rust/crates/ide/src/diagnostics.rs
2021-06-13 20:01:01 +03:00

2362 lines
54 KiB
Rust

//! Collects diagnostics & fixits for a single file.
//!
//! The tricky bit here is that diagnostics are produced by hir in terms of
//! macro-expanded files, but we need to present them to the users in terms of
//! original files. So we need to map the ranges.
mod break_outside_of_loop;
mod inactive_code;
mod macro_error;
mod missing_fields;
mod missing_unsafe;
mod no_such_field;
mod unimplemented_builtin_macro;
mod unresolved_extern_crate;
mod unresolved_import;
mod unresolved_macro_call;
mod unresolved_module;
mod unresolved_proc_macro;
mod fixes;
mod field_shorthand;
mod unlinked_file;
use std::cell::RefCell;
use hir::{
diagnostics::{AnyDiagnostic, Diagnostic as _, DiagnosticCode, DiagnosticSinkBuilder},
Semantics,
};
use ide_assists::AssistResolveStrategy;
use ide_db::{base_db::SourceDatabase, RootDatabase};
use itertools::Itertools;
use rustc_hash::FxHashSet;
use syntax::{
ast::{self, AstNode},
SyntaxNode, SyntaxNodePtr, TextRange, TextSize,
};
use text_edit::TextEdit;
use unlinked_file::UnlinkedFile;
use crate::{Assist, AssistId, AssistKind, FileId, Label, SourceChange};
use self::fixes::DiagnosticWithFixes;
#[derive(Debug)]
pub struct Diagnostic {
// pub name: Option<String>,
pub message: String,
pub range: TextRange,
pub severity: Severity,
pub fixes: Option<Vec<Assist>>,
pub unused: bool,
pub code: Option<DiagnosticCode>,
pub experimental: bool,
}
impl Diagnostic {
fn new(code: &'static str, message: impl Into<String>, range: TextRange) -> Diagnostic {
let message = message.into();
let code = Some(DiagnosticCode(code));
Self {
message,
range,
severity: Severity::Error,
fixes: None,
unused: false,
code,
experimental: false,
}
}
fn experimental(mut self) -> Diagnostic {
self.experimental = true;
self
}
fn severity(mut self, severity: Severity) -> Diagnostic {
self.severity = severity;
self
}
fn error(range: TextRange, message: String) -> Self {
Self {
message,
range,
severity: Severity::Error,
fixes: None,
unused: false,
code: None,
experimental: false,
}
}
fn hint(range: TextRange, message: String) -> Self {
Self {
message,
range,
severity: Severity::WeakWarning,
fixes: None,
unused: false,
code: None,
experimental: false,
}
}
fn with_fixes(self, fixes: Option<Vec<Assist>>) -> Self {
Self { fixes, ..self }
}
fn with_unused(self, unused: bool) -> Self {
Self { unused, ..self }
}
fn with_code(self, code: Option<DiagnosticCode>) -> Self {
Self { code, ..self }
}
}
#[derive(Debug, Copy, Clone)]
pub enum Severity {
Error,
WeakWarning,
}
#[derive(Default, Debug, Clone)]
pub struct DiagnosticsConfig {
pub disable_experimental: bool,
pub disabled: FxHashSet<String>,
}
struct DiagnosticsContext<'a> {
config: &'a DiagnosticsConfig,
sema: Semantics<'a, RootDatabase>,
#[allow(unused)]
resolve: &'a AssistResolveStrategy,
}
pub(crate) fn diagnostics(
db: &RootDatabase,
config: &DiagnosticsConfig,
resolve: &AssistResolveStrategy,
file_id: FileId,
) -> Vec<Diagnostic> {
let _p = profile::span("diagnostics");
let sema = Semantics::new(db);
let parse = db.parse(file_id);
let mut res = Vec::new();
// [#34344] Only take first 128 errors to prevent slowing down editor/ide, the number 128 is chosen arbitrarily.
res.extend(
parse
.errors()
.iter()
.take(128)
.map(|err| Diagnostic::error(err.range(), format!("Syntax Error: {}", err))),
);
for node in parse.tree().syntax().descendants() {
check_unnecessary_braces_in_use_statement(&mut res, file_id, &node);
field_shorthand::check(&mut res, file_id, &node);
}
let res = RefCell::new(res);
let sink_builder = DiagnosticSinkBuilder::new()
.on::<hir::diagnostics::MissingOkOrSomeInTailExpr, _>(|d| {
res.borrow_mut().push(diagnostic_with_fix(d, &sema, resolve));
})
.on::<hir::diagnostics::RemoveThisSemicolon, _>(|d| {
res.borrow_mut().push(diagnostic_with_fix(d, &sema, resolve));
})
.on::<hir::diagnostics::IncorrectCase, _>(|d| {
res.borrow_mut().push(warning_with_fix(d, &sema, resolve));
})
.on::<hir::diagnostics::ReplaceFilterMapNextWithFindMap, _>(|d| {
res.borrow_mut().push(warning_with_fix(d, &sema, resolve));
})
.on::<UnlinkedFile, _>(|d| {
// Limit diagnostic to the first few characters in the file. This matches how VS Code
// renders it with the full span, but on other editors, and is less invasive.
let range = sema.diagnostics_display_range(d.display_source()).range;
let range = range.intersect(TextRange::up_to(TextSize::of("..."))).unwrap_or(range);
// Override severity and mark as unused.
res.borrow_mut().push(
Diagnostic::hint(range, d.message())
.with_fixes(d.fixes(&sema, resolve))
.with_code(Some(d.code())),
);
})
// Only collect experimental diagnostics when they're enabled.
.filter(|diag| !(diag.is_experimental() && config.disable_experimental))
.filter(|diag| !config.disabled.contains(diag.code().as_str()));
// Finalize the `DiagnosticSink` building process.
let mut sink = sink_builder
// Diagnostics not handled above get no fix and default treatment.
