("std").len() == 1);
let bar = get_item(&items, (DefKind::Fn, "bar")).unwrap();
let body = bar.body();
assert_eq!(body.locals().len(), 2);
assert_eq!(body.blocks.len(), 1);
let block = &body.blocks[0];
assert_eq!(block.statements.len(), 1);
match &block.statements[0].kind {
stable_mir::mir::StatementKind::Assign(..) => {}
other => panic!("{other:?}"),
}
match &block.terminator.kind {
stable_mir::mir::TerminatorKind::Return => {}
other => panic!("{other:?}"),
}
let foo_bar = get_item(&items, (DefKind::Fn, "foo_bar")).unwrap();
let body = foo_bar.body();
assert_eq!(body.locals().len(), 5);
assert_eq!(body.blocks.len(), 4);
let block = &body.blocks[0];
match &block.terminator.kind {
stable_mir::mir::TerminatorKind::Call { .. } => {}
other => panic!("{other:?}"),
}
let types = get_item(&items, (DefKind::Fn, "types")).unwrap();
let body = types.body();
assert_eq!(body.locals().len(), 6);
assert_matches!(
body.locals()[0].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Bool)
);
assert_matches!(
body.locals()[1].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Bool)
);
assert_matches!(
body.locals()[2].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Char)
);
assert_matches!(
body.locals()[3].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Int(stable_mir::ty::IntTy::I32))
);
assert_matches!(
body.locals()[4].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Uint(stable_mir::ty::UintTy::U64))
);
assert_matches!(
body.locals()[5].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Float(
stable_mir::ty::FloatTy::F64
))
);
let drop = get_item(&items, (DefKind::Fn, "drop")).unwrap();
let body = drop.body();
assert_eq!(body.blocks.len(), 2);
let block = &body.blocks[0];
match &block.terminator.kind {
stable_mir::mir::TerminatorKind::Drop { .. } => {}
other => panic!("{other:?}"),
}
let assert = get_item(&items, (DefKind::Fn, "assert")).unwrap();
let body = assert.body();
assert_eq!(body.blocks.len(), 2);
let block = &body.blocks[0];
match &block.terminator.kind {
stable_mir::mir::TerminatorKind::Assert { .. } => {}
other => panic!("{other:?}"),
}
let monomorphic = get_item(&items, (DefKind::Fn, "monomorphic")).unwrap();
let instance = Instance::try_from(monomorphic.clone()).unwrap();
for block in instance.body().unwrap().blocks {
match &block.terminator.kind {
stable_mir::mir::TerminatorKind::Call { func, .. } => {
let TyKind::RigidTy(ty) = func.ty(&body.locals()).unwrap().kind() else {
unreachable!() };
let RigidTy::FnDef(def, args) = ty else { unreachable!() };
let next_func = Instance::resolve(def, &args).unwrap();
match next_func.body().unwrap().locals()[1].ty.kind() {
TyKind::RigidTy(RigidTy::Uint(_)) | TyKind::RigidTy(RigidTy::Tuple(_)) => {}
other => panic!("{other:?}"),
}
}
stable_mir::mir::TerminatorKind::Return => {}
other => panic!("{other:?}"),
}
}
let foo_const = get_item(&items, (DefKind::Const, "FOO")).unwrap();
// Ensure we don't panic trying to get the body of a constant.
foo_const.body();
let locals_fn = get_item(&items, (DefKind::Fn, "locals")).unwrap();
let body = locals_fn.body();
assert_eq!(body.locals().len(), 4);
assert_matches!(
body.ret_local().ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Char)
);
assert_eq!(body.arg_locals().len(), 2);
assert_matches!(
body.arg_locals()[0].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Int(stable_mir::ty::IntTy::I32))
);
assert_matches!(
body.arg_locals()[1].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Uint(stable_mir::ty::UintTy::U64))
);
assert_eq!(body.inner_locals().len(), 1);
// If conditions have an extra inner local to hold their results
assert_matches!(
body.inner_locals()[0].ty.kind(),
stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Bool)
);
ControlFlow::Continue(())
}
// Use internal API to find a function in a crate.
fn get_item<'a>(
items: &'a stable_mir::CrateItems,
item: (DefKind, &str),
) -> Option<&'a stable_mir::CrateItem> {
items.iter().find(|crate_item| {
matches!((item.0, crate_item.kind()), (DefKind::Fn, ItemKind::Fn) | (DefKind::Const,
ItemKind::Const)) && crate_item.name() == item.1
})
}
/// This test will generate and analyze a dummy crate using the stable mir.
/// For that, it will first write the dummy crate into a file.
/// Then it will create a `StableMir` using custom arguments and then
/// it will run the compiler.
fn main() {
let path = "input.rs";
generate_input(&path).unwrap();
let args = vec![
"rustc".to_string(),
"--crate-type=lib".to_string(),
"--crate-name".to_string(),
CRATE_NAME.to_string(),
path.to_string(),
];
run!(args, test_stable_mir).unwrap();
}
fn generate_input(path: &str) -> std::io::Result<()> {
let mut file = std::fs::File::create(path)?;
write!(
file,
r#"
pub const FOO: u32 = 1 + 2;
fn generic<T, const U: usize>(t: T) -> [(); U] {{
_ = t;
[(); U]
}}
pub fn monomorphic() {{
generic::<(), 5>(());
generic::<u32, 0>(45);
}}
mod foo {{
pub fn bar(i: i32) -> i64 {{
i as i64
}}
}}
pub fn bar(x: i32) -> i32 {{
x
}}
pub fn foo_bar(x: i32, y: i32) -> i64 {{
let x_64 = foo::bar(x);
let y_64 = foo::bar(y);
x_64.wrapping_add(y_64)
}}
pub fn types(b: bool, _: char, _: i32, _: u64, _: f64) -> bool {{
b
}}
pub fn drop(_: String) {{}}
pub fn assert(x: i32) -> i32 {{
x + 1
}}
pub fn locals(a: i32, _: u64) -> char {{
if a > 5 {{
'a'
}} else {{
'b'
}}
}}"#
)?;
Ok(())
}