.build(|d| {
res.borrow_mut().push(
Diagnostic::error(
sema.diagnostics_display_range(d.display_source()).range,
d.message(),
)
.with_code(Some(d.code())),
);
});
let mut diags = Vec::new();
let internal_diagnostics = cfg!(test);
match sema.to_module_def(file_id) {
Some(m) => diags = m.diagnostics(db, &mut sink, internal_diagnostics),
None => {
sink.push(UnlinkedFile { file_id, node: SyntaxNodePtr::new(parse.tree().syntax()) });
}
}
drop(sink);
let mut res = res.into_inner();
let ctx = DiagnosticsContext { config, sema, resolve };
for diag in diags {
#[rustfmt::skip]
let d = match diag {
AnyDiagnostic::BreakOutsideOfLoop(d) => break_outside_of_loop::break_outside_of_loop(&ctx, &d),
AnyDiagnostic::MacroError(d) => macro_error::macro_error(&ctx, &d),
AnyDiagnostic::MissingFields(d) => missing_fields::missing_fields(&ctx, &d),
AnyDiagnostic::MissingUnsafe(d) => missing_unsafe::missing_unsafe(&ctx, &d),
AnyDiagnostic::NoSuchField(d) => no_such_field::no_such_field(&ctx, &d),
AnyDiagnostic::UnimplementedBuiltinMacro(d) => unimplemented_builtin_macro::unimplemented_builtin_macro(&ctx, &d),
AnyDiagnostic::UnresolvedExternCrate(d) => unresolved_extern_crate::unresolved_extern_crate(&ctx, &d),
AnyDiagnostic::UnresolvedImport(d) => unresolved_import::unresolved_import(&ctx, &d),
AnyDiagnostic::UnresolvedMacroCall(d) => unresolved_macro_call::unresolved_macro_call(&ctx, &d),
AnyDiagnostic::UnresolvedModule(d) => unresolved_module::unresolved_module(&ctx, &d),
AnyDiagnostic::UnresolvedProcMacro(d) => unresolved_proc_macro::unresolved_proc_macro(&ctx, &d),
AnyDiagnostic::InactiveCode(d) => match inactive_code::inactive_code(&ctx, &d) {
Some(it) => it,
None => continue,
}
};
if let Some(code) = d.code {
if ctx.config.disabled.contains(code.as_str()) {
continue;
}
}
if ctx.config.disable_experimental && d.experimental {
continue;
}
res.push(d)
}
res
}
fn diagnostic_with_fix<D: DiagnosticWithFixes>(
d: &D,
sema: &Semantics<RootDatabase>,
resolve: &AssistResolveStrategy,
) -> Diagnostic {
Diagnostic::error(sema.diagnostics_display_range(d.display_source()).range, d.message())
.with_fixes(d.fixes(sema, resolve))
.with_code(Some(d.code()))
}
fn warning_with_fix<D: DiagnosticWithFixes>(
d: &D,
sema: &Semantics<RootDatabase>,
resolve: &AssistResolveStrategy,
) -> Diagnostic {
Diagnostic::hint(sema.diagnostics_display_range(d.display_source()).range, d.message())
.with_fixes(d.fixes(sema, resolve))
.with_code(Some(d.code()))
}
fn check_unnecessary_braces_in_use_statement(
acc: &mut Vec<Diagnostic>,
file_id: FileId,
node: &SyntaxNode,
) -> Option<()> {
let use_tree_list = ast::UseTreeList::cast(node.clone())?;
if let Some((single_use_tree,)) = use_tree_list.use_trees().collect_tuple() {
// If there is a comment inside the bracketed `use`,
// assume it is a commented out module path and don't show diagnostic.
if use_tree_list.has_inner_comment() {
return Some(());
}
let use_range = use_tree_list.syntax().text_range();
let edit =
text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(&single_use_tree)
.unwrap_or_else(|| {
let to_replace = single_use_tree.syntax().text().to_string();
let mut edit_builder = TextEdit::builder();
edit_builder.delete(use_range);
edit_builder.insert(use_range.start(), to_replace);
edit_builder.finish()
});
acc.push(
Diagnostic::hint(use_range, "Unnecessary braces in use statement".to_string())
.with_fixes(Some(vec![fix(
"remove_braces",
"Remove unnecessary braces",
SourceChange::from_text_edit(file_id, edit),
use_range,
)])),
);
}
Some(())
}
fn text_edit_for_remove_unnecessary_braces_with_self_in_use_statement(
single_use_tree: &ast::UseTree,
) -> Option<TextEdit> {
let use_tree_list_node = single_use_tree.syntax().parent()?;
if single_use_tree.path()?.segment()?.self_token().is_some() {
let start = use_tree_list_node.prev_sibling_or_token()?.text_range().start();
let end = use_tree_list_node.text_range().end();
return Some(TextEdit::delete(TextRange::new(start, end)));
}
None
}
fn fix(id: &'static str, label: &str, source_change: SourceChange, target: TextRange) -> Assist {
let mut res = unresolved_fix(id, label, target);
res.source_change = Some(source_change);
res
}
fn unresolved_fix(id: &'static str, label: &str, target: TextRange) -> Assist {
assert!(!id.contains(' '));
Assist {
id: AssistId(id, AssistKind::QuickFix),
label: Label::new(label),
group: None,
target,
source_change: None,
}
}
#[cfg(test)]
mod tests {
use expect_test::Expect;
use ide_assists::AssistResolveStrategy;
use stdx::trim_indent;
use test_utils::{assert_eq_text, extract_annotations};
use crate::{fixture, DiagnosticsConfig};
/// Takes a multi-file input fixture with annotated cursor positions,
/// and checks that:
/// * a diagnostic is produced
/// * the first diagnostic fix trigger range touches the input cursor position
/// * that the contents of the file containing the cursor match `after` after the diagnostic fix is applied
#[track_caller]
pub(crate) fn check_fix(ra_fixture_before: &str, ra_fixture_after: &str) {
check_nth_fix(0, ra_fixture_before, ra_fixture_after);
}
/// Takes a multi-file input fixture with annotated cursor positions,
/// and checks that:
/// * a diagnostic is produced
/// * every diagnostic fixes trigger range touches the input cursor position
/// * that the contents of the file containing the cursor match `after` after each diagnostic fix is applied
pub(crate) fn check_fixes(ra_fixture_before: &str, ra_fixtures_after: Vec<&str>) {
for (i, ra_fixture_after) in ra_fixtures_after.iter().enumerate() {
check_nth_fix(i, ra_fixture_before, ra_fixture_after)
}
}
#[track_caller]
fn check_nth_fix(nth: usize, ra_fixture_before: &str, ra_fixture_after: &str) {
let after = trim_indent(ra_fixture_after);
let (analysis, file_position) = fixture::position(ra_fixture_before);
let diagnostic = analysis
.diagnostics(
&DiagnosticsConfig::default(),
AssistResolveStrategy::All,
file_position.file_id,
)
.unwrap()
.pop()
.unwrap();
let fix = &diagnostic.fixes.unwrap()[nth];
let actual = {
let source_change = fix.source_change.as_ref().unwrap();
let file_id = *source_change.source_file_edits.keys().next().unwrap();
let mut actual = analysis.file_text(file_id).unwrap().to_string();
for edit in source_change.source_file_edits.values() {
edit.apply(&mut actual);
}
actual
};
assert_eq_text!(&after, &actual);
assert!(
fix.target.contains_inclusive(file_position.offset),
"diagnostic fix range {:?} does not touch cursor position {:?}",
fix.target,
file_position.offset
);
}
/// Checks that there's a diagnostic *without* fix at `$0`.
fn check_no_fix(ra_fixture: &str) {
let (analysis, file_position) = fixture::position(ra_fixture);
let diagnostic = analysis
.diagnostics(
&DiagnosticsConfig::default(),
AssistResolveStrategy::All,
file_position.file_id,
)
.unwrap()
.pop()
.unwrap();
assert!(diagnostic.fixes.is_none(), "got a fix when none was expected: {:?}", diagnostic);
}
pub(crate) fn check_expect(ra_fixture: &str, expect: Expect) {
let (analysis, file_id) = fixture::file(ra_fixture);
let diagnostics = analysis
.diagnostics(&DiagnosticsConfig::default(), AssistResolveStrategy::All, file_id)
.unwrap();
expect.assert_debug_eq(&diagnostics)
}
#[track_caller]
pub(crate) fn check_diagnostics(ra_fixture: &str) {
let mut config = DiagnosticsConfig::default();
config.disabled.insert("inactive-code".to_string());
check_diagnostics_with_config(config, ra_fixture)
}
#[track_caller]
pub(crate) fn check_diagnostics_with_config(config: DiagnosticsConfig, ra_fixture: &str) {
let (analysis, files) = fixture::files(ra_fixture);
for file_id in files {
let diagnostics =
analysis.diagnostics(&config, AssistResolveStrategy::All, file_id).unwrap();
let expected = extract_annotations(&*analysis.file_text(file_id).unwrap());
let mut actual =
diagnostics.into_iter().map(|d| (d.range, d.message)).collect::<Vec<_>>();
actual.sort_by_key(|(range, _)| range.start());
assert_eq!(expected, actual);
}
}
#[test]
fn range_mapping_out_of_macros() {
// FIXME: this is very wrong, but somewhat tricky to fix.
check_fix(
r#"
fn some() {}
fn items() {}
fn here() {}
macro_rules! id { ($($tt:tt)*) => { $($tt)*}; }
fn main() {
let _x = id![Foo { a: $042 }];
}
pub struct Foo { pub a: i32, pub b: i32 }
"#,
r#"
fn some(, b: () ) {}
fn items() {}
fn here() {}
macro_rules! id { ($($tt:tt)*) => { $($tt)*}; }
fn main() {
let _x = id![Foo { a: 42 }];
}
pub struct Foo { pub a: i32, pub b: i32 }
"#,
);
}
#[test]
fn test_check_unnecessary_braces_in_use_statement() {
check_diagnostics(
r#"
use a;
use a::{c, d::e};
mod a {
mod c {}
mod d {
mod e {}
}
}
"#,
);
check_diagnostics(
r#"
use a;
use a::{
c,
// d::e
};
mod a {
mod c {}
mod d {
mod e {}
}
}
"#,
);
check_fix(
r"
mod b {}
use {$0b};
",
r"
mod b {}
use b;
",
);
check_fix(
r"
mod b {}
use {b$0};
",
r"
mod b {}
use b;
",
);
check_fix(
r"
mod a { mod c {} }
use a::{c$0};
",
r"
mod a { mod c {} }
use a::c;
",
);
check_fix(
r"
mod a {}
use a::{self$0};
",
r"
mod a {}
use a;
",
);
check_fix(
r"
mod a { mod c {} mod d { mod e {} } }
use a::{c, d::{e$0}};
",
r"
mod a { mod c {} mod d { mod e {} } }
use a::{c, d::e};
",
);
}
#[test]
fn test_disabled_diagnostics() {
let mut config = DiagnosticsConfig::default();
config.disabled.insert("unresolved-module".into());
let (analysis, file_id) = fixture::file(r#"mod foo;"#);
let diagnostics =
analysis.diagnostics(&config, AssistResolveStrategy::All, file_id).unwrap();
assert!(diagnostics.is_empty());
let diagnostics = analysis
.diagnostics(&DiagnosticsConfig::default(), AssistResolveStrategy::All, file_id)
.unwrap();
assert!(!diagnostics.is_empty());
}
#[test]
fn unlinked_file_prepend_first_item() {
cov_mark::check!(unlinked_file_prepend_before_first_item);
// Only tests the first one for `pub mod` since the rest are the same
check_fixes(
r#"
//- /main.rs
fn f() {}
//- /foo.rs
$0
"#,
vec![
r#"
mod foo;
fn f() {}
"#,
r#"
pub mod foo;
fn f() {}
"#,
],
);
}
#[test]
fn unlinked_file_append_mod() {
cov_mark::check!(unlinked_file_append_to_existing_mods);
check_fix(
r#"
//- /main.rs
//! Comment on top
mod preexisting;
mod preexisting2;
struct S;
mod preexisting_bottom;)
//- /foo.rs
$0
"#,
r#"
//! Comment on top
mod preexisting;
mod preexisting2;
mod foo;
struct S;
mod preexisting_bottom;)
"#,
);
}
#[test]
fn unlinked_file_insert_in_empty_file() {
cov_mark::check!(unlinked_file_empty_file);
check_fix(
r#"
//- /main.rs
//- /foo.rs
$0
"#,
r#"
mod foo;
"#,
);
}
#[test]
fn unlinked_file_old_style_modrs() {
check_fix(
r#"
//- /main.rs
mod submod;
//- /submod/mod.rs
// in mod.rs
//- /submod/foo.rs
$0
"#,
r#"
// in mod.rs
mod foo;
"#,
);
}
#[test]
fn unlinked_file_new_style_mod() {
check_fix(
r#"
//- /main.rs
mod submod;
//- /submod.rs
//- /submod/foo.rs
$0
"#,
r#"
mod foo;
"#,
);
}
#[test]
fn unlinked_file_with_cfg_off() {
cov_mark::check!(unlinked_file_skip_fix_when_mod_already_exists);
check_no_fix(
r#"
//- /main.rs
#[cfg(never)]
mod foo;
//- /foo.rs
$0
"#,
);
}
#[test]
fn unlinked_file_with_cfg_on() {
check_diagnostics(
r#"
//- /main.rs
#[cfg(not(never))]
mod foo;
//- /foo.rs
"#,
);
}
// Register the required standard library types to make the tests work
fn add_filter_map_with_find_next_boilerplate(body: &str) -> String {
let prefix = r#"
//- /main.rs crate:main deps:core
use core::iter::Iterator;
use core::option::Option::{self, Some, None};
"#;
let suffix = r#"
//- /core/lib.rs crate:core
pub mod option {
pub enum Option<T> { Some(T), None }
}
pub mod iter {
pub trait Iterator {
type Item;
fn filter_map<B, F>(self, f: F) -> FilterMap where F: FnMut(Self::Item) -> Option<B> { FilterMap }
fn next(&mut self) -> Option<Self::Item>;
}
pub struct FilterMap {}
impl Iterator for FilterMap {
type Item = i32;
fn next(&mut self) -> i32 { 7 }
}
}
"#;
format!("{}{}{}", prefix, body, suffix)
}
#[test]
fn replace_filter_map_next_with_find_map2() {
check_diagnostics(&add_filter_map_with_find_next_boilerplate(
r#"
fn foo() {
let m = [1, 2, 3].iter().filter_map(|x| if *x == 2 { Some (4) } else { None }).next();
//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ replace filter_map(..).next() with find_map(..)
}
"#,
));
}
#[test]
fn replace_filter_map_next_with_find_map_no_diagnostic_without_next() {
check_diagnostics(&add_filter_map_with_find_next_boilerplate(
r#"
fn foo() {
let m = [1, 2, 3]
.iter()
.filter_map(|x| if *x == 2 { Some (4) } else { None })
.len();
}
"#,
));
}
#[test]
fn replace_filter_map_next_with_find_map_no_diagnostic_with_intervening_methods() {
check_diagnostics(&add_filter_map_with_find_next_boilerplate(
r#"
fn foo() {
let m = [1, 2, 3]
.iter()
.filter_map(|x| if *x == 2 { Some (4) } else { None })
.map(|x| x + 2)
.len();
}
"#,
));
}
#[test]
fn replace_filter_map_next_with_find_map_no_diagnostic_if_not_in_chain() {
check_diagnostics(&add_filter_map_with_find_next_boilerplate(
r#"
fn foo() {
let m = [1, 2, 3]
.iter()
.filter_map(|x| if *x == 2 { Some (4) } else { None });
let n = m.next();
}
"#,
));
}
#[test]
fn missing_record_pat_field_no_diagnostic_if_not_exhaustive() {
check_diagnostics(
r"
struct S { foo: i32, bar: () }
fn baz(s: S) -> i32 {
match s {
S { foo, .. } => foo,
}
}
",
)
}
#[test]
fn missing_record_pat_field_box() {
check_diagnostics(
r"
struct S { s: Box<u32> }
fn x(a: S) {
let S { box s } = a;
}
",
)
}
#[test]
fn missing_record_pat_field_ref() {
check_diagnostics(
r"
struct S { s: u32 }
fn x(a: S) {
let S { ref s } = a;
}
",
)
}
#[test]
fn simple_free_fn_zero() {
check_diagnostics(
r#"
fn zero() {}
fn f() { zero(1); }
//^^^^^^^ Expected 0 arguments, found 1
"#,
);
check_diagnostics(
r#"
fn zero() {}
fn f() { zero(); }
"#,
);
}
#[test]
fn simple_free_fn_one() {
check_diagnostics(
r#"
fn one(arg: u8) {}
fn f() { one(); }
//^^^^^ Expected 1 argument, found 0
"#,
);
check_diagnostics(
r#"
fn one(arg: u8) {}
fn f() { one(1); }
"#,
);
}
#[test]
fn method_as_fn() {
check_diagnostics(
r#"
struct S;
impl S { fn method(&self) {} }
fn f() {
S::method();
} //^^^^^^^^^^^ Expected 1 argument, found 0
"#,
);
check_diagnostics(
r#"
struct S;
impl S { fn method(&self) {} }
fn f() {
S::method(&S);
S.method();
}
"#,
);
}
#[test]
fn method_with_arg() {
check_diagnostics(
r#"
struct S;
impl S { fn method(&self, arg: u8) {} }
fn f() {
S.method();
} //^^^^^^^^^^ Expected 1 argument, found 0
"#,
);
check_diagnostics(
r#"
struct S;
impl S { fn method(&self, arg: u8) {} }
fn f() {
S::method(&S, 0);
S.method(1);
}
"#,
);
}
#[test]
fn method_unknown_receiver() {
// note: this is incorrect code, so there might be errors on this in the
// future, but we shouldn't emit an argument count diagnostic here
check_diagnostics(
r#"
trait Foo { fn method(&self, arg: usize) {} }
fn f() {
let x;
x.method();
}
"#,
);
}
#[test]
fn tuple_struct() {
check_diagnostics(
r#"
struct Tup(u8, u16);
fn f() {
Tup(0);
} //^^^^^^ Expected 2 arguments, found 1
"#,
)
}
#[test]
fn enum_variant() {
check_diagnostics(
r#"
enum En { Variant(u8, u16), }
fn f() {
En::Variant(0);
} //^^^^^^^^^^^^^^ Expected 2 arguments, found 1
"#,
)
}
#[test]
fn enum_variant_type_macro() {
check_diagnostics(
r#"
macro_rules! Type {
() => { u32 };
}
enum Foo {
Bar(Type![])
}
impl Foo {
fn new() {
Foo::Bar(0);
Foo::Bar(0, 1);
//^^^^^^^^^^^^^^ Expected 1 argument, found 2
Foo::Bar();
//^^^^^^^^^^ Expected 1 argument, found 0
}
}
"#,
);
}
#[test]
fn varargs() {
check_diagnostics(
r#"
extern "C" {
fn fixed(fixed: u8);
fn varargs(fixed: u8, ...);
fn varargs2(...);
}
fn f() {
unsafe {
fixed(0);
fixed(0, 1);
//^^^^^^^^^^^ Expected 1 argument, found 2
varargs(0);
varargs(0, 1);
varargs2();
varargs2(0);
varargs2(0, 1);
}
}
"#,
)
}
#[test]
fn arg_count_lambda() {
check_diagnostics(
r#"
fn main() {
let f = |()| ();
f();
//^^^ Expected 1 argument, found 0
f(());
f((), ());
//^^^^^^^^^ Expected 1 argument, found 2
}
"#,
)
}
#[test]
fn cfgd_out_call_arguments() {
check_diagnostics(
r#"
struct C(#[cfg(FALSE)] ());
impl C {
fn new() -> Self {
Self(
#[cfg(FALSE)]
(),
)
}
fn method(&self) {}
}
fn main() {
C::new().method(#[cfg(FALSE)] 0);
}
"#,
);
}
#[test]
fn cfgd_out_fn_params() {
check_diagnostics(
r#"
fn foo(#[cfg(NEVER)] x: ()) {}
struct S;
impl S {
fn method(#[cfg(NEVER)] self) {}
fn method2(#[cfg(NEVER)] self, arg: u8) {}
fn method3(self, #[cfg(NEVER)] arg: u8) {}
}
extern "C" {
fn fixed(fixed: u8, #[cfg(NEVER)] ...);
fn varargs(#[cfg(not(NEVER))] ...);
}
fn main() {
foo();
S::method();
S::method2(0);
S::method3(S);
S.method3();
unsafe {
fixed(0);
varargs(1, 2, 3);
}
}
"#,
)
}
#[test]
fn missing_semicolon() {
check_diagnostics(
r#"
fn test() -> i32 { 123; }
//^^^ Remove this semicolon
"#,
);
}
#[test]
fn import_extern_crate_clash_with_inner_item() {
// This is more of a resolver test, but doesn't really work with the hir_def testsuite.
check_diagnostics(
r#"
//- /lib.rs crate:lib deps:jwt
mod permissions;
use permissions::jwt;
fn f() {
fn inner() {}
jwt::Claims {}; // should resolve to the local one with 0 fields, and not get a diagnostic
}
//- /permissions.rs
pub mod jwt {
pub struct Claims {}
}
//- /jwt/lib.rs crate:jwt
pub struct Claims {
field: u8,
}
"#,
);
}
}
#[cfg(test)]
pub(super) mod match_check_tests {
use crate::diagnostics::tests::check_diagnostics;
#[test]
fn empty_tuple() {
check_diagnostics(
r#"
fn main() {
match () { }
//^^ Missing match arm
match (()) { }
//^^^^ Missing match arm
match () { _ => (), }
match () { () => (), }
match (()) { (()) => (), }
}
"#,
);
}
#[test]
fn tuple_of_two_empty_tuple() {
check_diagnostics(
r#"
fn main() {
match ((), ()) { }
//^^^^^^^^ Missing match arm
match ((), ()) { ((), ()) => (), }
}
"#,
);
}
#[test]
fn boolean() {
check_diagnostics(
r#"
fn test_main() {
match false { }
//^^^^^ Missing match arm
match false { true => (), }
//^^^^^ Missing match arm
match (false, true) {}
//^^^^^^^^^^^^^ Missing match arm
match (false, true) { (true, true) => (), }
//^^^^^^^^^^^^^ Missing match arm
match (false, true) {
//^^^^^^^^^^^^^ Missing match arm
(false, true) => (),
(false, false) => (),
(true, false) => (),
}
match (false, true) { (true, _x) => (), }
//^^^^^^^^^^^^^ Missing match arm
match false { true => (), false => (), }
match (false, true) {
(false, _) => (),
(true, false) => (),
(_, true) => (),
}
match (false, true) {
(true, true) => (),
(true, false) => (),
(false, true) => (),
(false, false) => (),
}
match (false, true) {
(true, _x) => (),
(false, true) => (),
(false, false) => (),
}
match (false, true, false) {
(false, ..) => (),
(true, ..) => (),
}
match (false, true, false) {
(.., false) => (),
(.., true) => (),
}
match (false, true, false) { (..) => (), }
}
"#,
);
}
#[test]
fn tuple_of_tuple_and_bools() {
check_diagnostics(
r#"
fn main() {
match (false, ((), false)) {}
//^^^^^^^^^^^^^^^^^^^^ Missing match arm
match (false, ((), false)) { (true, ((), true)) => (), }
//^^^^^^^^^^^^^^^^^^^^ Missing match arm
match (false, ((), false)) { (true, _) => (), }
//^^^^^^^^^^^^^^^^^^^^ Missing match arm
match (false, ((), false)) {
(true, ((), true)) => (),
(true, ((), false)) => (),
(false, ((), true)) => (),
(false, ((), false)) => (),
}
match (false, ((), false)) {
(true, ((), true)) => (),
(true, ((), false)) => (),
(false, _) => (),
}
}
"#,
);
}
#[test]
fn enums() {
check_diagnostics(
r#"
enum Either { A, B, }
fn main() {
match Either::A { }
//^^^^^^^^^ Missing match arm
match Either::B { Either::A => (), }
//^^^^^^^^^ Missing match arm
match &Either::B {
//^^^^^^^^^^ Missing match arm
Either::A => (),
}
match Either::B {
Either::A => (), Either::B => (),
}
match &Either::B {
Either::A => (), Either::B => (),
}
}
"#,
);
}
#[test]
fn enum_containing_bool() {
check_diagnostics(
r#"
enum Either { A(bool), B }
fn main() {
match Either::B { }
//^^^^^^^^^ Missing match arm
match Either::B {
//^^^^^^^^^ Missing match arm
Either::A(true) => (), Either::B => ()
}
match Either::B {
Either::A(true) => (),
Either::A(false) => (),
Either::B => (),
}
match Either::B {
Either::B => (),
_ => (),
}
match Either::B {
Either::A(_) => (),
Either::B => (),
}
}
"#,
);
}
#[test]
fn enum_different_sizes() {
check_diagnostics(
r#"
enum Either { A(bool), B(bool, bool) }
fn main() {
match Either::A(false) {
//^^^^^^^^^^^^^^^^ Missing match arm
Either::A(_) => (),
Either::B(false, _) => (),
}
match Either::A(false) {
Either::A(_) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
match Either::A(false) {
Either::A(true) | Either::A(false) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
"#,
);
}
#[test]
fn tuple_of_enum_no_diagnostic() {
check_diagnostics(
r#"
enum Either { A(bool), B(bool, bool) }
enum Either2 { C, D }
fn main() {
match (Either::A(false), Either2::C) {
(Either::A(true), _) | (Either::A(false), _) => (),
(Either::B(true, _), Either2::C) => (),
(Either::B(false, _), Either2::C) => (),
(Either::B(_, _), Either2::D) => (),
}
}
"#,
);
}
#[test]
fn or_pattern_no_diagnostic() {
check_diagnostics(
r#"
enum Either {A, B}
fn main() {
match (Either::A, Either::B) {
(Either::A | Either::B, _) => (),
}
}"#,
)
}
#[test]
fn mismatched_types() {
// Match statements with arms that don't match the
// expression pattern do not fire this diagnostic.
check_diagnostics(
r#"
enum Either { A, B }
enum Either2 { C, D }
fn main() {
match Either::A {
Either2::C => (),
// ^^^^^^^^^^ Internal: match check bailed out
Either2::D => (),
}
match (true, false) {
(true, false, true) => (),
// ^^^^^^^^^^^^^^^^^^^ Internal: match check bailed out
(true) => (),
}
match (true, false) { (true,) => {} }
// ^^^^^^^ Internal: match check bailed out
match (0) { () => () }
// ^^ Internal: match check bailed out
match Unresolved::Bar { Unresolved::Baz => () }
}
"#,
);
}
#[test]
fn mismatched_types_in_or_patterns() {
check_diagnostics(
r#"
fn main() {
match false { true | () => {} }
// ^^^^^^^^^ Internal: match check bailed out
match (false,) { (true | (),) => {} }
// ^^^^^^^^^^^^ Internal: match check bailed out
}
"#,
);
}
#[test]
fn malformed_match_arm_tuple_enum_missing_pattern() {
// We are testing to be sure we don't panic here when the match
// arm `Either::B` is missing its pattern.
check_diagnostics(
r#"
enum Either { A, B(u32) }
fn main() {
match Either::A {
Either::A => (),
Either::B() => (),
}
}
"#,
);
}
#[test]
fn malformed_match_arm_extra_fields() {
check_diagnostics(
r#"
enum A { B(isize, isize), C }
fn main() {
match A::B(1, 2) {
A::B(_, _, _) => (),
// ^^^^^^^^^^^^^ Internal: match check bailed out
}
match A::B(1, 2) {
A::C(_) => (),
// ^^^^^^^ Internal: match check bailed out
}
}
"#,
);
}
#[test]
fn expr_diverges() {
check_diagnostics(
r#"
enum Either { A, B }
fn main() {
match loop {} {
Either::A => (),
// ^^^^^^^^^ Internal: match check bailed out
Either::B => (),
}
match loop {} {
Either::A => (),
// ^^^^^^^^^ Internal: match check bailed out
}
match loop { break Foo::A } {
//^^^^^^^^^^^^^^^^^^^^^ Missing match arm
Either::A => (),
}
match loop { break Foo::A } {
Either::A => (),
Either::B => (),
}
}
"#,
);
}
#[test]
fn expr_partially_diverges() {
check_diagnostics(
r#"
enum Either<T> { A(T), B }
fn foo() -> Either<!> { Either::B }
fn main() -> u32 {
match foo() {
Either::A(val) => val,
Either::B => 0,
}
}
"#,
);
}
#[test]
fn enum_record() {
check_diagnostics(
r#"
enum Either { A { foo: bool }, B }
fn main() {
let a = Either::A { foo: true };
match a { }
//^ Missing match arm
match a { Either::A { foo: true } => () }
//^ Missing match arm
match a {
Either::A { } => (),
//^^^^^^^^^ Missing structure fields:
// | - foo
Either::B => (),
}
match a {
//^ Missing match arm
Either::A { } => (),
} //^^^^^^^^^ Missing structure fields:
// | - foo
match a {
Either::A { foo: true } => (),
Either::A { foo: false } => (),
Either::B => (),
}
match a {
Either::A { foo: _ } => (),
Either::B => (),
}
}
"#,
);
}
#[test]
fn enum_record_fields_out_of_order() {
check_diagnostics(
r#"
enum Either {
A { foo: bool, bar: () },
B,
}
fn main() {
let a = Either::A { foo: true, bar: () };
match a {
//^ Missing match arm
Either::A { bar: (), foo: false } => (),
Either::A { foo: true, bar: () } => (),
}
match a {
Either::A { bar: (), foo: false } => (),
Either::A { foo: true, bar: () } => (),
Either::B => (),
}
}
"#,
);
}
#[test]
fn enum_record_ellipsis() {
check_diagnostics(
r#"
enum Either {
A { foo: bool, bar: bool },
B,
}
fn main() {
let a = Either::B;
match a {
//^ Missing match arm
Either::A { foo: true, .. } => (),
Either::B => (),
}
match a {
//^ Missing match arm
Either::A { .. } => (),
}
match a {
Either::A { foo: true, .. } => (),
Either::A { foo: false, .. } => (),
Either::B => (),
}
match a {
Either::A { .. } => (),
Either::B => (),
}
}
"#,
);
}
#[test]
fn enum_tuple_partial_ellipsis() {
check_diagnostics(
r#"
enum Either {
A(bool, bool, bool, bool),
B,
}
fn main() {
match Either::B {
//^^^^^^^^^ Missing match arm
Either::A(true, .., true) => (),
Either::A(true, .., false) => (),
Either::A(false, .., false) => (),
Either::B => (),
}
match Either::B {
//^^^^^^^^^ Missing match arm
Either::A(true, .., true) => (),
Either::A(true, .., false) => (),
Either::A(.., true) => (),
Either::B => (),
}
match Either::B {
Either::A(true, .., true) => (),
Either::A(true, .., false) => (),
Either::A(false, .., true) => (),
Either::A(false, .., false) => (),
Either::B => (),
}
match Either::B {
Either::A(true, .., true) => (),
Either::A(true, .., false) => (),
Either::A(.., true) => (),
Either::A(.., false) => (),
Either::B => (),
}
}
"#,
);
}
#[test]
fn never() {
check_diagnostics(
r#"
enum Never {}
fn enum_(never: Never) {
match never {}
}
fn enum_ref(never: &Never) {
match never {}
//^^^^^ Missing match arm
}
fn bang(never: !) {
match never {}
}
"#,
);
}
#[test]
fn unknown_type() {
check_diagnostics(
r#"
enum Option<T> { Some(T), None }
fn main() {
// `Never` is deliberately not defined so that it's an uninferred type.
match Option::<Never>::None {
None => (),
Some(never) => match never {},
// ^^^^^^^^^^^ Internal: match check bailed out
}
match Option::<Never>::None {
//^^^^^^^^^^^^^^^^^^^^^ Missing match arm
Option::Some(_never) => {},
}
}
"#,
);
}
#[test]
fn tuple_of_bools_with_ellipsis_at_end_missing_arm() {
check_diagnostics(
r#"
fn main() {
match (false, true, false) {
//^^^^^^^^^^^^^^^^^^^^ Missing match arm
(false, ..) => (),
}
}"#,
);
}
#[test]
fn tuple_of_bools_with_ellipsis_at_beginning_missing_arm() {
check_diagnostics(
r#"
fn main() {
match (false, true, false) {
//^^^^^^^^^^^^^^^^^^^^ Missing match arm
(.., false) => (),
}
}"#,
);
}
#[test]
fn tuple_of_bools_with_ellipsis_in_middle_missing_arm() {
check_diagnostics(
r#"
fn main() {
match (false, true, false) {
//^^^^^^^^^^^^^^^^^^^^ Missing match arm
(true, .., false) => (),
}
}"#,
);
}
#[test]
fn record_struct() {
check_diagnostics(
r#"struct Foo { a: bool }
fn main(f: Foo) {
match f {}
//^ Missing match arm
match f { Foo { a: true } => () }
//^ Missing match arm
match &f { Foo { a: true } => () }
//^^ Missing match arm
match f { Foo { a: _ } => () }
match f {
Foo { a: true } => (),
Foo { a: false } => (),
}
match &f {
Foo { a: true } => (),
Foo { a: false } => (),
}
}
"#,
);
}
#[test]
fn tuple_struct() {
check_diagnostics(
r#"struct Foo(bool);
fn main(f: Foo) {
match f {}
//^ Missing match arm
match f { Foo(true) => () }
//^ Missing match arm
match f {
Foo(true) => (),
Foo(false) => (),
}
}
"#,
);
}
#[test]
fn unit_struct() {
check_diagnostics(
r#"struct Foo;
fn main(f: Foo) {
match f {}
//^ Missing match arm
match f { Foo => () }
}
"#,
);
}
#[test]
fn record_struct_ellipsis() {
check_diagnostics(
r#"struct Foo { foo: bool, bar: bool }
fn main(f: Foo) {
match f { Foo { foo: true, .. } => () }
//^ Missing match arm
match f {
//^ Missing match arm
Foo { foo: true, .. } => (),
Foo { bar: false, .. } => ()
}
match f { Foo { .. } => () }
match f {
Foo { foo: true, .. } => (),
Foo { foo: false, .. } => ()
}
}
"#,
);
}
#[test]
fn internal_or() {
check_diagnostics(
r#"
fn main() {
enum Either { A(bool), B }
match Either::B {
//^^^^^^^^^ Missing match arm
Either::A(true | false) => (),
}
}
"#,
);
}
#[test]
fn no_panic_at_unimplemented_subpattern_type() {
check_diagnostics(
r#"
struct S { a: char}
fn main(v: S) {
match v { S{ a } => {} }
match v { S{ a: _x } => {} }
match v { S{ a: 'a' } => {} }
//^^^^^^^^^^^ Internal: match check bailed out
match v { S{..} => {} }
match v { _ => {} }
match v { }
//^ Missing match arm
}
"#,
);
}
#[test]
fn binding() {
check_diagnostics(
r#"
fn main() {
match true {
_x @ true => {}
false => {}
}
match true { _x @ true => {} }
//^^^^ Missing match arm
}
"#,
);
}
#[test]
fn binding_ref_has_correct_type() {
// Asserts `PatKind::Binding(ref _x): bool`, not &bool.
// If that's not true match checking will panic with "incompatible constructors"
// FIXME: make facilities to test this directly like `tests::check_infer(..)`
check_diagnostics(
r#"
enum Foo { A }
fn main() {
// FIXME: this should not bail out but current behavior is such as the old algorithm.
// ExprValidator::validate_match(..) checks types of top level patterns incorrecly.
match Foo::A {
ref _x => {}
// ^^^^^^ Internal: match check bailed out
Foo::A => {}
}
match (true,) {
(ref _x,) => {}
(true,) => {}
}
}
"#,
);
}
#[test]
fn enum_non_exhaustive() {
check_diagnostics(
r#"
//- /lib.rs crate:lib
#[non_exhaustive]
pub enum E { A, B }
fn _local() {
match E::A { _ => {} }
match E::A {
E::A => {}
E::B => {}
}
match E::A {
E::A | E::B => {}
}
}
//- /main.rs crate:main deps:lib
use lib::E;
fn main() {
match E::A { _ => {} }
match E::A {
//^^^^ Missing match arm
E::A => {}
E::B => {}
}
match E::A {
//^^^^ Missing match arm
E::A | E::B => {}
}
}
"#,
);
}
#[test]
fn match_guard() {
check_diagnostics(
r#"
fn main() {
match true {
true if false => {}
true => {}
false => {}
}
match true {
//^^^^ Missing match arm
true if false => {}
false => {}
}
}
"#,
);
}
#[test]
fn pattern_type_is_of_substitution() {
cov_mark::check!(match_check_wildcard_expanded_to_substitutions);
check_diagnostics(
r#"
struct Foo<T>(T);
struct Bar;
fn main() {
match Foo(Bar) {
_ | Foo(Bar) => {}
}
}
"#,
);
}
#[test]
fn record_struct_no_such_field() {
check_diagnostics(
r#"
struct Foo { }
fn main(f: Foo) {
match f { Foo { bar } => () }
// ^^^^^^^^^^^ Internal: match check bailed out
}
"#,
);
}
#[test]
fn match_ergonomics_issue_9095() {
check_diagnostics(
r#"
enum Foo<T> { A(T) }
fn main() {
match &Foo::A(true) {
_ => {}
Foo::A(_) => {}
}
}
"#,
);
}
mod false_negatives {
//! The implementation of match checking here is a work in progress. As we roll this out, we
//! prefer false negatives to false positives (ideally there would be no false positives). This
//! test module should document known false negatives. Eventually we will have a complete
//! implementation of match checking and this module will be empty.
//!
//! The reasons for documenting known false negatives:
//!
//! 1. It acts as a backlog of work that can be done to improve the behavior of the system.
//! 2. It ensures the code doesn't panic when handling these cases.
use super::*;
#[test]
fn integers() {
// We don't currently check integer exhaustiveness.
check_diagnostics(
r#"
fn main() {
match 5 {
10 => (),
// ^^ Internal: match check bailed out
11..20 => (),
}
}
"#,
);
}
#[test]
fn reference_patterns_at_top_level() {
check_diagnostics(
r#"
fn main() {
match &false {
&true => {}
// ^^^^^ Internal: match check bailed out
}
}
"#,
);
}
#[test]
fn reference_patterns_in_fields() {
check_diagnostics(
r#"
fn main() {
match (&false,) {
(true,) => {}
// ^^^^^^^ Internal: match check bailed out
}
match (&false,) {
(&true,) => {}
// ^^^^^^^^ Internal: match check bailed out
}
}
"#,
);
}
}
}
#[cfg(test)]
mod decl_check_tests {
use crate::diagnostics::tests::check_diagnostics;
#[test]
fn incorrect_function_name() {
check_diagnostics(
r#"
fn NonSnakeCaseName() {}
// ^^^^^^^^^^^^^^^^ Function `NonSnakeCaseName` should have snake_case name, e.g. `non_snake_case_name`
"#,
);
}
#[test]
fn incorrect_function_params() {
check_diagnostics(
r#"
fn foo(SomeParam: u8) {}
// ^^^^^^^^^ Parameter `SomeParam` should have snake_case name, e.g. `some_param`
fn foo2(ok_param: &str, CAPS_PARAM: u8) {}
// ^^^^^^^^^^ Parameter `CAPS_PARAM` should have snake_case name, e.g. `caps_param`
"#,
);
}
#[test]
fn incorrect_variable_names() {
check_diagnostics(
r#"
fn foo() {
let SOME_VALUE = 10;
// ^^^^^^^^^^ Variable `SOME_VALUE` should have snake_case name, e.g. `some_value`
let AnotherValue = 20;
// ^^^^^^^^^^^^ Variable `AnotherValue` should have snake_case name, e.g. `another_value`
}
"#,
);
}
#[test]
fn incorrect_struct_names() {
check_diagnostics(
r#"
struct non_camel_case_name {}
// ^^^^^^^^^^^^^^^^^^^ Structure `non_camel_case_name` should have CamelCase name, e.g. `NonCamelCaseName`
struct SCREAMING_CASE {}
// ^^^^^^^^^^^^^^ Structure `SCREAMING_CASE` should have CamelCase name, e.g. `ScreamingCase`
"#,
);
}
#[test]
fn no_diagnostic_for_camel_cased_acronyms_in_struct_name() {
check_diagnostics(
r#"
struct AABB {}
"#,
);
}
#[test]
fn incorrect_struct_field() {
check_diagnostics(
r#"
struct SomeStruct { SomeField: u8 }
// ^^^^^^^^^ Field `SomeField` should have snake_case name, e.g. `some_field`
"#,
);
}
#[test]
fn incorrect_enum_names() {
check_diagnostics(
r#"
enum some_enum { Val(u8) }
// ^^^^^^^^^ Enum `some_enum` should have CamelCase name, e.g. `SomeEnum`
enum SOME_ENUM {}
// ^^^^^^^^^ Enum `SOME_ENUM` should have CamelCase name, e.g. `SomeEnum`
"#,
);
}
#[test]
fn no_diagnostic_for_camel_cased_acronyms_in_enum_name() {
check_diagnostics(
r#"
enum AABB {}
"#,
);
}
#[test]
fn incorrect_enum_variant_name() {
check_diagnostics(
r#"
enum SomeEnum { SOME_VARIANT(u8) }
// ^^^^^^^^^^^^ Variant `SOME_VARIANT` should have CamelCase name, e.g. `SomeVariant`
"#,
);
}
#[test]
fn incorrect_const_name() {
check_diagnostics(
r#"
const some_weird_const: u8 = 10;
// ^^^^^^^^^^^^^^^^ Constant `some_weird_const` should have UPPER_SNAKE_CASE name, e.g. `SOME_WEIRD_CONST`
"#,
);
}
#[test]
fn incorrect_static_name() {
check_diagnostics(
r#"
static some_weird_const: u8 = 10;
// ^^^^^^^^^^^^^^^^ Static variable `some_weird_const` should have UPPER_SNAKE_CASE name, e.g. `SOME_WEIRD_CONST`
"#,
);
}
#[test]
fn fn_inside_impl_struct() {
check_diagnostics(
r#"
struct someStruct;
// ^^^^^^^^^^ Structure `someStruct` should have CamelCase name, e.g. `SomeStruct`
impl someStruct {
fn SomeFunc(&self) {
// ^^^^^^^^ Function `SomeFunc` should have snake_case name, e.g. `some_func`
let WHY_VAR_IS_CAPS = 10;
// ^^^^^^^^^^^^^^^ Variable `WHY_VAR_IS_CAPS` should have snake_case name, e.g. `why_var_is_caps`
}
}
"#,
);
}
#[test]
fn no_diagnostic_for_enum_varinats() {
check_diagnostics(
r#"
enum Option { Some, None }
fn main() {
match Option::None {
None => (),
Some => (),
}
}
"#,
);
}
#[test]
fn non_let_bind() {
check_diagnostics(
r#"
enum Option { Some, None }
fn main() {
match Option::None {
SOME_VAR @ None => (),
// ^^^^^^^^ Variable `SOME_VAR` should have snake_case name, e.g. `some_var`
Some => (),
}
}
"#,
);
}
#[test]
fn allow_attributes() {
check_diagnostics(
r#"
#[allow(non_snake_case)]
fn NonSnakeCaseName(SOME_VAR: u8) -> u8{
// cov_flags generated output from elsewhere in this file
extern "C" {
#[no_mangle]
static lower_case: u8;
}
let OtherVar = SOME_VAR + 1;
OtherVar
}
#[allow(nonstandard_style)]
mod CheckNonstandardStyle {
fn HiImABadFnName() {}
}
#[allow(bad_style)]
mod CheckBadStyle {
fn HiImABadFnName() {}
}
mod F {
#![allow(non_snake_case)]
fn CheckItWorksWithModAttr(BAD_NAME_HI: u8) {}
}
#[allow(non_snake_case, non_camel_case_types)]
pub struct some_type {
SOME_FIELD: u8,
SomeField: u16,
}
#[allow(non_upper_case_globals)]
pub const some_const: u8 = 10;
#[allow(non_upper_case_globals)]
pub static SomeStatic: u8 = 10;
"#,
);
}
#[test]
fn allow_attributes_crate_attr() {
check_diagnostics(
r#"
#![allow(non_snake_case)]
mod F {
fn CheckItWorksWithCrateAttr(BAD_NAME_HI: u8) {}
}
"#,
);
}
#[test]
#[ignore]
fn bug_trait_inside_fn() {
// FIXME:
// This is broken, and in fact, should not even be looked at by this
// lint in the first place. There's weird stuff going on in the
// collection phase.
// It's currently being brought in by:
// * validate_func on `a` recursing into modules
// * then it finds the trait and then the function while iterating
// through modules
// * then validate_func is called on Dirty
// * ... which then proceeds to look at some unknown module taking no
// attrs from either the impl or the fn a, and then finally to the root
// module
//
// It should find the attribute on the trait, but it *doesn't even see
// the trait* as far as I can tell.
check_diagnostics(
r#"
trait T { fn a(); }
struct U {}
impl T for U {
fn a() {
// this comes out of bitflags, mostly
#[allow(non_snake_case)]
trait __BitFlags {
const HiImAlsoBad: u8 = 2;
#[inline]
fn Dirty(&self) -> bool {
false
}
}
}
}
"#,
);
}
#[test]
#[ignore]
fn bug_traits_arent_checked() {
// FIXME: Traits and functions in traits aren't currently checked by
// r-a, even though rustc will complain about them.
check_diagnostics(
r#"
trait BAD_TRAIT {
// ^^^^^^^^^ Trait `BAD_TRAIT` should have CamelCase name, e.g. `BadTrait`
fn BAD_FUNCTION();
// ^^^^^^^^^^^^ Function `BAD_FUNCTION` should have snake_case name, e.g. `bad_function`
fn BadFunction();
// ^^^^^^^^^^^^ Function `BadFunction` should have snake_case name, e.g. `bad_function`
}
"#,
);
}
#[test]
fn ignores_extern_items() {
cov_mark::check!(extern_func_incorrect_case_ignored);
cov_mark::check!(extern_static_incorrect_case_ignored);
check_diagnostics(
r#"
extern {
fn NonSnakeCaseName(SOME_VAR: u8) -> u8;
pub static SomeStatic: u8 = 10;
}
"#,
);
}
#[test]
fn infinite_loop_inner_items() {
check_diagnostics(
r#"
fn qualify() {
mod foo {
use super::*;
}
}
"#,
)
}
#[test] // Issue #8809.
fn parenthesized_parameter() {
check_diagnostics(r#"fn f((O): _) {}"#)
}
}